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Abstract In different real problems the available information is not as precise or

as accurate as we would like. Due to possible imperfection in the data (understand-

ing that these contain data where not all the attributes are precisely known, such

as missing, imprecise, uncertain, ambiguous, etc. values), tools provided by Soft

Computing are quite adequate, and the hybridization of these tools with the Intelli-

gent Data Analysis is a field that is gaining more importance. In this paper, first we

present a brief overview of the different stages of Intelligent Data Analysis, focus-

ing on two core stages: data preprocessing and data mining. Second, we perform an

analysis of different hybridization approaches of the Intelligent Data Analysis with

the Soft Computing for these two stages. The analysis is performed from two levels:

If elements of Soft Computing are incorporated in the design of the method/model,

or if they are also incorporated to be able to deal with imperfect information. Finally,

in a third section, we present in more detail several methods which allow the use of

imperfect data both for their learning phase and for the prediction.

1 A Brief Overview of Intelligent Data Analysis

Intelligent data analysis (IDA) or knowledge discovery in databases is defined in

[23] as the “non-trivial process of identifying valid, novel, potentially useful and

understandable (if not immediately, with some kind of further processing) patterns

from the data”. As it follows from this definition, in the IDA process, the data are the

most important part of the discipline [23] and it is a complex process that includes

the obtaining of the models and also other stages.
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IDA is divided into the following stages, [23]:

∙ The “Data Integration and Collection” (selection) stage.

∙ The “Data Preprocessing” stage, related to the treatment of the data and the strate-

gies that would be used to handle the available information.

∙ The “Data Mining” stage, related to the selection and application of the appropri-

ate methods for the modeling from the available data and the obtaining of under-

standable models and high accuracy.

∙ The “Evaluation (interpretation) and Diffusion” stage.

Although all stages are fundamental to the development of the IDA process, its

core is in the data preprocessing and data mining stages.

1.1 Data Preprocessing Stage

Data preprocessing can have a great impact on the performance of the data mining

methods, [27]. One of the problems that must be faced in this stage is to understand

and analyze the nature of the data avoiding the loss of useful information during

the process. This stage includes, among others, the cleaning of data (such as the

elimination of inconsistent data, treatment of missing values, etc.), data integration

(multiple sources), data transformation (discretization, etc.) and reduction of data

(attribute/instance selection) [27].

Specifically, the “discretization of continuous attributes” plays a critical role in

IDA and has been studied in depth. Discretization consists in dividing the values

of a numerical (continuous) attribute into a set of intervals. By means of the dis-

cretization, a numerical attribute can be more concise and easier to understand. In

the general description of the discretization process, we can do the following taxon-

omy (there are other taxonomies for the different discretization methods such as that

presented in [51]):

∙ Top-down methods: The attribute domains are progressively cut to construct a set

of intervals.

∙ Bottom-up methods: They start with the individual values in the dataset that are

fused progressively until constructing a set of intervals.

Among the top-down methods we find the ones proposed in [15, 33, 34, 46,

81]. Besides, the decision trees construction methods, such as, ID3 [71] and C4.5

[72], can be interpreted as top-down discretization methods. Among the bottom-up

methods we find methods such as those proposed in [9, 44, 52]. All these methods

generate classical discretization, i.e., crisp intervals.

Also, the “attribute selection” plays an important role in the IDA process and

more specifically in the classification task. On the one hand the computational cost

is reduced and on the other hand, a model is constructed from the simplified data and

this improves the general abilities of classifiers. The first motivation is clear, since

the computation time to build models is lower with a smaller number of attributes.
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The second reason indicates that when the dimension is small, the risk of “overfit-

ting” is reduced. Removing insignificant attributes of datasets can make the model

more transparent and more comprehensible providing a better explanation of the sys-

tem [53]. Therefore, the attribute selection addresses the problem of reducing dataset

dimensionality by identifying an available attributes subset. Researchers have stud-

ied various aspects of attribute selection. One of the key aspects is to measure the

goodness of an attribute subset determining an optimal one. Depending on evalua-

tion criteria, attribute selection methods can be divided into the following categories,

[29, 75]:

∙ Filter methods: These methods select subsets of attributes as a preprocessing step,

independently of the chosen classifier.

∙ Wrapper methods: These methods use a method of data mining as a black-box to

score attribute subsets according to their predictive power.

∙ Embedded methods: These methods select attributes in the training process and

are usually specific to the given modeling method.

∙ Hybrid methods: These methods are a combination of filter and wrapper methods.

Hybrid methods use the ranking information obtained using filter methods to guide

the search in the optimization algorithms used by wrapper methods.

In literature we can find a variety of methods to carry out attribute selection, such

as the proposed in [3, 42, 52, 75].

1.2 Data Mining Stage

The data mining (DM) stage is the more characteristic stage in the IDA process.

The purpose of DM is the construction of models based on the data to produce

new knowledge that can be used by the user. The model is a description of patterns

and relationships in the data, which can be used to make predictions in a particu-

lar area, better understand the domain, improve performance or explain past situ-

ations. In practice, there are two types of models: Predictive (identify patterns to

estimate future values using predictor attributes) and Descriptive (identify patterns

that explain the data). In addition, different types of tasks are distinguished in DM.

Each task has its own requirements and obtains a type of knowledge different from

the obtained one by other tasks. Among the aimed tasks that obtain predictive mod-

els, we can find both the classification and the regression tasks; while clustering and

association are tasks aimed at obtaining descriptive models. This stage includes the

choice of the most appropriate task for the problem, the choice of the DM method,

and finally the use and adaptation to the problem of the selected method, [27, 85].

We group these methods according to the type of model obtained. Without being

exhaustive, we find models represented by discriminant functions, decision trees,

neural networks, based on rules or based on instances.
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∙ One of the most useful ways of representing a model is through a set of discrimi-

nant functions. The model in this case can be seen as a machine which computes

c discriminant functions gi(x) and which selects for x the class 𝜔i with the highest

value for the discriminant function [22, 26]. In this way the model is expressed

as gi(x) = P(𝜔i∕x), such that the maximum discriminant function is the maximum

a posteriori probability. When the discriminant functions are linear functions we

find methods such as descending gradient, Newton’s algorithm, the Perceptron cri-

terion [32, 36]. When the discriminant functions are complex density functions,

these can be approximated by a mixture of simpler density functions.

∙ The models based on instances approximate an unknown density function using

an averaged version of the density based on the probability of a specific vector’s

falling within a certain region of the attribute space [22]. The methods based on

these models have no learning phase since the model is formed by the dataset

instances. There are two common methods based on these models: Parzen method

and k neighbors method [21, 31, 58].

∙ The methods which model the problem through decision trees are useful for find-

ing structures in high dimensionality spaces or when the conditional densities of

the classes are unknown or are multimodal. Some basic and well-known methods

to generate decision/regression trees are ID3 [71], C4.5 [72] and CART [10].

∙ Rules based methods model a system through a base of rules (if-then) constructed

from the instances. Some methods for obtaining rules (association rules) are based

on the concept of frequent items sets and use counting and minimum support

methods [79]. Other methods obtain rules covering the instances (cover meth-

ods) such as those based on CN2 [17] and AQ algorithms [57]. Genetic algo-

rithms/programming [51, 86] have also been used to generate rules.

∙ Other type of model is the neural network. Neural networks are a very power-

ful computation paradigm allowing complex problems with possible non linear

interactions between the attributes. Among the most important neural networks

we can find the multilayer Perceptron which generates more than one boundary of

separating in the attributes space [32, 36, 74].

∙ There is a further group of methods whose aim is to generate groupings of data

and these are known as clustering. The aim of cluster analysis is to find a valid and

convenient organization for the data and an underlying structure. Within these

methods we can include Kohonen’s self-organizing maps [45], those based on

the K-means algorithms which obtain partitional cluster [62], in contrast to the

hierarchical methods which do not establish a priori the groups number [25].

2 Intelligent Data Analysis and Soft Computing

In [56] several paradigms introduced with the data analysis are identified. Among

them, the management and processing of data respecting the true nature of them

(imperfect data) are included. Therefore, by focusing on the data, and before applying

any stage of the IDA process, we must take into account the nature of these data
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to ensure the success of the process. This means that depending on the nature and

precision of these data, we must apply different methods depending on their degree

of tolerance to them. A clear example to illustrate the problem of the different nature

of the data and the importance of tolerance to different types of imperfect data is the

problem of parking a car [91], where most of the population is able to do it easily.

Therefore, we need methods that can extract knowledge and handle imperfect data,

in order to provide quality information and generate useful knowledge.

Generally, the IDA process uses and combines different methods and tools from a

variety of disciplines [5]. Due to possible imperfection in the data, tools provided by

the Fuzzy Sets theory [90] and, in general, Soft Computing (SC) [7, 82, 91] are quite

adequate. In this way, the hybridization of the SC methods with IDA is a field that is

gaining more importance. The methods proposed by SC and their applications have

been very important in recent years, and in particular, the advances in the hybridiza-

tion of SC with IDA are aimed at obtaining more flexible methods with results more

efficient compared to the classical methods [30, 61]. In this framework, we comment

on different methods proposed from two levels: In a first level, if the SC elements

are incorporated in the design of methods/models; and, in a second level, if they are

incorporated for the treatment of imperfect information, additionally.

2.1 Data Preprocessing in Soft Computing Framework

In the data preprocessing stage, SC has generally been applied to the design of flex-

ible methods for the different tasks of this stage. Although most of them use SC

in their development, to our knowledge, the methods that allow and management

imperfect data are seldom studied.

In particular, in the discretization of numerical attribute we find methods that

allow the use of membership degree to intervals (denoted by fuzzy discretization

methods). These methods are grouped according to the used algorithm.

∙ Decision tree based methods: In [40, 43, 63] different approaches for the fuzzy

discretization of numerical attributes are proposed. All of them use a fuzzy deci-

sion tree combined with some basic strategy.

∙ Clustering based methods: These methods are based on dividing a numerical

attribute domain into fuzzy partitions by using fuzzy clustering. In particular, sev-

eral methods using the fuzzy c-means method are proposed in [59, 64, 80].

∙ Genetic algorithm based methods: The genetic algorithms (GA) are combined

with existing specialized methods to create hybrid algorithm that improve the over-

all results. In particular, we can find several methods, [16, 18], using strategies of

classical/fuzzy discretization together a genetic algorithm to optimize the number

of partitions, interval limits and the degree of overlaps of these limits.

∙ Hybrid methods: In the literature we can also find methods based on combinations

of two or more methods. In [88] a cluster and a neural network (NN) are used. In
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[76] the combination of the FCM clustering algorithm and a GA are used, and in

[48, 73, 84] a kd-tree and a minimum spanning tree are used.

In attribute selection, there are a lot of methods using SC in their development

but they perform the selection from crisp data.

∙ Attribute selection methods using SC for their design can be find in [3, 16, 42]

where a neural network, a GA or an ant colony (AC) are used, respectively. There

are other methods that also use elements of the fuzzy set theory as in [53, 83]

where a fuzzy criteria or fuzzy entropy are used, or in [87] where the attribute

selection is performed using the fuzzy evidence theory.

∙ To perform the attribute selection from imperfect data we can find several pro-

posals: in [41] a method taking into account the uncertainty in the data through

fuzzy-rough sets is presented. This method employs fuzzy-rough sets to provide

a means by which discrete or real-valued noisy data (or a mixture of both) can be

effectively reduced without the need for user-supplied information. In [77, 78] a

fuzzy mutual information measure between two fuzzified numerical attributes to

handle imprecise data is used (they define a new extended version of Battiti’s filter

attribute selection method). This measure is used in combination with a genetic

optimization to define the method proposed.

Table 1 shows the summary of papers discussed.

Table 1 Hybridization of data preprocessing with Soft Computing: summary of papers

Method based on . . . SC at method

level

SC at minable view level

Allowed data

Fuzzy

discretization

Fuzzy decision trees [40, 43, 63] – –

Fuzzy clustering [59, 64, 80] – –

GA to optimize [16, 18] – –

kd tree—spanning tree [48, 73, 84] – –

Cluster—GA [76] – –

Cluster—NN [88] – –

Attribute

selection

NN, GA, AC [3, 16, 42] [77, 78] Fuzzy sets

Fuzzy criteria/entropy [53, 83] – –

Fuzzy evidence theory [87] – –

Fuzzy-rough metric – [41] Fuzzy-rough

sets
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2.2 Data Mining in Soft Computing Framework

SC has also been applied in the DM stage, and, to our knowledge, the methods that

allow and management imperfect data are seldom studied. From this, we can consider

the DM methods hybridized with SC in two levels:

∙ At the level of generated models: Methods that generate models described in the

framework of SC. These models are more interpretable and we can find elements

of SC in rule-based systems, methods based on k-nearest neighbors, decision trees,

clustering and support vector machines.

In 1971 Zadeh proposed the design of rules if-then using linguistic variables

that can be provided by a group of experts or obtained through DM methods.

So, among others, in [4] a set of fuzzy rules is obtained using a method based

on genetic programming, in [24] a set of fuzzy rules is obtained in unbalanced

problems using a genetic selection process of rules, in [37] different weights are

assigned to a set of fuzzy rules using heuristic methods, and, in [65] an initial set

of fuzzy rules is constructed by clustering and then are optimized using a neuro-

fuzzy learning algorithm.

Among the fuzzy versions of the k-nearest neighbors rule we can highlight works

that assign memberships degree of each instance to each class, use fuzzy distance

measures, use different ways of combining the votes of neighbors, etc. A complete

review of these methods is carried out in [20].

Also, fuzzy decision trees have been designed as the proposed in [66] that obtains

the best fuzzy partition of the best attribute in each node to split. Using fuzzy

decision trees, fuzzy ensembles are proposed as in [19] where an ensemble is con-

structed from a non-fuzzy tree construction algorithm that subsequently is trans-

formed to fuzzy.

With the aim to construct data partitions that allow an instance belongs to more

than one partition, fuzzy clustering algorithms have been developed such as the

fuzzy C-means proposed in [6]. Different versions of this algorithm are found

in [35] to extend it to nominal data, in [49] to deal with missing values through

intervals or in [80] to deal with fuzzy values.

Also, fuzzy versions of support vector machines have been designed. So, in [50] a

membership degree to each class is assigned to each instance, allowing that each

one contributes in a different way in the learning of the decision surface. In [1]

a method for multilabel classification is generalized. For each multilabel class,

a region with the associated membership function is defined and an instance is

classified into a multilabel class whose membership function is the largest.

∙ At minable view level: Methods that besides incorporating the SC elements, sup-

port input imperfect data. In this case, the methods allow us that the data are com-

posed of attributes described by imperfect values. This generates the following

advantages: (1) methods can interpret the imprecision/uncertainty expressed in the

data and generate robust models to these types of information without transform-

ing the true nature of them; (2) data preprocessing is simplified by not carrying out

these transformations (replacement, deleting data, . . . ); and (3) the minable view
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contains a greater number of instances because the imprecise and uncertain data

are not discarded. In general, significant efforts are being carried out to incorpo-

rate the treatment of imperfect data into DM methods using SC.

Thus we can find works that incorporate the treatment of fuzzy values. There are

fuzzy decision trees based on a fuzzy partition of numerical attributes. This par-

tition is used in the test of nodes as in [38, 47]. Fuzzy partitions of numerical

attributes are also use in the construction of fuzzy ensembles to incorporate fuzzy

values. This approach is used in [39] where to select the test of each node, the set of

the best attributes for partitioning that node is used or in [55] where a fuzzy ensem-

ble for each class value of the problem is constructed. In [60] a fuzzy version of

multilayer perceptron is presented which performs the learning from fuzzy values.

In [68] a genetic classifier based on fuzzy rules is obtained from data described

with fuzzy values. In [69, 70] Adaboost and FURIA algorithms are extended in

order to obtain fuzzy rules from this type of values. In [67] an algorithm to obtain

a set of fuzzy association rules from a fuzzy partition is proposed. As particular

cases of fuzzy values, some works deal with values expressed by intervals as in

[47, 67–70].

On the other hand, the set of methods that allow the existence of missing values is

considerable. We highlight only a few that allow the treatment of some other type

of imperfect information as [38, 39] or as in [47], where missing values are only

allowed in the classification phase.

Finally, there is a considerable set of methods that have considered the possibility

that an instance has more than one associated class value (multi-valued class),

but few extend this possibility to other nominal attributes of a problem (multi-

valued attributes). So, among the first we can find works as [68] where class may

be defined by a crisp set, or [89] where a fuzzy k-nearest neighbor method is used

to allow that an instance can belong to more than one class with several degrees.

In [54] we can find a comparison of this kind of methods.

Table 2 shows the summary of papers discussed.

Table 2 Hybridization of data mining with Soft Computing: summary of papers

Method based on . . . SC at method

level

SC at minable view level

Allowed data

Fuzzy rules [4, 24, 37, 65] [67–70] Fuzzy sets, intervals

– [68] Fuzzy sets, intervals, multivalued

class

k-nearest neighbors [20] [89] Multivalued class

Fuzzy decision trees [19, 66] [55] Fuzzy sets

[38, 39] Fuzzy sets, missing

[47] Fuzzy sets, intervals, missing

Fuzzy clustering [6, 35, 49, 80] [35, 49, 80] Nominal, fuzzy sets, intervals

Support vector m [1, 50] [1] Multivalued class

Neural network – [60] Fuzzy sets
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3 Hybridization on the Two Level of Soft Computing
and Data Preprocessing/Mining Methods

In this section we describe the characteristic elements of two methods in the data

preprocessing stage and three methods in DM stage that use SC in the two levels

commented: at model/technique level and at minable view level. Due to the high

flexibility in the design of these methods, they can easily be extended to support

new types of imperfect data.

A more detailed analysis of these methods can be found in papers [11, 13] for the

preprocessing methods and papers [8, 12, 14, 28] for the DM ones.

3.1 Notation, Types and Representation of Imperfect Values

Let us consider a set of instances E, where each instance 𝐱 is characterized by n
attributes in a vector (x1, x2,… , xn) (the n-th attribute represents the class). The

domains of each attribute, 𝛺x1 , 𝛺x2 ,… , 𝛺xn−1 , can be numerical or nominal, while

the domain of the class 𝛺xn (nominal attribute) can take the values {𝜔1, 𝜔2,… , 𝜔I}.

The numerical attributes are represented by fuzzy sets with a trapezoidal fuzzy

membership function [2] 𝜇(x) defined by a quadruple (a, b, c, d):

𝜇(x) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

0 x < a or x ≥ d
x−a
b−a

a ≤ x < b
1 b ≤ x < c
d−x
d−c

c ≤ x < d

With this representation, the methods use the following values:

∙ Crisp values are represented by the quadruple (a, a, a, a).
∙ Interval values [a, b] are represented by the quadruple (a, a, b, b).
∙ Fuzzy values are represented by trapezoidal fuzzy membership functions.

∙ Missing values include pieces of information that are unknown. These values are

represented by the quadruple (mini,mini,maxi,maxi), where mini and maxi are,

respectively, the minimum and maximum values of 𝛺xi included in the dataset.

The nominal attributes (including the class attribute) are represented by fuzzy

subsets {𝜇(h1)∕h1,… , 𝜇(hs)∕hs}, where hj is a value into attribute domain and ∃hk ∈
𝛺i ∶ 𝜇(hk) = 1. With this representation, the methods use the following values:

∙ Crisp values are represented by the fuzzy subset {1∕hj}.

∙ Crisp subset values consider more than a possible nominal value. They are repre-

sented as {1∕h1,… , 1∕hs}.
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∙ Fuzzy subset values consider more than one nominal value with a membership

value 𝜇 ∈ [0, 1]. They are represented using the notation introduced above.

∙ Missing nominal values are represented using a fuzzy subset that contains all pos-

sible values with membership degree equals to 1.

3.2 OFP_CLASS: A Hybrid Method for Attribute
Discretization

In [13], OFP_CLASS method is proposed to data preprocessing. It is a hybrid method

for discretizing numerical (continuous) attributes by means of fuzzy sets, which con-

stitute a fuzzy partition of the domains of these attributes. The aim of this method

is to find an attribute partition so that the fuzzy classification methods obtain better

results. The OFP_CLASS method can deal with datasets with imperfect values and

it is labeled as supervised, local, top down, and incremental, using the entropy as

measure to obtain the partition.

The OFP_CLASS method is composed of two stages (Fig. 1): (a) In the first stage,

crisp intervals are defined for each attribute using a fuzzy decision tree (FDT); and

(b) in the second stage, these intervals are used as the starting point to form an opti-

mal fuzzy partition for classification. In this second stage, a genetic algorithm is used

to determine the cardinality and fuzzy boundary of these intervals.

The partition obtained for each attribute guarantees:

∙ Completeness (no point in the domain is outside the fuzzy partition), and

∙ Strong fuzzy partition (it verifies that ∀x ∈ 𝛺i,
∑Fi

f=1 𝜇Bf
(x) = 1, where B1,… ,BFi

are the Fi fuzzy sets for the partition corresponding to the i-th numerical attribute

with 𝛺i domain).

The FDT used in the first stage allows the dealing of imperfect data, and for this,

uses a specific information gain, Gi, for each attribute i in order to choose the best

attribute to divide a node. Function Gi uses the standard information associated with

the node (taking into account the membership degree of an instance to the node and

P1
* P1

v11={v11,..,v1u}

Pi
* Pi

vi={vi1,,..,vin}

D
at

aS
et At1

Ati

P1={p11,..,p1u}
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…        …
…        …
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Ω = [0,1] i
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nd
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e

…        …
…        …

pijpij–vi1 pij+vi10 …

p1k–v11 p1k+v110 …p1k

…

…

Fig. 1 Scheme for the discretization of numerical attributes using the OFP_CLASS method
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the membership degree of example ej to each class) and a factor which represents

the standard information obtained by dividing the node using attribute i adjusted

to the existence of missing values. We must highlight that, in the second stage, the

fitness function of the genetic algorithm is defined by

∑n
i=1 Ii∑n
i=1 Hi

where Ii and Hi are the

information gain and entropy of attribute i respectively, taking into account the crisp

intervals obtained in the first stage.

OFP_CLASS method is an effective strategy and it obtains very good results when

is compared with other methods of the literature. These results have been validated

by applying statistical techniques to analyze the behavior of different methods in

each experiment.

3.3 FRF_fs: A Filter-Wrapper Method for Attribute Selection

In [11] is proposed the FRF_fs method of attribute selection to data preprocessing

which can handle imperfect data. This method is based on a Fuzzy Random For-

est ensemble (a method that supports imperfect data, [8, 12]) and is classified as a

Filter-Wrapper method with sequential forward selection on the subset of attributes

obtained by the Filter method and using a ranking obtained with these attributes.

This method consists of the following main steps (Fig. 2): (1) Scaling and discretiza-

tion process of the attribute set; and attribute pre-selection using the discretization

process (Filter); (2) Ranking process of the attribute pre-selection; and (3) Wrapper

attribute selection based on cross-validation.

Note that in each step the approach obtains information useful to the user (pre-

selected attribute subset, pre-selected attribute subset ranking and optimal attribute

subset). Some details of these steps are discussed below.

∙ Filter method for attribute pre-selection

Initially, the method carry out a scaling and discretization (in [13], a hybrid method

for the fuzzy discretization of numerical attributes is presented), and as in the

discretization process some attributes may be discretized into a single interval,

Data preprocess

Dataset
Attribute set

Attribute ranking 
process

Attribute subsets
Obtaining subset

of attributes

Pre-selection and Ranking of the
subset of pre-selected attributes

Optimal attribute
subset

Fig. 2 Framework for the attribute selection using the FRF_fs method
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these latter attributes can be removed. Thus, the method obtain a pre-selection of

the attribute set.

∙ Attribute importance (Ranking process)

From the pre-selected attribute subset and through a fuzzy random forest ensem-

ble, the method obtains a vector RANK ordered, in descending order, of this

attribute subset. This vector is obtained from the value of each attribute xi as

RANK =
∑T

t=1 W ⋅ IMPt, where the information provided by the T trees of the

fuzzy random forest ensemble is aggregated using an OWA operator. Values IMPt
are obtained from the information gain of nodes in the FDT t to each attribute xi,
and from the accuracy of FDT t classifying the OOB dataset.

∙ Wrapper for attribute final selection

Once the ranking of the pre-selected attribute subset, RANK, is obtained, the

method find an optimal subset of attributes. The process adds a single attribute

at a time following the RANK vector. The several attribute subsets obtained by

this process are evaluated by a method that supports imperfect data using a cross-

validation. In particular, and using a fuzzy random forest ensemble, an ascending

sequence of fuzzy random forest models is constructed, by invoking and testing

the stepwise attributes.

The efficiency and effectiveness of the FRF_fs method is proved through sev-

eral experiments using both high dimensional and imperfect datasets. The method

shows a good performance (not only classification accuracy, but also with respect

to the number of selected attributes) and good behavior both with high dimensional

datasets and with imperfect datasets.

3.4 EMFGN: A Method Based on Gaussian Mixture Models

Extended Mixture of Factorized Generalized Normal (EMFGN) method [28] is a

predictive DM method for performing learning and inference from imperfect data.

The method obtains an explicit expression of the model-observation joint function

of the attributes, where both the model expression and the input information are

interpreted and represented in a common framework. The Dempster-Shafer Evidence

Theory (DSET) is the framework that allows its interpretation as mass functions

defined on the domains of the single attributes.

In Fig. 3, the general scheme of the process followed by EMFGN method is

shown. From the dataset with imperfect information, the method provides a model

reflecting the joint dependence of the attributes by means of a mixture of factor-

ized normals. This model and the input available information are interpreted and

represented in the DSET in order to combine them (using the Dempster-Shafer’s

combination rule). The model provided by EMFGN method is the following:

p(z) =
∑

ir
P{Ci}𝜋r

n∏

j=1
Firj(mrj(𝛩j)⊕ mij(𝛩j))
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Fig. 3 A general scheme of

the EMFGN method

Dataset with
imperfect values

EMFGN inference

Framework 
DSET

FEEM
(extended EM)

learned
model

where:

∙ 𝛩j ∈ P(𝛺zj ) and P(𝛺zj ) is the set of parts of 𝛺zj .

∙ mrj(𝛩j) is the likelihood function of the r-th component of the input information

expressed through a mass function.

∙ mij(𝛩j) is the mass function corresponding to the i-th component of the model.

∙ Firj is a necessary normalization factor in the combination of two mass functions.

∙ P{Ci}𝜋r is the product of the likelihood function of input information in its r-th
component and the expression of the model in the i-th component.

In this framework, the EMFGN method uses the FEEM algorithm in the learn-

ing phase. This algorithm is an extended EM algorithm to allow both the imperfect

information and the model represented in DSET.

From the learned model, EMFGN method can infer both nominal and numerical

attributes. To numerical attributes, the method infers the value zj =
∑

ir 𝛼irm̄irj, and

to nominal attributes, the method infers the value zj = argmaxw
∑

ir 𝛼irmirj(𝜔), with

𝜔 ∈ 𝛺zj . The value 𝛼ir indicates the likelihood of the r-th component of the input

information having been generated by the i-th component of the mixture. mirj(⋅) is a

mass function combining the input information and the model to the attribute j, and

the value m̄irj is the average value of mirj(𝛩j).
The results obtained are very satisfactory with the advantage of having a global

model to be able to perform inference on any attribute of an instance.

3.5 FRF: A Method Based on an Ensemble of Fuzzy
Decision Trees

Fuzzy Random Forest (FRF) method [8, 12] is a multiple classifier system (ensem-

ble) to DM. FRF is a predictive method for classification and show us its ability to

handle imperfect data both in the model learning and in the inference process.

In Fig. 4, the general scheme of the process followed by FRF method is shown.

FRF obtains a model with the structure of an ensemble based on FDTs. The learning
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Fig. 4 A general scheme of

the FRF method

FDT 2FDT 1 … …

FRF inference

FDT t

Combining the information from the FDTs
Strategies 1 and 2

Dataset with
imperfect values learned

model

phase generates FDTs with the following characteristics: (a) each FDT is constructed

from a dataset obtained by bagging, (b) the FDTs are constructed without consider-

ing all the attributes to split the nodes (a random subset of the set of attributes avail-

able at each node is selected), (c) the numerical attributes are discretized by fuzzy

partitions, (d) each FDT is constructed to the maximum size and without pruning,

(e) a function (𝜒t,N(⋅)) is used to indicate the degree with which an instance sat-

isfies the conditions that lead to node N of tree t, and (f) FDTs support instances

with imperfect values (a function 𝜇simil(⋅) is used to measure the membership degree

of these types of values to the fuzzy sets forming the partition of the numerical

attributes).

From the obtained model, FRF method uses two strategies to combine the infor-

mation of several FDTs and to obtain the final decision for a target instance. Strategy

1 combines the information from the different leaves reached in each FDT to obtain

the decision of each individual FDT and then applying the same or another combina-

tion method to generate the global decision of the FRF model. Strategy 2 combines

the information from all reached leaves from all FDTs to generate the global decision

of the FRF model.

The method assigns class𝜔M to a new instance such that𝜔M = argmaxi{D_FRFi}
where D_FRF is a vector with size I that indicates the confidence assigned by the

method to each class i. The vector elements are obtained from the support for each

class in the leaves reached when applying the several strategies and combination

methods.

The results obtained by FRF method are promising concluding that by using

imperfect values instead of crisp, we capture better the nature of the underlying

information.

3.6 KNNimp: A Method Based on Instances

The kNNimp method [14] is a k-nearest neighbors classifier from datasets with imper-

fect values to DM. Figure 5 shows the general scheme followed by kNNimp method.

This method belongs to the methods with lazy learning, that is, the method does not
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Fig. 5 A general scheme of

the kNNimp method Dataset with
imperfect values

Combining the information
from the k-nearest instances

kNNimp inference

Distance/Similarity
Imperfection degree

Control:
Maximum imperfection

Similar classes

local model
(k-nearest instances)

need of an explicit learning phase. Therefore, this method requires that all dataset

instances are stored.

To classify a instance, the kNNimp method computes its “k” nearest instances

and generates a class value from them (a local model dependent on the new instance

has been constructed). By containing imperfect values the dataset, the importance of

each instance (neighbor) in the output decision is based on relative distance/similarity

dimp(⋅, ⋅) (distance/similarity measures that support imperfect data) and its degree of

imperfection. Specifically, for each instance, two weights are calculated depending

on its degree of imperfection p(⋅) and its distance/similarity q(⋅).
Furthermore, the overall degree of imperfection in “k” nearest instances is mea-

sured, if it is too high, the classification is not performed. To establish the maximum

degree of imperfection, kNNimp method uses the parameter UI .

Once the local model is obtained (k nearest instances), kNNimp method combines

the information provided for each neighbor instance (weights p(⋅) and q(⋅)) to obtain

the set of possible weighted classes. The class with the highest score is chosen as

output, together with other classes whose score is similar to the highest. To assess if

a class should be included in the final output, this method uses the threshold UD.

The method obtains a fuzzy subset {𝜇(𝜔i)∕𝜔i} as possible values to the class

attribute of the new instance where 𝜇(𝜔i) =
∑k

j 𝜇
j(𝜔i)p(xj)q(xj)

∑k
j
∑

i 𝜇
j(𝜔i)p(xj)q(xj)

and 𝜇
j(𝜔i) is the mem-

bership degree of the j-th neighbor to the class value 𝜔i. Therefore, the method

assigns to the new instance the class 𝜔M = argmaxi{𝜇(𝜔i)} or the fuzzy subset

{𝜔M , 𝜔t}, with
𝜔M−𝜔t

𝜔M
> UD.

The kNNimp classifier is robust when working with imperfect data and maintains

a good performance when is compared with other methods in the literature, applied

to datasets with or without imperfection.

4 Conclusions

In data-driven application domains, the suitable use of available information is very

important. Because of this, it becomes increasingly necessary to design methods that

support different types of information (imperfect or not) and obtain more flexible
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models with an appropriate behavior. In this framework, the hybridization of the

tools provided by Soft Computing and Intelligent Data Analysis methods is a field

that is gaining more importance. In this work, some proposals that carry out this

hybridization obtaining quite satisfactory results are commented and analyzed. For

this reason we consider that it is a field in which new proposals must be made with

the objective of approaching the Intelligent Data Analysis process from datasets that

express the true nature of the information.
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