Chapter 2
Multi-shell Radially Symmetrical Lens
Antennas

Zvonimir Sipus and Tin Komljenovic

Abstract In this chapter, we review several aspects of the analysis and the design
of multi-shell spherical and circular cylindrical lens antennas. Such lens antennas
are attractive for implementation in communication and radar systems, in particular
in the millimeter-wave frequency band, due to their broadband behavior, excellent
focusing properties, possibility of beam scanning, and the ability to form multiple
beams. In order to develop an efficient analysis tool, needed for successful design of
multi-shell lens antennas, we first demonstrate the principles of the analysis algo-
rithm for calculating the EM field distribution in general multilayer structures (i.e.,
inside a structure with an arbitrary number of layers). This algorithm is designed for
spherical and circular-cylindrical geometries with elementary excitation. To model
realistic lens antennas, we introduce additional flexibility that allows the analysis of
actual feed antennas that usually do not follow the symmetry properties of the lens.
Finally, by connecting the algorithm with an optimization subroutine, a powerful
analysis and design tool is created. All the aspects of the proposed analysis
approach are explained and illustrated with examples. Furthermore, some practical
problems which are encountered in the design of these types of lens antennas are
highlighted and common solutions are presented and compared to the ideal
situations.
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2.1 Introduction

In recent years, there is a growing interest for antennas in communication and radar
systems at higher microwave and millimeter-wave frequencies. Different kinds of
spherical and cylindrical lens antennas are attractive solutions for such applications
due to their focusing properties, capability of beam scanning, ability to form
multiple beams, and broadband behavior. Furthermore, the typical problems with
microwave lenses in the past, such as their bulkiness and weight are no longer an
obstacle for practical implementation since by moving to higher frequencies and by
using novel materials the size and weight have been considerably reduced. This
added degree of freedom in terms of weight and size has in many cases led to the
increase in the electrical size of the lenses in order for them to meet requirements
for more demanding applications. In addition, the feed can be any type of antenna
(horn, dipole, microstrip patch), and typically it is a part of the mechanical system
that points the main beam in the desired direction. Altogether, the lens antenna
system is a complex electromagnetic design problem that requires efficient and
accurate analysis tools that can take into account various practical problems and
demands.

The inhomogeneous lenses have first been analysed and designed using geo-
metrical optics and ray-tracing techniques [1-4]. However, these are approximate
methods valid for structures with all the dimensions large compared to the wave-
length. Furthermore, they cannot take into account internal reflections. The general
numerical methods, such as the finite difference time domain [5] or the finite
element method in [6], can be applied to the lens analysis. However, such methods
are suitable for structures having limited electric dimensions, usually not more than
20 free space wavelengths, and are time- and memory-consuming. Therefore, there
is a need for specialized software in which the geometrical properties of the con-
sidered structures are analytically taken into account, and which can be efficiently
connected with an optimization routine.

The analytical solution for spherical and circular-cylindrical multilayer structures
is derived from the solution of the homogeneous Helmholtz equation, known as
Mie series. It has been extensively used and reported for plane wave scattering by a
conducting and dielectric sphere [7, 8]. This approach has been generalized for
multilayered dielectric lens using different formulations: Mie series augmented
matrix solution [9, 10], scalar potentials [11], mode matching technique [12—15] or
dyadic Green functions [16—19]. The similar analysis approach can be applied for
analyzing other types of structures (e.g., conformal microstrip antennas [20-23]).
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2.2 Analysis of Spherical and Circular Cylindrical
Multilayer Structures

For many structures and technical problems, one requires the knowledge of the field
distribution scattered and/or inside multilayer spherical or cylindrical structures.
Examples would be lens antennas, radomes, optical fibers, geophysical probing,
scattering reduction structures (cloaking), etc. In all the considered cases we would
like to determine the EM field distribution inside and around the multilayer
structure while the position and/or existence of the source can be arbitrary. For
example, in scattering problems the sources are faraway from the structure, in
waveguide problems we search for eigenmode solutions, while in the antenna
problems the sources are a part of the structure. In general, all of these problems can
be described using the Green’s function approach, i.e., we can consider the physical
or equivalent sources as a part of the structure (the waveguide problems can be
treated as poles of the Green’s functions). The knowledge of the most appropriate
Green’s function is often essential for implementing the numerical method we
would like to apply. For example, planar, cylindrical, and spherical patch antennas
and periodic surfaces are frequently analysed by means of the electric field integral
equation and the moment method. There the kernel of the integral operator is a
Green’s function, which takes into account the considered curved multilayer
structure.

2.2.1 Green’s Functions for Layered Media

In principle, there are two basic approaches for calculating the Green’s function of
a general multilayer structure: either to analytically derive an expression for it and
then code this expression, or to develop a numerical routine for the complete
calculation. The analytic approach requires less computer resources than the
numerical approach; however, it is very laborious to analytically determine the
Green’s functions for structures with more than two layers. In such cases, it is more
convenient to use a numerical algorithm which determines the Green’s function
directly. Furthermore, the analytic approach often requires a new derivation of the
Green’s functions for practically every slightly different problem, such as for dif-
ferent number of layers or for different source locations inside the layers.

In most cases, lenses follow spherical or cylindrical geometry, or a slight vari-
ation of these. Therefore, it is reasonable to focus our attention on these geometries
and use the inherent properties of these structures to our advantage. Ideal planar,
circular cylindrical, and spherical multilayer structures have one property in com-
mon: the structure is homogeneous in two dimensions, and varies in the third
dimension. For example, the spherical structure in Fig. 2.1 varies in r direction and
is homogeneous in 0 and ¢ directions. Thus, planar, cylindrical and spherical
structures can be referred to as one-dimensional structures since they vary only in
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Fig. 2.1 Spherical lens
antenna illuminated by a horn
antenna

one dimension [24]. We can simplify the problem of determining the field distri-
bution Green’s functions for one-dimensional structures if we perform the
two-dimensional (2D) Fourier transformation in the coordinates for which the
structure is homogeneous. As a result, our original three-dimensional problem is
transformed into a series of one-dimensional problems, which are much easier to
solve. Instead of using Fourier transformation one can search for modal represen-
tation of the EM field, which at the end gives the same EM field expression.

When determining the Green’s functions of multilayer one-dimensional struc-
tures one can select two paths. The first is to select one component of electric and
magnetic potential and then to express the field components at the boundaries to
determine the considered potentials. In practice, the algorithm determines the
reflection and transmission coefficients of TE and TM waves which are connected
(simply by multiplication) in a final matrix that describes the structure (see, e.g.,
[16]). For example, in the spherical case we can use the Debye potentials /., and yr,,
to characterize the TM and TE waves (note that r = r7)

E™ =V xry,, (2.1a)
HM =V xry, (2.1b)

The Debye potentials /., and ,,, are determined by solving the scalar Helmholtz
differential equation (in spherical coordinate system in this case)

Y = 2 (kr) P (cos 0)e™ (22)

Here , is the elementary solution of the Helmholtz differential equation, i.e.,

P"(cos 0) are the associated Legendre functions of the first kind and z, denotes

spherical Bessel j, or Hankel hgz) functions. Using the following notation:
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M,,, =V X 1, (2.3a)

1
Now = 2V % My, (2.3b)

we can express the electromagnetic field as

E=—> " M+ buN. (2.4a)

n m

- % Z Z binnMimn + @ N (2.4b)

n

The coefficients are determined by fulfilling the boundary conditions for the
tangential EM field components (e.g., for electric field)

tan __ h ] |m| ime
E® = Z Z [nm/n (kr) +d" h? (kr)} <H HP” (cos 0) — ¢ P (cos H))e’

n=0 |m|<n
+ ii [b/ 1ju(kr) + B! rh (2) (kr)} OiP‘m‘(cos 0)+ c})ﬂP‘m‘(cos 0) m
krdr L o do " sin@ "
(2.5)

By fulfilling the boundary conditions at each boundary (continuity of the tan-
gential components) the reflection coefficients can be determined, see [16] for
details.

The second approach is based on determining the tangential components of the
EM field (so-called propagator matrix approach [16]). This approach actually
corresponds to the implementation of the Huygens’s principle or more precisely, the
Love’s equivalence theorem [8]. Here the original problem is divided into equiv-
alent subproblems, one for each layer. The field inside each layer is then determined
from equivalent currents at the subproblem boundaries and from the sources inside
that subproblem. As a theoretical background, in parallel to the Love’s equivalence
theorem, we can modify the curl Maxwell’s equation to “eliminate” the normal
component of the EM field, i.e., to get the equations that depend only on the
tangential field and source components. This modification is given in [25] and the
resulting equations are (e.g., for H-field; by duality principle the equivalent equa-
tion can be derived for the E-field)

0 Jn V.V,
-=—H, = (1 + 2

an —; )'(HXE;)""HXJW

Jze:Jt_LVXMn
nk
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Here subscripts ¢ and n denote tangential and normal directions (related to the
considered boundary), n is the unit vector in the normal direction, and V, is the
transverse part of the V operator. In other words, in order to determine the EM
fields inside the considered multilayer structure we need to know the tangential EM
field components at each boundary as well as tangential component of the excitation
currents inside the structure. Note that the excitation current in Eq. (2.6) contains
two parts: the tangential electric current J; and the replacement tangential electric
current with the origin in the normal component of the excitation magnetic current
M,.

2.2.2 Description of the GIDMULT Algorithm

As indicated, a canonical three-dimensional problem can be efficiently decomposed
into one-dimensional subproblems by applying Fourier transformation for the
directions where the structure is homogeneous. This so-called spectral domain
approach is the core of an algorithm called GIDMULT for calculating the Green’s
function in the spectral domain (representing a one-dimensional (1D) spatial
domain) for planar, circular cylindrical, and spherical multilayer structures. The
G1DMULT algorithm calculates the Green’s functions in the same way for all three
types of geometries and it will be explained by considering the spherical geometry.

The solution procedure makes use of the Fourier transformation technique. Since
the problem is described in spherical coordinate system, we use the vector Legendre
transformation in 6 and ¢ directions, defined by [26, 24].

J(r,n,m) = / / n,m,0)J(r,0,p)sin 0e ™ d0dp (2.7a)
\/2nS(n,m)
J(r, 0, an j r,n,m)e™m? 2.7b
?) = mgoon;n‘ \/27rS n,m) ( ) ( )
Pl"l(cos 0)y/n(n+1) 0 0
]:(}’l, m, 9) _ 0 8P‘,;"‘(gzos 0) fjiilPs,‘:i'i(;os 0) (270)
jmP" (cos 6) oP™ (cos )
sin 0 00

2n(n+1)(n+ |m|)!
2n+1)(n—|m|)! "

S(n,m) = (2.7d)

By applying the vector Legendre transformation, the three-dimensional excita-
tions are transformed into harmonic current shells. If the source is infinitely thin in
r direction, we get one discrete current shell per source, otherwise we get a
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continuous distribution of current shells in r direction. The E- and H-fields induced
by the harmonic current sources have the same harmonic variations in 0 and ¢ as
the source. Therefore, only the field variation in the direction perpendicular to the
boundaries is unknown, and we have a harmonic one-dimensional (1D) field
problem. In this way, the spectral domain problem is interpreted as a
one-dimensional spatial domain problem consisting of one-dimensional multilayer
structure and harmonic one-dimensional sources in the form of current shells. This
is visualized in Fig. 2.2, where also all other steps of the algorithm are shown. We
describe the steps of the algorithm below.

The harmonic one-dimensional problem is solved by making use of the equiv-
alent problems, one for each layer. The unknowns are the tangential E- and H-fields
at layer boundaries. Since the variation of the E- and H-fields in the direction
tangential to the boundaries is harmonic with known periodicity, we only need to
determine the complex field amplitudes at the interfaces, i.e., we have four
unknowns per boundary. For example, the E-field in the layer j is expressed as

homo ~ homo ~ ~ homo_~ ~ homo_~ ~ homo ~ exc1 homo ~_exci

(2.8)

where :Ij and 1\71] are equivalent electric and magnetic current sheets at boundary j,
]em and M‘”‘Ci are excitation electric and magnetic currents in layer j (if any), and

Ghomo is the Green’s function of the homogeneous problem (given below). By using
Jj =it x Hyand M; = —it x E; Eq. (2.8) can be expressed in terms of the unknown

EM field amplitudes E, and H] at the boundary j between layers j and j + 1 and the
known excitation currents. Since the tangential E- and H-fields are continuous at the
layer boundaries we obtain 4 linear equations per boundary.

The algorithm connects all equivalent subproblems into a system of 4Nyoungary
linear equations with the same number of unknowns (Npeyndqry denotes the number
of boundaries). Once the amplitudes of the tangential fields have been determined,
it is easy to determine the field amplitudes anywhere in the multilayer structure by
applying the homogeneous region equivalent of the layer inside which we want to
determine the field value.

The core subproblem in the formulation is to calculate the E- and H-fields due to
a harmonic current shell excitation of radius 7, in a homogeneous region. This is the
only part (i.e., the only subroutine) that is different for planar, cylindrical and
spherical case. In the spherical case the formulation is as follows:

(a) from Jy (rg,m,n)

(2.9a)
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(a) 3-D problem

JCXCi(X,y) z y

exci

- p
1*02) AR
JCXCI (e’¢)

(b) Harmonic 1-D problem

©=

Je (m,kz) e—jmtj)e-jkzz

L(n,m,0) J*“i(n,m) e

jcxci(kx sky) e—kax e—Jkyy

(c) Definition of material boundaries and regions

%3

O %>
©)

®®

(e) Basic homogeneous harmonic 1-D field problem

T T jmé
j c‘jkxx c'jkyy L(n,m,0) J(n,m) e

R
L O, O

Fig. 2.2 Structure of the GIDMULT algorithm
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wer?

5 5 F7(2) 5
Evromm) = — " Jntn s 1) Jo(n,m) - {H" (krs ) Ju(kr) ri“ (2.9b)

~ _— ~(2) ~
Hd)(r,n,m) :]%J@(I’l,m) . { n (krs)Jn(kr) rirs (290)

- k ro~ F7(2) 5
Ey(r,nm) = ——2Jy(nm) - {7 (k’i)(J’;(k’) rsrs (2.10a)
wer Jo(kro)Hy " (kr)  r>rg
- J H(2>/(kr W (kr) r<r
Hy(r,n,m) =—Jg(n,m) - ¢ " 0200 = (2.10b)
Julkro) Hy ™ (kr) - r=rg

Here J,,(kr) and a? (kr) are the Schelkunoff type of spherical Bessel and Hankel

functions (J,(x) = xj,(x) and a? (x) = xh? (x)), and k is the wave number of the
considered layer. The fields excited by the magnetic shell can easily be determined
by applying the duality concept. The fields caused by the r-directed sources are
evaluated using the transverse replacement currents (see [24] for details).

Once we have the fields inside the structure the procedure to obtain the radiation
pattern is quite straightforward. If we consider, e.g., the ¢-component of the electric
field in the outermost region with the r-coordinate larger than the r-coordinate of

the patch, we have only outward-traveling waves described by o', I:I,(Lz)(kor).

Therefore, in the outermost region we can connect the ¢-component of the electric
field with different r-coordinates r; and r, as

77(2) mn+1 .
- - r Hy (kor - ry  exp(—jkor
E(/)(rlanam):E(ﬁ(r%nam) rzfi(z)Ek()li%E(b(rZanam) A‘iz)(kz ) p(rjo 1)
LH, ™ (ko2 n (Ko 1
(2.11a)
A<2>/ 1 —jkor
~ ~ Hn k ~ JKoT'
EU(r17n7m) = E()(FQanam) r_zw ~ EU(r27n7m) J’#e
F7(2) F7(2)
"L H,” (kors) H,” (kor)

(2.11b)
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Here r; represents the r-coordinate of the far-field pattern. This avoids the
problem of evaluating Hankel functions with very large argument. Notice that in the
lens analysis a slightly larger value than the feed position is chosen for the radius 7.
The final solution is obtained by superposing the spectral solutions, see Eqs. (2.7a—
2.7d).

In order to calculate the directivity radiation pattern it is necessary to calculate
the radiated power. This is done in spectral domain by using Parseval theorem [8],
i.e., the radiated power is equal

P =3 Re|> > S(n,m)(EgHy—E4Hy) | . (2.12)

Vm n>|m|

To summarize, the presented modal analysis approach (i.e., the spectral domain
approach or the Mie series approach) is completely rigorous (there are no
approximations in the formulation) and suitable for analyzing lenses with arbitrary
number of layers. However, its application is limited only to canonical geometries
(spherical, circular-cylindrical or planar) and one should be aware that numerical
problems can appear for electrically very large structures. Two major sources of
possible numerical difficulties are connected with the problem of the associated
Legendre functions PJ'(cos 0) becoming very large (especially if m = n,

Pi"(cos 0) ~nm=1/2l making the solution numerically unstable), and with the
problem of calculating Bessel/Hankel functions of large order. The first numerical
difficulty linked to associated Legendre functions can be solved using suitable
normalization process [22]. The second numerical problem (Bessel/Hankel func-
tions of large order) can be mitigated by implementing the Debye’s asymptotic
formulas for Bessel and Hankel functions of large order, by which either the pro-
duct of Bessel and Hankel function, or the ratio of two Hankel functions, are
calculated with extracted exponential parts [22].

Multilayer canonical one-dimensional structures can also be analyzed by
expressing the field quantities inside each layer as the superposition of forward and
backward propagating waves (as mentioned at the beginning of this chapter). The
reflection and transmission coefficients inside each layer can be determined in a
recursive way, resulting in the generalized reflection and transmission coefficient of
the whole structure (i.e., of the generalized scattering matrix). A detailed descrip-
tion of this method is given in [16]. Although in the presented approach the forward
and backward propagating waves are also considered, the way of determining the
field quantities is different—the presented GIDMULT algorithm simultaneously
determines the tangential field quantities at the interfaces between the layers. Unlike
in [16], in the presented method the field solutions to all the subproblems in the
procedure are given in terms of Green’s functions, i.e., the excitation within each
subproblem are equivalent or physical current sources. This makes it easy to modify
the code. For example, it is easy to implement the metasurface impedance boundary
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conditions into the routine, which makes the algorithm suitable for analyzing
multilayer metasurface structures (e.g., metasurface lenses).

2.3 Spherical Multi-shell Lenses

Spherical lens antennas in general have many attractive features like broadband
behavior, excellent focusing properties, wide scan coverage without scanning los-
ses, possibilities of multiple beams on (in general) different working frequencies,
etc. Such properties make lens antennas attractive solution in many applications, in
particular in millimeter frequency range where the weight of such antennas is no
longer an obstacle for practical implementation due to the increased frequency of
operation. Two most common designs follow the spherical Luneburg and half
Maxwell fisheye variation of index of refraction (see Fig. 2.3 and [27]), i.e., the
respective radial dependency of index of refraction is equal

n2(r)=2—r* and n3(r) :4/(1—|—r2)2. (2.13)

For example, spherical lens antennas can be used for automotive radars [28],
radar cross-section (RCS) enhancers [29], satellite communications [30, 31], or for
astronomy applications [32].

2.3.1 Modeling of Feed Antennas

As explained in the previous section, spherical lens antennas are usually rigorously
analysed using spherical wave decomposition. However, the feed was usually taken
only in an approximate way. For example, the Huygens source (approximation of
low-gain horns) was considered in [10], dipole sources were considered in [17], and
in [12, 13] the feeding horn antenna was modeled by an array of dipoles repre-
senting the aperture field distribution of the horn. In more details, in the case of horn
feeding, the horn is replaced with equivalent aperture currents by using free space

- (©

reflective plane

Fig. 2.3 Ray tracing illustration of the properties of a Luneburg lens, b half Maxwell fisheye lens,
¢ hemispherical lens with a ground plane
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equivalent principle [8]. For example, if the rectangular horn is used, the field at the
horn aperture in the local coordinate system is

E(x,y) = X Ep cos (%) e ot 0l (2.13a)
8

E .
H(x,y) = § — cos (—ny ) e M ot 0l )2 (2.13b)
n Wy

where W, and W, are the width of the horn in x- and y-direction, and p, and p, are
distances of the centers of radial waveguides from the horn opening. Therefore, the
equivalent currents are

J9(x,y) =x @cos (ﬂ> e/ 0 0 0)]/2 (2.14a)
n W,

Me(x, y) = § E cos (%) M s 7 ]2 (2.14b)

y

Small horns can be approximated with an elementary area (so-called Huygens
source [33]) with E- and H-fields equal to

0(0) 6(¢) 0(r = rpeea)

2 .
Feea SN 0

. ~0(0)0() 0(r — rpe
HLq(feed797¢) = d) ( )17(:125)(1 s(in Qf d).

E“(rfeea, 0, ) = 0

(2.15a)

(2.15b)

We can assume that the small horn is located at the 6 = 0° axis with r-coordinate
7 =1 neq. The vector-Legendre transformation of all described models can be found
almost completely analytically (for the rectangular horn numerical integration in -
direction is needed, or alternatively one can consider the array of electric and
magnetic dipoles as explained in [13]). For example, the vector-Legendre trans-
formation of the Huygens source is equal

e 1 2n+1
J q(reedynym = :l:l) = =0 (2163)
i 87N 1pq(n+1) im
0
~ 1 2n+1
M (Feq,n,m = £1) = nt —jm (2.16b)

8n;ff2-eedn(n+1) 1

Note that only the terms with m = %1 are different from zero.
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Rigorous model, based on closing the feed antenna in a small volume and
representing the near-field distribution via spherical harmonics, was presented in
[15]. The idea is to project the equivalent current distribution (at the interface of a
volume that encloses the source) on the spherical wave basis

P B / 3 My — LM N, | av (2.17a)
mn TC(I + 5"1) S(n7 m) mn 1” mn b) .
14
P / 3T Ny — L ME9 - M, | dV (2.17b)
nm 7'[(1 + 5m) S(n7 m) nm '/I nm b) M
\%4

where J,, is the Kronecker symbol. The equivalent electric and magnetic currents
are determined mostly from computed data. However, in order to implement the
proposed method, details of the feeding antenna structure should be known in order
to determine the equivalent currents (e.g., by a general EM solver), which is not
always the case—one often receives only the far-field measurements from the
antenna manufacturer.

In many cases it is beneficial to use a feed model which is based on spherical
mode representation of a far-field radiation pattern of the feed antenna and then
using an efficient way of connecting fields in local and global coordinate systems.
With this a fast and accurate method for analyzing spherical stratified lens antenna
systems can be obtained. Note that the arbitrary feed antenna for which we want to
find the model can be characterized either by measurements (often performed by the
manufacturer) or by analysis using general EM solver. The proposed feed model
contains three steps.

First step
The far-field of the feed antenna can be simply represented using vectorial spherical
harmonics [7]:

E=- Z Z @mnMpn + b Non s (218)
noom

where the functions M,,, and N,,,,, are defined in Egs. (2.3a)—(2.3b).

Second step

The spherical harmonics representation of the feed antenna is given in the local
coordinate system, so we need to rewrite it in the global coordinate system. If we
make a translation and/or rotation of the coordinate system, a new basis can be
defined with respect to the new coordinate system, and any of the considered
functions has to be expressed in the new basis. From addition theorems we get
expansion coefficients for M,,,, and N,,, in terms of M',,, and N’,, which are
referenced to the second coordinate system
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mn

|
A;Mé%

Z (A, + BN, ) (2.19a)

v

Z (A'""Niu +B'""M§”), (2.19b)

where AT and B are coefficients that connect the global and local coordinate

systems [34, 35]. A way to efficiently calculate them will be discussed at the end of
this section.

Third step
The excitation field is rewritten in terms of equivalent currents (suitable for
implementation into the code for analyzing spherical multilayer structures [8]):

Joo =(—1)xH

M, = E x (_) (2.20)

The equivalent currents have the following form in the spectral domain (for
example 1\7[3,1):

XS o (3 35 VRS () |

v=0 u=—v

ol $ 5 v )|

v=0 p=-v

(2.21)

Field representation in local and global coordinate systems.

In order to simplify mathematical description of the electromagnetic field distri-
bution it is desirable to expand field solutions in different coordinate sets which
describe the same space. The connection between different representations is made
by using addition theorems, i.e., by using formulas which describe representation of
a basis set of one coordinate system in terms of a basis set of one other [34]. There
is a practical problem with calculating coupling coefficients, in particular with the
Gaunt coefficients. This was first achieved by Stein [34] in terms of the Wigner 3jm
symbols, and it turns out to be very complicated and lengthy task [10] (for this
reason no results were shown in [10] that are obtained using transformation from
local to global coordinate systems).

Coupling coefficients can be efficiently calculated for special case when the
center of the local coordinate system is located at the z-axis (which is our case;
multiple sources can be easily treated by rotating the coordinate system [36, 37]). In
that case the coupling coefficients in Eqgs. (2.19a), and (2.19b) are calculated from
expressions
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2v+1
Ay = (=D i D+v(v+1) =plp+1)]
2v(v+1 Z (2.22)

x a(m,n| —m, v|p) Zp(krfeed)

2v+1 — .
Zl r [_2]mkrfeed} X a(ma Vl| —m, V|p) Zp(krfeed)7

an — _1 msy—n
= (1)) W12

(2.23)

where a(m,n|u,v|[p) are Gaunt coefficients for which efficient recursion formulas
exist for translation in the z-direction (i.e. for u = —m, see [38] for details).

2.3.2 Examples of Spherical Multi-shell Lens Antennas

12-layer Luneburg lens antenna

To demonstrate the results of the presented methodology, let us consider a 12-shell
Luneburg lens antenna developed at EPFL [12]. The lens parameters are given in
Table 2.1. The operating frequency is 10 GHz. The outer radius of the lens antenna
is 15.9 cm, therefore the antenna is approximately 104, in diameter. As a feed
antenna let us consider a rectangular horn for which the radiation pattern is
expanded in spherical harmonics. The opening of the rectangular horn is
2.0 x 3.0 cm and the horn is placed at & = 2.3 cm distance from the lens surface,
see [12] for details.

Table 2.1 Lens geometry and electrical characteristics

Shell EPFL Univ. of Rennes

number Radius Permittivity | Shell Radius Permittivity
(cm) number (cm)

1 3.755 1.93 1 8.2 1.92

2 5.52 1.74 2 11.6 1.76

3 7.41 1.71 3 14.2 1.61

4 8.38 1.65 4 16.4 1.46

5 9.415 1.63 5 18.4 1.31

6 9.94 1.56 6 20.0 1.15

7 11.84 1.54

8 12.5 1.50

9 13.4 1.40

10 14.27 1.28

11 15.15 1.20

12 15.9 1.10
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Fig. 2.4 Comparison of the calculated and measured radiation patterns of the 12-layer Luneburg
lens antenna developed at EPFL. a E-plane, b H-plane

The comparison of the calculated radiation pattern of the whole lens antenna
with measurements is given in Fig. 2.4. Two analysis methods are compared—the
considered analysis method (the presented feed model + GIDMULT algorithm)
and results obtained using CST Microwave Studio [39]. There is an excellent
agreement between calculated results obtained by two analysis methods.
Furthermore, the comparison between calculated results and measurements is also
very good. In [12] only the H-plane measurements were provided; this is the reason
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why there are no measured results in Fig. 2.4a. For this specific antenna, the
spherical wave expansion approach is more than four orders of magnitude faster
comparing to the time needed for CST calculations. Therefore, the developed
program is suitable for coupling with a global optimization algorithm (e.g. with the
Particle Swarm Optimization (PSO) algorithm) to allow synthesis of spherically
stratified lens antennas [18].

6-layer Luneburg lens antenna

As a second test example, a six-shell Luneburg lens antenna developed at
University of Rennes is considered [14, 15]. The lens parameters are also given in
Table 2.1. The operating frequency is 6 GHz, i.e., the lens diameter is 8 A. The
feeding antenna is simply a waveguide opening with directivity 7.4 dBi placed at
distance & = 1.0 cm distance from the lens surface. Figure 2.5 shows comparison
of the measured and calculated far-field pattern obtained by our method and by the
general electromagnetic solver (CST Microwave Studio [39]). The agreement
between CST results and spherical harmonic representation is excellent, and with
very good agreement with measurements. Here we have also tested two feed
models (the one based on far-field radiation pattern and the rigorous one based on
projecting the equivalent currents on the spherical wave basis [15]), and the dif-
ference between results obtain by using two feed models is negligible (therefore, the
results obtained by both feed models are represented with the same line in Fig. 2.5
—spectral domain method).

The analyzed examples of step-index realization of Luneburg lens antenna are
two rare examples for which all antenna parameters are given in the open scientific
literature (to the best knowledge of the authors, only two additional examples can
be found in open scientific literature in [40, 41]). In most of the cases, only a short
description of the realized lens is given (e.g., in [42] it is simply stated “8-inch
diameter, ten-step Styrofoam lens at 16.65 GHz”).

2.3.3 Multi-shell Lens Optimization

When designing the lens antenna usually there are a lot of parameters to be
determined. Since the proposed algorithms for analyzing the lens antenna are very
fast it is practical to connect the developed algorithm with some global optimization
routine, for example with the Particle Swarm Optimization (PSO) algorithm. This is
an evolutionary algorithm similar to the genetic algorithm and to the simulated
annealing, but it operates on a model of social interaction between independent
agents and utilizes swarm intelligence to achieve the goal of the optimization
problem. It is rather easy and straightforward to implement into the program [43],
and its performance is at least comparable to the widely used genetic algorithms
[44]. All the optimizations done in this chapter were made using the PSO algorithm.
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Fig. 2.5 Comparison of the calculated and measured radiation patterns of the 6-layer Luneburg
lens antenna developed at University of Rennes. a E-plane, b H-plane

Characterization of lens and feed antenna

The original Luneburg lens antenna with the permittivity variation &.(r) =
2—(r/ r,e,,s)2 has the feed antenna optimally positioned at the lens surface [1]. For
practical reasons, it is desirable to move the feed position from the lens surface, i.e.,
to introduce a gap between the feed and the lens. In order to optimize the lens
antenna for new feed position, a modified lens design should be applied [45, 46]
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Teed
arcsin t T T
gr(r) — <1+ 1_8r(r/rfeed)2> - exp __/ lem/ feed

\/ _87 r/rlens

(2.24)

where r and rg..q represents the radial coordinate inside the lens and the position of
the feed, respectively. Figure 2.6 shows the optimal permittivities of Luneburg lens
as a function of normalized radial coordinate in case if the feed is placed at the lens
surface (rfeeq = 1.0 - riens) and if it is placed at 1.1 - reps. Manufactured antenna is
always realized from several layers of material with constant permittivity. In other
words, the practical realization is just a stepwise approximation of the ideal lens.
The theoretical curves are compared to permittivities of two manufactured lenses,
with the permittivity value of each layer shown for a radius corresponding to the
middle of the considered layer ((r;_; + r;)/2). It can be seen that in both cases there
is some uncertainty about the obtained electromagnetic parameters of the realized
lens antennas. We address this issue at the end of this section (see Fig. 2.8).

In order to study the effect of feed distance from lens surface and the directivity
of feed antenna on total directivity of lens antenna and sidelobe levels, we model an
“ideal” type of feed antenna, where the far-field is approximated with a cosine type
of pattern

—jkr

E(r,0,¢) = EoeT 0(cos (0/2))" cos ¢ — P(cos (0/2))% sin ¢] (2.25)

With varying factors gl and g2 we can model different types of feed antennas.
We have selected (cos (6/2))7 type of function (instead of the (cos 0)? dependence
[47]), since it better approximates the low-directivity antennas which are usually
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Mormalized radial dimension



56 Z. Sipus and T. Komljenovic

used as feeding elements of lens antennas (some authors have applied (cos(0/2))7
dependency for reflector antenna analysis as well [33]). Similar results can also be
obtained using a complex Huygens source [48, 49]. First step in antenna system
characterization is to determine the optimum directivity of feeding antenna as a
function of feed position r.q. We have calculated directivity of modified Luneburg
lens antenna (permittivity variation is obtained using Eq. (2.24); the continuous
permittivity variation is approximated with 20-layer step-wise distribution) for
different g values, i.e., for different directivities of feeding antenna (Fig. 2.7a). For
simplicity, we have taken gl = g2 = g. The diameter of the considered lens antenna
is 10 Ap. The optimum directivity of the feed antenna is between 8 and 10 dBi
(depending on the designed antenna position rg..q), and the directivity of the whole
lens antenna does not vary much by moving the feed antenna away from the lens
surface (for larger reeeq/riens @ more directive feed should be used). Therefore, the
low-directive horn antennas or waveguide openings are very good elements for
feeding the Luneburg lens antennas. In Fig. 2.7b the dependence of sidelobe level
and illumination of the edge of the lens antenna is shown for the optimized case.
Both, the sidelobe level and edge illumination, do not vary much with the change of
feed position; they are around 22 dB and —13 dB, respectively. It is interesting to
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note that the edge illumination is approximately 3 dB lower comparing to the
rule-of-thumb value for reflector antennas (—10 dB edge illumination [47]).

To show the effect of feed selection and placement on a practical realization of
Luneburg lens we have calculated the total lens antenna directivities as a function of
the feed directivity and position for the two considered realizations (see Table 2.1).
Due to uncertainties about the obtained electromagnetic parameters of the realized
lens antennas (see Fig. 2.6), it is advisable to make such characterization, i.e., to
optimize the feed type as well as its position. Results are shown in Fig. 2.8. It can
be seen that there is a significant freedom in selecting the feed antenna type and
position for optimal performance. This is in particular important since the phase
center of the feed antenna is usually located inside the antenna. In the EPFL case
the used horn antenna has 9 dBi directivity and the normalized feed position is
Tfeed = 1.145 - rens. The obtained sidelobe level and lens edge illumination is
19.5 dB and around —10 dB, respectively, which is comparable with the optimized
feed properties. Similar result is also obtained for the antenna developed at
University of Rennes. The used waveguide opening has directivity of 7.4 dBi and
the normalized feed position is rgeq = 1.05 - riens. The directivity determined by the
spherical wave expansion technique equals 27.6 dBi whereas 27.5 dBi are predicted
by CST. The obtained sidelobe level and lens edge illumination is 16.5 dB and
between —6.0 dB (E-plane) and —11.3 dB (H-plane), respectively, which is also
comparable to the optimized feed properties.

2.3.4 Fabrication and Experimental Results

The challenge of producing gradient index (GRIN) lenses is already mentioned in
the articles of James Clerk Maxwell. Spherical Luneburg lenses have been fabri-
cated using various techniques. Crushed Styrofoam was used to build 186 identical
wedges—the lens was sliced through the North—South axis and the gradient vari-
ation of index of refraction is obtained by compressing Styrofoam pieces [50].
Polystyrene powder, solidified in heated hemispherical molds, was used to build
10-layer step-index Luneburg lens [40]. Ten-layer step-index Luneburg lenses were
also built from Styrofoam and Foamed glass [41, 42]. The needed variation of the
refractive index can in addition be obtained by drilling holes in the dielectric
structures, which can be easily fabricated by using the traditional printed circuit
board technique [51, 52]. Recently, a rapid prototyping machine was used to build a
Luneburg lens in X-band by changing the size of plastic blocks centered on the
junctions of the plastic rod frame [53].

Lens antennas are attractive solutions for many applications due to their focusing
properties, capability of beam scanning, ability to form multiple beams and
broadband behavior. For example, spherical lens antennas can be used for auto-
motive radars [28], satellite communications [30, 31], for systems that require
communication or/and multiple object tracking through a shared aperture [54],
radar cross-section (RCS) enhancers [29], or for astronomy applications [32]. One
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Fig. 2.8 Lens antenna
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of the most attractive applications is satellite communication systems for receiving
signals from multiple satellites [30]. With this application in mind, a very useful
variation of the Luneburg lens antenna is the hemispherical lens in conjunction with
the ground plane. Furthermore, this is also an attractive solution for satellite
communications with moving vehicles (e.g., trains, see Fig. 2.3c). If applied on the
train, the antenna is mounted on the roof of the train and the mechanical system for
positioning the feed antenna enables Internet connection via satellite [31]. Also, an
important application of the Luneburg lens is a radar cross-section (RCS) enhancer,
realized by placing a reflecting cap on the lens surface [29]. An incoming plane
wave is focused at a point on the cap and reflected; it is transmitted in the opposite
direction after propagating through the lens the second time. By this, a broadband
calibrated scatterer with wide angular coverage is obtained, which is needed for
calibrating scattered field measurement systems.

Since the construction of multilayer lenses is not easy, for many applications a
constant-n lens or a two—layer lens is proposed that is much easier to construct
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comparing to Luneburg lenses. For fabrication of optimum constant-index lenses, a
material with permittivity of 3.5 is desired, which can be obtained using slip-cast
fused silica with small additions of rutile (¢, = 90) [55]. An investigation on the
construction of two layer-lenses with off-the-shell materials was performed in [31],
where the considered materials were Rexolite (¢, = 2,53), polyethylene (¢, = 2.28)
and Fused silica (¢, = 3.8).

Finally, there is a class of two-dimensional Luneburg lenses where the focusing
of electromagnetic waves is obtained inside a parallel-plate waveguide. The lens
effect can be obtained by changing the thickness of the dielectric plate [56, 57], by
drilling holes in a dielectric slab to control the effective permittivity [58], or by
printing metallic patterns on dielectric substrate (i.e., variation of index of refraction
is obtained using the metasurface concept [59-61]). Recently, the new imple-
mentation consisting of two mirrored metallic holey metasurfaces, having
ultra-wideband lens property, was introduced [62].

2.4 Cylindrical Multi-shell Lenses

Circular-cylindrical dielectric lenses are attractive antennas because they allow
launching multiple fan-beams, each of them originating from one primary feed.
Like in the spherical case, the beams can be scanned by moving mechanically the
feed around the lens surface or by switching between the feeds. They are also
inherently wideband antennas. Such radiation characteristics are of particular
interest for many applications at millimeter waves, like Doppler-weather radar,
aircraft landing system or imaging systems. These lens antennas have been mostly
neglected in the open literature, in contrast to the spherical ones.

In the past, research has been limited to homogeneous cylindrical lenses [63] and
cylindrical Luneberg lenses [56, 57] placed between parallel-plate waveguides, i.e.,
the effect of the finite lens height is not present in this case. There has also been
some research regarding antennas with different directivities in two orthogonal
planes based on cylindrical Luneberg lens [64], and similar concept has been
applied for automotive radars [65]. Cylindrical lenses with special requirements on
radiation pattern have also been analyzed as an EM missile launcher, i.e., case when
the decay of the energy per unit length is slower than 1/r [66]. Finally, the influence
of the whispering-gallery modes on obtained directivity of cylindrical Luneberg
lens antennas has been studied in [67]. In this section design of multilayered
cylindrical dielectric lens antennas of finite height is discussed (a detailed study
made by University of Rennes and University of Zagreb is given in [68]).
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2.4.1 Lens Geometry

The generic lens antenna configuration is represented in Fig. 2.9a (the lens antenna
geometry will be described using the classical cylindrical coordinate system (r, ¢, z)).
It consists of a multilayer cylindrical dielectric lens illuminated by a feed antenna.
The total lens height and radius are labeled / are ry.,, respectively. The multilayer
lens structure is schematized in Fig. 2.9b. The relative permittivity and thickness of
layer #i are labeled ¢, ; and a;, respectively (I < i < N). Without loss of generality
we have selected a pyramidal horn as a feed antenna. The horn (of length L) is fed by a
standard metallic rectangular waveguide linearly polarized along z-axis and d de-
notes the distance separating the horn aperture (W, x W) from the lens boundary.

The multilayer cylindrical lens can be approximated with an infinite circular
cylinder. In that case we can apply the method of analysis described in the previous
section, this time for cylindrical structures. The major advantage of this method of
analysis is that the determination of the lens radiation performance is extremely fast.
As a consequence, the iterative full-wave optimization or synthesis of cylindrical
lenses can be made in reasonable amount of time. For lenses of moderate size
(around 10 X /¢ in diameter), the GIDMULT-based program needs less than one
second to compute the three-dimensional far-field radiation patterns, whereas
general-purpose commercial software like CST Microwave Studio® [39] requires
approximately one hour, depending on the lens height and permittivity of the
dielectric layers.
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Fig. 2.9 Geometry of the circular-cylindrical dielectric lens antenna. a 3-D view. &, ry,,, and
d denote the lens height, the total lens radius, and the distance between the horn aperture
(W, x W,) and the lens surface, respectively. L is the length of the horn. b Cross-section view of
the lens. Definition of the thickness @; and permittivity ¢, ; of each layer
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2.4.2 Range of Validity of Modal Analysis Approach

By essence the modal analysis approach assumes that the cylindrical structures are
infinitely long, whereas, in practice, the objective is to minimize the height of the
antenna prototype while keeping the lens radiation characteristics close to those of
an infinite lens. To determine the range of validity of modal analysis approach, we
have carried out an exhaustive parametric study consisting in comparing the
far-field radiation patterns of a set of lenses analyzed using both the
GIDMULT-based program and CST Microwave Studio®.

An empirical formula has been derived to estimate the minimum cylindrical lens
height h,,;, that would provide, in far-field zone, nearly the same results as for
lenses of infinite height

hmin - 2(2rlem' + d) + Wz (226)

Here r,,,, is the total lens radius, d is the distance separating the horn aperture
from the lens, and W, is the height of the feed horn. The formula has been verified
for low permittivity materials (¢,.; < 3) as, for our applications, there was no need to
use materials with even higher permittivities. The validity of this relation is clearly
demonstrated in Fig. 2.10 where the fan-beam pattern of an infinite lens at 30 GHz
is compared to the radiation patterns of three finite lenses (h = hpyi, 7 = 0.7 X
Bmins B = 0.5 X hyin). In cases where the lens height is too small, both bases of the
cylinder start to contribute to the antenna pattern. This results in a slight variation of
the antenna gain, and in strongly pronounced ripples in E-plane.

2.4.3 Numerical and Experimental Results

The objective of the optimization problems studied here is to maximize the antenna
gain while keeping low sidelobe levels. The corresponding fitness function is
defined as

Fitness = o+ Gain — 3 - SL(H) — y - SL(E). (2.27)

Here Gain is the antenna gain at broadside (i.e., along x-axis), and SL(H) and SL
(E) are the highest sidelobe levels in the H- and E-planes, respectively. All quan-
tities are expressed in dB. «, f3, and y are weighting coefficients that can be tuned to
maximize the gain, or produce fan-beam with low sidelobes. Their typical values
are 1, 0.3, and 0.2, respectively. In all cases, the feed and lens parameters are
optimized simultaneously since this approach has been shown to be powerful [69].

Influence of the number of layers on the radiation characteristics of small lenses
To the authors’ knowledge, in contrast to multilayer spherical lenses (e.g., [14]),
there are very few papers dealing with the influence of number of layers on the
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radiation characteristics of a cylindrical lens (see, e.g., [67]). The study described
here is restricted to lenses with a moderate gain (~ 18 dBi). Their total diameter is
equal to 5 cm, i.e., 5 X Ay, at 30 GHz. The lens and feed horn parameters have
been optimized simultaneously, and the number of layers was varied from 1 to 3.
The range of variation of the optimization parameters are the following:
005cm < d < 2cm, 04cm < W, < 2cm, 0.8cm < W, < 3cm,
05cm < L <3cm, 14 < ¢; <5, Vi=1, ..., 3. Both the gain and the
sidelobe level were optimized (x = 1, § = 0.3, y = 0.2).

Up to seven optimization runs per lens configuration were launched, and the best
result was selected based on the value of the fitness function and the visual
inspection of the far-field radiation patterns. The geometry of the best designs and
their corresponding patterns in H- and E-planes are given in Table 2.2 and
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Table 2.2 Influence of the number of layers

1 layer 2 layers 3 layers
Layer no. 1: thickness (cm) 2.50 0.10 0.73
Layer no. 1: permittivity 1.43 1.56 1.93
Layer no. 2: thickness (cm) - 2.40 0.72
Layer no. 2: permittivity - 1.52 1.77
Layer no. 3: thickness (cm) - - 1.05
Layer no. 3: permittivity - - 1.63
d (cm) 0.82 0.77 0.63
W, (cm) 1.05 1.03 1.07
W, (cm) 2.82 2.66 1.57
L (cm) 3.00 2.84 3.00
Gain (dBi) 17.76 17.63 17.62
Sidelobes (dB) —22.30 —22.95 -23.71

Fig. 2.11, respectively. The radiation characteristics of the best three lens config-
urations are nearly identical. This demonstrates that there is no need to use more
than one layer to optimize the fan-beam characteristics of moderate-sized cylin-
drical lenses.

Experimental results

To validate experimentally the previous results, a single-layer homogeneous
cylindrical lens has been optimized in Ka-band. In this case, the results given in
Table 2.2 suggest using a bulk material whose dielectric constant equals 1.43.
Although customized materials are available commercially or could be synthesized
using effective medium theory [51, 58] their fabrication cost remains very expensive.

To keep the antenna manufacturing as simple as possible, a cylindrical lens made
from Teflon (¢, = 2.1) has been synthesized. The final dimensions of the antenna
prototype are the following: rjns=a; =2.82cm, L=2cm, W,=1cm,
W, = 2.4 cm, and d = 0.65 cm. The minimum height %,,;,, of the lens, guarantying
that the infinite and finite lenses have nearly the same radiation characteristics, is
equal to 13.6 cm (according Eq. (2.26)).

To keep some margin with respect to this threshold value, a 16 cm long lens was
manufactured. As the optimized dimensions of the feed horn are not standard, a
specific horn was fabricated in aluminum using electrical discharge machining
techniques. Both the lens antenna and the feed horn were fabricated and measured
at [ETR, University of Rennes [68].

The radiation patterns measured at 30 GHz in H- and E-planes are represented in
Figs. 2.12a, b, respectively. They are in excellent agreement with those predicted by
GIDMULT-based program and CST Microwave Studio®, confirming thereby the
relevance of the empirical relation (2.26). Additional measurements have been
performed from 26 to 40 GHz (Fig. 2.13). They show that the lens patterns are very
stable over the whole frequency band proving that the design is wideband.
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2.4.4 Size Reduction

Cylindrical lenses whose height is defined according to Eq. (2.26) produce nearly
the same fan-beam patterns as lenses of infinite height. Nevertheless, applying this
empirical criterion leads to large and bulky lens configurations. To overcome this
limitation, the lens geometry has been optimized to minimize the influence of both
lens bases, in particular to reduce the substantial ripples that are generated in
E-plane for lenses of small height (Fig. 2.10b). These ripples originate from lon-
gitudinal resonant modes that contribute significantly to radiation in E-plane. This
phenomenon is clearly highlighted on the amplitude near-field map represented in
Fig. 2.14.
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In order to reduce as much as possible the effects of lens truncation, two conical
shapes are added to the cylinder bases (Fig. 2.15). As the resulting lens shape is
rotationally symmetric, the ability to launch multiple beams and scan them around
the lens axis is maintained. The height and permittivity of both cones are labeled /.
and ¢, respectively. Their permittivity must be higher than the one of the cylin-
drical part of the lens to prevent possible total reflection that can happen when
electromagnetic waves travels from a denser to a less dense medium.

Two cones made in Rexolite (¢, = 2.53) have been designed to improve the
radiation characteristics of the small lens represented in Fig. 2.15a. The height of
the circular-cylindrical part is 4.8 cm. The lens is illuminated by the same horn as in
Sect. 2.4.3. The cone height has been optimized using CST Microwave Studio® to
minimize the ripple levels in E-plane (h. = 2 cm). As a result the total antenna
height equals 8.8 cm.
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The radiation patterns computed at 30 GHz are represented in Fig. 2.16, and
they are compared to those of two pure cylindrical lenses: the first one has the same
height (8.8 cm) as the lens with conical caps, and the height of the second one
(16 cm) fulfills relation (2.26). The three lenses have nearly the same patterns in
H-plane (Fig. 2.16a). However, by introducing two conical caps at the bases of
small circular-cylindrical lenses, the ripple level in E-plane can greatly be reduced
(Fig. 2.16b). This technique also provides a faster roll-off, compared to pure
cylindrical lenses. The influence of cones on the amplitude near-field distribution is
highlighted in Fig. 2.14b. It can be seen that the waves can propagate into the
denser cone (without total reflection) and finally in the surrounding air as they
approach the Rexolite-Air boundary at smaller incident angles.

The lens with conical caps has been fabricated and measured at University of
Rennes [68]. Both cones have been assembled on the cylinder bases using a thin
film of dielectric glue. The distance d separating the feed horn and the lens surface
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(a)

Fig. 2.14 Amplitude near-field maps (arbitrary units). a Original design. The lens parameters are
the same as for the experimental model (Sect. 2.4.3), except the lens height that is roughly three
times smaller than /., (h = 4.8 cm). b Proposed design. The lens is the same as in (a) with
addition of two cones. The cone parameters are the following: h, =2 cm, & = 2.53

(a) (b) v

flans
. -

Fig. 2.15 Reduced-height circular-cylindrical dielectric lens with conical caps. The lens is
illuminated by a pyramidal feed horn linearly polarized along z-axis. a 3-D view. b Cross-section
view

is equal to 0.4 cm. The radiation patterns measured in both principal planes at
30 GHz are represented in Fig. 2.17. The agreement between numerical and
experimental results is excellent, especially in E-plane where the ripple level in the
main beam is smaller than 1.5 dB. The cross-polarization level is smaller than
—21 dB and the measured antenna gain equals 17.66 dBi.

The height reduced design is also wideband as can be seen in Fig. 2.18.
Measurements performed from 26 to 40 GHz show that the radiation patterns are
really frequency independent over Ka-band with an expected increase of the gain as
operating frequency increases. It should be noted that height reduced design shows
even higher insensitivity of the radiation pattern to change in frequency compared
to the original circular-cylindrical design.
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Fig. 2.16  Radiation
patterns (computed at

30 GHz) of the reduced-size
Teflon lens (7 = 8.8 cm,

&1 = 2.1) with conical caps
(he =2 cm, & = 2.53).
Comparison with two pure
cylindrical Teflon lenses of
variable height (2 = 8.8 cm or
16 cm). a H-plane. b E-plane.
All lenses have the same
radius (rjens = a; = 2.82 cm)
and are illuminated by the
same horn as in Sect. 2.4.3
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2.5 Concluding Remarks

A fast and reliable synthesis method is presented for designing multilayered
spherical and circular-cylindrical dielectric lens antennas. In order to make the
analysis program fast, thus enabling efficient merging with the global optimization
routine, the multi-shell lens structure is analytically taken into account using
Green’s functions approach. The proposed analysis approach can successfully
analyze lens structures with arbitrary number of layers and arbitrary type of exci-
tation antenna. The latter is obtained by representing the measured or calculated
far-field radiation pattern in terms of spherical harmonics in local coordinate

system.
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Fig. 2.17 Reduced-height (3)20 )
Teflon lens with conical caps —CST

from Rexolite: radiation 15! s Measure (Co-Pol)
patterns measured and - Measure (X-POIE)
computed at 30 GHz. 107 1

a H-plane. b E-plane
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b). | . _ .—CST
20 . S [P— Measure (Co-Pol)
ol = Measure (X-Pol)
a
= 0
o
w -9
_10

s
g

&
o
=3
(]
o

90 -60
Angle (deg)

In the cylindrical case, the analysis approach assumes that the cylindrical
structure is infinitely long, so we assess the range of validity of the analysis method.
An empirical formula to estimate the minimum cylindrical lens height that provides
similar far-field to the lens of infinite height is derived. For the cases where the lens
size should further be reduced, a new height-reduction technique is proposed. It
consists in adding conical caps to both bases of the cylinder. This technique allows
a significant reduction of the ripple level in the elevation pattern of small cylindrical
lenses, leading to high-quality fan-beams. Theoretical predictions are successfully
verified by fabricating and characterizing various lens prototypes.
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Fig. 2.18 Reduced-height (a) 40
Teflon lens with conical caps
made in Rexolite: radiation
patterns measured in
Ka-band. a H-plane.

b E-plane. The radiation
pattern is quite similar at all
frequencies, with expected
gain increase as frequency
increases (reproduced with
permission from Ref. [68])

Frequency (GHz)
E-field (dBi)

30 0 30
Angle (deg)

60

-60

Frequency (GHz)
E-field (dBi)

0
Angle (deg)

References

1. R.K. Luneburg, Mathematical Theory of Optics (Brown University Press, Providence, RI,
1944)

2. E. Braun, Radiation characteristics of the spherical Luneberg lens. IRE Trans. Antennas
Propag. 4(2), 132-138 (1956)

3. S.P. Morgan, Generalizations of spherically symmetric lenses. IRE Trans. Antennas Propag.
7(4), 342-345 (1959)

4. T.L. Ap Rhys, The design of radially symmetric lenses. IEEE Trans. Antennas Propag. 18(5),
497-506 (1970)

5. G. Godi, R. Sauleau, D. Thouroude, Performance of reduced size substrate lens antennas for
millimeter-wave communications. IEEE Trans. Antennas Propag. 53(4), 1278-1286 (2005)

6. A.D. Greenwood, J.-M. Jin, Finite-element analysis of complex axisymmetric radiating
structures. IEEE Trans. Antennas Propag. 47(8), 1260-1266 (1999)

7. J.A. Stratton, Electromagnetic Theory (McGraw Hill, New York, 1941)

8. R.F. Harrington, Time Harmonic Electromagnetic Fields (McGraw Hill, New York, 1961)



2 Multi-shell Radially Symmetrical Lens Antennas 71

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

. J.J. Mikulski, E.L. Murphy, The computation of electromagnetic scattering from concentric

spherical structures. IEEE Trans. Antennas Propag. 11, 169-177 (1963)

H. Mieras, Radiation pattern computation of a spherical lens using Mie series. IEEE Trans.
Antennas Propag. 30(6), 1221-1224 (1982)

S.S. Vinogradov, E.D. Vinogradova, P.D. Smith, Accurate modelling of a scanning Luneberg
lens antenna Mie series approach, in Proceedings of the International Conference on
Electromagnetics in Advanced Applications, Turin, Italy, Sep. 1999 (1999), pp. 277-280
J.R. Sanford, Spherically Stratified Microwave Lenses, Ph.D. Thesis No. 1065, Ecole
polytechnique fédérale de Lausanne (EPFL), 1992

J.R. Sanford, Scattering by spherically stratified microwave lens antennas. IEEE Trans.
Antennas Propag. 42, 690-698 (1994)

B. Fuchs, L. Le Coq, O. Lafond, S. Rondineau, M. Himdi, Design optimization of multishell
Luneburg lenses. IEEE Trans. Antennas Propag. 55, 283-289 (2007)

B. Fuchs, S. Palud, L. Le Coq, O. Lafond, M. Himdi, S. Rondineau, Scattering of spherically
and hemispherically stratified lenses fed by any real source. IEEE Trans. Antennas Propag.
56, 450-460 (2008)

W.C. Chew, Waves and Fields in Inhomogeneous Media (Van Nostrand Reinhold, New
York, 1990)

H. Mosallaei, Y. Rahmat-Samii, Non-uniform Luneburg and 2-shell lens antennas: radiation
characteristics and design optimization. IEEE Trans. Antennas Propag. 49, 60-69 (2001)

T. Komljenovic, Z. Sipus, J.-P. Daniel, Scanning vehicular lens antennas for satellite
communications, in Proceedings of EuCAP 2010, Barcelona, Spain (2010), pp. 1-4

Z. Sipus, D. Bojanjac, T. Komljenovic, Electromagnetic modeling of spherically stratified
lenses illuminated by arbitrary sources. IEEE Trans. Antennas Propag. 63(4), 1837-1843
(2015)

S. Rondineau, Mod¢lisation de lentilles sphériques a gradient d’indice et sources conformes
associées, Ph.D. dissertation, University of Rennes 1, Rennes, France, Dec. 2002

S. Rondineau, A.I. Nosich, J.-P. Daniel, M. Himdi, S.S. Vinogradov, MAR analysis of a
spherical-circular printed antenna with finite ground excited by an axially symmetric probe.
IEEE Trans. Antennas Propag. 52(5), 1270-1280 (2004)

Z. Sipus, N. Burum, S. Skokic, P.-S. Kildal, Analysis of spherical arrays of microstrip
antennas using moment method in spectral domain. IEE Proc. Microw. Antennas Propag. 153,
533-543 (2006)

Z. Sipus, S. Skokic, M. Bosiljevac, N. Burum, Study of mutual coupling between circular
stacked-patch antennas on a sphere. IEEE Trans. Antennas Propag. 56, 1834—1844 (2008)
Z. Sipus, P.-S. Kildal, R. Leijon, M. Johansson, An algorithm for calculating Green’s
functions for planar, circular cylindrical and spherical multilayer substrates. Appl. Comput.
Electromagn. Soc. J. 13, 243-254 (1998)

L.B. Felsen, N. Marcuvitz, Radiation and Scattering of Waves (Prentice-Hall Inc., New
Jersey, 1973)

W.Y. Tam, K.M. Luk, Resonances in spherical-circular microstrip structures of
cylindrical-rectangular and wraparound microstrip antennas. IEEE Trans. Microw. Theory
Tech. 39, 700-704 (1991)

B. Fuchs, O. Lafond, S. Palud, L. Le Coq, M. Himdi, M.C. Buck, S. Rondineau, Comparative
design and analysis of Luneburg and Half Maxwell fish-eye lens antennas. IEEE Trans.
Antennas Propag. 56, 3058-3062 (2008)

B. Schoenlinner, X. Wu, J.P. Ebling, G.V. Eleftheriades, G.M. Rebeiz, Wide-scan
spherical-lens antennas for automotive radars. IEEE Trans. Microw. Theory Tech. 50(9),
2166-2175 (2002)

J.R. Sanford, Analysis of spherical radar cross-section enhancers. IEEE Trans. Microw.
Theory Tech. 43(6), 1400-1403 (1995)

C.S. Lee, M.E. Rayner, Luneberg lens antenna with multiple gimbaled RF feeds, U.S.A.
patent No. US 6266029 B1



72

31

32.

33.
34.
35.
36.

37.

38.

39.

40.

41.

42.

43.

44,

45.
46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

Z. Sipus and T. Komljenovic

J. Thornton, Wide-scanning multi-layer hemisphere lens antenna for Ka band. IEE Proc.
Microw. Antennas Propag. 153(6), 573-578 (2006)

AJ. Parfitt, J.S. Kot, G.L. James, The Luneburg lens as a radio telescope element, in
Proceedings of the IEEE Antennas and Propagation Society International Symposium, Salt
Lake City (2000), pp. 170-173

P.-S. Kildal, Foundations of Antennas—A Unified Approach (Studentlitteratur AB, 2000)

S. Stein, Addition theorems for spherical wave functions. Q. Appl. Math. 19, 15-24 (1961)
O.R. Cruzan, Translational addition theorems for spherical vector wave functions. Quart.
Appl. Math. 20, 3340 (1962)

D.L. Sengupta, T.M. Smith, R.-W. Larson, Radiation characteristics of spherical array of
circularly polarized elements. IEEE Trans. Antennas Propag. 16, 2-7 (1968)

J.R. Sanford, Z. Sipus, Sidelobe reduction with array fed spherical lenses, in Proceedings of
the IEEE Antennas and Propagation Society International Symposium, Newport Beach
(1995), pp. 670-673

J.H. Bruning, Y.T. Lo, Multiple scattering of EM waves by spheres. Part I—Multiple
expansion and ray optical solutions. IEEE Trans. Antennas Propag. 19, 378-390 (1971)
CST Microwave Studio™, Computer Simulation Technology AG, www.cst.com, Darmstadt,
Germany (2013)

G.D.M. Peeler, H.P. Coleman, Microwave stepped-index Luneburg lenses. IRE Trans.
Antennas Propag. 6, 202-207 (1958)

L.C. Gunderson, J.F. Kauffman, A high temperature Luneburg lens. IEEE Proc. 56, 883-884
(1968)

R.E. Webster, Radiation patterns of a spherical luneburg lens with simple feeds. IRE Trans
Antennas Propag. 6, 301-302 (1968)

J. Robinson, Y. Rahmat-Samii, Particle swarm optimization in electromagnetics. IEEE Trans.
Antennas Propag. 52(2), 397-407 (2004)

D.W. Boeringer, D.H. Werner, Particle swarm optimization versus genetic algorithms for
phased array synthesis. IEEE Trans. Antennas Propag. 52(3), 771-778 (2004)

A.S. Gutman, Modified Luneberg lens. J. Appl. Phys. 25, 855-859 (1954)

D.K. Cheng, Modified Luneberg lens for defocused source. IRE Trans. Antennas Propag. 8,
110-111 (1960)

Y. Rahmat-Sammii, Reflector antennas, in Antenna Engineering Handbook, ed. by J.L.
Volakis, Chap. 15 (McGraw-Hill, 2007)

V.S. Bulygin, T.M. Benson, Y.V. Gandel, A.I. Nosich, Full-wave analysis and optimization
of a TARA-like shield-assisted paraboloidal reflector antenna using a Nystrom-type method.
IEEE Trans. Antennas Propag. 61(10), 4981-4989 (2013)

D. Bojanjac, A.L. Nosich, Z. Sipus, Design of spherical lens antennas using complex Huygens
element, in Proceedings of EuCAP 2014, The Hague, The Netherlands (2014), pp. 1-3
G.P. Robinson, Three-dimensional microwave lens, in Tele-Tech & Electronic Industry, Nov.
1954 (1954), p. 73

S. Rondineau, M. Himdi, J. Sorieux, A sliced spherical Liineburg lens. IEEE Antennas Wirel.
Propag. Lett. 2, 163-166 (2003)

H.F. Ma, B.G. Cai, T.X. Zhang, Y. Yang, W.X. Jiang, T.J. Cui, Three-dimensional
gradient-index materials and their applications in microwave lens antennas. IEEE Trans.
Antennas Propag. 61, 2561-2569 (2013)

M. Liang, W.-R. Ng, K. Chang, K. Gbele, M.E. Gehm, H. Xin, A 3-D Luneburg lens antenna
fabricated by polymer jetting rapid prototyping. IEEE Trans. Antennas Propag. 62, 1799—
1807 (2014)

M.A. Mitchell, J.R. Sandford, Luneburg lens revival, in Electronics&Wireless World, May
1989 (1989), pp. 456458

W.R. Free, F.L. Cain, C.E. Ryan Jr., C.P. Burns, E.M. Turner, High-power constant-index
lens antennas. IEEE Trans Antennas Propag. 22, 582-584 (1974)

G.D.M. Peeler, D.H. Archer, A two-dimensional microwave Luneburg lens. IRE Trans.
Antennas Propag. 1, 12-23 (1953)



2 Multi-shell Radially Symmetrical Lens Antennas 73

57

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

X. Wu, J. Laurin, Fan-beam millimeter-wave antenna design based on the cylindrical luneberg
lens. IEEE Trans. Antennas Propag. 55, 2147-2156 (2007)

K. Sato, H. Ujiie, A plate Luneberg lens with the permittivity distribution controlled by hole
density. Electr. Commun. Jpn. 85(9), 1-12 (2002)

C. Pfeiffer, A. Grbic, A printed, broadband Luneburg lens antenna. IEEE Trans. Antennas
Propag. 58, 3055-3059 (2010)

S. Maci, G. Minatti, M. Casaletti, M. Bosiljevac, Metasurfing: addressing waves on
impenetrable metasurfaces. IEEE Antennas Wirel. Propag. Lett. 10, 1499-1502 (2011)

M. Bosiljevac, M. Casaletti, F. Caminita, Z. Sipus, S. Maci, Non-uniform metasurface
luneburg lens antenna design. IEEE Trans. Antennas Propag. 60, 4065-4073 (2012)

O. Quevedo-Teruel, M. Ebrahimpouri, M.N.M. Kehn, Ultrawideband metasurface lenses
based on off-shifted opposite layers. IEEE Antennas Wirel. Propag. Lett. 15, 484487 (2016)
L.C. Gunderson, An electromagnetic analysis of a cylindrical homogeneous lens. IEEE Trans.
Antennas Propagat. 20, 476-479 (1972)

G. Dubost, Flat linear radiating array applied on a cylindrical lens, in MELECON 85, Madrid,
Spain, vol. 3 (1985), pp. 215-218

P. Wenig, R. Weigel, Analysis of a microstrip patch array fed cylindric lens antenna for
77 GHz automotive radar, in I[EEE AP-S International Symposium Digest, San Diego (CA),
5-11 July 2008

T.T. Wu, R.W.P. King, H.-M. Shen, Circular cylindrical lens as a line-source
electromagnetic-missile launcher. IEEE Trans. Antennas Propag. 37(1), 39-44 (1989)

A.V. Boriskin, A.I. Nosich, Whispering-gallery and Luneburg-lens effects in a beam-fed
circularly layered dielectric cylinder. IEEE Trans. Antennas Propag. 50(9), 1245-1249 (2002)
T. Komljenovic, R. Sauleau, Z. Sipus, L. Le Coq, Layered circular-cylindrical dielectric lens
antennas—synthesis and height reduction technique. IEEE Trans. Antennas Propag. 58(5),
1783-1788 (2010)

R. Sauleau, B. Barés, A complete procedure for the design and optimization of
arbitrarily-shaped integrated lens antennas. IEEE Trans. Antennas Propag. 54(4), 1122-
1133 (2006)



2 Springer
http://www.springer.com/978-3-319-62772-4

Aperture Antennas for Millimeter and Sub-Millimeter
Wave Applications

Boriskin, A.; Sauleau, R (Eds.)

2018, X, 490 p. 323 illus., 218 illus. in color., Hardcover
ISBN: 978-3-319-62772-4



	2 Multi-shell Radially Symmetrical Lens Antennas
	Abstract
	2.1 Introduction
	2.2 Analysis of Spherical and Circular Cylindrical Multilayer Structures
	2.2.1 Green’s Functions for Layered Media
	2.2.2 Description of the G1DMULT Algorithm

	2.3 Spherical Multi-shell Lenses
	2.3.1 Modeling of Feed Antennas
	2.3.2 Examples of Spherical Multi-shell Lens Antennas
	2.3.3 Multi-shell Lens Optimization
	2.3.4 Fabrication and Experimental Results

	2.4 Cylindrical Multi-shell Lenses
	2.4.1 Lens Geometry
	2.4.2 Range of Validity of Modal Analysis Approach
	2.4.3 Numerical and Experimental Results
	2.4.4 Size Reduction

	2.5 Concluding Remarks
	References


