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Chapter 2
Pathobiology of Sickle Cell Disease  
Vaso-occlusion and Targeted Therapies

Kerry A. Morrone, Jennifer Davila, W. Beau Mitchell, and Deepa Manwani

Abbreviations

HbS	 Sickle hemoglobin
RBC	 Red blood cell
SCD	 Sickle cell disease
VOC	 Vaso-occlusive crisis

Sickle cell disease (SCD) originates from a single base pair change in the β-globin 
subunit, yet the complex manifestations that result are manifold. The abnormal HbS 
is insoluble when deoxygenated, leading to polymer formation. These cells are less 
deformable and are prone to hemolysis. Wide-field digital interferometry demon-
strates that sickle red blood cells (RBCs) are stiffer than those with normal adult 
hemoglobin [1]. Adhesion of low-density sickle RBCs and reticulocytes in postcapil-
lary venules leads to trapping of the older, more dense, and misshapen SS-RBCs and 
results in reduced blood flow, hence contributing to vaso-occlusive crisis (VOC) [2]. 
The sickle RBC is only one reason for the systemic multi-organ damage in this dis-
ease. Many cells that are not affected by the β-globin mutation play a role in this 
lifelong debilitating illness. The interactions between the sickle RBCs, endothelium, 
leukocytes, platelets, cytokines, and inflammatory mediators are all responsible for a 
chronic inflammatory state and cumulative organ injury [3, 4]. Sickle RBCs easily 
dehydrate, leading to HbS polymerization and subsequently to altered shape and 
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surface cell properties. This leads to hemolysis and triggers activation of coagulation 
factors, platelets, white blood cells, endothelium, and intracellular signaling pathways 
[5]. This chapter will highlight the underlying pathophysiology of the ischemia reper-
fusion injuries, the abnormal interactions between the red cell and its surrounding 
environment (particularly the endothelium, neutrophils, and platelets), the prothrom-
botic milieu, and the novel therapies that are being investigated to treat this disease.

�Adhesion Pathways

�Adhesive Interactions of Red Cells and Leukocytes 
with the Endothelium

The mutated HbS causes deformation of RBC membranes by polymer formation, 
RBC membrane damage via iron-mediated generation of oxidants [6], and altered 
lipid properties [7]. The endothelium in SCD has an activated phenotype, demon-
strated by the upregulation of adhesion molecules such as vascular cell adhesion mol-
ecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), and the selectin 
family [8, 9]. Selectins regulate leukocyte adhesion to the endothelium, and their 
expression is enhanced by inflammatory cytokines such as tumor necrosis factor 
(TNF-α) or interleukin-1 (IL-1) [10]. Two of the selectins (P-selectin and E-selectin) 
are expressed on the endothelium and can markedly slow down the rolling of the white 
blood cells with the additional interactions of cytokines and inflammatory markers 
[8,  11]. Activated αMβ2 (macrophage-1 antigen [MAC-1]) on adherent neutrophils 
captures sickle RBCs leading to decreased blood flow [12]. Sickle RBCs can also 
adhere via numerous adhesive partners to the endothelium directly (e.g., VCAM-1), 
with or without intervening bridging molecules (thrombospondin, von Willebrand 
factor [VWF]) or with subendothelial matrix proteins (laminin, VWF) [13, 14]. 
Activation of NF-κB upregulates expression of these adhesion molecules (E-selectin, 
VCAM-1, and ICAM-1) on the surface of the endothelium [2, 15]. Activated circulat-
ing endothelial cells and increased levels of plasma sVCAM-1, P-selectin, and 
E-selectin have all been implicated in participating in VOC [11, 16, 17]. Specific 
erythrocyte ligands also play a role in adhesion such as Lutheran blood group antigen 
[18], VLA-4 [19, 20], CD 36, and sulfated glycolipids [21]. Basal cell adhesion mol-
ecule/Lutheran blood group (BCAM/LU) and ICAM-4 can both be activated by epi-
nephrine [2, 22]. Activated ICAM-4 by epinephrine leads to VOC and increased 
leukocyte adhesion to the endothelium via endothelial ανβ3 integrin [23, 24].

�Neutrophil-RBC Interactions

Neutrophils participate in the pathogenesis of SCD, and in vitro studies demonstrate 
that sickle RBCs directly bind to neutrophils [25]. This is supported by in vivo stud-
ies in Berkeley SCD mice where the dynamics of circulating blood cells are 
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analyzed in the cremasteric microcirculation using intravital microscopy [11, 25]. 
Clinically, patients with more severe symptoms have higher neutrophil counts than 
racially matched controls [26, 27]. Patients that have required GCSF or GMCSF for 
treatment of other comorbidities such as neutropenia or stem cell harvest have had 
severe or fatal VOC [28–32].

�Therapeutic Interventions Targeting Adhesion Molecules

Inhibition of these adhesion molecules, or their downstream targets, has been the 
focus for novel therapeutic targets. Administration of an anti-P-selectin aptamer in 
SCD mice resulted in a decreased adhesion of sickle RBCs by 80–90%, increased 
microvascular flow velocities, and reduced adhesion of the leukocyte to the endothe-
lium [16]. In a recent publication in the New England Journal of Medicine, Ataga 
et al. describe the results of a double-blind, randomized, placebo-controlled, phase 2 
trial of crizanlizumab for treating pain crises. Crizanlizumab is a humanized mono-
clonal antibody against the adhesion molecule P-selectin, and adult sickle cell 
patients were prophylactically administered with the medication over 52 weeks. In 
the high-dose crizanlizumab arm, there was a significantly lower rate of sickle cell-
related pain crises per year than placebo (1.63 vs. 2.98) and a low incidence of 
adverse events [17]. Rivapansel (GMI1070) a pan-selectin inhibitor (particularly 
against E-selectin) has been shown in sickle cell mice to improve sickle RBC-
leukocyte interactions leading to improved microcirculatory blood flow and reduced 
VOCs [33]. The phase 2 clinical studies have shown the drug to be a safe intervention 
with a markedly reduced use of opioids during hospitalization (83% reduction com-
pared to placebo) and a trend toward a faster resolution of VOC (41 h versus 63 h) 
[34]. Currently a phase 3 study of rivapansel (NCT02187003) in adults is ongoing.

Two groups have demonstrated the efficacy of RNA aptamers to inhibit 
P-selectin-mediated RBC adhesion to endothelial cells [16, 35] in preclinical mod-
els, lending further support to this adhesive target, but currently there are no open 
clinical trials for these agents.

In a multicenter phase 3 study, poloxamer, a surfactant that inhibits cell adhe-
sion, did not meet its primary efficacy endpoint of reduction in the mean duration of 
VOC (82 h in the vepoloxamer group compared to 78 h in the placebo group in the 
intent-to-treat population (p = 0.09). There were also no statistically significant dif-
ferences between treatment groups in the intent-to-treat population across the two 
secondary efficacy endpoints, rate of rehospitalization for VOC, and the occurrence 
of acute chest syndrome [36].

Intravenous γ-globulin (IVIG) inhibits leukocyte activation and adhesion by 
decreasing leukocyte-erythrocyte interaction and improving microcirculation [37]. 
Fcγ receptors are on many different hematopoietic cells including neutrophils and 
macrophages and can be of the activating or inhibitory subtype. Engagement of 
FcγRIII receptors (activating receptor subtype) on neutrophils triggers phagocyto-
sis, reactive oxygen production, and release of inflammatory cytokines [37]. 
Surprisingly, IVIG binds the FcγRIII receptor reducing Mac-1 activity and 
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mediates these interactions by recruitment of Src homology 2 (SH2)-containing 
tyrosine phosphatase-1 (SHP-1) that inhibits downstream Src kinase [37]. In SCD 
mice, IVIG reverses VOC by inhibiting neutrophil adhesion to the endothelium 
and modulating the interactions between leukocytes and circulating red blood cells 
[38, 39]. In a phase 1 trial in pediatric and adult SCD patients with acute VOC, 
IVIG also decreased human neutrophil Mac-1 function and was safe and well tol-
erated [40]. Currently a phase 2 trial of IVIG is recruiting patients (NCT01757418). 
While this section highlighted a selected few therapeutic interventions, Table 2.1 
summarizes the studies discussed above as well as additional agents targeting cell 
adhesion.

Table 2.1  Novel agents in clinical trials targeting adhesion

Study title Intervention Clinical trials/phase Status

Selectin inhibitors

Study of GMI-1070 for the Treatment 
of Sickle Cell Pain Crisis

GMI-1070 
(rivapansel) 
[34]

NCT01119833 
Phase 2

Complete

Efficacy and Safety of Rivipansel (GMI-
1070) in the Treatment of Vaso-Occlusive 
Crisis in Hospitalized Subjects with Sickle 
Cell Disease

GMI-1070 
(rivapansel)

NCT02187003 
Phase 3

Ongoing

Study to Assess Safety and Impact of SelG1 
with or Without Hydroxyurea Therapy in 
Sickle Cell Disease Patients with Pain 
Crises

SelG1 [17] NCT01895361 
Phase 2

Complete

Sevuparin Infusion for the Management of 
Acute VOC in Subjects With SCD

Sevuparin NCT02515838 
Phase 2

Ongoing

Phase 1–2 Trial of Gamunex (Intravenous 
Gammaglobulin) for Sickle Cell Acute Pain

IVIG NCT01757418 
Phase 1 [40]/2

Ongoing

β-Blockers

Study of Propranolol as Anti-adhesive 
Therapy in Sickle Cell Disease (SCD)

Propranolol 
[41]

NCT01077921 
Phase 2

Complete

Propranolol and Red Cell Adhesion in 
Non-asthmatic Children with Sickle Cell 
Disease

Propranolol NCT02012777 
Phase 1

Ongoing

Other inhibitors of adhesion

Phase III Randomized Study of Poloxamer 
188 for Vaso-Occlusive Crisis of Sickle Cell 
Disease

Poloxamer 
[36]

NCT00004408 
Phase 3

Complete

Evaluation of Purified Poloxamer 188 in 
Vaso-Occlusive Crisis of Sickle Cell 
Disease (EPIC)

Poloxamer NCT01737814 
Phase 3

Complete

A Safety, Tolerability, Pharmacokinetics, 
and Pharmacodynamics Study of 
PF-04447943, Coadministered With and 
Without Hydroxyurea, In Subjects with 
Stable Sickle Cell Disease

PDE9 
inhibitor 1

NCT02114203 
Phase 1

Complete
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�Inflammatory Pathways

�Adenosine and Invariant Natural Killer T (iNKT) Cells

Invariant natural killer T (iNKT) cells are increased in number and activity in SCD 
[42–44] and promote the inflammatory cascade. Adenosine A2A receptors (A2AR) 
are expressed on iNKT cells, and activation of these receptors downregulates the 
activity of iNKT cells [43, 45, 46]. Regadenoson is a selective A2AR agonist that is 
approved for radionuclide myocardial imaging. A side effect of this drug can be 
decreased blood pressure and reflexive tachycardia. Low-dose infused regadenoson 
was postulated to have the selective binding of A2AR receptor and to have less car-
diac toxicity. Animal models showed that an A2AR agonist led to reversal of pulmo-
nary dysfunction in mice [43], and a phase 1 study in adults with SCD demonstrated 
that low-dose regadenoson infusion decreased activation of iNKT cells during a 
VOC without significant toxicity [47]. A phase 2 trial during VOC in pediatric and 
adult patients is currently ongoing (NCT01788631).

�Leukotrienes

Leukotrienes are proinflammatory lipid molecules produced by all leukocytes in 
response to various stimuli. Leukotrienes LTC4, LTD4, and LTE4 are produced by 
mast cells and macrophages and as a group are classified as cysteinyl LTs 
(CysLTs). In the lung, CysLTs cause airway edema, smooth muscle proliferation, 
and fibrotic tissue formation [48]. In the endothelium they cause vasoconstriction, 
upregulation of adhesion molecules, and recruitment of inflammatory cells such 
as eosinophils, monocytes, and T cells [49–53]. Secretory phospholipase A2 
(sPLA2) which releases arachidonic acid, the precursor of leukotrienes, is 
increased in individuals with acute chest syndrome [54]. LTE4 is elevated in adults 
and children with SCD at baseline and increases during pain crisis [55–58]. 
Montelukast is a CysLT inhibitor and an FDA-approved drug for asthma. Currently 
an 8-week phase 2 study of the addition of montelukast is being conducted 
(NCT01960413) in individuals on hydroxyurea with outcomes looking at tissue 
injury, lung function, and microvascular blood flow. Another FDA-approved drug 
for asthma, zileuton, is being examined in a phase 1 trial (NCT01136941) in chil-
dren and adults. Zileuton inhibits 5-lipoxygenase a key leukotriene synthetic 
enzyme. In a mouse model, zileuton attenuated the amount of activated neutro-
phils and decreased sickle RBC adherence in the lung [59]. Corticosteroids are 
potent antileukotrienes by inhibiting the release of arachidonic acid. The Inhaled 
Mometasone to Reduce Painful Episodes in Patients With Sickle Cell Disease 
(IMPROVE) trial (NCT02061202) is a phase 2 trial ongoing currently to investi-
gate if individuals without asthma could have decreased VOCs with inhaled corti-
costeroids [60].
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�Oxidative Stress and Impaired Nitric Oxide Biology

Plasma hemoglobin released from hemolyzed sickle erythrocytes consumes nitric 
oxide (NO) [61] 1000-fold faster than intraerythrocytic hemoglobin [62, 63]. NO 
has multiple vascular effects including vasodilation, anti-adhesive, antithrombotic, 
and antioxidant [64]. Reduced endothelial NO bioavailability in SCD impairs 
downstream vascular functions of NO, like vasodilation. Decreased NO also results 
in increased expression of cell adhesion molecules, VCAM-1, ICAM-1, P-selectin, 
and E-selectin [64]. Decreased NO bioavailability occurs in SCD at baseline and is 
associated with VOCs and acute chest syndrome [65, 66]. Statins modulate NO 
production through upregulation of endothelial nitric oxide synthase and hence are 
protective against endothelial injury [67, 68]. Children with SCD were treated with 
simvastatin for 21 days and had decreased IL-6 levels and CRP with increased NO 
metabolites (NOx) [69].

l-arginine is an obligate substrate for NO and is relatively deficient in SCD due 
to high levels of plasma arginase released from hemolyzed erythrocytes. l-arginine 
supplementation improves erythrocyte integrity [70], and inhibition of arginase in 
sickle cell mice reverses endothelial dysfunction and vascular stiffness [71]. 
Exogenous supplementation of l-arginine (100  mg/kg three times a day) was 
administered during VOC for 5 days in a double-blind, randomized controlled trial 
in children. The treatment was well tolerated and had significant reduction in opioid 
use and lower pain scores [72].

Omega-3 fatty acids have been demonstrated in preclinical models to also miti-
gate vasculopathy. This is achieved by various mechanisms such as favorable 
changes in the red cell membrane lipid composition, modulation of inflammation 
and coagulation, and production of nitric oxide [73]. In two single-center studies, 
omega-3 fatty acids have shown to decrease the frequency and severity of VOC 
episodes in adults and children [74, 75]; multicenter studies are ongoing 
NCT02973360. Table 2.2 highlights other treatments that are being investigated in 
modulating oxidative stress and decreasing inflammatory markers to improve out-
comes in SCD.

Table 2.2  Interventions targeting inflammation

Study title Intervention Clinical trials/phase Status

Adenosine and invariant NKT cells

Adenosine 2A Agonist Lexiscan in 
Children and Adults With Sickle Cell 
Disease

Regadenoson 
[76]

NCT01085201 
Phase 1

Complete

A Phase II Trial of Regadenoson in 
Sickle Cell Anemia

Regadenoson NCT01788631 
Phase 2

Ongoing

Safety, Pharmacokinetic, and 
Pharmacodynamic Study of 
NKTT120 in Adult Patients with Stable 
Sickle Cell Disease (SCD)

NKTT120 [76] NCT01783691 
Phase 1

Complete
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Table 2.2  (continued)

Study title Intervention Clinical trials/phase Status

Leukotrienes

Phase 2 Study of Montelukast for the 
Treatment of Sickle Cell Anemia

Montelukast NCT01960413 
Phase 2

Ongoing

Trial of Zileuton CR in Children and 
Adults with Sickle Cell Disease

Zileuton NCT01136941 
Phase 1

Complete

Inhaled Mometasone to Reduce Painful 
Episodes in Patients with Sickle Cell 
Disease (IMPROVE)

Mometasone NCT02061202 
Phase 2

Ongoing

Other anti-inflammatory reagents

Effect of Simvastatin Treatment on 
Vaso-occlusive Pain in Sickle Cell 
Disease

Simvastatin [69] NCT01702246 
Phase 2

Complete

Atorvastatin Therapy to Improve 
Endothelial Function in Sickle Cell 
Disease

Atorvastatin NCT00072826 
Phase 1

Complete

The Effect of Factor Xa Inhibition, 
with Rivaroxaban, on the Pathology of 
Sickle Cell Disease

Rivaroxaban NCT02072668 
Phase 2

Ongoing

Antioxidants

A Phase III, Prospective, Randomized, 
Double-Blind Placebo-Controlled, 
Parallel-Group, Multicenter Study of 
l-Glutamine for Sickle Cell Anemia 
and Sβ0-Thalassemia

L-glutamine [77] NCT01179217 
Phase 3

Complete

A Phase 2, Randomized, Double-Blind, 
Placebo-Controlled, Parallel-Group, 
Dose-Finding Study of SC411 in 
Children with Sickle Cell Disease

Omega-3 fatty 
acids [78]

NCT02973360 
Phase 2

Ongoing

A Phase 1 Study of Continuous 
Intravenous l-Citrulline During Sickle 
Cell Pain Crisis or Acute Chest 
Syndrome

l-citrulline NCT02697240 
Phase 1

Ongoing

N-Acetylcysteine in Patients with 
Sickle Cell Disease: Reducing the 
Incidence of Daily Life Pain

N-acetyl cysteine NCT01849016 
Phase 3

Complete

A Pilot Study of N-Acetylcysteine in 
Patients with Sickle Cell Disease

N-acetyl [79] 
cysteine

NCT01800526 
Phase 1/2

Ongoing

Physiological Effect of Sulforaphane 
Obtained from Broccoli Sprouts 
Homogenates (BSH) on the HbF and 
Anti-oxidative Capacity of Human 
Sickle RBC

Broccoli sprouts 
[80]

NCT01715480 
Phase 1

Complete

Arginine Supplementation in Sickle 
Cell Anemia: Physiological and 
Prophylactic Effects

l-arginine [72] NCT00513617 
Phase 2

Complete

NRF2 nuclear factor (erythroid-derived 2)-like 2, NAD nicotinamide adenosine dinucleotide, 
NO nitric oxide, RBC red blood cell
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�Role of Fetal Hemoglobin

Hemoglobin F interferes with polymerization of HbS [81]. Individuals with heredi-
tary persistent fetal hemoglobin are clinically very different since the elevated fetal 
hemoglobin ameliorates SCD severity by preventing polymerization of 
HbS. Hydroxyurea is currently the only FDA-approved drug for SCD that has been 
shown to elevate fetal hemoglobin production [81–83], but many other medications 
are currently being investigated in clinical trials. Intravenous sodium butyrate infu-
sion was effective in increasing fetal hemoglobin from 7% to 22% in a small adult 
study [84]. A randomized placebo-controlled trial of HQK-1001 had to be halted 
after a planned interim analysis showed no significant increase in fetal hemoglobin 
in the HQK-1001 group [85]. Gene therapy rather than pharmacologic therapy may 
be the answer to solving this dilemma. The locus control region (LCR) is the major 
transcriptional enhancer of the β-globin gene. Blobel and colleagues successfully 
redirected globin synthesis from the adult β-globin promoter to the fetal γ-globin 
promoter by custom-designed zinc finger-Ldb1 fusion proteins (ZF-Ldb1) that redi-
rected binding of the long-range enhancer [86, 87]. ZF-Ldb1 sickle-treated hemato-
poietic cells from individuals with SCD showed more than twice the increase of 
HbF (45%) and a concomitant decrease in HbS (50%) compared to various pharma-
cologic treatments [86]. In vivo work needs to be performed to further determine the 
feasibility of this in clinical practice.

�Anti-sickling Agents

Common themes of agents that target sickling focus on ways to prevent polymeriza-
tion of the HbS.  By shifting the oxyhemoglobin dissociation curve to the left, 
improved oxygenation of hemoglobin will decrease sickling. AES-103 
(5-hydroxymethyl furfural) is a compound made of a five-carbon-ring aromatic 
aldehyde that exists naturally in coffee, honey, and dried fruits. In vitro assays and 
sickle mice data both show decreased sickling and polymer formation with improved 
red cell survival [88]. Compounds that shift the oxyhemoglobin dissociation curve 
to the left (AES-103 and GBT440) [89, 90] have been well tolerated in adult patients 
with SCD in early phase 1 studies [91]. AES-103 was renamed Bax 555 when 
Baxalta was acquired by Shire and the phase 2 trial was terminated. GBT440 is a 
small molecule that increases HbS affinity for oxygen, delays in vitro HbS polym-
erization, and prevents sickling of RBCs. In a mouse model, GBT440 extends the 
half-life of RBCs, reduces reticulocyte counts, and prevents ex vivo RBC sickling 
[89]. A phase 3 trial for GBT440 is registered and recruiting (NCT03036813). 
Carbon monoxide (CO) attaches to hemoglobin and acts as an anti-sickling agent by 
preventing HbS polymerization. Sanguinate is a pegylated hemoglobin product that 
delivers CO to HbS and has been shown to be safe in a phase 1 trial [92, 93]. It also 
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acts as an oxygen transfer agent and has anti-inflammatory properties [94]. A phase 
2 study of sanguinate for VOC in adults (NCT02411708) is currently recruiting 
patients in an adult ambulatory setting. SCD-101 a botanical-derived drug is cur-
rently in a phase 1 trial (NCT02380079) in adults with SCD. While in vivo and 
in vitro studies show anti-sickling activity, the underlying mechanism is unknown, 
but has been well tolerated in an adult cohort [95]. Table 2.3 highlights the various 
treatments that are being investigated to target fetal hemoglobin induction and 
enhance anti-sickling.

Table 2.3  Therapeutics targeting hemoglobin F induction and anti-sickling

Study title Intervention Clinical trials/phase Status

Hemoglobin F induction

Phase 1 Placebo-Controlled Study 
of the Safety, Activity and 
Pharmacokinetics of HQK-1001 
in Healthy Subjects

Oral sodium 
butyrate 
(HQK-101)

NCT00717262 
Phase 1

Complete

Phase 1/2 Study to Evaluate the 
Safety, Tolerability and 
Pharmacokinetics of HQK-1001 
Administered Daily in Patients with 
Sickle Cell Disease

Oral sodium 
butyrate [96] 
(HQK-101)

NCT00842088 
Phase 1/2

Complete

A Study of HQK-1001 in Patients 
with Sickle Cell Disease

Oral sodium 
butyrate [97] 
(HQK-101)

NCT01322269 
Phase 2

Complete

A Study of HQK-1001 in Patients 
with Sickle Cell Disease

Oral sodium 
butyrate [85] 
(HQK-101)

NCT01601340 
Phase 2

Terminated

Study of Panobinostat (LBH589) in 
Patients with Sickle Cell Disease 
(LBH589)

Panobinostat NCT01245179 
Phase 1

Ongoing

Study of Decitabine and 
Tetrahydrouridine (THU) in Patients 
With Sickle Cell Disease

Decitabine-THU NCT01685515 
Phase 1

Ongoing

Study to Determine the Maximum 
Tolerated Dose, Safety and 
Effectiveness of Pomalidomide for 
Patients with Sickle Cell Disease

Pomalidomide 
[98]

NCT01522547 
Phase 1

Complete

Use of Metformin as a Fetal 
Hemoglobin Inducer in Patients with 
Hemoglobinopathies

Metformin [99] NCT02981329 
Phase 1

Ongoing

Anti-sickling agents

Dose-Escalation Study of SCD-101 
in Sickle Cell Disease

SCD-101 [95] NCT02380079 
Phase 1

Ongoing

�Study of SANGUINATE™ Versus 
Hydroxyurea in Sickle Cell Disease 
(SCD) Patients

Sanguinate [92] NCT01848925 
Phase 1

Complete

(continued)

2  Pathobiology of Sickle Cell Disease Vaso-occlusion and Targeted Therapies



50

�Chronic Pain in Sickle Cell Disease

Frequent and persistent pain is common in SCD, particularly in the adult popula-
tion. According to a recent study, patients report sickle cell pain characteristics that 
are consistent with both nociceptive and neuropathic pain, contrary to prior belief 
that all SCD pain is nociceptive [103]. Trifluoperazine, a potent Ca/calmodulin pro-
tein kinase IIa inhibitor commonly used to treat neuropathic pain, has been recently 
studied in adult SCD patients. Half of the patients in this phase 1 trial reported a 

Table 2.3  (continued)

Study title Intervention Clinical trials/phase Status

�Study of SANGUINATE™ In the 
Treatment of Sickle Cell Disease 
Patients with Vaso-Occlusive Crisis

Sanguinate NCT02411708 
Phase 2

Ongoing

Safety Study of MP4CO in Adult 
Sickle Cell Patients

MP4CO [100] NCT01356485 
Phase 1

Complete

�A Study of the Efficacy and Safety of 
ICA-17043 (With or Without 
Hydroxyurea) in Patients with Sickle 
Cell Anemia

Senicapoc 
(ICA-17043) 
[101, 102]

NCT00040677 
Phase 2

Complete

�A Stratified Sickle Event Randomized 
Trial (ASSERT)

Senicapoc 
(ICA-17043) 
[101, 102]

NCT00102791 
Phase 3

Terminated

A Study Evaluating the Long-Term 
Safety of ICA-17043 in Sickle Cell 
Disease Patients With or Without 
Hydroxyurea Therapy

Senicapoc 
(ICA-17043) 
[101, 102]

NCT00294541 
Phase 3

Terminated

A Single Dose Study of the Safety, 
Blood Levels and Biological Effects 
of Aes-103 Compared with Placebo in 
Subjects with Stable Sickle Cell 
Disease

Aes-103 
(Bax 55)

NCT01597401 
Phase 1

Complete

�Evaluation of Different Dose 
Regimens of Aes-103 Given for 
28 Days to Subjects with Stable 
Sickle Cell Disease

Aes-103 
(Bax 55)

NCT01987908 
Phase 2

Terminated

A Study of the Safety, Blood Levels 
and Biological Effects of GBT440 in 
Healthy Subjects and Subjects with 
Sickle Cell Disease

GBT440 NCT02285088 
Phase 1

Ongoing

A Study of the Safety, Blood Levels 
and Biological Effects of GBT440 in 
Healthy Subjects and Subjects with 
Sickle Cell Disease

GBT440 [91] NCT02285088 
Phase 1

Complete

Study to Evaluate the Effect of 
GBT440 Administered Orally to 
Patients with Sickle Cell Disease 
(GBT_HOPE)

GBT440 NCT03036813 
Phase 3

Ongoing
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50% reduction in their chronic pain, suggesting a role for neuropathy in the patho-
genesis of SCD pain [104]. SCD mice also exhibit altered sensitivity to pain as 
demonstrated by musculoskeletal and cutaneous hyperalgesia [105]. Nociceptive 
neurons in the spinal cord of BERK sickle mice have increased phosphorylation of 
mitogen-activated protein kinases (MAPKs) that are known to contribute to neuro-
nal hyperexcitability, including c-Jun N-terminal kinase (JNK), p44/p42 extracel-
lular signal-regulated kinase (ERK), and p38, which suggests that central 
sensitization contributes to the pain phenotype [106]. In SCD mice, activators of 
neuropathic and inflammatory pain (p38 mitogen-activated protein kinase, STAT3, 
and mitogen-activated protein kinase/extracellular signal-regulated kinase) are 
increased in the spinal cord in addition to neurochemical changes in the peripheral 
nerves [107]. Mast cells in murine models promote neurogenic inflammation and 
nociceptor activation through the release of substance P in the skin and dorsal root 
ganglion [108]. Targeting mast cells in sickle cell mice by small molecule inhibitors 
or by stabilizing mast cell degranulation ameliorates hyperalgesia [108, 109]. 
Although treatments for neuropathic pain appear to be promising as novel therapeu-
tics for chronic pain in SCD, further investigations are urgently needed. Table 2.4 
summarizes the treatments that are being investigated in chronic pain.

�Role of Activated Coagulation in SCD

Venous thromboembolism (VTE) has been an underappreciated complication of 
HbSS, although the increased incidence and recurrence of thrombosis in SCD 
patients suggest a chronic hypercoagulable state [110]. It has been reported that up 
to 25% of adults with SCD have developed VTE, with the median age of first VTE 
being considerably younger than in the general population [111] and comparable to 
the age observed in families with high-risk thrombophilia [112]. The risk of VTE in 
SCD is heightened by recurrent hospitalizations, prolonged episodes of immobility, 
frequent use of central venous catheters, and infection [113]. Increased mortality 
was observed in adults with SCD and thrombosis [111, 114]. There is an increased 
prevalence of pulmonary embolism found in SCD patients at autopsy, especially 

Table 2.4  Therapeutic targets investigating chronic pain

Study title Intervention Clinical trials/phase Status

Clinical Trial to Study the Safety and 
Tolerability of Memantin Mepha® in 
Sickle Cell Disease Patients

Memantine 
hydrochloride

NCT02615847 
Phase 2

Ongoing

Pain Management of Vaso-Occlusive 
Crisis in Children and Young Adults 
with Sickle Cell Disease

Gabapentin NCT01954927 
Phase 2

Ongoing

Cannabinoid-Based Therapy and 
Approaches to Quantify Pain in Sickle 
Cell Disease

Vaporized cannabis NCT01771731 
Phase 1

Ongoing
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those with sudden death [115, 116], and it has been suggested that pulmonary 
embolism may underlie development of some cases of pulmonary hypertension. 
Additionally, both retrospective and prospective analyses of patients with acute 
chest syndrome report increased pulmonary embolism [115–118]. Use of adminis-
trative discharge databases further corroborates the increased incidence of pulmo-
nary embolism in adults with SCD when compared to age- and race-matched 
controls [118, 119]. In the pediatric SCD population, central venous catheter place-
ment increases the risk of DVT [120, 121]. Pregnancy-related VTE is also increased 
in women with SCD [122, 123].

Nearly every component of coagulation, including platelets, is affected by SCD. 
Tissue factor (TF) is an essential component of the factor VIIA-TF complex enzyme, 
the initiator of blood coagulation in vivo. TF is expressed by endothelial cells and 
monocytes, and increased levels are reported in SCD [124–127]. The number of 
circulating TF-laden cells and microparticles increases during painful crises, as 
compared to steady state [124, 127, 128]. In general, increased numbers of 
TF-expressing endothelial cells, monocytes, red blood cells, and their associated 
microparticles influence the coagulation cascade [129]. In accordance with this, 
there is an association between increased markers of hemolysis in SCD and whole 
blood TF procoagulant activity [130].

An overall increased state of thrombin generation in SCD is evidenced by 
chronic elevation of procoagulant proteins such as thrombin-antithrombin (TAT) 
complexes, prothrombin fragments (F1.2) and D-dimers, and other markers of 
thrombin generation [131]. Moderately decreased levels of the anticoagulant pro-
teins C and S are observed in patients with SCD in steady state, and these may be 
further decreased during acute pain episodes [132–135]. Decreased levels of fac-
tor V have also been reported, suggesting chronic consumption of procoagulant 
factors due to the increase in tissue factor expression and thrombin generation 
[110, 136].

Von Willebrand factor (VWF) has also been implicated in the thrombophilic 
state of SCD [137]. Extracellular hemoglobin binds with high affinity to VWF, thus 
preventing VWF from being cleaved by ADAMTS-13. This could be considered a 
form of acquired ADAMTS-13 deficiency [138]. The inability to proteolize VWF 
leads to accumulation of ultra-large, extremely adhesive VWF multimers in circula-
tion and on the endothelium [138]. Plasma free heme also induces exocytosis of 
VWF from Weibel-Palade bodies [139], and total activity of VWF has been shown 
to directly correlate with hemolysis [140]. This pathophysiology is demonstrated 
clinically by the description of a thrombotic thrombocytopenic purpura-like syn-
drome in SCD patients [141, 142].

Overall the balance of the coagulation system in SCD is tipped toward thrombo-
sis (Fig. 2.1). This system is a potential target for disease-modifying interventions 
with anticoagulants. For example, the use of low-dose warfarin was shown to sig-
nificantly decrease D-dimer during crisis in a small group of patients with SCD 
[143]. Multiple studies targeting coagulation in SCD are ongoing (Table 2.5).
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Fig. 2.1  Pathogenesis of thrombosis in sickle cell disease. RBC red blood cells, isRBC irreversibly 
sickled red blood cells, PLT platelets, MP microparticles, cfDNA cell-free DNA, NETs neutrophil 
extracellular traps, NO nitric oxide, IRI ischemic reperfusion injury, TF tissue factor, PARs 
protease-activated receptors, PS phosphatidylserine, EC endothelial cell, VWF von Willebrand 
factor, FVIII factor VIII, FXa activated factor X. Adapted from Ref. [124]

Table 2.5  Studies involving anticoagulants

Study title Intervention Clinical trials/phase Status

An Exploratory Study of 
Anticoagulation for 
Pulmonary Hypertension 
in Sickle Cell Disease

Warfarin NCT01036802 Phase 2 Terminated

Apixaban in Patients with 
Sickle cell Disease

Apixaban NCT02179177 Phase 3 Ongoing

Treatment of Sickle Cell 
Patients Hospitalized in Pain 
Crisis with Prophylactic 
Dose Low-Molecular-
Weight Heparin (LMWH) 
vs. Placebo

Dalteparin [144] NCT01419977 Phase 2 Complete

The Effect of Rivaroxaban 
in Sickle Cell Disease

Rivaroxaban NCT02072668 Phase 2 Ongoing

Feasibility Study or 
Unfractionated Heparin in 
Acute Chest Syndrome

Unfractionated heparin NCT02098993Phase 2 Ongoing
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�Targeting Coagulation in SCD

�Heparin

Trials of heparins have shown efficacy in treating painful crises. The anti-adhesive 
effect of heparins mediated via blockade of P-selectin is an additional mechanism 
of these agents. NCT01419977 studied prophylactic dosing of dalteparin on change 
in D-dimer, change in pain score, and change in the thrombin generation assay dur-
ing VOC [144]. Results showed that prophylactic dosing did not significantly affect 
markers of coagulation; however there was a greater decrease in pain scores at days 
1 and 3  in patients treated with dalteparin. A single-center, randomized, double-
blind clinical trial showed reduction in the severity and duration of acute VOC when 
using tinzaparin vs. placebo [145]. A study of the effects of unfractionated heparin 
in acute chest syndrome in SCD (NCT02098993) is ongoing, with the primary out-
come being time to hospital discharge.

�Direct Thrombin and Factor X Inhibitors

Current studies of new oral anticoagulants and their potential role in SCD are ongo-
ing. NCT02179177 studies the effect of prophylactic dosing of apixaban on daily 
pain scores and NCT02072668 the effect of rivaroxaban on sVCAM and IL-6.

�Vitamin K Antagonists

NCT01036802 studied anticoagulation with warfarin for pulmonary hypertension, 
but was terminated due to poor accrual.

�Role of Platelets in SCD

Platelets have been shown to circulate in SCD patients in an activated state in both 
“steady state” and during painful crisis. This is evidenced by elevated platelet 
expression of CD62, CD63, PAC, P-selectin, activated glycoprotein IIb/IIIa, plasma 
soluble factor 4, and β-thromboglobulin [124, 131, 146–150]. It is also proposed 
that platelets contribute to the inflammatory milieu of SCD via manufacture and 
release of pro- and anti-inflammatory molecules upon activation [151, 152]. 
Increasing cytokine levels are associated with increased platelet number in SCD 
[153]. Platelets are well known to form aggregates in SCD by binding erythrocytes, 
monocytes, and neutrophils [3, 148, 150, 154]. At the molecular level, the 
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neutrophil serine/threonine kinase isoform AKT2 plays a critical role in both 
neutrophil recruitment and neutrophil-platelet interactions resulting in vascular 
inflammation and lung damage [12]. Inhibition of AKT2 diminishes neutrophil 
adhesion and neutrophil-platelet interactions, leading to improved blood flow [155] 
and prolonged survival when coadministered with hydroxyurea [156] in SCD mice. 
Overall, evidence suggests that the chronic activation of platelets in SCD contrib-
utes to the vasculopathy and thrombo-inflammatory state described in 
SCD.  Accordingly, these alterations have been targeted by antiplatelet therapies 
with the goal of ameliorating the SCD phenotype (Table 2.6).

Table 2.6  Studies involving antiplatelet agents

Study title Intervention Clinical trial #/phase Status

A Phase I/II Randomized, Double-
Blind, Placebo-Controlled Study to 
Evaluate the Safety of Eptifibatide as 
Treatment for Acute Pain Episodes in 
Sickle Cell Disease

Eptifibatide 
[157]

NCT00834899 
Phase 1, 2

Terminated

An Open-Label, Dose-Ranging 
Study of Prasugrel in Pediatric 
Patients with Sickle Cell Disease

Prasugrel [158] NCT01476696 
Phase 2

Complete

A Phase 3, Double-Blind, 
Randomized, Efficacy and Safety 
Comparison of Prasugrel and 
Placebo in Pediatric Patients with 
Sickle Cell Disease

Prasugrel [159] NCT01794000 
Phase 3

Terminated

A Pharmacokinetic and 
Pharmacodynamic Assessment of 
Prasugrel in Healthy Adults and 
Adults with Sickle Cell Disease

Prasugrel NCT01178099 
Phase 1,2

Complete

Prasugrel Versus Placebo in Adult 
Sickle Cell Disease

Prasugrel [160] NCT01167023 
Phase 2

Complete

Aspirin Prophylaxis in Sickle Cell 
Disease

Aspirin NCT00178464 
Phase 1, 2

Complete

Abciximab (ReoPro) as a 
Therapeutic Intervention for Sickle 
cell Vaso-Occlusive Pain Crisis

Abciximab NCT01932554 
Phase 2

Withdrawn

Dipyridamole/Magnesium to 
Improve Sickle Cell Hydration

Dipyridamole 
and magnesium

NCT00276146 
Phase 2

Withdrawn

A Pharmacokinetic (PK) and 
Pharmacodynamic (PD) Dose-
Ranging Phase II Study of Ticagrelor 
Followed by a 4-Week Extension 
Phase in Pediatric Patients With 
Sickle Cell Disease

Ticagrelor NCT02214121 
Phase 2

Complete

A Study to Evaluate the Effect of 
Ticagrelor in Reducing the Number 
of Days with Pain in Patients with 
Sickle Cell Disease (Hestia2)

Ticagrelor NCT02482298 
Phase 2

Complete
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�Antiplatelet Agents

The effect of aspirin on hemoglobin level and frequency of painful crises have been 
evaluated in several clinical trials [161–164]. While one study showed an effect on 
hemoglobin level [163], none showed a significant effect on frequency of painful 
crises. In a single-site randomized trial, the glycoprotein IIb/IIIa inhibitor, eptifiba-
tide (NCT00834899), was shown to be safe in SCD. However treatment with eptifi-
batide did not improve the time to crisis resolution or hospital discharge [157]. A 
multicenter phase 2 trial of the P2Y12 inhibitor, prasugrel (NCT01167023), showed 
a decrease in platelet activation biomarkers and a trend toward decreased pain that 
was nonsignificant [160]. A phase 3 randomized, double-blind, placebo-controlled 
study of prasugrel (NCT01794000) for prevention of VOC also demonstrated a non-
significant trend toward fewer painful crises in the treatment versus placebo arm 
[165]. A phase 2 study using ticagrelor (NCT02482298) to determine whether the 
P2Y12 inhibitor can reduce the number of days of pain, pain intensity, and analgesic 
use has recently been completed, and results are not yet available. Thus, while plate-
lets have been implicated in the pathophysiology of SCD vaso-occlusion and pain-
ful crises, antiplatelet agents have not proven to be effective in targeting that specific 
clinical outcome. However, given the correlation between hemolysis and activation 
of the hemostatic system, and the cross talk between coagulation and inflammation, 
it is possible that different aspects of SCD pathophysiology may be positively 
affected by antiplatelet therapy.

�Summary

Improved understanding of the pathophysiology of sickle cell VOC has led to new 
targeted therapeutics as well as emerging gene therapies. Given the complexity of 
the sickle RBC interactions with the endothelium, platelets, and neutrophils, it is 
likely a multimodal approach will be necessary for optimal results. It is crucial that 
clinicians, scientists, and patients continue to collaborate together and participate in 
multi-institutional and international trials for investigating novel treatments in this 
highly variable disease.
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