Preface

In the early beginnings, the construction of automated programs for computers was
seen as a special kind of scientific art. With the emergent use and the advent of
higher-level programming languages, the term “Software Engineering” was coined
in the late 1970s as a title of a NATO conference bringing together international
experts in that field. At that conference, the experts wanted to tackle the pressing
problems of software programming, resulting in poor stability and exceeding costs
of the software. They aimed for a complete redefinition, where the development of
software was seen as ‘“engineering discipline”. A systematic and measurable
approach of building computer programs was the ultimate goal. Following the
principles of established engineering disciplines, the quality of developing software
should then also improve. As of today, Software Engineering (SE) distinguishes a
number of areas, related to the software life cycle, most importantly requirements
engineering, software design, quality management (including testing), construction,
and maintenance; and furthermore, software development methodologies and pro-
gramming languages.

With improved methods and practices, the quality of software clearly improved
over the decades, despite the dramatically increased complexity. Also the devel-
opment costs decreased by order of magnitudes when compared to the complexity
of the software artifacts. However, as Fred Brooks prominently said, there will be
no “silver bullet” for building software in a perfect and error-less manner.

The development of the first larger expert systems started around the 1970s as
special purpose computer programs. In the early years, the development process
was similar to the early software engineering days: The construction of expert
systems followed no systematic approach, often specialized inference engines were
programmed ad-hoc in hand with the knowledge acquisition phase. Custom tools
were developed from project to project. In consequence, the same problems
popped-up as well-known from the early software engineering days: Projects
developed unpredictable costs, the quality of the systems was not measurable, and
many systems were abandoned due to their non-maintainability. The term
“Knowledge Engineering” (KE) was born to tackle these problems. With the same
systematic approach, many established methods and practices from Software

vii



viii Preface

Engineering were adapted to the needs of building intelligent systems. With the
development of tailored knowledge-based methods, the Software Engineering
community realized the potential of intelligent methods for Software Engineering
and thus the intellectual loop was closed by influential methods of Knowledge
Engineering in Software Engineering. Until today, this symbiotic relationship exists
and produces fruitful results. Currently, a number of international journals and
conferences are devoted to the interrelations of Software Engineering and
Knowledge Engineering.

In recent years, this relation is even stronger, with the rise of “intelligent/smart”
software penetrating many aspects of daily lives. Smart homes, intelligent assis-
tants, chatbots, autonomous cars, and intelligent manufacturing; these all are soft-
ware systems that require knowledge to develop and employ their intelligent
behavior and operation to the end user.

This volume compiles a number of submissions originated in the KESE work-
shop series: The first workshop KESE: Knowledge Engineering and Software
Engineering was held in 2005 at the 28th German Conference on Artificial
Intelligence (KI-2005) in Koblenz, Germany. The idea of the organizers was the
realignment of the discipline Knowledge Engineering and its strong relation to
Software Engineering, as well as to the classical Artificial Intelligence
(AI) research. The practical aspects of Al systems emphasize the need for com-
bining KE and SE methods and techniques. Due to their initial success, the KESE
workshops were annually organized at the German Al conference (KI). In the years
2006-2010 KESE was held together with the KI in Bremen, Osnabruck,
Kaiserslautern, Paderborn, and Karlsruhe. In these years, the workshop gathered a
motivated and active international community. Thanks to it, in 2011 the KESE7
workshop was co-located with the Spanish Al conference CAEPIA 2011, held in
San Cristobal de la Laguna, Tenerife. Then, in 2012 KESE moved the European Al
conference, ECAI, then held in Montpellier. In 2013, it shortly moved back to the
KL held in Koblenz again. The tenth and last edition of KESE occurred in 2014. It
was again co-located with ECAI then held in Prague. In its ten years of continuous
existence, KESE attracted a stable flow of high quality papers. In the years 2005—
2014, the following numbers of papers were presented at KESE: 8, 5, 6,9, 7, 5, 7,
10, 8, 10, total of 75 papers. Starting from 2007, the workshop had its own pro-
ceedings published via CEUR WS website (http://ceur-ws.org), as CEUR volumes:
282, 425, 486, 636, 805, 949, 1070, and 1289. Moreover, in 2011 a Special Issue
on Knowledge and Software Engineering for Intelligent Systems of the
International Journal of Knowledge Engineering and Data Mining Vol. 1 No. 3 was
published. All the details of the history of KESE were made available on a dedi-
cated website: http://kese.ia.agh.edu.pl

The KESE community not only appreciated the scientific quality of the work-
shop, but also its important social aspects. Every year the participants held addi-
tional vibrant discussions during the so-called balcony-sessions, commonly referred
to as b-sessions.

The workshop series always encouraged submissions describing methodological
research combining Knowledge Engineering and Software Engineering but also the


http://ceur-ws.org
http://kese.ia.agh.edu.pl

Preface ix

presentation of successful applications demanding for both disciplines. In fact,
besides regular papers, starting from 2009 KESE also solicited tool presentations.
In the 10 years of annual workshops, the topics of interest varied from Al methods
in software/knowledge engineering (knowledge and experience management,
declarative, logic-based approaches, constraint programming, agent-oriented soft-
ware engineering, issues of maintenance) and knowledge/software engineering
methods in Al (collaborative engineering of the Semantic Web, database and
knowledge base management in Al systems, tools for intelligent systems, evalua-
tion of (intelligent) systems: verification, validation, assessment, process models) to
a range of topics located on the intersection of several disciplines relevant for
KESE. In the final edition these included: knowledge and software engineering for
the Semantic Web, knowledge and software engineering for Linked Data, ontolo-
gies in practical knowledge and software engineering, business systems modeling,
design and analysis using KE and SE, practical knowledge representation and
discovery techniques in software engineering, context and explanation in intelligent
systems, knowledge base management in KE systems, evaluation and verification
of KBS, practical tools for KBS engineering, process models in KE applications,
software requirements and design for KBS applications, software quality assess-
ment through formal KE models, and declarative, logic-based, including constraint
programming approaches in SE.

After 10 bright years of annual workshops, we decided it is the time summarize
the decade of works of the KESE community. Thus, we decided to prepare and edit
this "memorial" volume. It compiles thirteen intriguing contributions closely related
to the KESE topics with both methodological and application background grouped
in two separate parts.

The first methodological part is composed of seven chapters. Ralph
Schéfermeier and Adrian Paschke introduce an ontology development process that
is inspired by Aspect-Oriented Programming. By following the aspect-oriented
development, the complexity of the construction process can be simplified by strict
modularization. Ralph Bergmann and Gilbert Miiller improve the (re-)use of
workflows in process-oriented information systems by introducing methods for the
retrieval and adaptation of (best practice) workflows applicable to new process
problems. Isabel Maria Del Aguila and José Del Sagrado describe an approach to
building of intelligent systems using Bayesian networks. They use UML known
from Software Engineering and introduce the meta-model BayNet that supports the
development and maintenance process. How can software development be sup-
ported by Knowledge Engineering techniques? Paraskevi Smiari et al. represent
anti-patterns in software development by Bayesian networks and include this into a
knowledge-based framework. During the software development the data is acquired
and problems are identified as anti-patterns. Bayesian networks are used to assess
the anti-pattern in the concrete problem situation. The quality of intelligent systems
is considered by the contribution of Rainer Knauf: He introduces formal methods
for the validation and finally the refinement of intelligent systems. Automated
methods for test case generation and support for the human inspection are pre-
sented. The quality of intelligent systems is also discussed in the next contribution:



X Preface

Marius Brezovan and Costin Badica present a novel method for the verification of
knowledge-based systems. They apply a mathematical language for modeling the
static and dynamic properties of the systems. Finally, in her contribution, Kerstin
Bach tackles the problem of building large (knowledge-intensive decision-support)
systems. With the industry-inspired term “Knowledge Line” a methodology for the
modularization of knowledge is presented and exemplified.

The second part is devoted to applications and is composed of six chapters. The
authors Paolo Ciancarini et al. report on the development of a mission-critical and
knowledge-intensive system. They define the process model iAgile which is based
on the successful Scrum methodology widely applied in Software Engineering.
Pascal Reuss et al. also report on construction of an intelligent system, here the
diagnosis and maintenance of civil aircrafts. A multi-agent approach is used to
organize and implement the problem domain. A practical application report from
the medical domain is given by Paulo Novais et al. A model of computer inter-
pretable guidelines is introduced by using the ontology language OWL. Together
with the language, an implementation in a clinical system is given. The web
traversals and actions of users in the web is an interesting asset for market research.
Adrian Giurca introduces the ontology Metamarket that models the user preferences
and interactions. Apache Maven is a popular and broadly used tool for supporting
the development of general software. In their contribution Adrian Paschke and
Ralph Schifermeier extend and customize the Maven approach for the distributed
development and management of ontologies. A different approach for supporting
software development is presented by Andrea Janes: data is collected during the
software development process in a ubiquitous manner. The measurements are used
to identify knowledge in the process data and to analyze the software creation and
usage process.

In the past few years, a strong rise of interest in Al can clearly be observed in
research, IT industry, as well as the general public. Today, the development of
complex intelligent systems clearly benefits from the synergy of knowledge engi-
neering and software engineering. Let this book, be a timely and valuable contri-
bution to this goal.

Krakow, Poland Grzegorz J. Nalepa
Wiirzburg, Germany Joachim Baumeister
2017



2 Springer
http://www.springer.com/978-3-319-64160-7

Synergies Between Knowledge Engineering and
Software Engineering

Malepa, G.).; Baumeister, |, (Eds.)

2018, XM, 294 p. 93 illus., 73 illus. in color., Softcover
ISBEMN: 978-3-319-64160-7





