
A programming language is a way to give commands
to a computer. These commands are written as text and
when we put many commands together we call that
a program . Python® is a high-level, easy-to-read, inter-
preted language. We will see how to install Python
together with an application called PsychoPy (which
will be discussed in Chapter 3). We will also see how
to write simple commands, perform mathematical op-
erations, and control the flow of the program with if, for
and while statements.

Chapter 2
Programming

Is Fun

20 Chapter 2 · Programming Is Fun

We have seen in Chapter 1 that illusions are fun. In Chapter 2 you will see that pro-
gramming is also a lot of fun. OK, maybe not in the same way, and not without a little
effort, but the effort required for what we will do in this book will not take much time,
and the fun will continue forever (once you have started programming).

Programming is about asking a computer to do a series of tasks. Computers are
clever and there is a lot that they can do. This list of commands needs to be written as
text, therefore a computer program is always a text document, called the source code ,
but we will use the more general term program .

In order to be understood by the computer the program needs to be in a computer
language , and therefore learning to program is about learning a new language. You
may be familiar with the names of several programming languages such as Fortran ,
Basic , Pascal , C , Java™ and Python . They are a bit like French, Italian, Russian and so
on; some things are common to all languages (the distinction between a verb and a
noun) and some are specifi c (like learning the word for cat).

Because programming, in addition to knowing the rules of the language, requires
a certain organisation and strategy, people debate whether programming is a skill, a
craft, or an art. It is probably all of these things, which is what makes it fun in the sense
that it allows us to be creative.

This is a very brief introduction to one general-purpose language called Python. I
will discuss how to write simple commands, and also mention the few quirky aspects
that may not be intuitive, like the fact that we will have to remember to count starting
from 0 instead of 1.

Python®

It was Christmas time in 1989, in Amsterdam. Guido van Rossum (then 33) decided to
write something that would go beyond the limitations of the languages he had worked
on before, but without trying to come up with the perfect language (as a hobby project,
something fun to do). We have all done that, creating something revolutionary over the
winter holidays just because we were bored!

The name Python has nothing to do with snakes. Guido chose it because he was a fan of
a TV show called Monty Python’s Flying Circus . If you are too young to know who Monty
Python are, do some research and watch some of their classic sketches. Then try to drag
yourself away from YouTube and back to this chapter. The link with the TV show lives on
because the offi cial documentation often contains references to sketches from Monty Py-
thon (so don’t be too surprised if the documentation refers to dead parrots for instance).

The project captured the interest and admiration of lots of other people and today
Python is one of the most used and important languages around. True to its origi-
nal philosophy, it is free and open-source, and has a community-based development
model. The development is managed by the non-profi t Python Software Foundation
(www.python.org/psf/).

Because of its popularity you will fi nd a large amount of useful information and
tutorials online. The Python Software Foundation webpage is a good starting point.
This chapter cannot be as detailed as an online tutorial; we will instead focus on the
key concepts. A list of online tutorials is provided in Box 2.1. One word of cau-
tion, Python 2 is a bit different from Python 3, I will only talk about and use Python 2
(which is still the more popular version).

21

Box 2.1. Online tutorials and books

There are the links to some tutorials for beginners specifi c to Python 2.

� This fi rst one is directly from the Python Software Foundation :
 https://docs.python.org/2.7/tutorial/
� This is a tutorial created for programming games but useful for anybody even with no pro-

gramming experience:
 http://sthurlow.com/python/
� This is a very short introduction that fi ts on one (long) page, created by Magnus Lie Hetland:
 http://hetland.org/writing/instant-hacking.html
� This tutorial is for non-programmers and is a featured book on Wikibooks:
 http://en.wikibooks.org/wiki/Non-Programmer%27s_Tutorial_for_Python_2.6
� For PsychoPy there is a reference Manual here:
 http://www.psychopy.org/api/api.html

These two are tutorials that introduce Python as well as PsychoPy .

� The fi rst one is from the Technical support group of the Radboud University in Nijmegen
(Netherlands):

 https://www.socsci.ru.nl/wilberth/psychopy/index.html
� The second is from the GestaltReVision group (University of Leuven, Belgium):
 http://nbviewer.jupyter.org/github/gestaltrevision/python_for_visres/blob/master/index.ipynb

Although they are not tutorials, Jon Peirce has also published a couple of journal articles about
PsychoPy . These are aimed at the academic readers.

� Peirce JW (2007) PsychoPy – Psychophysics software in Python. J Neurosci Methods 162:8–13
� Peirce JW (2008) Generating stimuli for neuroscience using PsychoPy. Front Neuroinform 2:10

Finally, although there is so much information available online, if you prefer to hold in your
hands a book made of paper, here are two options (among many):

� Shaw ZA (2013) Learn Python the hard way: A very simple introduction to the terrifyingly
beautiful world of computers and code. Addison Wesley Press, Reading MA

 This is the 3rd edition of a book that gives step-by-step instructions.
� Briggs JR (2012) Python for kids: A playful introduction to programming. No Starch Press, San

Francisco
 This instead is written for kids, but nevertheless it is a proper introduction to Python and can

be used by anybody new to programming.

Setting Up

Setting up is not the most fun part, but it will not take long and it needs to be done
only once. The fi rst thing to do is to install Python on your computer. Here is the good
news: it is free, easy and possible on any major operating systems. Because of wanting
to create illusions we will install it together with some useful libraries and packages.
In our approach this is going to be a single download. The instructions to download
and install Python together with an application called PsychoPy are in Box 2.2. I will
explain more about this application and these libraries later, so for now just follow the
instructions as a recipe.

Setting Up

22 Chapter 2 · Programming Is Fun

Introduction to Programming

Since we have now downloaded and installed both Python and PsychoPy in a single
step, we will use the PsychoPy application to learn a bit more about Python. Remem-
ber, Python is a language and for now we will focus on the structure of the language,
so what we are doing is very general. We will issue a command and execute it by typ-
ing some text and then pressing the return key. This is called using Python in inter-
active mode .

The fi rst step is to start the PsychoPy application that you have installed. Then in-
side the application go to the View menu and select Go to Coder view (on Windows®
this may say Open Coder view). This is an important step because if you are seeing the
Builder view instead of the Coder view nothing in this chapter will make any sense.

You should see a window similar to the one in Fig. 2.1 (this in particular is how it
looks on an Apple Macintosh®). Note the two main horizontal panels. In the lower
one there are two tabs called Output and Shell . Click on Shell and you will see a text
that will inform you about which version of Python you are running. On my compu-
ter it looks like this:

Box 2.2. Downloading Python and PsychoPy

Using a web browser go to www.psychopy.org.
On the right side you will see a link called download. This will take you to a different location

where the fi les are available. Here you will see a list with many different versions. We will use
version 1.84.02 and therefore you can ignore everything else and select the fi le for the Operating
system that you are using. For example:

� StandalonePsychoPy-1.84.02-OSX_64bit.dmg (if you use a Apple Macintosh® computer)
� StandalonePsychoPy-1.84.02-win32.exe (if you use Microsoft Windows®)

It is quite possible that by the time you are reading this the latest version has a higher version
number. Older versions remain available by following the link to
https://github.com/psychopy/psychopy/releases.

The word standalone refers to the fact that in a single fi le you are actually obtaining everything
you need, including Python itself.

Mac® users should place the PsychoPy application inside the Applications folder. After instal-
lation MS Windows® users will fi nd a link to PsychoPy in

� Start > Programs > PsychoPy2

There is also a Confi guration Wizard with more information about the setting up.
The standalone fi le is large and it may take a bit of time for the download to complete.
As there are different versions of Linux, if you are a Linux user you need to read and follow the

more specifi c instructions available here: http://www.psychopy.org/installation.html
The programs that we are going to write were created on a Mac®. However, it is my belief that

they are suitable for any environment without modifi cation.
The fact that there are many versions of PsychoPy (we will use 1.84.02) is a clue to the fact that

this software is under active development, and improvements are released regularly. However,
do not worry about which version you are using. It is not a good idea to feel that you have to race
and get the one just released (although it is tempting).

23

PyShell in PsychoPy – type some commands!

Python 2.7.12 (v2.7.12:d33e0cf91556, Jun 26 2016, 12:10:39)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

We can use this window to try out some Python commands and for now you can
ignore the rest of the interface. Check that you see the prompt inside the Shell win-
dow. It looks like this: >>>

This means that the Python interpreter is listening to you. In other words Python
expects an input . When Python will produce an output there will not be a prompt.

It is traditional to start by asking a computer to type the words “hello there”. So
please type the following followed by the return key.

>>> print("hello there")
hello there

The text should appear on a line below your command (without the prompt) as
shown above. Congratulations, you asked the computer to do something and it did.
Basically the shell environment in which you are working compiles and executes any
command right away.

Figure 2.1. The PsychoPy application (Coder view) showing two panels. The top panel is the Editor and
is empty for now. The bottom panel has two tabs: Output and Shell

Introduction to Programming

24 Chapter 2 · Programming Is Fun

You have also learned that quotes identify a piece of text , and the text can include
multiple words. Special words like print will appear automatically in blue, and any text
like “hello there” will appear in red.

Now for some numbers and some variables . A variable is something that can take
values, so the name of the variable is the name of the container.

>>> a = 0.5
>>> b = a * 2
>>> c = "word"

Variable a will have a value of 0.5, variable b 1.0 and c will be a string (text) . No need to
worry about the fact that these values are of different types, you can rely on Python to be
able to cope with any kind of data. How? Basically by making an educated guess . This is
known as duck typing . This name comes from the saying that if something walks like a
duck, sounds like a duck, and swims like a duck, then it is probably a duck. I am not kid-
ding, duck typing is a genuine technical term. For example by noticing that you used quotes
around “word” Python knows that it is a string and the text editor has colour coded it as red.

Note that when you typed these lines nothing happened. The command print made
something happen, but to fi ll a variable with a value will not generate an out. If you want
to see the content of a variable you need to type its name followed by return, or ask for it
to be printed.

Figure 2.2. This is the PsychoPy application (Coder view) showing a few lines of commands in the Shell
window. Here every Python command that is typed is immediately executed. Note that the size of the
panels can be adjusted by dragging the handle (small dot) in the middle (highlighted in red)

25

In the case of print you can ask for several variables to be printed by writing the
names separated by commas.

>>> print(a, b, c)
(0.5, 1.0, 'word')

In a new line, without the prompt, you can see the values 0.5, 1.0, and ‘word’, as
shown also in Fig. 2.2. This time the text ‘word’ is within single quotes ('word') rather
than double quotes (''word''). Either way is OK for Python .

A list of the main built-in data types in Python , with examples, is given in Table 2.1.
We have started to see values for integers (int), fl oating-point numbers (fl oat), and
strings (str). We will discuss lists next, they are very important.

Even though they are in Table 2.1 I will not say much about dictionaries because
we will not have a need for this type of data . Briefl y, they map a unique key (before
the :) with a value (after the :). So you can see how they would be quite useful if you
wanted to store for instance details of your cats (for each one a colour, a birthday, and
so on). In this book we will focus on programming visual illusions , and therefore the
most important types are the numerals, the strings for the text, and the lists for things
like positions of vertices.

Lists and Strings

We often need to store a list of values. To do so we format the values with square
brackets and separated by commas.

>>> aList = [12, 8, 4]
>>> aListOfLists = [[12, 8, 4], [2, 0]]

Lists and Strings

26 Chapter 2 · Programming Is Fun

Lists are extremely important and we will make good use of them. The fi rst exam-
ple is a list with three elements, the second is a list of two elements (each with its own
elements inside) and therefore it is a list of lists. You may have already guessed, but
you could also have a list of lists of lists, and so on. Also, lists can contain elements
other than numbers .

>>> myCats = ['Sheba', 'Simba', 'Smudge']

They can even contain elements of different types.

>>> myList = [1, 'Sheba', 2, 99]

Next we need to know how to read values from a list. They are accessed with an in-
dex for the position of the element , starting from zero. Therefore try the following.

>>> print(aList[0])
12
>>> print(aList[2])
4
>>> print(myCats[0])
Sheba

Note that aList[3] is out of range. That means that we are looking at a position that
does not exist and we will get an error. This is because our list has only three positions,
0, 1 and 2. Python is not the only language that counts from 0 instead of 1, it is some-
thing that computers like to do so we will have to get used to it.

You can also see a convention about naming variables . To make them easy to read
we capitalise any new word within a complex name, for example we wrote aListOfLists.
This is optional, not something necessary in Python, but we will follow this custom in
writing variable names in this book.

Indices are very clever, for example you can give a range . aList[0:2] is a list with two
elements (the fi rst two). Another clever thing is that you can count from the back us-
ing negative numbers, so aList[-1] is the same as the last element which in our example
is aList[2], and therefore it has a value of 4.

Given that we can specify a specifi c location we can use this to change a value in-
side the list. We specify the element using the index, and then use = to assign it a
new value.

>>> aList = [12, 8, 4]
>>> aList[0] = 1
>>> print(aList)
[1, 8, 4]

What happens if we use round instead of square brackets ? Actually more or less the
same, you can also write lists that way, but in Python these are not called lists, they are
called tuples . Once they are created tuples cannot be changed, and therefore are less

27

fl exible than lists. For instance what we did in assigning a new value to aList[0] would
give an error for aTuple[0].

>>> aTuple = (12, 8, 4)

If we were to check whether aList is equal to aTuple we would fi nd that this is False
(they have the same numbers inside, but they are not the same thing). We will mainly
use lists rather than tuples .

>>> aList == aTuple
False

This comparison is False , but note that we need two equal signs to compare two
variables. One equal sign simple replaces what is in the fi rst (right side) with the sec-
ond (left side). It’s an easy mistake to make. Try to remember that = is always active-
ly doing something, not making a simple comparison . The main Python operators ,
like ==, are listed in Box 2.3.

In a complex program we will need comments as well. Comments in Python start
with the hash character , #, and extend to the end of the line (so there is no need to have
an # at the end).

Box 2.3. Python operators

This is a list of the main built-in Python operators to perform comparisons . The result from any
such comparison can only be True or False .

� == equal to
� != not equal to
� > larger than
� >= larger than or equal to
� < smaller than
� <= smaller than or equal to

This is a list of the main built-in Python math operators (to perform arithmetic operations).
The result from any such operation is a number. Some are not used very often, so for example
although the modulo operation (%) can be quite useful do not worry if it seems unfamiliar to
you at the moment.

� a + b addition
� a – b subtraction
� a * b multiplication
� a / b division (can give an integer or a fl oat)
� a // b division and rounding of the result to the lower whole number
� a % b modulo . It gives the remainder of a divided by b.

 Examples: 11 % 2 is 1, and 11.5 % 2 is 1.5 (what is left from the division)
� a**2 a to the power of 2, the same as a multiplied by itself: a * a
� a**b a to the power of b
� –a negation (changes the sign of a)

Lists and Strings

28 Chapter 2 · Programming Is Fun

Python As a Pocket Calculator

Now let’s practice some simple maths. Here is a bit of arithmetic (followed by a
comment , which of course plays no part in the maths, it is shown in green here and
comments will be green also in all our programs). What is the result of this opera-
tion?

>>> 4 + 3 * 2 #a bit of arithmetic, four plus three times two
10

The result is 10. If you thought it should be 14 this is a mistake (easy mistake to
make, it was a bit of a trick question). Just remember the rule of precedence of op-
erations : power , division , multiplication , addition , subtraction (PoDMAS). So the
multiplication happens fi rst even if it is written after the addition. We can avoid any
ambiguity by using brackets when necessary, as in (4 + 3) * 2.

>>> (4 + 3) * 2 #a bit of arithmetic, four plus three, and the result of that times two
14

Next, what is the result of this operation?

>>> 10 / 4 #ten divided by four
2

That’s easy, it should be 2.5. Well, your maths is correct but unfortunately this
was another trick question. Really tricky this time. Because we expressed the di-
vision in terms of integers (whole numbers without decimals) we get an integer
and the result is 2. Annoying perhaps, but easily solved by remembering that if we
want operations with decimals we should include a decimal point .

>>> 10. / 4.
2.5

The result now is 2.5, and you don’t even need to type the zero because 10. (ten
followed by a full stop) is the same as 10.0 for Python.

OK, enough trick questions, now for text , you can use single or double quotes
around text. The latter has the advantage that it copes with having apostro-
phes (single quotes) inside. So you can write “Father’s day” using double quotes
around it.

>>> print("Father's day")
Father's day

You can do clever operations with strings , using + and *.

>>> s = "hello" + " there"
>>> father = "pa" * 2

29

You may experiment and use print to see the results. Quite logically the results are “hello
there” (placed inside a variable called s) and “papa” (placed inside a variable called father).

We can get the length of a string with len() . Therefore, len("Father's day") is 12, the total
number of characters including spaces. This command applies to lists as well, for exam-
ple len([1, 2, 8]) is 3.

Just like len(aList) provides the length of the list, there are other similar built-in
functions , such as max(aList) , min(aList) and sum(aList) . They fi nd the maximum value,
the minimum value and the sum of all values.

>>> sum([1, 2, 10])
13

What if a list has text inside instead of numbers? max and min will treat strings in al-
phabetical order, so max will give the element that comes last alphabetically, but sum
will not work with strings. Here are a couple of simple examples using “Father’s day”.

>>> len("Father's day")
12
>>> max("Father's day")
'y'

One fi nal point about numbers and strings . And here you will see how Python can
be really clever and fl exible with data types. Suppose you have a number in a variable
called, say, number.

>>> number = 5

What you want is to use it as a string, mixed in with some other text perhaps. You
can turn the number into a string by saying the following:

>>> numberAsText = str(number)

Using the built-in function str() we are asking Python to treat what is inside the
brackets as a string. And you can also go the other way:

>>> numberAsNumber = int(numberAsText)

This gets back a number again, something on which we can do some maths. This
works for other types of variables as well. So here is another way to obtain 2.5 (the
correct result) when diving 10 by 4. We can use float() to make sure that an integer is
treated as a fl oating point number .

>>> float(10) / float(4)
2.5

As we have seen, inside the Shell window Python tries to execute each command
typed after the prompt, and it will provide an error message if there is a problem. We can

Python As a Pocket Calculator

30 Chapter 2 · Programming Is Fun

generate an error for example if we try to divide a number by zero (something that is not
possible as there is no defi ned result). You can see the error message below and in Fig. 2.3.

>>> 10 / 0
Traceback (most recent call last):
 File "<input>", line 1, in <module>
ZeroDivisionError: integer division or modulo by zero

This is another example of an error generated when trying to fi nd the sum of a string.
In this case the message says that the operation is unsupported for this data type.

>>> sum("Father's day")
Traceback (most recent call last):
 File "<input>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'int' and 'str'

Controlling the Flow

We have seen how to issue simple commands, and put values in variables. But the real
power of a program is when we write a series of commands and control how they are
executed. This is done with special instructions that control the fl ow of the program .
There are three control fl ow statements in Python: if , while , for .

Figure 2.3. The Shell window of PsychoPy showing the error message generated when trying to divide 10 by 0

31

Here is a fi rst example that uses a for loop .

>>> aList = [1, 2, 3, 4, 5] #creates a list with numbers
>>> for item in aList: print(item) #loops over all the elements of the list and prints each one
1
2
3
4
5

This loop prints all the numbers in the list. To do that it uses a new variable item
not used before. This variable is created within the for statement. Also note the :
before the print command, this punctuation is necessary for any control fl ow situ-
ation , and you can read : to mean do the following (do say it aloud as you read the
program, it does help).

Special words like for , while , but also not , in , print and others are written in blue in this
book and are automatically coded as blue by default in PsychoPy .

>>> if len(aList) > 0: print(aList[0])
1

This will print the fi rst element in the list. We checked that the list was not empty
with an if and the len() command. This is useful because we can avoid the problem of
trying to print from an empty list (which would give an error).

An if can also be combined with an else . After the word else and : there will be com-
mands executed only when the if condition is False . For more complex situations
where we need to deal with multiple possibilities we can use an elif , which is a contrac-
tion of the words else if. It does exactly what it says, it checks something (but only if
the fi rst if condition is False).

In a program you may want to use a for loop over a large range of numbers. Instead of
preparing a long list we can generate the list using range() .

>>> range(20)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

This command is very useful and we just have to remember a few facts about how
it works. range(20) is a list of numbers from 0 to 19. Those are 20 elements in total be-
cause we start from 0, so it does make sense. To get the numbers from 1 to 20 we need
to specify the starting number as well as the stopping number: range(1, 21). Again this
will include 20 but not 21.

Therefore, as we have seen, when range() is written with just one parameter it pro-
duces all the numbers from 0 to the number just before the one given (the stopping
number is never included). If range() is used with two parameters the fi rst is the start
and the second is the stopping number. Apart from that the result is as before, that is
a sequence of numbers excluding the stopping number.

Finally we can even use range() with three parameters , in which case the third is
the step.

Controlling the Flow

32 Chapter 2 · Programming Is Fun

>>> range(1, 21, 2)
[1, 3, 5, 7, 9, 11, 13, 15, 17, 19]

This is a list of numbers stepping up two at a time. In this case this means all the
odd numbers from 1 to 19 (again no 21, as before the last is always excluded).

You see here an example of how fl exible Python is, range() can take one, two, or three
parameters. The three parameters are start, stop and step. Stop is not optional, it has to
be there (we need to know when to stop). If one of the others is missing there is a default
value, so if the start is missing the start will be 0, if the step is missing the step will be 1.

Let us make a loop that prints odd numbers from 1 to 19.

>>> for item in range(1, 21, 2): print(item)
1
3
5
7
9
11
13
15
17
19

Now, before reading the solution (just below, but don’t look!), try and write down
(in the Shell window) a way to print all the even numbers from 2 to 20.

>>> for item in range(2, 21, 2): print(item)
2
4
6
8
10
12
14
16
18
20

Well done. You can start from 2 go until 21, and use a step of 2. Remember that
you still have to put 21 as the end of the range, because if you enter 20 you will only
see the numbers up to 18.

We have seen the for and the if, the while control loop works in a similar fashion.

>>> item = 0
>>> while item < 10: item = item + 1
>>> print(item)
10

33

This loop will increment the value of item from 1 (the fi rst time, when we add 1
to 0) to 10 (the last time, when we add 1 to 9), but will not execute anything when item
is greater than 9 (therefore we will never add 1 to 10).

Sometimes it is useful to write down a little table showing the values of our varia-
bles on each turn (called iteration) of the loop . That is the value as we get in and as we
come out. Table 2.2 shows how it would look like for our simple example.

A special command is called pass and does absolutely nothing. This can be useful
when we get into a control fl ow situation that should have no effect.

>>> if myStomachIsFull == True and IAmSittingByTheFire == True: pass

I have taken the opportunity here to show a if followed by two conditions, joined by
the logical operator and . You can see how this is easy to read, and special words like
and and or work exactly as expected. The fact that they are automatically coded in blue
also helps in making clear that they are special words.

You could read this line aloud like so: if it is true that myStomachIsFull and it is
true that IAmSittingByTheFire, then do the following: absolutely nothing.

Here is a different example that uses or instead of and . Note that the two statements
with == are either True or False, and only one of them needs to be True for the if state-
ment to be executed. After the : the command with = assigns a value to the variable
isTimeToEat. = and == should not be confused.

>>> if isLunchTime == True or isDinnerTime == True: isTimeToEat = True

Indentations

There is an important feature of Python, which is very specifi c to Python and that I can-
not easily demonstrate from the prompt. Often we need to group a whole set of com-
mands together. For example we may need to do that after a if or a for . Instead of using
brackets Python uses indentations. This makes the text very clean and uncluttered, but it
requires careful attention to the size of the indentation, as there can be multiple levels.

Indentations

34 Chapter 2 · Programming Is Fun

You will see many examples of indentations in the programs but here is a snippet
of code with two levels.

for x in range(-10, 11): #remember these are numbers from -10 to 10 (not 11)
→ for y in range(-10, 11):
→ → position = [x, y]

Now I will write something very similar but with the wrong indentation . This will
produce an error.

for x in range(-10, 11): #remember these are numbers from -10 to 10 (not 11)
→ for y in range(-10, 11):
→ position = [x, y]

This is known as an indentation error . After : (read it as do the following) Python
expects some commands, but the next line is not indented and therefore it is not part
of what should happen within the second for loop. As there are no commands after the
second : this is an error.

When running a script the error message will appear in the Output panel (the one
next to the Shell panel). For an indentation error it will print out the fi le name (con-
taining the script) and the line on which the problem occurred.

File "/Users/marco/Projects/PythonIllusions/myProgram.py", line 78
 position = [x, y]
 ^
IndentationError: expected an indented block

This is very useful and most of the times you can then fi x exactly the line where the
problem is. The example above refers to the name of a fi le from my computer. We will
learn more about how to save scripts in fi les in the next chapter.

Box 2.4 illustrates the way to look at indentations . Basically indentations create
blocks , and these blocks are separate groups of commands . Therefore a change in in-
dentation has a direct effect on the execution of the script.

We can fi x the problem by moving the third line to be just after the :

for x in range(-10, 11): #remember these are numbers from -10 to 10 (not 11)
→ for y in range(-10, 11): position = [x, y]

However, in most cases it is not practical to write what follows after : on a single
line. We have done it in this chapter because we were just practicing simple one line
commands. In the scripts that we will write as full programs we will need indentations.
When we will have a loop , the many lines of commands that need to be executed with-
in the loop should increase by one level of indentation .

In the example above we have seen a message about the indetation error gener-
ated by Python. However, for complex scripts an indentation error may also simply
change the fl ow of the commands in a way that does not generate an error. The con-
sequence is that what should be inside a block ends up outside that block. These

35

Box 2.5. The Zen of Python in 20 aphorisms

� Beautiful is better than ugly.
� Explicit is better than implicit.
� Simple is better than complex.
� Complex is better than complicated.
� Flat is better than nested.
� Sparse is better than dense.
� Readability counts.
� Special cases aren’t special enough to break the rules.
� Although practicality beats purity.
� Errors should never pass silently.
� Unless explicitly silenced.
� In the face of ambiguity, refuse the temptation to guess.
� There should be one – and preferably only one – obvious way to do it.
� Although that way may not be obvious at fi rst unless you’re Dutch.
� Now is better than never.
� Although never is often better than *right* now.
� If the implementation is hard to explain, it’s a bad idea.
� If the implementation is easy to explain, it may be a good idea.
� Namespaces are one honking great idea – let’s do more of those!

errors are harder to fi nd and solve. The moral is that we always have to pay close
attention to indentation.

By controlling the fl ow of the commands programs can be clever. We will also see
how to group commands so that these groups will carry our specifi c tasks. When they
are given a specifi c defi nition (a name and maybe some parameters) we will call these
structures, logically, functions , but they will have to wait a bit.

Indentations

Box 2.4. Indentations

Indentations in Python create blocks of commands . For example block 2 may only be executed
after a condition is checked with an if in block 1, and block 3 may be part of a loop and be control-
led by a for in block 2. In the book the tabs that create indentations are always shown as arrows.
You will not see these arrows when you type in the Editor.

Moreover, you can use tabs or you can use spaces (Python will replace tabs with spaces behind
the scenes). In general is a good idea not to mix tabs and spaces.

Line 1 in block 1

Line 2 in block 1

Line 3 in block 1

→ Line 1 in block 2

→ Line 2 in block 2

→ → Line 1 in block 3

→ → Line 2 in block 3

→ → Line 3 in block 3

→ Line 3 in block 2

→ Line 4 in block 2

Line 4 in block 1

36 Chapter 2 · Programming Is Fun

This chapter has probably set a record as the briefest and most incomplete intro-
duction to Python. Not to worry, what we have learned is enough to start putting
together some interesting programs, or at least it will be after we learn about the
PsychoPy commands in the next chapter. What is necessary is, however, not to simply
read about the way that Python works but to experiment by typing lots of slightly dif-
ferent things, lists, strings and operations from the prompt. Do spend at least ten min-
utes doing that from within the Shell panel before moving on to Chapter 3.

Finally, before we start using Python you may also be interested in the famous
20 aphorisms written by long-time Python developer Tim Peters (Box 2.5). They
give a fl avour of the programming philosophy, and some may apply to life in general
(and yes, there are only 19 in the list, it’s a Zen thing).

http://www.springer.com/978-3-319-64065-5

	2
Programming Is Fun
	Python®
	Setting Up
	Introduction to Programming
	Lists and Strings
	Python As a Pocket Calculator
	Controlling the Flow
	Indentations

