Chapter 2

Radiation Properties of Edge-Coupled
Split-Ring Resonators (EC-SRRs)

and Derived Structures

In this chapter, a study of the radiation properties of the SRR and other
metamaterial-inspired resonators will be detailed. Due to its uniplanar geometry,
which contributed to its widespread diffusion in the metamaterial community, the
edge-coupled SRR (EC-SRR) is the topology considered throughout this work.
Analytical approach was at the base of the presented results, and provided
approximated expressions for the most relevant antenna parameters, such as the
input resistance, the radiation efficiency and the cross-polarization of the radiated
fields. The results have been validated by comparison with full-wave EM simula-
tions in different cases, obtaining good agreement.

The expressions obtained in this chapter are at the base of the antenna designs
presented in the next chapter, where experimental data provided additional vali-
dation of the analysis exposed below.

2.1 EC-SRR at Its Fundamental Resonance

The topology of the EC-SRR is depicted in Fig. 2.1 (cylindrical coordinate system
r, Z, ¢ is adopted for the analysis). The ring trace width, ¢, is assumed to be the
same for both rings, a condition which is usually complied in most of the designs
involving the EC-SRR. The width of the cuts in each ring is not critical for the SRR
response, since the capacitance associated to the cut can be neglected [1]. Its value
is set greater than the distance between rings d and, obviously, much smaller than
the mean ring radius ry = (r4 + rp)/2, where r, and rp are the mean radii of the
external and internal rings, respectively.

The electric current distribution in each ring at the fundamental (first) resonance
can be found from the quasi-static analysis presented in [2], which assumes that the
particle length is small in terms of wavelengths. Such assumption is usually sat-
isfied in practical SRR designs, where the coupling between the internal and
external rings makes the resonant particle much smaller than the wavelength,
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Fig. 2.1 Topology and electric current/charge distribution of the EC-SRR at its fundamental
resonance under the quasi-static approximation

typically in the order of Ay/10 (in terms of diameter) [3], where A is the free-space
wavelength. Strong coupling between rings involves a reasonably small distance
d between rings, which ensure a high value of distributed capacitance between
rings. From the quasi-static analysis, it was found that: (i) the currents on the
internal and external rings flow in the same direction, and present the same max-
imum amplitude iy, (ii) the current on each ring can be approximated to follow a
linear dependence over the position angle ¢, (iii) the current at the ring cuts is
approximately zero, since the capacitance associated to the cuts in each ring can be
neglected. Due to the considerations above and the position of the cuts, the sum of
the currents in the outer and inner rings is constant and equal to i, along the whole
circumference (it does not depend on the position angle ¢), as represented in
Fig. 2.1. Hence, it follows that the SRR can be treated like a constant current loop
of radius ry in terms of magnetic polarizability. This has been usually done in the
quasi-static analysis of the particle, in order to evaluate its magnetic polarizability
around the resonance [3]. However, while this approach is a good approximation
for typical EC-SRR designs (where ¢ < ry), SRR designs oriented to radiation
require a more accurate analysis. This is because, in order to obtain high radiation
efficiency, the rings of a radiating SRR are required to be somewhat wider (see
Sect. 2.1.2), as compared to the rings of an SRR used in metamaterial design, and
therefore the condition ¢ < ry complies more weakly.

In the next section, such analysis is carried out to obtain an expression for the
radiation resistance of the EC-SRR at its first resonance.
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2.1.1 Radiation Resistance

As mentioned before, the SRR working around its first resonance is much smaller
than the wavelength. It is also well known that the radiation properties of small
particles are mainly determined by its first-order electric and magnetic moments
(dipole moments). Hence, the first step in our analysis is to evaluate both moments,
individually, on the basis of the current distribution of the EC-SRR.

Let us now focus on the magnetic dipole moment m, associated to the SRR
external ring A. According the definition of dipole moment, this can be written as

mA:%///rxJAdVA, (21)
Va

where J, is the current density on the ring cross-section and V, is the volume
occupied by ring A. The exact evaluation of (2.1) requires the current density
dependence over the r coordinate (i.e., over the ring width) to be known and
expressed analytically. Due to the proximity effect [4] between the internal and
external rings, the current is not uniformly distributed along the ring width (see
Fig. 2.2), and at the first resonance it tends to accumulate far from the slot d be-
cause the currents in the rings flow in the same direction (Fig. 2.2a). The magnitude
of the effect depends upon the position angle ¢, and is minimized at ¢ = 0 and at
¢ = n for the external and internal rings, respectively, due to the positions of the
current zeroes and maxima on the SRR. That is, the current distribution is
approximately uniform where the maxima i, occur, because the current on the other
ring is zero. Since the zones around the current maxima provide the main contri-
bution to the magnetic dipole moment, expression (2.1) can be evaluated to a good
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Fig. 2.2 Amplitude of the electric current density on the EC-SRR at the a first and b second
resonance, simulated with CST Microwave Studio [ry = 15 mm (1¢/24), ¢ = 2 mm, d = 0.5 mm)].
The input port is represented as a red triangle
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approximation by assuming a uniform current distribution along the ring width at
any position angle ¢. Under this assumption, that is J, = Ja(z,¢,?), (2.1) leads to

1 c? , R
my =5 (ri + 12) / ia(p,t)dez (2.2)

-7

where c is the ring width and i, is the current flowing on the external ring. Based on
the quasi-static analysis, the current vector i, on the external ring at the angular
frequency @, can be expressed as

ia(o,t) = io<l - |—(£|) cos(wot) @, (2.3)

as represented in Fig. 2.1. Substitution of (2.3) into (2.2) and integration provide
nf,
my =— <rA + ﬁ) iy cos(mo?)Z. (2.4)

The magnetic dipole moment mp associated to the internal ring B can be eval-
uated by using the same method, and provides an expression analog to (2.4), with ry
changed for rz. After some manipulation, the total magnetic dipole moment
m = m, + my can be written as

2 d d2 )
m= n(r% + % + % + Z) iy cos(mo?)Z. (2.5)

Expression (2.5) provides a good approximation to the problem. It shows that the
magnetic dipole moment generated by the SRR at resonance is actually somewhat
higher than that of a current loop of mean radius r,. However, even when the ring width
cis increased up to /2 (which could be taken as limit to ensure the correct operation of
the resonator), all the terms depending from ¢ and d in (2.5) can be neglected (note that
d is usually maintained small in order to obtain reasonable coupling between the res-
onators). Therefore, for practical cases, (2.5) can always be reduced to

m = nrjiy cos(wot)z, (2.6)

which is the expression of the magnetic dipole moment associated to an infinitely
thin current loop of amplitude i, and radius r,, and is the expression commonly
used for the EC-SRR.

Let us now evaluate the resistance associated to the loop radiation. The power
radiated by an electrically small magnetic moment of amplitude m can be written
as [5]:
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M _Z)k“m%
rad 7 og

(2.7)

where Z, is the free-space impedance and k is the free-space wavenumber.
Therefore, by using (2.6), the radiation resistance associated to m, referred to the
current amplitude iy, can be found to be

M =8z (o ) (2.8)
rad 3 )VO

Since the size of the SRR mean radius in terms of wavelength is in the order of
1/20, the radiation resistance associated to the axial magnetic dipolar moment m is
in the order of 1-2 Q, though it strongly depends on the particle size (i.e., on the
substrate thickness and permittivity, and on the magnitude of the coupling between
rings).

As it is well known, the EC-SRR at its fundamental resonance also exhibits an
electric dipole moment p tangential to the plane of the particle, which arises from
the bi-anisotropy of the structure. Such a dipole moment can be evaluated based on
the electric charge distribution of the SRR, which can be inferred by applying the
charge continuity law to the equation of the current profile (2.3) along the rings.
Thus, the linear charge density /4 on the external ring can be written as

la(p, 1) = sin(wot)sgn(e). (2.9)

TTramo

Since expression (2.9) is odd with respect to the position angle ¢ (as a result of
the electric wall along the xz-plane), the total electric dipole moment associated to
ring A is the sum of the infinitesimal dipole moments directed along the y direction,
namely:

n

Pa= /&(%02& sin dgy. (2.10)
0

Once again, for simplicity, J4 has been considered uniform through the ring
width, so that the effective distance between charges is 2r4 sing. By integrating
expression (2.10) we obtain

dry . . .
Pa = w0, 0 sin(wot)y. (2.11)
The internal ring B (with radius rp) exhibits an electric dipole moment pg with
the same orientation, but presents opposite sign, due to the ring cut position.
Therefore, the total electric dipole moment p is obtained by subtracting their
amplitudes. By assuming the hypothesis of strong coupling between rings, which is
normally satisfied at the first resonance, the current in the internal ring has roughly



52 2 Radiation Properties of Edge-Coupled Split-Ring Resonators ...

the same amplitude i, as the current in the outer ring. Considering that
rqa — rg = ¢ + d, the total electric dipole moment is

4
= — d)ig si 1)y. 2.12
p — (c+d)ig sin(wot)y ( )

Then, by using the Larmor equation [6] for the radiated power by a given electric
dipole moment of amplitude py, that is

PE 2 Zok*p§

rad — €0 127 ) (213)

where ¢ is the speed of light in vacuum, the radiation resistance associated to p,
and referred to the maximum current i, can be expressed as follows:

32 [c+d\’
ﬂ&=§Z<7g>. (2.14)

Due to the proximity effect between rings, which was not taken into account in
the analysis, the radiation resistance associated to the electric dipole moment is
expected to be slightly higher than the value predicted by (2.14). This is because the
effective distance between charges is actually higher than ¢ + d, since the currents
in the internal and external rings tend to separate each other.

Let us now compare (2.14) with (2.8). Since the typical values of ¢ + d in terms
of wavelength are in the order of 1/100, that is, five or more times smaller than the
mean radius ro, the radiation resistance associated to the electric dipole moment is
in the order of 0.1 Q, which is an order of magnitude smaller than the radiation
resistance related to the magnetic dipole moment of the SRR. Therefore, the
radiation resistance of the particle can be approximated by the resistance associated
to the axial magnetic moment, that is

Rea ~ RM,. (2.15)

2.1.2 Loss Resistance and Radiation Efficiency

As it is well known, the ohmic losses introduced by the metals in any structure
strongly depend upon the current distribution J inside the conductors. Hence, in
order to provide an accurate estimation of the loss resistance, the skin effect and the
proximity effect must be taken into account. Due to the skin effect, the current
density distribution J within the ring cross section decays exponentially from the
surfaces, with a penetration depth (skin depth) depending on the working frequency
fo and the metal conductivity o (among others). Since the conductor thickness # is
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usually much smaller than its width ¢, only the top and bottom faces are considered
to carry current, neglecting the small contribution from the lateral faces.

The assumptions above lead to the following expression for J, (the current
density in the outer ring) in phasorial form:

h

JO(r)e_V(”f) (1 - |—Z‘)¢ —1<z<0

Jo(r)e' ) (1 _ '—1")6’ 0<z<t (2.16)

JA(r7 QD,Z) =

where y = (1 + j)/d is the complex propagation constant inside the conductor and ¢
is the skin depth, given by § = (2/wuc)"* [7], where u and ¢ are the permeability
and conductivity of the conductor material, respectively. The above expressions (for
y and 9) are valid for low-loss conductors, that is, for those satisfying o > we (¢
being the permittivity). As said in Sect. 2.1.1, the radial dependence of J4 [i.e.,
Jo(r)] is cumbersome to be expressed analytically. However, an effective width
Ceff < € can be defined to account for the proximity effect, so that the current density
is assumed to be uniform and equal to Jj inside the effective width c.g, and zero
elsewhere. In the EC-SRR, the value of such effective section always depends on
the width c (this is not true, for example, for the effective thickness .« associated to
the skin effect, which does not depend on the thickness 4 when h > ) because
there exist zones (¢ =0 and ¢ = n for the external and the internal rings,
respectively) of the rings where the current is distributed uniformly, and therefore
all the cross-section is used. If the current is assumed to concentrate in an infinitely
small area in the zones where the proximity effect is maximized (at ¢ = m and
@ = 0 for the external and the internal rings, respectively), and that a linear vari-
ation of the used section with the angle arises, the effective width can be approx-
imated to c.r = %2 c. As it will be shown at Sect. 2.2.2, this value works very well
for the SRR at the second resonance, while a slightly higher value c. = 2/3 ¢ has
been found to provide good results at the first resonance, and to agree with the
expression proposed by Marques et al. in [8].
The power loss in the outer ring, inferred from the Ohm’s law, is therefore

I
i IA+ af

Piossa = = / / / |JA “9 rdrdzd(p (2.17)
(.lT

J_v
?)

By solving (2.17) the power loss is found to be
TCefrrad(1l — e’%)

= J2. (2.18)

PlossﬁA -

The power loss in the inner ring can be obtained by using the same procedure.
Thus, the total power loss can be written as
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27cerroo(1 — €79) P
30 0

Pross = (219)

Let us now compute the total current i, flowing at the input section (¢ = 0), in
order to calculate the loss resistance. By integrating the current density over the
effective cross-sectional area, namely

© (a0

/ / (J4(0,2) - p)drds (2.20)

the squared RMS (root mean square) current can be expressed as

.2
, : h
_|l(;| = J3c. o [l +e v — 2e % cos <%>} : (2.21)

Finally, the loss resistance is obtained by dividing the power loss (2.19) by the
squared RMS current (2.21), obtaining

2 h h AV
Rioss = m [coth (%) — csch (25) cos (25)] . (2.22)

The hyperbolic function on the right side of (2.22) can be approximated by the
hyperbolic cotangent with the same argument, that is

eon(2) cen()eos(1)] " con(l) ez

with a maximum error of 20% for & = 3.7 6 (see Fig. 2.3). We will later show that,
for practical cases, the error introduced by approximation (2.23) is reduced to a few
percentage points in the expression of the radiation efficiency, so that (2.23) pro-
vides a substantial simplification of the formulas while maintaining good accuracy
in the results. In fact, by combining (2.22) and (2.23), the loss resistance can be
expressed in a very simple form, that is

27'5}’() h
Rioss = ——coth| — |. 2.24
loss 30'Ceff5 €0 <25> ( )

As said above, the value of effective width providing good agreement with the
simulated results is c.ir = 2/3 c. Therefore, the final expression for the loss resis-
tance of the SRR around its fundamental resonance is found to be
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Fig. 2.3 Comparison
between the functions in the
left (solid line) and right
(dashed line) hand of

Eq. (2.23)
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It is worth mentioning that (2.25) converges to the values provided in [8] when
the metal thickness approaches the values & < 26 and & > 29, and additionally
describes the behavior of the loss resistance for intermediate values of h.

Let us now discuss the radiation efficiency at resonance, #,,q. To this end, it is
worth mentioning that the equivalent circuit model of the SRR at resonance, usually
being reported to be a shunt LC circuit [3], becomes a series RLC circuit when the
particle is excited through a cut opened in one ring, and both radiation and losses
are considered (a simulated and experimental validation of this fact will be provided
in Sect. 3.1.1). Therefore, the ohmic losses in the SRR can be modeled by a
resistance placed in series with the radiation resistance, so that the radiation effi-
ciency (neglecting dielectric losses) is also the ratio between the radiation resistance
R.,q and the total resistance R;,q + Rjos. Based on this consideration, and on the
previous analysis, it follows that

-1
3oy /Tho 3 /4 - h
f’lrad ~ [1 —+ gTZO Cro fO o COth 75 y (226)

where py is the permeability of free-space and f, is the working frequency.
Expression (2.26) does not take into account dielectric losses, which strongly
depend on the dielectric properties and the thickness of the substrate, and require
integration of the fields over the substrate volume to be calculated.

In order to validate (2.26), and consequently, the expressions obtained above for
the radiation (see previous section) and loss resistance, full-wave simulations of an
EC-SRR without dielectric substrate were carried out by means of the commercial
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Fig. 2.4 Theoretical and simulated results for the radiation efficiency of the EC-SRR at the first
resonance, as a function (a) of the metal conductivity (for different values of trace width ¢, with
metal thickness 4 = 35 um) and b thickness (for trace width ¢ = 2 mm). The conductivity of the
conductive paint is set to 10° S/m [25, 26]

software ADS Momentum. The simulated structure was fed by a differential port
placed across a cut (0.2 mm) opened in the external ring at the position ¢ = 0, and
the dimensions of the SRR were adjusted to locate the resonance at fy = 1 GHz,
obtaining ry = 15 mm (4¢p/20) and d = 0.5 mm. In the first set of simulations, the
efficiency was found as a function of the metal conductivity ¢ for two different
values of ¢ (Fig. 2.4a), setting the metal thickness to 7 = 35 um. In the second set,
the width was fixed to ¢ = 2 mm, and the efficiency was depicted as a function of
the metal thickness h for different materials (Fig. 2.4b). In both cases, good
agreement between (2.26) and EM simulation was obtained. As can be seen in
Fig. 2.4a, the antenna efficiency strongly depends on the ring width ¢, which is
therefore one of the most important design parameters of the SRR antenna.

2.1.3 Far-Field Radiation Pattern and Quality Factor

According to the analysis of the previous section, the main radiation mechanism of
the EC-SRR at the first resonance is attributed to the electrically small current loop
which results from the current distribution in the external and internal rings. Hence,
in a first approximation, the SRR is expected to produce a linearly polarized
omni-directional radiation, with maximum power density in the xy-plane (E-plane)
and a theoretical directivity of 1.5 (1.76 dBi) [9]. However, the presence of the
electric dipole moment introduces some changes in the fields radiated by the res-
onator. First, it generates a cross-polarization component. In fact, if the radiation
produced by the magnetic dipole moment is defined as co-polar (being the main
radiation mechanism), the contribution from the electric dipole moment is entirely
cross-polar in the yz-plane (¢ = n/2), due to the orthogonality and the 90° phase
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shift [see (2.6) and (2.12)] between the two radiators. Note that, in the xz-plane, the
electric dipole radiation does not contribute to the formation of cross-polarization
components, because the fields radiated by the loop and the dipole are oriented
towards the same direction (¢ for the electric field). It is useful to define the
quantity

RE 4 (c+d\*[r\ "
XPOL = —24 — — =) 2.27
RY, 7 ( 2o > (AO) (2.27)

which represents the maximum value of the cross-polar component (which occurs
at 0 = 0), normalized to the maximum value of the co-polar (which occurs at
0 = m/2) in the yz-plane. This can be deduced by assuming that the radiation pat-
terns of the magnetic and electric moments present the same shape (i.e., both are
elemental radiators). The value of XPOL,,,, controls several characteristics of the
far-field, in terms of gain and axial ratio (defined as the ratio between the major and
minor axis of the ellipse described by the electric field of the radiated plane wave).
In the yz-plane, the gain in the axial (z-axis) direction is found analytically to be
XPOL,,,«x times the gain in the endfire direction (y-axis). Furthermore, four zones
where the axial ratio decays down to unity exist in the yz-plane. In fact, since the
co-polar radiation is proportional to sin*(0) and the cross-polar is proportional to
cos?(0), circular polarization is generated at the four angles

0. = {+1g" " (VXPOLna), £ 18~ (VXPOLnay) + 1}, (2.28)

and the axial ratio maintains under an arbitrary level AR, (e.g., ARy = 10 dB can be
considered for linear polarization) in each of the four regions centered in 0. and
subtending an angle equal to

Al = 1§ (ARyV/XPOLunax) — 18~ (ARy ' /XPOLipay ), (2.29)

where elliptical polarization is produced. It was verified by simulation that, for
values of AR in the order of 10 dB, each of these regions describes approximately a
cone in the radiating sphere, thus enclosing a solid angle Q. ~ 2n[1 — cos(Af/
2)]. This expression can be used to quantify the polarization purity across the
radiating space of tags based on the SRR antenna, as in the case of the design
presented in the next chapter.

In terms of radiation diagram, the presence of the electric dipole radiation dis-
torts the omni-directional pattern of the current loop in the xy-plane to a
bi-directional pattern, with maxima at ¢ = {O,n}. As reported in [10], this kind of
pattern results from the 90° phase-shift between an electric and a magnetic radiator
oriented orthogonally. It is interesting to relate the minimum antenna gain G,
which occurs in the axial direction (or 6 = 0) to the maximum antenna gain G,,
occurring in the xy-plane at ¢ = {0,n}. It was found that
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G,  XPOLuux
T2 ST TTmax 2.30
Gy 1+ XPOLax (2.30)

Expression (2.30) assumes that the magnetic dipole moment produces a perfectly
omni-directional pattern in the xy-plane. However, since the sum of the inner and
outer currents in the SRR is only approximately a constant function of ¢, the
assumption made above is not strictly satisfied, so that expression (2.30) should be
considered as an approximation. In the next chapter, the formula will be used in
order to relate the minimum read range to the maximum read range of UHF-RFID
tags based on the SRR antenna at its first resonance, and an experimental validation
will be provided.

As it is expressed in (2.27), the value of XPOL,,.y is controlled by the SRR mean
radius and the distance ¢ + d (which is also the radius difference o — rg). For very
small values of ¢ + d, the cross-polarization level can be lowered to —20 dB/
—25 dB (according to simulation results). However, this involves a reduction of the
radiation efficiency, as predicted by (2.26), so that the typical values of XPOL,,,x at
the first resonance for efficient EC-SRR antenna designs are in the range of —8 dB/
—10 dB. In any case, the value of XPOL . is much smaller than unity, because the
distance ¢ + d cannot be increased indefinitely. As a result, the solid angle Q. is
much smaller than 47 (which represents the solid angle of the sphere) in any case,
and therefore the EC-SRR radiation can be considered linearly polarized on most of
the radiating sphere.

The radiation pattern described above, along with the cross-polarization level
predicted in (2.27), was validated by the far-field EM simulations (experimental
validation of the SRR antenna radiation pattern will be provided at Sect. 3.1). To
this end, two different lossless EC-SRR layouts with very different values of
c+d (2.5 and 0.7 mm) were simulated, and the far-field characteristics were
compared. The results, in terms of radiation diagram and axial ratio, are depicted in
Fig. 2.5. As expected, the radiation of the SRR can be modeled by the sum of an
axial magnetic moment (main radiator) and an electric moment oriented towards the
y-axis (secondary radiator). Moreover, the levels of the cross-polar radiation rise
when the value of ¢ + d is increased, and the elliptical region gradually narrows and
orientates toward the radiation minima, as predicted by theory. However, the
simulated values of XPOL,,.x are higher than the predicted values (see Table 2.1 for
a comparison). We attribute this disagreement to the second order effects (e.g., the
proximity effect, which is expected to increment the electric dipole moment) which
were not taken into account in the analysis. Hence, (2.27) should be taken as a first
approximation which allows easily understanding the behavior of the EC-SRR
cross-polarization as a function of its geometrical parameters. The simulated
antenna directivity is Dy = 1.6 dBi for ¢ + d = 2.5 mm and D, = 2 dBi for ¢ +
d = 0.7 mm; both values are similar to the directivity of an elemental radiator
(1.76 dBi).

Let us now discuss the EC-SRR antenna quality factor at the first resonance,
which determines the maximum bandwidth that can be obtained with conjugate
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Fig. 2.5 Top Simulated normalized radiation pattern at ¢ = 0° (xz-plane) and 6 = 90° (xy-plane),
middle co-polar and cross-polar components in the yz-plane and botfom axial ratio in the yz-plane,
of a lossless EC-SRR at the first resonance for a ¢ + d = 2.5 mm and b ¢ + d = 0.7 mm. The
value of ry is 15 mm. The low axial ratio ( < 10 dB) region is depicted in grey
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Table 2.1 Theoretical and simulated values of XPOLmax for the EC-SRR at the first resonance

Theoretical (dB) EM simulation (dB)
c+d=25mm -13 -9
c+d=0.7 mm =25 —21

impedance matching. Due to the physical limitations affecting small planar anten-
nas, discussed at Sect. 1.4.2, the quality factor and bandwidth are limited to the
values provided by Egs. (1.2) and (1.3), respectively. Considering that, at the first
resonance, the mean radius (and consequently the external radius) is in the order of
1/20 times the free-space wavelength and assuming that the radiation efficiency
approaches unity, the half-power fractional bandwidth is expected to be
FBW < 1-2%, corresponding to roughly 10-20 MHz at the UHF-RFID band.
While this value could be considered poor for some communication applications, it
is suitable for UHF-RFID tags, where the required bandwidth is limited to few
megahertz.

The abovementioned equations set the lower bound for the quality factor of any
small antenna confined to a planar geometry. In practice, the SRR antenna is
expected to provide a higher quality factor, which can be predicted on the basis of
its equivalent circuit model near the resonance, i.e., a series RLC resonator, which
provides Qp.q = WoL/R.q. The value of the EC-SRR self-inductance L can be
computed as the average of the inductances of both rings [3], that is the inductance
of a loop with radius 7y and width ¢. A commonly used approximation for the
inductance of a circular loop is L &~ pgro[In(167y/c) — 2], which assumes a circular
section with radius c¢/2. Hence, by using (2.15) for the radiation resistance, the
half-power fractional bandwidth of the SRR antenna, in the case of conjugate
matching, can be approximated to

FBWzgn“nr;jl [1n(16%0) —2}1<;—2>3. (2.31)

Expression (2.31) assumes that the input resistance of the port driving the
antenna does not vary in frequency. This condition is not strictly satisfied in the
case of RFID ASICs, which are modeled by shunt RC circuits. However,
the variation of the ASICs input resistance R is usually very small within the
UHF-RFID band [11], so that (2.31) can be used for the tag bandwidth to a good
degree of approximation. For practical cases, the values found by using (2.31) are in
the order of FBW = 0.8 — 1%, when radiation efficiency near unity is obtained.
Although this value does not allow a worldwide operation of the tag, it is large
enough for ensuring its correct operation in one of the UHF-RFID bands. It is worth
to mention that ohmic and dielectric losses decrease the overall quality factor, thus
increasing the bandwidth at the expense of a reduction of the tag peak read range.
Equation (2.31) will be verified by means of EM simulation and measurements at
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Sect. 3.1.1, where an UHF-RFID tag based in the EC-SRR antenna will be
presented.

2.2 EC-SRR at Its Second Resonance

In this section, the study of the EC-SRR radiation resistance will be extended to the
case of working around the second resonance of the structure, where the currents in
the external and internal rings flow in opposite directions [12]. Due to the increased
particle dimensions and the different current distribution, the quasi-static analysis
presented at the previous section does not hold for the second resonance. However,
the EC-SRR dimensions at its second resonance are still very near to the commonly
accepted boundary of electrically small antennas (ka = 0.5), since its radius is
typically in the order of 0.1 free-space wavelength, corresponding to ka = 0.6.
Therefore, its radiation properties can still be predicted to a good degree of
approximation by evaluating the first order (dipole) terms of the electric and
magnetic moments generated by the current distribution, and treat such sources as
elemental radiators.

2.2.1 Radiation Resistance

At the second resonance, the currents in the outer and inner rings flow in opposite
directions [12], and the current distribution approximately satisfies i4(¢) = —ig(¢ +
m), where i, and iy is the current in the external (A) and internal (B) ring, respec-
tively, and ¢ is the angular position with respect to the x-axis. This relation is valid
if the distance between rings, d, is small as compared to the mean ring radius ry
(strong coupling condition). Since the length of each ring is approximately
half-wavelength, the current along the ring circumference can be assumed to exhibit
a sinusoidal profile (Fig. 2.6), with a maximum value at the center (¢ = O for ring
A and ¢ = %7 for ring B), and null at the ring edges (approximated to ¢ = £ for
ring A and ¢ = O for ring B). However, as it is corroborated later (see Fig. 2.7b), the
current in each ring actually exhibits a slight discrepancy to this approximation,
mainly because the length of each ring at the second SRR resonance is somewhat
greater than the half-wavelength at the working frequency. Nevertheless, by means
of this sinusoidal approximation to the rings currents, analytical expressions can be
found, and good agreement between theory, simulation and experiment is obtained.
Moreover, as in the previous section, the proximity effect will not be taken into
account in the calculation of the radiation resistance, in order to maintain the
expressions simple and to show that such effect does not substantially affect the
result.
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Fig. 2.6 Topology and theoretical electric current/charge distribution of the EC-SRR at its second
resonance. Left image reprinted with permission from [27]
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Fig. 2.7 Simulated a input impedance and b electric current distribution at the second resonant
frequency (1 GHz) of a lossless EC-SRR (no dielectric substrate is considered). Left image
reprinted with permission from [27]

The current in the external ring, of mean radius r,4, can thus be written as:

is(@,t) =ipcos (g) cos(wot)P. (2.32)

By solving the well-known electric charge continuity equation, the linear charge
density in the ring is found to be

ip sin (%) sin(wot)
o ) o

As in the case of the analysis at the first resonance, expression (2.10) can be used
to evaluate the electric dipole moment associated to the external ring, obtaining
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4 ‘A
= ——ip sin(wo?)y. 2.34
Pa 3 w0 o sin(wot)y ( )
The internal ring B, of mean radius rp, exhibits an electric dipole moment with
the same orientation and phase, so that the total dipole moment amplitude is the
sum of the internal and external dipole moments amplitudes, leading to

8
p= 5;—‘21'0 sin(wot)y. (2.35)

Since the radiating particle is electrically small, it is still possible to consider the
total moment given by (2.35) as an infinitesimal electric dipole moment located in
the y-axis. Thus, by using the Larmor equation [6] for the radiated power by a given
electric dipole moment of amplitude p,, the total radiation resistance referred to the
maximum current iy can be expressed as

e =128, ()L seo0(™0) q (2.36)
wd = 57 M0\ ) T o) '

It is interesting to compare the value found in (2.36) with the radiation resistance
of a small dipole, which can be expressed by means of the well-known expression:

1 2 2
Ryaao = 207 <}0> ~ 790 </{;> Q (2.37)

where r is the length of each dipole arm. As can be seen by comparing (2.36) and
(2.37), for a given radiator size (ry for the SRR or r for the dipole), the SRR
working at the second resonance exhibits a much higher radiation resistance as
compared to a small electric dipole. This can be explained arguing that the SRR
takes advantage of most of the area enclosed by its lateral dimensions, while the
dipole only distributes its charges along a line.

Let us now compute the magnetic dipole moment associated to EC-SRR at the
second resonance. By solving (2.1), the magnetic contribution associated to the
external ring is found to be

my = 2riip cos(wot)z. (2.38)
As explained above, the current in the internal ring flows in the opposite
direction, and generates an opposite axial magnetic dipole moment. Therefore, the

total magnetic dipole moment can be written as:

m = 4ry(ra — r)ip cos(wot)Z. (2.39)
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As in the previous case (Sect. 2.1.1), the radiation resistance associated to the
magnetic dipole moment, referred to the current maximum iy, can be found by using
(2.7). Taking into account that r4 — rg = ¢ + d, it is found that

128 o\’ /c+d\*
M =""5z=) [—]) . 2.40
rad 3 T 0(/1()) /10 ( )

It can be easily verified that, due to a nearly complete cancellation of the axial
magnetic moments of the internal and external rings, the power radiated by the
magnetic dipole at the second resonance is much smaller (two orders of magnitude)
than the power associated to the electric dipole. Therefore, to a good approximation,
the radiation resistance of the particle is dominated by the one associated to its
electric dipole moment, that is,

R ~ RE . (2.41)

The potential of SRRs as radiating elements operating at their second resonance
is demonstrated by evaluating (2.41) for typical values of r¢/Ay, which are in the
order of 0.1. The resulting radiation resistance values are very close to the radiation
resistance of the commonly used, and very well-known, half-wave dipole antenna
(73 Q). This fact suggests that half-wave dipole antennas can be replaced with
SRRs (operating at the second resonance) without the need of a matching network,
thereby reducing the maximum dimension of the antenna (defined as the radius of
the minimum sphere enclosing the antenna) by a factor 2.5, approximately.

In order to validate the analysis presented above, an EC-SRR was simulated by
means of the commercial software Agilent Advanced Design System (ADS). The
geometry of the particle was adjusted to locate the second resonance at the fre-
quency fp = 1 GHz (49 = 300 mm) when no substrate is used. The values for the
geometric parameters are ro = 35.25 mm (4¢/8.5), ¢ = 2 mm, d = 0.5 mm, and the
cut width was set to 5 mm.

The discrete port was placed across a 0.4 mm gap opened at the center of the
external ring (¢ = 0°), where a current maximum i is expected to occur. Therefore,
in a lossless case, the input resistance R;, of the system corresponds to the radiation
resistance R,q of the particle. Hence, in the first set of simulations the metal is
treated as a perfect conductor, in order to isolate the radiation resistance of the SRR
and to verify (2.41).

The simulated input impedance of the SRR (without dielectric substrate),
depicted in Fig. 2.7a, clearly reveals the first (0.4 GHz) and second (1 GHz) res-
onant frequencies of the SRR, and the first anti-resonant frequency (0.66 GHz),
which corresponds to the intrinsic resonance of the inner ring. Note also that the
radiation resistance at the second resonance (73 Q) is nearly two orders of mag-
nitude greater than the radiation resistance at the first resonance (1 ), and is
exactly equal to the radiation resistance of a canonical half-wave dipole. The
simulated electric current density distribution at the second resonance (Fig. 2.7b) is
in good agreement with the approximated theoretical distribution described at the
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beginning of this section, i.e., the current in the internal and external rings flow in
opposite directions, and their amplitudes are similar. However, since the length of
each ring is slightly greater than half-wavelength, the maximum at the center of the
rings splits into two maxima symmetrically positioned around the center.
Nevertheless, expression (2.32) is a useful approximation, as it allows simplifying
the analytical treatment maintaining high accuracy in the results.

In order to validate (2.41), a lossless dielectric of thickness A, = 2.54 mm was
then added as substrate, allowing to control the value of the second resonance
frequency fp, and consequently the value of Ay. By increasing the dielectric per-
mittivity ¢, of the substrate, the value of ry/Ay was gradually decreased, and the
simulated input resistance of the particle was compared in each case to the radiation
resistance calculated by (2.41). The results, depicted in Fig. 2.8, reveal that there is
very good agreement between theory and simulation.

It is worth to mention that, to modulate the electrical size of the particle without
changing the substrate dielectric constant, it is also possible to vary the coupling
between rings, mainly controlled by the slot width d. In fact, according to the theory
of coupled resonators [13], decreasing the coupling (while fixing ry) reduces the
frequency split between first and second resonance. Therefore, the second reso-
nance is lowered and the particle becomes electrically smaller, providing an addi-
tional degree of freedom at the design stage. However, only relatively small
changes of ry/Ay are possible by using this technique. Moreover, if the coupling
between rings is very small, the assumptions for the derivation of Egs. (2.35) and
(2.39) no longer hold. The reason is that the difference between the internal and
external rings radii increases with the distance d, and the internal and external
current amplitudes diverge as well.
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Fig. 2.8 Radiation resistance at the second resonance as a function of the EC-SRR mean radius

relative to the wavelength. Note that the radiation resistance is roughly 73 Q (i.e., the radiation
resistance value of a half-wave dipole) for ro/lg = 0.118. Reprinted with permission from [27]
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2.2.2 Loss Resistance and Radiation Efficiency

The assumptions regarding the current density distribution along the EC-SRR
cross-section (Sect. 2.1.2) still hold at the second resonance. In this case, however,
the current dependency over the position angle ¢ is different, being imposed by
(2.32). Therefore, the following expression for J, (the current density in the outer
ring) in phasorial form can be written as

Jo(r)e*"*’(z%) cos(9)p —4<z<0

Jo(r)e’<z_%) cos(9)¢p  O<z<? (242)

JA(V; QD,Z) = {

As reported in Sect. 2.1.2, an effective width c. < ¢ can be defined to account
for the proximity effect, so that the current density Jy(r) is taken to be uniform and
equal to Jy inside the effective width c.g, and zero elsewhere. If the current is
assumed to concentrate in an infinitely small area in the zones where the proximity
effect is maximized (¢ = m and ¢ =0 for the external and the internal rings,
respectively), and that a linear variation of the used section with the angle arises, the
effective width can be approximated to c.¢ = c/2.

The power loss on the outer ring can be calculated by using (2.17), leading to

TCerrTa0(1 — e_%)

= g, (2.43)

Ploss,A =
so that the total power loss is found to be

(1 —e
Py = T =€) o (2.44)
Starting from (2.44), the procedure described at Sect. 2.1.2 [involving expres-
sions (2.21) and (2.23)] can be used to evaluate the loss resistance, obtaining

240) h
Ripss =% ——coth| — |. 2.45
loss g Ceff5 €0 (25) ( )

As mentioned above, the effective width can be approximated by c.i =~ ¢/2,
leading to the final expression for the loss resistance of the EC-SRR at the second
resonance:

27ry h
Ripss =~ ——coth| — . 2.4
s =755 cot (25) (2.46)

Let us now discuss the radiation efficiency of the EC-SRR at the second reso-
nance. As it was found in the previous section, the ohmic losses can be modeled by
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Fig. 2.9 Simulated and theoretical radiation efficiency of the EC-SRR at the second resonance,
a versus conductivity for & =35 um and b versus conductor thickness for ¢ = 2 mm. The
considered conductive paint has a conductivity ¢ = 10® $/m [25, 26]. Reprinted with permission
from [27]

a resistance placed in series with the radiation resistance. Therefore, the radiation
efficiency #.,q can be expressed as

-1
27w o h
Mrad = |1+ 10 ’uo(crm /fga) coth <25> : (2.47)

The expression above was validated by EM simulation. To this end, ohmic
losses were added to the metal layer of the simulated structure presented in the
previous section [fo =1 GHz without dielectric substrate, r4 = 36.5 mm,
rg=34 mm ¢ =2 mm, d =0.5 mm, rg =35.25 mm (4y/8.5), cut width 5 mm].
The simulated radiation efficiency as a function of the metal conductivity for dif-
ferent values of the strip width ¢, setting the value of the metal thickness to
h =35 pm, is shown in Fig. 2.9a. The thickness dependence of the radiation effi-
ciency for a strip width of ¢ =2 mm is simulated and depicted in Fig. 2.9b for
different materials. Very good agreement between electromagnetic simulations and
theoretical predictions is observed for efficiency values greater than 15%, which is
the region of interest in practical antennas.

2.2.3 Far-Field Radiation Pattern and Quality Factor

Since the main radiation mechanism of the EC-SRR at the second resonance is the
tangential electric dipole moment oriented along the y-axis (see Fig. 2.6), the
structure is expected to produce a linearly polarized omni-directional radiation, with
maximum power density at 6 = {0,n} and a theoretical directivity of 1.5 (1.76 dBi).
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However, due to the non-zero length of the particle in the x direction (the structure
can be seen as an array of near elements radiating in phase), a slightly bi-directional
pattern is expected over the xz-plane (¢ = 0), thus resulting in a higher value of the
directivity. Moreover, the presence of a magnetic dipole moment oriented along the
z-axis generates radiation, which is entirely cross-polar in the yz-plane (E-plane), as
in the case of the electric dipole radiation at the first resonance (Sect. 2.1.3). In this
case, the cross-polar radiation is maximized at 0 = 1/2. Hence, in this direction the
value of the cross-polarization level is maximized, and it can be evaluated by
dividing (2.40) by (2.36), obtaining:

2
XPOLyx = 97 (de> . (2.48)
0

Notice that, unlike in the case of the first resonance [see Eq. (2.27)], the value of
XPOL,,,x does not depend on the SRR mean radius.

The considerations made in the previous section, about the effect of XPOL,, .«
over the radiation pattern and the axial ratio, still hold at the second resonance.
However, in this case the low axial ratio zones are centered on the angles

0. = {izgl(, /XPOL;1 ), +tg7' (\/XPOL;) )+ n}, (2.49)

and the region with elliptical polarization is comprised in

Alg = tg~' (AR /XPOL,\ ) — tg7' (ARy'\/XPOL ). (2.50)

The simulated results for the radiation pattern and the axial ratio of a lossless
EC-SRR at the second resonance are depicted in Fig. 2.10 [fy = 1 GHz,
ra =365 mm, rg =34 mm ¢ =2 mm, d=0.5 mm, ry=3525 mm (0.118 /),
cut width 5 mm]. The normalized radiation pattern in the yz-plane confirms that the
main radiation mechanism is the electric dipole oriented along the y-axis, and the
value of the cross-polarization level is XPOL,,x = —22 dB, in perfect agreement
with the theoretical value predicted by (2.48). As expected, such a small value of
the cross-polarization level provides a very small elliptical radiation area (Al =

10°), centered very near to the radiation minima, so that the radiation provided by
the magnetic moment does not practically affect the polarization of the radiated
fields. Regarding the xz-plane (¢ = 0), the pattern is slightly bi-directional, due to
the array effect associated to the non-zero length of the particle in the x-direction
(notice that, at the first resonance, the lateral dimensions of the particle in terms of
wavelengths are sensibly smaller, and therefore a quasi-circular pattern is obtained).
As a result, the directivity is increased, and reaches Dy = 2.7 dBi according to the
simulations.

Let us now treat the quality factor of the EC-SRR at the second resonance. Due
to the greater dimensions of the particle in terms of wavelength, the quality factor of
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Fig. 2.10 Simulated a normalized radiation pattern and b axial ratio in the yz-plane of a lossless
EC-SRR at the second resonance (with ¢ + d = 2.5 mm). The low axial ratio (< 10 dB) region is
depicted in grey

the EC-SRR at the second resonance is expected to be much lower than the quality
factor of the same particle at the fundamental resonance. Specifically, doubling the
antenna size in terms of wavelengths involves an increase of 8 times in the mini-
mum radiation quality factor, since it depends upon the third power of the electric
length of the antenna. However, these values should be considered only as quali-
tative, since very few antennas actually approach the lower bound of the radiation
quality factor calculated on the basis of their size. Unfortunately, an analytical
prediction of the EC-SRR quality factor at the second resonance is not straight-
forward. In fact, though a series RLC circuit model can be used to describe the
particle behavior in terms of impedance (see Fig. 2.7a), no closed expressions
linking the values of L and C to the geometrical values (7, ¢, d) are known, unlike
in the case of the first resonance. For this reason, the values presented in this work
will be merely based on EM simulations, i.e., on the simulated half-power band-
width FBW = 2/Q when conjugate matching is obtained. For the lossless structure
simulated in this section, the value of the fractional bandwidth is FBW = 11.5%,
corresponding to a radiation quality factor of Q,.q = 17. For comparison, Eq. (1.2)
provides a lower bound of Q.4 > 7.3 (given that rex, = 19 + ¢ + d/2 = 37.5 mm
and fy = 1 GHz), which is sensibly smaller than the value found in our case. Even
though the EC-SRR antenna does not approach the Gustafsson limit, its radiation
quality factor is similar to that of a small planar rectangular (with a length-to-width
ratio around unity) dipole antenna of the same size, and much lower as compared to
small thin dipole antennas [14, 15].

Unlike in the case of working at the first resonance, the EC-SRR antenna at the
second resonance can provide the bandwidth required for many applications, even
outside the context of RFID, including wireless communication systems. A design
example in the 900 MHz ISM band is described at Sect. 3.3, with the aim of
providing experimental validation to the analysis carried out in this chapter, and to
demonstrate the utility of the proposed antenna design.
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2.3 Non-bianisotropic Split Ring Resonator (NB-SRR)

The non-bianisotropic split ring resonator was first proposed in [16] in order to
avoid cross-polarization effects, which affect the behavior of many resonators (e.g.,
the EC-SRR), while maintaining uniplanar geometry. The topology of the res-
onator, along with a sketch of the electric current and charge distribution at the first
and second resonance, is represented in Fig. 2.11. The non-bianisotropy in the
particle response arises from the inversion symmetry with regard to its geometrical
center, which ensures an exact cancellation of i) the tangential electric dipole
generated at the first resonance and ii) the axial magnetic dipole generated at the
second resonance, when uniform external excitations (such as plane waves) are
considered. This is because both rings are identical, and the current/charge
impressed in one ring presents the same amplitude of the current in the other ring.
This is also true, though not formally exact, when the particle is excited as an
antenna, i.e., through a differential port located in a cut opened in one of the rings,
provided that the coupling between rings is strong, so that the current amplitudes in
both rings are equal to iy. The absence of the cross-polarization terms in the
polarizability tensor represents the most important difference between NB-CSRR
and EC-SRR behavior, being their electrical sizes and their equivalent circuit
models fundamentally equal [3]. Hence, the radiation resistance Ry of the
NB-SRR at the first and second resonance can be approximated by (2.8) and (2.36),
respectively. Similarly, expressions (2.25) and (2.46) can be used to evaluate the
loss resistance R)s at the first and second resonance, respectively, along with
expressions (2.26) and (2.47) for the radiation efficiency. On the other hand, the
cross-polarization level XPOL,,,, of the radiated fields is expected to be much
lower (ideally zero), at both resonances, as compared to the EC-SRR, due to the
absence of cross-polarization. Another expected characteristic of the NB-SRR
radiation pattern at the second resonance is that the electric dipole moment is not
oriented along the y-axis, as it happens in the case of the EC-SRR. In fact, due to

Fig. 2.11 Topology and theoretical current/charge distribution of the NB-SRR at the a first and
b second resonance
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the NB-SRR topology, the ring center is not positioned at ¢ = 0, because the inner
part of the ring is shorter than the outer part (the difference is increased when the
¢ + d is increased). Therefore, the ring center is shifted few degrees towards pos-
itive values of ¢, and so the position of iy, depending primarily on the relationship
between rp and r4. The ring center angle ¢ is well approximated by the expression
Qo = /2 - (1 — rglry), or, alternatively, ¢q ~ m(c + d)/(2r¢ + ¢ + d), provided
that the cut width is greater than the distance ¢ + d. As a result, the electric dipole
moment is also expected to be rotated anti-clockwise of the same angle ¢, with
respect to the y-axis.

In order to confirm the behavior detailed above, a lossless NB-CSRR without
substrate was simulated by means of Agilent Advanced Design System (ADS). The
values of the geometrical parameters r, ¢ and d are the same as in the case of the
EC-SRR simulated in the previous section (19 = 35.25 mm, c¢ =2 mm,
d = 0.5 mm, cut width 5 mm), so that the response of the structures can be com-
pared. The differential port is placed at the position @y = 0.197 (6°), which was
calculated using the expression above, and corresponds to the ring center.

The simulated input impedance of the NB-SRR is depicted in Fig. 2.12: the
analogy with the EC-SRR impedance (Fig. 2.7a) in all the frequency range is
evident. The most relevant difference is that the radiation resistance of the NB-SRR
at the second resonance (63 Q) is slightly smaller as compared to the EC-SRR
(73 Q), due to the slightly different charge distribution (which is not treated in this
work).

The radiation diagrams at the first (0.362 GHz) and second (1.016 GHz) reso-
nance are shown in Fig. 2.13. The cut planes (0 = 90°, ¢ = 6°) at the first reso-
nance and (¢ = 96°, ¢ = 6°) at the second resonance correspond to the E-plane and
the H-plane, respectively. The simulated patterns confirm that the main difference
between the patterns of the EC-SRR and the NB-CSRR is the absence of
cross-polarization in the latter, while the directivity of the two particles are very
similar (the NB-SRR provides D, = 2 dBi and D, = 2.8 dBi at the first and second
resonance, respectively).
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Fig. 2.13 Simulated normalized radiation pattern (top) and axial ratio in the ¢ = 96° plane
(bottom) of a lossless NB-SRR at the a first resonance and b second resonance. Notice that, due to
the non-bianisotropy, the low-axial ratio (< 10 dB) region is practically inexistent

2.4 Complementary Particles (EC-CSRR, NB-CSRR):
Free-Space and On-Metal Radiation

When a planar particle is replaced by its complementary screen, i.e., an unbounded,
very thin and perfectly conductive sheet where the particle has been subtracted
forming a slot, the complementary particle is obtained. For example, the comple-
mentary split ring resonator (CSRR), proposed in [17] as a means to obtain negative
permittivity propagating structures, was obtained as the complementary screen of
the EC-SRR (Fig. 2.14). This transformation can be applied to any planar particle,
and allows obtaining equivalent structures which may be, in certain situations (e.g.,
when radiating over metallic surfaces), more convenient than the initial particle. As
it is well known from the concept of duality and complementarity in electromag-
netism [18, 19], the fields associated to a planar particle and its complementary
screen are directly related. Specifically, being F = (E, H) the solution for the
electromagnetic field generated by a particle, the field F' = (E’, H') associated to its
complementary screen in one half-space (delimited by the screen) is defined by
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Fig. 2.14 Construction of the CSRR as the complementary screen of the EC-SRR (metal is
depicted in grey) (top). Adapted with permission from [3]. Transformation of the equivalent circuit
model, as seen from the center of the external ring (bottom)

F,:(E/,H/):(—\/IM_/S~H,\/8/_IM~E), (2.51)

while, due to the boundary conditions in the perfectly conductive screen and to the
symmetry of the problem, the solution in the other half-space is —F". It directly
follows from duality that, in one side of the screen, the CSRR produces an axial
electric dipole moment at the first resonance and a tangential magnetic dipole
moment at the second resonance (of course, due to bi-anisotropy, each resonance
actually generates both electric and magnetic moments). Equivalently, the CSRR
can be seen as a magnetic current loop and a magnetic dipole at the first and second
resonance, respectively. Another direct consequence of duality is that the radiation
diagram of the complementary screen in an unbounded medium is the same as the
radiation diagram of the particle, but the magnetic and electric field orientations are
interchanged, and therefore the polarization is rotated [18]. Other far-field charac-
teristics, such as the axial ratio, are maintained in the transformation.

As it was found by Booker in [18], duality also relates the driving impedance of
a planar antenna to that of its complementary screen, namely:

ZZ
Z4Z, = TO (2.52)

where Z; and Z; are the impedances of the lossless particle and its complementary
screen, respectively, and Z; is the impedance of free-space. From (2.52) it can be
deduced that the admittance of the complementary particle is proportional to the
impedance of the original particle, thus suggesting that a transformation from series
to shunt occurs in the equivalent circuit model of the complementary particle
around resonance. In fact, as it is well known in slot antenna theory, the radiated
power is dependent upon the equivalent magnetic current, which corresponds to the
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voltage applied to the slot at a certain position. Equation (2.52) allows obtaining the
radiation conductance G g of the CSRR (or the NB-CSRR) directly from the
previous expressions of the EC-SRR radiation resistance (Sects. 2.1 and 2.2),
assuming that the particle is driven from the central position (¢ = 0). At the first
resonance, the radiation conductance of the ideal CSRR is found to be

327 1y 4
Gra = —— (2], 2.53
d 3 Z() (/LO) ( )

while at the second resonance the value is

512 @ (ry 2
Grad - HZ (g) . (2.54)

The values of the transformed shunt inductance and capacitance for the CSRR
equivalent circuit model can be deduced by applying the Booker formula (2.52),
obtaining the relations exposed in Fig. 2.14. It is easy to show that the radiation
quality factor maintains in the transformation.

As said above, the complementary screen is an ideal structure which cannot exist
in practice, so that, in many cases, the principle represents an approximation. First,
the Babinet’s principle does not take losses into account. When finite conductivity
materials (such as copper) are used, a certain amount of ohmic losses is introduced,
which is in general different from the amount of losses introduced by the same
material in the original particle. Several studies [20-23] shown that there is no
principle relating the total losses introduced in a resonator to the losses introduced
in its complementary counterpart, and only approximated expressions depending
upon the slot geometry can be obtained [22]. Therefore, the antenna efficiency is in
general not maintained when passing to the complementary screen of a lossy res-
onator (an analytical calculation of the losses associated to the CSRR is very
complex, and will not be treated in this work). In addition, the Babinet’s principle
requires the complementary screen to be infinitely extended and to radiate in an
unbounded medium. In practice, the complementary antenna is limited in size, and
it often radiates over/near other bodies, such as dielectrics or ground planes.
Nonetheless, in many practical cases, the principle can still be considered as a good
approximation, and remains a very useful guideline to understand the impedance
and far-field behavior of slot antennas. For example, when the size of the sur-
rounding metal sheet approaches the value of /¢/2r [18], a further size increase has
little influence on the impedance of the antenna.

Concerning ground planes, they are sometimes intentionally placed below the
complementary structure to confine its radiation to one half-space. In these cases,
their distance can be properly adjusted (ideally to the distance of Ay/4) to minimize
the reactive loading thrown across the center of the slot antenna, and therefore to
maintain the resonant frequency and the radiation pattern virtually unaltered.
However, in on-metal UHF-RFID tag design, the ground plane is represented by the
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metallic surface of the object, so that the distance from the radiating particle is equal
to the tag thickness, which is supposed to be much smaller than Aq/4 for obvious
practical reasons. Thus, substantial changes in the particle response are expected
due to the vicinity of the metal plane, such effect increasing as the distance A
between the particle and the ground decreases. According to image theory, in one
half-space (delimited by the ground plane) the system is equivalent to a set of two
parallel complementary screens, separated from a distance 2h,, with currents
flowing in opposite directions. Therefore, a system of two coupled CSRRs sepa-
rated by en electric wall is obtained. According to coupled resonators theory [13],
this situation leads to a decrease of the resonance frequency, with respect to the
uncoupled CSRR, when the coupling between resonators is electric, and to an
increase of the resonant frequency when the coupling is magnetic. As said above,
the CSRR at first resonance produces a strong axial electric dipole moment, thus
involving an electric coupling with the resonator image. For this reason, the first
resonant frequency is lowered by the presence of a ground plane. On the other hand,
it can be deduced that the second resonant frequency of the CSRR is raised by the
presence of a ground plane, being basically a magnetic resonance. In both cases, the
ground plane sensibly reduces the antenna radiation efficiency, due to several
reasons. First, since the particle radiates only in one half-space, its radiation con-
ductance G, is halved [18]. Moreover, the metal plane introduces an additional
capacitance, as seen from antenna the input port (further increased when
high-permittivity dielectric substrates are used), which involves an increase of the
electric currents exciting the particle for a given applied port voltage, thus
increasing the ohmic losses in the plane of the particle. Additional losses mecha-
nisms include the ohmic losses on the metal plane, and dielectric losses (when a
dielectric substrate is used). From the Poynting theorem, the latter can be evaluated
according to

Ploss,diel = W&y tané // |E|2dV, (255)
1%

where ¢, and tand are the substrate relative permittivity and loss tangent, respec-
tively, E is the electric field evaluated in the volume V between the particle and the
ground plane. Dimensional analysis suggests that dielectric losses in (2.55) tend to
increase as the distance &g from the metal plane decreases, for a given voltage
applied to the slot.

The radiation pattern of the CSRR in the radiating half-space is not substantially
modified by the presence of the metal plane, provided that the electric field dis-
tribution along the slot (or, equivalently, the magnetic current distribution) main-
tains roughly unaltered (of course, 3 dB are added to the directive gain because the
power is radiated in one half-space). On the other hand, as it was deduced by
Booker, important modifications of the radiation pattern of a complementary
antenna come from the finite dimensions of its screen, especially in the directions of
the screen plane (0 = 90°), where, due to symmetry, no radiation is possible.
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However, short-circuiting the screen edges to the ground plane is an effective way
to avoid this effect, even when the metal surroundings of the particle are small. In
this case, the boundary conditions allow exciting the structure by a plane wave
coming from the direction 6 = 90°, with electric field orientated in the z-direction,
as in the case of an infinitely extended complementary screen. Technically, such
antenna can be classified as a cavity-backed slot antenna, since the slot is boxed in a
metallic cavity. It is known that the resonant modes in the cavity might affect the
electric field distribution on the slot [24], and consequently the radiation pattern.
We observed that the boxed CSRR antenna, excited with a voltage across the center
of the outer ring slot (see Fig. 2.15), maintains a radiation pattern similar (in one
half-space) to that of the unbounded complementary screen, even for very small
distances from the metal plane (Fig. 2.17).

The behavior described above was verified by means of electromagnetic simu-
lations, which also provided an estimation of the resonance split and the radiation
efficiencies for different distances (5, 2, 1.27 mm, no metal plane) of the CSRR
over the metal plane. To this end, the commercial software CST Microwave Studio
was used. The CSRR was etched on an infinitely extended screen made of
(a) perfectly conductive material (lossless case) and (b) copper (lossy case), with
thickness 2 = 35 pum, and excited with a differential port placed across the slot at
the position ¢ = 0. In order to compare the impedance response, the simulated
CSRR has the same dimensions as the EC-SRR simulated at Sect. 2.2
(ro = 35.25 mm, ¢ = 2 mm, d = 0.5 mm). In the cases which consider the presence
of a ground plane below the resonator, the screen containing the CSRR was cut
with lateral dimensions of 150 mm X 150 mm, and the four sides of the square
were connected to ground by means of vertical copper walls (with thickness equal
to k). The ground was defined by forcing the boundary condition E; = 0 (where E,
is the electric field tangential to the plane), which describes a lossless and infinitely
extended ground plane.

The simulated input antenna impedance for different cases is depicted in
Fig. 2.16. As expected, the frequency split associated to the presence of the ground
plane is evident. It is interesting to note that, even for very small distances from the
ground plane (ks = 1.27 mm), the impedance response of the CSRR clearly shows
its resonances, thus suggesting that the particle behavior is not strongly affected by

Fig. 2.15 Finite size CSRR
antenna short-circuited to the
ground plane. Metal is
depicted in grey; the ground
plane is represented by the
grid. The excitation port is
represented by the red
triangle
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Fig. 2.16 Simulated input impedance of a a lossless and b lossy (etched on a copper layer) CSRR
at different distances over an infinitely extended ground plane (first resonances are marked in light
grey, second resonances in dark grey)

Table 2.2 Simulated values f I

Mrad1 Mrad2
for the first and s;cond (GHz) (GHz) (%) (%)
resonant frequencies of the N 1 03 0 2 o3
boxed CSRR over an ideal 0 groun -37 5
ground plane hg =5 mm 0.26 1.2 6 77

hy = 2 mm 0.2 1.26 2 46
hy=127 mm |0.17 1.28 <1% 30

the ground plane. In case no ground plane is present, the first (0.37 GHz) and
second (0.99 GHz) resonances of the CSRR agree very well with the resonant
frequencies of an EC-SRR of the same dimensions (see Fig. 2.7). The radiation
conductance G, calculated by using (2.53) and (2.54) for the first and second
resonances, respectively, shows good agreement with the simulated values in the
unbounded lossless case, as expected from duality. The theoretical/simulated values
are 3.1 x 107°S/4.2 x 107> S at the first resonance, and 2.2 x 107> S/2.1 x
107 S at the second resonance.

Equation (2.53) and (2.54) were also applied to predict the radiation conduc-
tance when the radiation is confined by the ground plane, taking into account that
the results must be halved, since radiation occurs only in one half-space. In this
case, however, the theoretical prediction is not as accurate as in the unbounded
case, and only provides a rough approximation.

As can be seen in Fig. 2.16, ohmic losses associated to copper do not introduce
changes in the resonant frequencies. In such a lossy case, one of the main concerns is
the radiation efficiency, which can be severely affected as the distance from the
ground plane is made very small. As illustrated in Table 2.2, the simulated values of
the radiation efficiency decrease as the value of A is reduced. At the first resonance,
the efficiency quickly falls to very small values, due to the combined effect of the
electrical size reduction (the first resonance is lowered down to half its value) and the



78 2 Radiation Properties of Edge-Coupled Split-Ring Resonators ...

u/m

foon
623n
5578
w922
h266
609
2953
2297
1641
9BN

——— = 80 deg, unbounded
----- 6 =90 deg. unbounded
5 ¢ =90 deg, on metal
+ =80 deg, on-metal

— p = 80 deg, unbounded
o= 0 deg, unbounded
O =90 deg, on metal

. p=0deg, on metal

Fig. 2.17 Amplitude of the electric field tangential to the slot of the a unbounded CSRR and
b CSRR boxed on a ground plane (at a distance /2, = 1.27 mm). A zoom of the E-field vector in
the slot at the position ¢ = 90° is also represented. ¢ Radiation pattern at the first and second
resonance (left and right, respectively)
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additional losses arising from the vicinity of the ground plane. On the other hand, the
results at the second resonance are encouraging even for the smallest value of A, =
1.27 mm (A/185), where 7,9 = 30% is predicted. It is worth mentioning that no
substrate has been considered so far. Obviously, a dielectric substrate may be nec-
essary in many practical cases, due to its structural function. Moreover, when
designing an UHF-RFID tag based on this resonance, one might want to reduce
lateral dimensions, which have been increased by the presence of the metal plane (a
100 mm x 100 mm tag would result when working at 915 MHz without adding any
substrate, so that the resulting tag area would be significantly larger than average),
and this can be accomplished by properly choosing the permittivity of the substrate.
However, as mentioned before, the substrate may cause an important reduction of the
radiation efficiency, so that a careful tradeoff between tag dimensions and read range
is necessary at the tag design stage.

Let us now check the electric field distribution and the radiation pattern of the
CSRR (Fig. 2.17) when boxed on a ground plane. The simulation results suggest
that, even when the distance from the ground is small (1.27 mm), the field distri-
bution on the slot is similar to that of the ideal CSRR. Notice that, due to duality,
the proximity effects encountered in the EC-SRR are also replicated in the electric
field distribution (or, equivalently, in the magnetic current density) on the slot. As a
result, the radiation pattern (in the upper half space) is also very similar (Fig. 2.7c).

In conclusion, although the ground plane lowers the radiation efficiency of the
CSRR, it is actually interesting to explore this solution for the design of UHF-RFID
tags with low-profile and acceptable read range, in light of the novelty that this kind
of design represents over the state of the art. In the next chapter, an on-metal
UHF-RFID tag based on a NB-CSRR working at the second resonance will be
presented, along with the design concepts and the measured read range.
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