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1 Aims and Scope

Dye-sensitized solar cells, DSSCs, gained much attention since it is a simple and
cheap device capable of converting the sunlight into electricity through a regen-
erative photoelectrochemical process. DSSCs overall efficiency attained up to 14%
and it is estimated to last around 20 years. Besides the economic advantages, these
devices can be transparent, which allows their use for distinct architectonic pur-
poses such as facades of buildings. DSSCs are based on a nanocrystalline meso-
porous semiconductor films sensitized by dyes, which are responsible for light
harvesting and electron transfer, these processes start the energy conversion and are
directly responsible for its overall efficiency.

This paper aims to review a specific class of synthetic dye, the tris-heteroleptic
ruthenium sensitizers, which have been attracting much attention on the last years
due to the possibility of tune their spectroscopic and electrochemical properties as
well as to improve the stability of the device. The recent advances on the use of
natural dyes as semiconductor sensitizers, from 2003 to 2016, are also reviewed.

2 Introduction

The use of fossil fuel based technologies is the major responsible for the continuous
increase in the pollution and in the concentration of greenhouse gases. Renewable
sources must have higher contribution on the energetic matrix in providing more
energy available for the humanity in a short period, having low environmental
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impact [1, 2]. The interest on the conversion of environmentally friendly energy
sources led to the development of several devices that took the advantage of the
continuous evolution on several fields of research, which can result in new materials
for already developed devices. For instance, the performance of direct methanol
fuel cells, a well-known technology [3, 4] was improved due to the development of
nanomaterials especially designed for the energy conversion process [5, 6] and their
evolution allows the use of light to boost the process through a synergic arrange-
ment [7-10].

The use of sunlight has been gaining much attention due to its abundance. For
instance, it is possible to supply human energy needs up to year 2050 covering only
0.16% of the earth surface with 10% efficiency solar devices [1, 11]. There are
several investigations on the conversion of sunlight in substances with more
chemical energy than the reactants in a process that mimics the photosynthesis, this
approach is known as artificial photosynthesis [12]. Most recently, the investigation
on this research field is being called solar fuels and several papers were published
describing photochemical approaches to produce high energy content substances, or
fuels, from simple reactants such as water or CO, [13-19].

Great interest is dedicated to an especially attractive device, the dye-sensitized
solar cells, DSSC, since they are capable of converting the sunlight into electricity
based on photoelectrochemical principles. The materials employed for the con-
struction of these new solar cells are common and cheap and the procedures do not
require controlled environment, thus clean rooms or any other sophisticated control
can be avoided, consequently a very low production cost is estimated (less than 1 €
per Wpea) [20]. The use of new nanomaterials allows interesting features of these
devices, such as transparency, possibility to have distinct colors, among others.
These characteristics are very interesting for new applications of solar cells, since it
can substitute glass windows and promote the co-generation of energy, or for any
other architecture design.

Albeit the possible use of sensitization effect for solar energy conversion is
known for a long time [21], the breakthrough of these solar cells was in 1991 when
B. O’Reagan and M. Gritzel published the use of nanocrystalline and mesoporous
TiO, film [22]. This film enhanced the light absorption due to its sponge-like
characteristic which increases the surface area. The nanocrystallinity plays an
important role on the electron injection and transport in these devices [23].

Since the paper of 1991, this field has been growing very fast and all the aspects
of these solar cells are investigated [24-27]. In this review, the focus is on the
development of #ris-heteroleptic ruthenium (II) dyes as well as the use of natural
extracts as a source of sensitizers. The absorption spectra and photoelectrochemical
parameters published for these compounds since 2003 will be reviewed and
discussed.
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2.1 Dye-Sensitized Solar Cells—Principles and Operation

Dye-sensitized solar cells are prepared in a sandwich arrangement and are com-
prised by two electrodes, the photoanode and the counter electrode, Fig. 1. The
photoanode is a conducting glass covered by a mesoporous and nanocrystalline
TiO, film, sensitized by the dye-sensitizers. The counter electrode is a conducting
glass covered by a thin film of catalyst, such as platinum or graphite. Between these
electrodes is placed a mediator layer, usually a solution of /3/[ in nitriles.

In order to promote the energy conversion, the sunlight is harvested by the
dye-sensitizers leading to an excited state capable of inject an electron into the
semiconductor conducting band. The oxidized dye is immediately regenerated by
the mediator and the injected electron percolates through the semiconductor film,
reaches the conducting glass, and flows by the external circuit to the counter
electrode. The counter electrode is responsible for regenerating the oxidized specie
of the mediator, reducing it by a catalyzed reaction using electrons from the external
circuit. Since there is not a permanent chemical change for dye-sensitized solar
cells, the estimated lifetime of these devices is 20 years [23].

Fig. 1 Schematic
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2.2 Performance Experiments

Dye-sensitized solar cells are evaluated by several experimental approaches. For
instance, the recombination processes or electron injection dynamics are investi-
gated by time-resolved experiments [27-35], information about electron transport
and electrical characteristics of TiO, film can be obtained by electrochemical
impedance spectroscopy [36]. Among several experiments used in evaluation of
DSSCs, two experiments play an important role for investigation of dye perfor-
mance, the current—voltage curves and photocurrent action spectra. Due to their
importance, they are detailed in the next sections.

3 Current-Voltage (I x V) Curves

Current—voltage curves allow the access to one of the most important information
about the prepared solar cells, the overall efficiency, #. Other important parameters
such as the short-circuit current density, Jsc, open-circuit potential, Voc, and fill
factor, ff, are also determined by this experiment. In most cases, I X V curves
determined experimentally for dye-sensitized solar cells are similar to the schematic
one, Fig. 2.

Short-circuit current density, Jsc, and open-circuit potential, Vo, are the values
determined by the intersection of I x V curve to the current density axis. The
voltage at this axis is zero, the short-circuit condition, thus the current is named for
this condition. Analogous idea is applied for the determination of open-circuit
potential, since the current at voltage axis is zero, open-circuit condition.

The maximum power output of a DSSC, P, is the highest value obtained for
the multiplication of current density and voltage for each point of the / x V curve
and can be graphically expressed as the area covered by the orange rectangle in

Fig. 2 Schematic current— A
voltage curve

Current density

Voltage Vor
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Fig. 2. On the other hand, the multiplication of Vo by Jgc results in the maximum
power output possible to be achieved for this DSSC and it can also be represented
by the green rectangle of Fig. 2. The fill factorff, is named for the amount of the
green rectangle which is filled by the orange one. Thus, ff express the electrical
losses of DSSCs. Mathematically, ff can be determined by the ratio of P,,,, and the
multiplication of Jsc by Voc, Eq. 1.

_ Ppx(mWem™?2)
o JSC (l’l’lA cm*z) . Voc(V)

()

Under simulated solar irradiation condition, (1 sun = Pi, = 100 mW cm 2), the
overall efficiency, #cey, can be determined by dividing P« by the total incident
light power, P;., Eq. 2, resulting in the percentage amount of solar light converted
in electrical output.

P
V — max
Nen 70 P

- 100% )

rr

4 Photocurrent Action Spectra

Photocurrent action spectra exhibit the photoelectrochemical behavior of solar cells
as a function of wavelength. For each wavelength, the incident photon-to-current
conversion efficiency, IPCE, can be determined and the spectra are valuable to
analyze the performance of new dyes prepared. IPCE values can be determined by a
relationship that considers the energy and intensity of the incident light, the Jg¢ and
Planck’s constant, Eq. 3.

JSC hc

3)

¢ Short-circuit photocurrent density (A mfz);
Planck’s constant (J s);
Speed of light (m s ');
Irradiation wavelength (nm);
.« Power of the incident light (W m™?);
Elementary charge (C).

R

o

For practical purposes, this equation can be simplified to Eq. 4.

Jsc(mA cm™2)
Piry(mWcm~2) - A(nm)

IPCE% (/) = <1239.8 : > - 100% (4)
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IPCE values are also related to some important parameters for DSSCs, such as
light harvesting efficiency, LHE, electron injection quantum efficiency, @y, and the
efficiency of collecting electrons in the external circuit, #gc, Eq. 5 [37]. The simple
measurements, such as Jgc and P;,, allow the access to important information such
as the electron injection quantum yield.

IPCE(/) = LHE®gipc (5)

Photocurrent action spectra are valuable experiments to evaluate new
dye-sensitizers since it is possible to directly associate the absorption response of
the dye with the conversion efficiency. This is important information for designing
new sensitizers.

4.1 Molecular Engineering

The design of new dye-sensitizers is based on joining in just one specie components
capable of performing specific tasks. Using different ligands, it is possible to have
excellent light harvesting, electron injection on semiconductor conducting band and
fast regeneration by the mediator. A new molecule to be employed in DSSCs
should fulfill some basic requirements such as having an intense absorption in the
visible region, which corresponds to 44% of the incident sunlight on the earth’s
surface, having an anchoring group capable of promoting the chemical adsorption
onto TiO, surface, improving the electronic coupling between dye and semicon-
ductor interface.

The first DSSC that exhibited > 10% employed cis-di(isothiocyanato)bis-(2,2'-
bipyridyl-4,4'-dicarboxylic acid)ruthenium(Il), N3, as dye-sensitizer [38]. After this
dye, the complex mer-tri(isothiocyanato)(2,2',2"-terpyridyl-4,4',4"-tricarboxylic
acid)ruthenium(Il), black dye, was prepared and also successfully used as sensitizer
[39], Fig. 3.

\ 7/ \ /

OH

Fig. 3 Structures of the N3 (a) and black dye (b) sensitizers
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Due to the outstanding performance of N3 and black dye as dye-sensitizers, they can
be used as models for molecular engineering of new dyes. Their chemical attachment
onto TiO; surface occur through the carboxylic acid groups of the 2,2'-bipyridine or of
the 2,2',2"-terpyridine ligands. Particularly, the 4,4'-dicarboxylic acid-2,2'-bipyridine
anchoring ligand is been widely employed among several other possible groups
investigated and it has been considered the best one for ruthenium(Il) sensitizers [40].
This ligand allows intimate electronic coupling between the dye excited state wave
function and the semiconductor conducting band. Its lowest unoccupied orbital,
LUMO, is the lowest one of the coordination compound and facilitates an efficient
electronic transfer from excited dye molecules to titania nanocrystals [41].

Great influence on the absorption spectra and molar absorptivities of com-
pounds, emission maxima and quantum yields, as well as excited state lifetimes, in
addition to the redox properties was observed as a function of the degree of pro-
tonation of the carboxylic acids of the ligand. These changes are directly respon-
sible for the increase on photovoltaic performance of solar cells sensitized by N719,
Fig. 4, which is the di-deprotonated N3 specie [42]. As a natural consequence, the
use of compounds having one or more deprotonated carboxylic groups in the dcbH,
has been increasing [32, 41, 43-48].

In the case of N3, consequently of N719, the presence of two dcbH, ligands
results in absorption spectra which overlaps the visible region of the incident sun-
light. The absorption bands have high molar absorptivity (¢ ~ 10* L mol ™' em™),
typical of metal-to-ligand charge transfer transitions, MLCTg,ry—r*dcbn,. The high
molar absorptivity improves the light harvesting efficiency, allowing the absorption
of almost all incident light in a few micrometers of optical length of the TiO, film.
Besides the bipyridine, the two isothiocyanate ligands in these complexes are
valuable to promote the stabilization of the #,, orbitals and result in a fine tuning of
the energy levels of the complex.

S Ruthenium #ris-Heteroleptic Complexes

The knowledge acquired understanding the structure of the N3 dye can be used for
the development of several other complexes by using the molecular engineering
[49]. Among several classes of compounds developed, ruthenium tris-heteroleptic

Fig. 4 Structure of N719
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Fig. 5 General structure of (@) OH
cis-[Ru(dcbH,)(L)(NCS),]
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complexes have been gaining attention on the last years due to the possibility of
modulate their properties, just changing one of the polypyridinic ligands. This
approach is very interesting for the development of new sensitizers.
A comprehensive review about these compounds was also published in 2016 [50].

There are several classes of ruthenium #ris-heteroleptic compounds described by
the general formula cis-[Ru(dcbH,)(L)(NCS),], Fig. 5, since each new ligand L and
its derivatives can be a new class. In this work, our focus will be on 2,2'-bipyridine
derivatives and 1,10-phenanthroline derivatives, even that several other compounds
of this general formula are known [34, 51-53].

5.1 2,2'-Bipyridine Derivative Ligands

The search for high-efficiency ruthenium(II) dyes is focused on the development of
complexes having high molar absorptivity, mainly in visible and near infrared
region [54, 55]. A good light harvesting yield and a reduction on the film thickness,
which imply reduction of transport losses in the nanoporous environment, result in
higher open-circuit potentials and more efficient devices [56, 57]. Another approach
is the development of dye-sensitizers capable of improving the lifetime perfor-
mance of a dye-sensitized solar cell.

The first tris-heteroleptic ruthenium compounds investigated as dye-sensitizers
are based on 2,2'-bipyridine derivatives and it is possible to observe three different
approaches, following the bipyridine substituent. These subclasses are the amphi-
philic, donor antenna, and thiophene compounds.

6 Amphiphilic Compounds

In 2003, a thermally stable DSSC was disclosed employing the amphiphilic Z907
sensitizer. Using this dye it was possible to prepare stable devices under prolonged
thermal stress at 80°. However, the molar extinction coefficient of this sensitizer is
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somewhat lower than that of the standard N719 dye. Meanwhile, a compromise
between efficiency and high temperature stability has been noted for the Z907
sensitizer [58]. Subsequently, the concept of developing a high molar extinction
coefficient, amphiphilic ruthenium sensitizer, was followed by other groups, with a
motivation to enhance device efficiency [34, 59-62]. The absorption properties as
well as the performance parameters determined for ruthenium #ris-heteroleptic
complexes having amphiphilic derivatives of 2,2'-bipyridine are listed in Table 1.

The absorption spectra of amphiphilic compounds usually exhibit two MLCT
bands in the visible region, typical of ruthenium bis-bipyridyl compounds. Molar
absorptivity values listed on Table 1 are similar to those determined for the com-
plexes N3 or N719. This behavior is expected since the aliphatic substituents do not
have significant influence in the chromophoric properties of the complexes.

Amphiphilic ruthenium fris-heteroleptic dye-sensitizers exhibit lower photo-
electrochemical performance than determined for N3. The highest efficiency
achieved by this class of dyes is 8.6% [60]. The advantage of these compounds is
their long-term stability. These amphiphilic heteroleptic sensitizers have the
ground-state pK, of 4,4'-dicarboxy-2,2'-bipyridine higher than determined for N3,
enhancing the chemical adsorption of the complex onto the TiO, surface [61, 70,
71]. The structure of amphiphilic ligands decreases the charge density on the
sensitizer, resulting in less electrostatic repulsion and higher amount of dye
adsorbed. The hydrophobic substituent of 2,2'-bipyridine does not allow the pres-
ence of water molecules close to TiO, surface, improving the stabilization of solar
cells toward water-induced desorption of the dye. The redox potentials of these
complexes are shifted toward a more positive electrochemical potential in com-
parison to the N3 sensitizer, increasing the reversibility of the ruthenium III/II
couple, leading to higher electrochemical stability [61, 70, 71].

7 Donor Antenna Compounds

Complexes prepared with donor antenna substituents of 2,2'-bipyridine are an
approach to improve the light absorption at the same time that the hydrophobic
character is enhanced. The use of aromatic substituents can have this function since
the aromaticity increases the light absorption and the existence of the hydrophobic
chain allows the protection to dye desorption caused by water. The spectral and
photoelectrochemical parameters of this class of dyes are listed in Table 2.

In most cases, it is observed higher molar absorptivities values in comparison to
amphiphilic compounds or N3 or N719 dyes which can be ascribed to an extended
n-cloud delocalized in the substituent. The higher light harvesting efficiency results
directly in higher IPCE values as well as overall efficiency of the solar cell, Table 2.

There are a few investigations on the use of m-excessive heteroaromatic rings as
end groups in substituted bpy ligands [43, 44, 72]. The use of conjugated
m-excessive heteroaromatic rings as end substituents donors directs the electron
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injection in the excited state and enhances the oscillator strength resulting in sig-
nificant increases in the short-circuit photocurrent [55].

The higher molar absorptivity in the visible region can be understood by the
influence of the different delocalized m-systems integrated in the bipyridyl donor
antenna ligands. The reason for the lower absorption of the standard N719 dye in
this region is the absence of any these groups [57].

8 Thiophene Compounds

Ruthenium(Il) sensitizers having 2,2'-bipyridine with thiophene substituents have
higher molar absorptivity than observed for the previous classes of compounds. For
instance, the compound KW-1 has &515 =3.56 L mol™! cm™! [57], much higher
than the ones determined for N3 or N719 dyes. As it is observed for the donor
antenna class of compounds, the higher light harvesting efficiency results in higher
IPCE values and consequently improves the overall performance of the solar cell,
Table 3.

Ruthenium(II) thiophene compounds gained special attention after C101 dye has
set a new DSSC efficiency record of 11.3-11.5% and became the first sensitizer to
triumph over the well-known N3 dye [44]. In comparison to its analogues C102 or
C105, in which the thiophene is replaced by furan, or selenophene, respectively, the
molar absorptivity increases in the order of Se > S > O. This sequence it is con-
sistent with the electropositivity trend and the size of the heteroatoms of
five-member conjugated units. The LUMO energy sequence of the spectator ligand
is O > S > Se, which explains this behavior [72].

Another important dye employing thiophene derivatives is CYC-B1, which exhi-
bits a remarkably high light-harvesting capacity of up to 2.12 x 10* L mol™" ¢cm™
[40]. After the development of the CYC-B1 dye, several ruthenium dyes were
synthesized by incorporating thiophene derivatives into the ancillary ligand and
DSSC cells based on these dyes exhibited excellent photovoltaic performances
[45, 46, 77, 78].

The extensive use of polythiophene is due to its similarity to a cis-polyacetylene
chain bridged with sulfur atoms. The “bridging sulfur atoms” could effectively
provide aromatic stability to the polyacetylene chain while preserving the desirable
physical properties, such as high charge transport. The facile functionalization of
thiophene groups also offers relatively efficient synthetic solutions to solubility,
polarity, and energetic tuning. Furthermore, sulfur has greater radial extension in its
bonding than the second-row elements, such as carbon. Therefore, thiophene is a
more electron-rich moiety and incorporation of thiophene onto bipyridine ligands
raises the energy levels of the metal center and the LUMO of the ligands [80]. As a
consequence, the band resulting from charge transfer from the metal center to the
anchoring ligand is redshifted, and upon illumination of the sample, the electrons on
the metal center are transferred to the anchoring dcbH, ligand, where electrons can
move to the outer circuit through the TiO, particles more efficiently [40].
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8.1 1,10-Phenanthroline Derivative Ligands

Besides 2,2'-bipyridine derivatives, 1,10-phenanthroline and its derivatives are
gaining attention to be used in cis-[Ru(dcbH,)(L)(NCS),] sensitizers. Their simi-
larity to 2,2'-bipyridine and the advantage of having an extended m-conjugated
structure led to a great potential to be employed as ancillary ligands [81]. This class
of compounds still having few complexes reported in DSSCs, and their spectral as
well as photoelectrochemical parameters are listed in Table 4.

The use of phenanthroline derivatives in ruthenium(Il) sensitizers leads to
properties favorable to the energy conversion processes and can increase the
DSSCs performances, which have shown promising results [48, 82, 83].

The comparison on the properties of the complex NOK-1 [83] with N3 indicates
that the substitution of the 2,2'-bipyridine derivative by 1,10-phenanthroline does
not exhibit better performance or absorption properties. On the other hand, the
complexes YS5 and AVM-2 exhibit higher absorbance and also had better per-
formance than the complexes N719 and N3 under the same conditions [48, 86],
indicating that this is a promising class of compounds to be investigated. Their
higher efficiency was ascribed to an enhancement of electron injection. This effect is
due to the reduction of dihedral angle between phenantroline and its substituents
(phenyl or carbazole) on the excited state, allowing the electron injection through
the thermalized triplet excited state.

9 Natural Dyes

Faster, cheaper, low-energy way alternative for ruthenium sensitizers are natural
dyes and these compounds have been gaining much attention. Natural dyes can be
obtained from fruits, flowers, or leaves and are suitable for educational purposes
[91-93] or are an environmentally friendly alternative for dye production since a
long-term stability of DSSC using these sensitizers has been demonstrated [94].

On the last years, these natural dyes solar cells experienced a great transfor-
mation, focusing on alternatives to improve the performance of such DSSCs [95-
102], and special attention is given for dye cocktails [103—106] or co-sensitization
approach [107]. There are also several papers describing the use of natural dyes in
solid, or quasi-solid, solar cells [108, 109] or using semiconductors such as ZnO
[110-112] in such DSSCs, as well as their use on investigations of electron
injection/recombination processes. In this chapter, it is presented only the results
reported on natural dye-sensitizers used in DSSCs having TiO, as semiconductor
and liquid mediator.

The absorption properties and photoelectrochemical performance of natural
dye-sensitized solar cells reported since 2003 are listed in Table 5.
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Fig. 6 Structure of anthocyanidin (a), a flavinic ion of anthocyanin, and betanidin (b), a betalain
compound

The most investigated classes of natural dyes are the anthocyanins, commonly
found in red-purplish fruits or flowers; or betalains, Fig. 6. Besides these com-
pounds, other sensitizers have also been investigated [148].

Betalain from raw beet, red turnip, and wild sicilian prickly pear have also been
used as natural sensitizers and they have presented a good photoelectrochemical
response, however these cells have low Vo, with overall efficiency up to 1.7% and
reasonable stability [138]. It was also observed the improvement on the photo-
electrochemical performance due to changes on pH as well as in the presence of
additives in the mediator layer [122].

Other classes of natural dyes, such as chlorophyll, polyphenol, etc., were also
investigated, but the photoelectrochemical parameters were not as good as those
observed for anthocyanins or betalains. Several reviews were published and
describe the performance of these other classes of dyes along to those presented
here [149-153].

10 Conclusion

The energy needs will be supplied by alternative sources and dye-sensitized solar
cells are one of the most promising devices for this application since they are cheap
and environmentally friendly. The investigation of dye-sensitizers is fundamental
issue on the development of these devices and one of the most promising alter-
natives is the use of ruthenium tris-heteroleptic dyes sensitizers to modulate or
enhance their photoelectrochemical performance. The investigation on natural
extracts to be employed as dye-sensitizers has also been attracting much attention in
the last years. They can be an alternative to further reduction of the production costs
of these revolutionary devices.
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