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Abstract. We propose a novel discrete model of central pattern generators
(CPG), neuronal ensembles generating rhythmic activity. The model emphasizes
the role of nonsynaptic interactions and the diversity of electrical properties in
nervous systems. Neurons in the model release different neurotransmitters into
the shared extracellular space (ECS) so each neuron with the appropriate set of
receptors can receive signals from other neurons. We consider neurons, differing
in their electrical activity, represented as finite-state machines functioning in
discrete time steps. Discrete modeling is aimed to provide a computationally
tractable and compact explanation of rhythmic pattern generation in nervous
systems. The important feature of the model is the introduced mechanism of
neuronal competition which is shown to be responsible for the generation of
proper rhythms. The model is illustrated with an example of the well-studied
feeding network of a pond snail. Future research will focus on the neuromod-
ulatory effects ubiquitous in CPG networks and the whole nervous systems.
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1 Introduction

The neurotransmitter diversity is common to nearly all nervous systems, including the
most primitive ones. This similarity indicates a fundamental role played by the neu-
ronal heterogeneity. Functional significance and evolutionary origins of multiple
neuronal phenotypes have been discussed in a number of papers [4, 11, 13].

We propose a formal model called a multitransmitter neuronal system. The model
introduces several key features. First, the neurons produce endogenous activity like
tonic spiking or oscillatory bursting. Second, the neurons interact not by synaptic
wirings but via the extracellular space (ECS), which is shared by all neurons present in
the circuit. One of the main objectives of the study is to show that a model based on
pure non-synaptic interactions could produce the same patterns of neuronal activity as
synaptic, “wired”, models. As a proof-of-concept example we provide a simplified
model of a snail feeding network [15]. The extended paper can be found in [1].
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2 Related Work

Continuous models. These models describe biological neurons and their membrane
processes by differential equations [14]. In [15] a two-compartment neuron-axon model
based on Hodgkin–Huxley equations [7] is created for modeling of the snail feeding
circuit. The model of bursting neurons, was used in [5] to construct the interaction of
interneurons in CPG and motor neurons in the locomotor system of insects.

The main advantage of continuous models is their high degree of accuracy. But this
leads to some drawbacks: lack of robustness to slight perturbations of parameters,
significant computational complexity and poor scalability. Therefore, continuous
models were applied only to networks with small numbers of neurons.

Discrete models. In contrast to continuous models, discrete models tend to formalize
neuronal processes as simple as possible. The most common type of discrete models is
the formal neurons [10] and artificial neural networks (ANN) [6].

Another class of discrete models, called “complex networks” [8], considers the
nervous system as a large complex network – “connectome” [3]. However, it is shown
that a complete connectome is not sufficient for understanding the behavior [2].

One more type of models is represented in [12] where an automata-based language
is used for the description of neurons with several types of endogenous activity.

Biological background. The empirical generalizations which the model is based on
are mostly derived from small neural networks that produce motor outputs, so called
Central Pattern Generators [2, 9]. The given paper focuses mostly on heterogeneity of
neuronal phenotypes and non-synaptic organization of phasic activity, leaving other
properties for further research.

3 Multitransmitter Neural System

3.1 Main Definitions

A multi-transmitter neuronal system is a triple S ¼ \N;X;C[ , where N is a set of
neurons, X – extracellular space (ECS) and C is a set of neurotransmitters.

Neural inputs. Each neuronal input is characterized by a weight wij 2R where
i2N; j2C. If wij [ 0 then transmitter j excites neuron i and wij\0 denotes that
transmitter j inhibits neuron i. Neuronal inputs are represented as a matrix
W ¼ wij

� �
n�m.

Neural outputs. The model functions in discrete times t. Neuronal activity is denoted as
yi tð Þ 2 0; 1f g; yi tð Þ ¼ 1 if neuron i is active at time t. After an activation, a neuron
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releases some amount of one or several neurotransmitters represented in a matrix
D ¼ dij

� �
n�m where dij � 0 is the amount of transmitter j released by neuron i.

Extracellular space. Neurons in the model communicate over the common extracel-
lular space which contains the transmitters that have been released at time t. A state of
ECS is represented as a vector X tð Þ ¼ x1 tð Þ; � � � ; xm tð Þð Þ, where xj tð Þ denotes the
amount of neurotransmitter j present in the ECS at time t.

3.2 Excitation and Inhibition

Every neuron is influenced by all transmitters to which it possesses receptors. Each
neuron has excitation and inhibition thresholds P1i andP0i;P0i\0\P1i. The excitation
function z1i tð Þ indicates that neuron i is excited at time t:

z1iðtÞ ¼ I
Xm
j¼1

wijxjðtÞ�P1i

 !
: ð1Þ

The inhibition function z0i tð Þ, which indicates that a neuron is inhibited, is similar:

z0iðtÞ ¼ I
Xm
j¼1

wijxjðtÞ�P0i

 !
: ð2Þ

Here I(�) is the indicator function, xj tð Þ – the components of the ECS state at time t.

3.3 Neuronal Types

We consider three types of neurons which represent different firing behavior properties:
oscillatory, tonic and passive follower. Each neuron is represented as a finite automaton
with two inputs. The activity at time t is described by the output function:

yi tð Þ ¼ Fh ið Þ z1i t � 1ð Þ; z0i tð Þ; si t � 1ð Þð Þ: ð3Þ

Here h(i) is a type of neuron i, z1i(t − 1) is the excitation at the previous time,
z0i(t) is the inhibition at time t and si(t − 1) is the internal state at the previous time.

Endogenous oscillator. An endogenous oscillator produces bursts of spikes every Ti
times if not inhibited by other neurons. If an oscillator is inhibited it will be active after
the inhibition disappears. If an oscillatory neuron is excited then it will become active
at the next time immediately. The internal structure and the output function of an
oscillatory neuron are provided in the Table 1.

Tonic neuron. Neurons of this type are active as long as they are not inhibited:

yi tð Þ ¼ :z0i tð Þ: ð4Þ
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Follower neuron is active only after being excited by others so the output function
takes the following form:

yi tð Þ ¼ :z0i tð Þz1i t � 1ð Þ: ð5Þ

Post-inhibitory rebound (PIR). It is a gain coefficient that increases the output of a
neuron that was inhibited at the previous time by the PIR gain coefficient ki

PIR � 1.

3.4 Neuronal Competition and Model Dynamics

The main principle of the model’s dynamics is a competition between neurons for the
opportunity to be active during the next time step. The competition algorithm doesn’t
mimic functioning of biological CPGs but provides a conflict resolution rule so the
model can generate rhythms similar to those observed in biological circuits. Figure 1
shows an example from [15] where the competition plays a crucial.

This algorithm determines which neurons will be active during the next time t.

Table 1. State transitions and outputs of an oscillatory neuron

State Inputs (z0, z1)
(z0 = 0, z1 = 0) (z0 = 0, z1 = 1) (z0 = 1, z1 2 {0,1})

s0 s1, y = 0 s0, y = 1 s1, y = 0
. . . . . . . . . . . .

sk sk+1, y = 0 s0, y = 1 sk+1, y = 0
. . . . . . . . . . . .

sT s0, y = 1 s0, y = 1 sT, y = 0
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4 Example: Snail Feeding Rhythm

The feeding network of a pond snail Lymnaea stagnalis is a well-studied example of a
CPG. As shown in the Fig. 1, the network consists of three interneurons responsible for
separate phases of the feeding rhythm: protraction, rasp and swallow. A model pro-
posed in [15] consists of 38-dimensional system of differential equations.

Here we propose a discrete model emphasizing the logic of the interactions and
neuronal roles in the CPG. The network consists of three neurons N1, N2, N3, each
produces its own transmitter: ach, glu and xxx because the third transmitter in the CPG
remains unknown. The neuronal properties are shown in the Table 2.

The produced rhythm is shown in Fig. 2. The default output of N3 is lower than that
of N1 so the first phase is won by N1. Then N2 wins the competition because of its high
output. After being inhibited N3 is able to win and drives the third phase of the rhythm.

Fig. 1. A competition between oscillatory N1M and tonic N3t neurons in the feeding CPG [15].
The dominant neuron defines the current phase of the feeding cycle

Fig. 2. Feeding CPG model: (left) structure of neuronal interactions; (right) the produced
rhythm: neuronal activity (up) and concentrations of neurotransmitters (bottom)
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Then the effect of PIR disappears and N1 wins the competition again. There are several
combinations of model parameters that can produce the same rhythm. The question of
how to choose the most efficient combination is left for further studies.

5 Conclusion

We propose a formalized model of a multi-transmitter neural network where neurons
interact via shared extracellular space without synaptic connections. Each neuron
receives signals from the rest of the network by an individual set of receptors to a
subset of the neurotransmitters which are released by other neurons. The model is
intended to be a proof-of-concept example that some functional patterns of neural
activity can in principle be implemented without synaptic wiring. In the model, we
consider three various types of neurons differing in their electrical activity: tonic
neurons, oscillators and followers. Oscillators and tonic neurons generate endogenous
activity unless they are inhibited by other neurons. An algorithm of neuronal compe-
tition is introduced to resolve conflicts between those neurons that inhibits each other
and are not allowed to be simultaneously active.

To illustrate the key features of the model we considered the well-known central
pattern generator that is responsible for feeding behavior of a pond snail Lymnaea
stagnalis. The model is able to produce rhythms similar to those observed experimen-
tally and in continuous modeling and, despite its simplicity, proved to be capable of
simulation and explanation of the phenomena taking place in living neural ensembles.
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