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Abstract. This paper presents an original method for deriving models
of flexible cable robots including cable sagging based on assumed mode
assumption. This method allows to derive low-order models that specially
suit for control applications. The case of a winder and a planar cable
without elongation but with sagging in the plane of movement is first
considered. Then, the model of a planar robot with a punctual platform
with three cables is presented. The model is written in the Lagrange
framework for constrained systems. Simulation results for a three-cable
robots are presented and discussed.

1 Introduction

Cable-driven parallel robots (CDPR) are a special class of parallel manipulators
in which the end-effector is connected to the base through cables, the movement
being provided by the winding and unwinding of cables. Compared to conven-
tional serial or parallel manipulators, CDPR have interesting features: a large
workspace capability, low inertia of moving components and reduced obstruction
of the workspace. Their main drawback is common to all flexible manipulators
in which the deflections and elongation of the links limit the precision when
determining the position of the end-effector from the measurements of the joint
positions.

A number of approaches considers straight inextensible cables [3,5]. Straight
massless extensible cables are also often considered. In a simplistic case, the
cable is modeled as the association of a rigid link with a spring which stiff-
ness is inversely proportional to the cable length [8,13]. Models from continuum
mechanics are also available in the literature that provide more accurate models
of elastic cables [11]. When the mass of the cable is not negligible anymore, the
sagging effect must be accounted for. In statics, this effect results in the catenary
equation and is well documented [7,14]. Finite-element models are available for
but they have the drawback of resulting in high order models [4]. More recently,
Arsenault [2] and Yuan et al. [15] have considered elastic cables with sagging.
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Following the dynamic stiffness matrix method [1], the stiffness matrix is first
determined in statics and then introduced in the dynamic model.

The key idea of the original approach proposed herein is to consider cables
as particular cases of flexible segments. When considering the control of sys-
tems composed of deformable segments modeled as Euler-Bernoulli beams, the
assumed-mode approach is certainly the most standard and has been intensively
used for serial robots [9,10]. The segment deformations are first written as sums
of contributions of a given base. Then, the geometry can be written as a function
of a generalized position vector that includes deformation variables. The dynamic
model, given by the Lagrange equation of motion in a standard way, accounts for
the kinetic energy of the cable displacements. In this contribution, this approach
is considered in which deformable segments are replaced by perfectly flexible and
inextensible cables. As an illustrative example, the case of a planar robot with a
punctual platform, actuated by three or more cables, is considered. Cables are
assumed to be affected by sagging in the plane of movement.

In Sect. 2, the model of a single cable and its winder, undergoing transverse
deformation in a plane is considered. Based on Lagrange approach, a dynamic
model is derived. In Sect. 3, the model of a planar robot with three or more
cables is considered. The DAE model is developed and then reduced. In Sect. 4,
some simulation results are presented and discussed. The model derived with
Maple and the simulation with Matlab-Simulink are available online’.

2 Single Cable Modeling

In this section, we focus on the an elementary constitutive element of the pla-
nar robot depicted in Fig. 2, namely, one single cable winded at one side and
submitted at the other side to an external force.

2.1 Single Cable Modeling

Up to four deformation fields can be considered when modeling a deformable
beam under Euler-Bernoulli assumption [12]. Herein, the cable subjected to sag-
ging is considered as a perfectly flexible and inextensible 1-dimensional body. In
the current study, the only deformation field of interest is the transverse defor-
mation in the plane of motion. The final geometry of the cable will be given as
the composition of three steps: unwinding, shaping and rotation.

Let us consider a single cable #k operated by a winder #¥k. The cable is tan-
gent to the winder at point Wy and has an end-point denoted Pj,. The unwinded
portion of the cable is the planar curve between Wy and Py of length [;. Let
Fp = (Op,xXp,yp) and Fj, = (W, Xk, yx) denote respectively the fixed global
reference frame and the local reference frame attached to the winder #k. The
position of W}, and the orientation of the cable at W}, are defined by (zw, , yw,.)
and ¢y, respectively as indicated in Fig. 1.

! http://icube-avr.unistra.fr/fr/index.php/Planar_cable_robot_with_non_straight_
cables.
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Fig. 1. General configuration of a single cable.

From an initial configuration where the cable is straight along the xj direc-
tion, let us now consider a small displacement of the cable that alters the cable
shape but preserves its point of tangency W on the winder. In this elementary
displacement, a point of coordinates (z,0) with = € [0, ;] is moved to the point
Mj; of coordinates (zpr, = x+0xp,, Yamr, = 0y, ) in the local frame 7y, Finally,
the coordinates (zy,yx) of the point M} expressed in the global frame %, can
be obtained using an homogeneous transformation as

Ty COS r — Sing Tw, | | T,
Yk | = |singr cosgr yw, YM,, | - (1)
1 0 0 1 1

Notice that if the cable is inextensible, the small displacement variables are

linked b
mnked by a&er " 2 . 05yMk 2 _, (2)
ox ox -

. 05
and assuming that ‘ S
T

dx g, (z,t) = —% /O-T (W)Qdu. (3)

< 1, Eq. (2) yields

The small displacement dys, along the yy direction is assumed to be the
sum of a number of contributions that can be written, with a given basis @ (x)
truncated at the order N, as

N

Synr, (2,t) = B;(x) Vin(t) (4)

=1

where Vjy, is the generalized coordinate for mode @;. In the sequel, we choose to
work with a polynomial basis of the form @;(z) = 2/*1. In this assumed mode



18 J.I. Ayala Cuevas et al.

approach, other basis could have been used, as for example the set of modal
deformations described in [9].

Upon substitution of the coordinates (zas, , yar, ) into Eq. (1), the position of a
point M}, in the global reference frame can be readily calculated as analytic func-
tions, namely, z(gx) and yi(dx) with ¢, = [x Vik - Vi ka}T. At this point,
when z is set to the unwinded length of cable [, the model of the single cable can
be parameterized by the generalized coordinate vector ¢, = [l;C Vik - Vi <pk]T
containing NV + 2 independent parameters gy,

2.2 Cable Dynamic Model

Based on the parameterization presented in the previous subsection, a dynamic
model of a single cable is now introduced as a basic example of the approach.
The details of the three-cable robot are not given in the paper but are available
online (see the link given at the first page).

The cable is winded at one side with a fixed winder actuated by a torque
T, and is subject to the gravitational acceleration —gyy. The other end Py is
submitted to an arbitrary force Fy which coordinates in %, are (Fy, , Fy, ). The
cylindric winder is of radius R and inertia Jy. The cable has a linear density
p and a total length ;. Accounting for the wounded portion of the cable, the
actual inertia is J, = Jo+p(lt —lk)RQ. Furthermore, the winder angular position
0y is related to the unwinded length of cable I, by I, = —R#y. The gravitational
potential energy of the single cable writes

g
Vi =/ P9y (qk) dz. (5)
0
The kinetic energy of the single cable and its rotating winder writes

Vg L™
To=gpglit 5 [ p (k@) +90(@)*) do ©)
0

N+2

. . 3 Y ) Ik .

in which the velocity terms &y (gx) and ¢x(gx) can be calculated as E Do I
° qk;
i=1 ‘

N+2
i . o . . .
and &qki. The kinetic energy can then be written under its quadratic

i=1 i
form T}, = %ngk(qk) Gr. where Mjy(qy) refers to the kinetic energy matrix. The
Lagrange’s equations of motion can be written as

dOT 0T L, 0% -

where I}, = [ka Fy, Tk] corresponds to the actions applied on the system and
Q1 a matrix of partial velocity terms, relative to the generalized coordinates and
determined from the virtual-work principle as:
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amPk 6ka aypk
Oqr, Oqry "7 Odrp .,
Qk — | 9yp, Oyp, Oz p, (8)
Oqr;, Oqky """ Oy,
1
-% 0o ... 0

where zp, and yp, denote the position functions of the point Pj at which the
effort Fy is applied. The entries of the 1 x (N + 2) line matrix I'y Qy correspond
to the generalized forces acting on the cable.

T
Denoting pr, = a—k = q,? Mj,, the line matrix of generalized momentum, the
dk
model can be rewritten under the following state-space representation:
P =Ck + Ik Qr — Gg (9)
dr = M pi, (10)
where
OTy, 1-TOM, 1-T_OMy -
Cr = Biqk = {qu 8%]; ak - - - 54 aqu’“H Qk} (11)
OVy, oV, oV,
Gr= g = ke (12)

3 Planar Robot with n cables

A planar cable robot operated by several cables is now considered as presented
in Fig. 2. Its platform is considered as a punctual mass m located at point P
of coordinates (zp,yp) in the global reference frame. The number of cables in
this example is three but the presented method is applicable to any number of
cables.

3.1 Dynamic Model

The generalized coordinate vector g for the system includes the two parameters
of the mobile platform and the n sets of parameters relative to each cable. The
column vector ¢ can be written symbolically as

q:[xpypqlT...q?l]T (13)

which corresponds to n(N + 2) + 2 non independent parameters.

The total kinetic energy is calculated as the sum of contributions of each
cable plus the platform of mass m, yielding to T = %q'TM(j with M =
diag(My, M1, ..., M,) where My = diag(m, m) is the kinetic inertia matrix of
the platform and M}, k = 1,...,n denotes the kinetic inertia matrix for cable #k.

With the selected generalized coordinate vector g and gathering the terms
I, Q. corresponding to each cable, the generalized force vector acting on the
system writes

rQ = [Fmp F,, INQ: ... FnQn] (14)
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Fig. 2. Schematics of a planar cable robot with 3 cables.

where F,, and F,, are the components, in the global reference frame, of an
effort Fp acting on the moving platform at point P. The gravitational potential
energy for the whole system can be calculated as V = >"}'_, Vi, — mgyp. In the
sequel, we assume that Fp = 0.

The coincidence of the positions of the platform with the cable ends provide

h = 2n geometric (holonomic) constraints of the form h.(¢) =0,r=1,..., h:
hok—1 = xp,(qr) — TP (15)
hor = yp, (k) — yp (16)

with k=1,...,n.

As the n(N+2)+2 parameters are related by the h geometric constraints (15)
and (16), the dynamic behavior of the system can be obtained using Lagrange’s
equations with A multipliers [6]. Upon differentiation with respect to time, the
constraint relations can be written A(¢)¢ = 0 where A is the Jacobian of the
constraints with re(S]é)ect to the generalized coordinate vector ¢ whose entries

_ Ohr(q

write ATk(q) = “oqw -

Using A = [)\1 ... Ap| as the column vector of the Lagrange multipliers, the
Lagrange’s equations can be written as:

]T

d oT oT
= _Tro- TA 1
g 9= TQ-GH+ (17)

oT
with G = ‘3—;/ . Given that the generalized momentum matrix p = 50 = gt M

and after differentiation of the geometric constraints, the differential-algebraic
equations of the system can be obtained as
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A e

Since the equations set (18) is linear with respect to ¢ and A, solving for § can
. . . . [M—AT] . .
be done directly by inversion of the matrix [ A 0 } either online, numerically

or offline, using a computer algebra system.

4 Simulation Results

A system composed of three cables and three winders evenly distributed on a
circle with a 10 m diameter has been tested with the following set of parameters:
It =5m, p=02kg/m, R=0.1m, Jy=25-10"2 kgm? and m = 1 kg. The
cable models have been set with one mode (N = 1).

A controller has been implemented in order to have the platform follow a
desired trajectory («*, y*). A number of approaches are available in the literature
for cable robot control [3,8,13]. Herein, a simplistic approach is used, assuming
that both position and speed of the platform are available.

The controller has been established on the kinetic model 6=J (go) go that
connects the vector of the angular velocities 8 to the velocity of the platform ¢g
through the Jacobian matrix J(qo), assuming straight cables. The control signals
(i.e. the motor torques) are computed as

1
w=uo [1| +J 7 (g) [Zz] (19)
1 Yy

where ug ensures a positive tension in the cables; JT1 is the pseudo-inverse of the
transpose of J; u, and u, are the control actions in the (z,y) plane, computed
with a proportional-derivative (PD) control law given in the Laplace domain:

<
8
—
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»
~—
—
8
*
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~—
\
8
0
~—
—
[N}
o
~

where s denote the Laplace variable and u,(s) is the signal u, in the Laplace
domain. The same PD controllers with filtering are used for both z and y

directions:
(.Uf S

W+ s

where the coefficients have been chosen as following: the proportional gain is
K, = 400 N; the derivative gain is K4y = 100 N.s; the filtering frequency is
wy = 100 rad/s.

The robot being initialized at the center of the workspace without sagging,
the reference remains at the center during 2 s before moving by 1 m along the xy,
direction, then following a square of 2m side length centered in the workspace
at a constant speed of 1 m/s and finally coming back to the origin. The reference

K(s) =K, + K4

(22)
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signals and the actual trajectory can be seen in Fig. 3. The reference trajectory is
tracked with some oscillations. One can check in Fig. 4 that the tensions remain
positive during operation. In Fig.5, the actual trajectory is presented in the
(Xb,yb) plane and the geometry of the cables is plotted for three positions
in order to see how sagging evolves dynamically at a fast pace. The modal
coordinates Vi1, V1o and Vi3 are presented in Fig. 6. One can see how they vary
in term of amplitude and frequency. Notice that the sagging at rest observed at
t = 2 sisreduced compared to the variations observed during dynamic operation.

Iy(m)

0 2 4 6 8 10 12 14 16
time (s)

Fig. 3. Trajectory of the effector with respect to time: reference and actual position.
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Fig. 4. Evolution of the cable tensions T} and of the control signals uy.
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Fig. 5. Trajectory of the effector in the z-y plan and geometry of the cables at ¢t = 2 s;
9.1 s and 9.45 s.
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Fig. 6. Evolution of the deformation variables Vi, with respect to time.

In order to highlight the effect of the cable dynamics on the trajectories,
the trajectories obtained for two different values of the linear density of the
cables are given in Fig. 7. For a low linear density (p = 0.02 kg/m), the reference
is quite well tracked whereas the dynamic behavior of the cables observed for
p = 0.2 kg/m significantly degrades the system behavior.
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Fig. 7. Trajectories of the effector in the z-y plane for different values of p.

5 Conclusion

In this paper, an original approach has been proposed to account for the cable
movements for very dynamic operations of CDPR. Using the assumed defor-
mation method, a dynamic model is derived using the Lagrange’s equations of
motion for constrained systems. The method has been implemented in the case
of a planar CDPR with three cables. Simulation results have shown the effect of
the cable movements on the system behavior.

The next steps to further assess the method’s efficiency will include com-
parisons of the obtained simulation results with experimental data as well as
with other available approaches. Another perspective will consist in extending
the model to account for the cable elongation in the planar case but also in the
more challenging case of 3D setups.
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