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1 Introduction

For the clearance of flight control laws, it is required to show that the aircraft cannot
be driven to an unsafe states, especially considering inherent modeling uncertainties
and disturbances like wind gusts. Current industry practice is to use mostly gridding
or monte carlo methods for testing closed loop systems. These methods are straight-
forward to use, but often computationally expensive, due to the fact that numerous
simulations have to be performed to clear the flight control law. Additionally, they do
not refine the search space around worst cases, and may miss solutions in between
grid points. In essence, these methods evaluate multiple scenarios to show that for all
possible combinations of uncertain parameters or maneuvers, safe aircraft operation
is ensured. Contrary, optimization based clearance techniques try to find worst cases
by means of optimization algorithms. These methods do not investigate the whole
solution space for all possible scenarios, but try to find worst cases for which the
respective criteria is violated. In the past, considerable effort was made to develop
suitable optimization algorithms for this kind of task.

Reference [12] investigates the use of a novel global optimization technique based
on dividing rectangles for the nonlinear clearance criteria of a hypersonic re-entry
vehicle. The results showed that this approach has potential for significantly enhanc-
ing the confidence for the clearance task. In [6], the authors compare probabilistic
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monte carlo methods, and a non-dominated sorting genetic algorithm for multi-
criteria optimization for a nonlinear AIRBUS aircraft simulation model.

Reference [8] tests the functionality of a maneuver load limiter using the clonk
stability criterion. The authors used a genetic algorithm and adaptive simulated
annealing for the worst case parameter search. Reference [13] augmentsDifferential
Evolution and genetic algorithms by a local optimization method for the clearance
task. This results in a hybrid optimization scheme with improved convergence and
computational efficiency. The method is illustrated using a six-degree of freedom
fighter aircraft model (ADMIRE). In [16] local and global optimization methods are
investigated to enhance current industry practice for the clearance task. Especially,
the class of evolutionary algorithms like genetic algorithms, evolutionary strategies
and Differential Evolution showed high potential in finding worst case pilot inputs
for criteria such as the maximum angle of attack exceeding (alpha protection) or high
velocity/Mach Number (high speed protection). One of the main outcomes from this
study is a workflow for the optimization based clearance, which complements exist-
ing techniques (Gridding/MonteCarlo) by global and local optimizationmethods and
sensitivity analysis. In this paper, we propose to enhance this workflow by the use of
Optimal Control Theory andPostoptimal Sensitivity Analysis. The paper is organized
as follows. First we present the novel methodology and the proposed workflow. Then
we give a short introduction to Differential Evolution, Optimal Control Theory and
Postoptimal Sensitivity Analysis. To illustrate the methodology, we investigate the
height loss for a preliminary control design of a tilt rotor vehicle, from hover-mode
to forward flight.

2 Optimal Control Based Clearance of Flight Control Laws

The workflow proposed in [16] for the optimization based clearance of flight control
laws consists of four steps. First, a monte carlo analysis is performed to find worst
cases for the respective criteria in the flight envelope. These worst cases are then
used in a second step to initialize global optimization runs, to explore the search
space surrounding those worst cases. The results of global optimization are then
refined by local optimization methods, such as the quasi-Newton method in combi-
nation with cyclic coordinate descent. The last step consists of performing sensitivity
analysis for these refined solutions e.g. by parameter perturbation and re-simulation.
Reference [5] motivates the use of optimal control theory for the determination of
worst case pilot inputs and wind gusts. The authors investigated an aircraft model,
linearized around a horizontal steady state flight condition in the longitudinal and
lateral plane. Using a direct collocation scheme implemented in the MATLAB soft-
ware FALCON.m, the authors were able to obtain meaningful results for different
criteria, such as the maximum angle of attack exceeding in the longitudinal plane and
the maximum angle of sideslip exceeding in the lateral plane. These results motivate
further investigation of using Optimal Control Theory for flight control law testing.
For the solution of optimal control problems using direct transcription methods (e.g.
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Fig. 1 Novel workflow for optimal control based clearance of flight control laws

shooting or collocation) in combination with gradient based optimization, it is cru-
cial to provide good initial guesses. Therefore, we propose to enhance the workflow
from [16] by replacing the last two steps namely local optimization and sensitivity
analysis, by Optimal Control Methods and Postoptimal Sensitivity Analysis (Fig. 1).

3 Theoretical Background

3.1 Global Optimization: Differential Evolution

Differential Evolution (DE) is a global optimization algorithm, which has increas-
ingly gained attention due to its simple structure on one side, and its effectiveness
for a wide range of optimization problems on the other [14]. For the current appli-
cation, we use the classic DE implementation “DE/rand/1/bin”, for which the base
vector is selected randomly, one weighted difference vector is added to it and the
parameter crossover from the mutant vector follows a binomial distribution. The
basic algorithm is depicted in Algorithm 1. Here, we define the population of gener-
ation g = 1...gmax as P

g
z . This population consists of Np parameter vectors zgi with

i = 0, 1, ..., Np − 1. Each of the parameter vectors has Nz real valued elements zgi, j
for j = 0, 1, ..., Nz − 1. Similarly, we define the mutant vector population Pg

m and
the trial vector population Pg

t :

Pg
z =

⋃

i∈0,1,...,Np−1

zgi , z
g
i = [zgi,0, zgi,1, ..., zgi,Nz−1]T (1)
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Fig. 2 Illustration of mutation and crossover for differential evolution in a two dimensional para-
meter space

Pg
m =

⋃

i∈0,1,...,Np−1

mg
i ,m

g
i = [mg

i,0,m
g
i,1, ...,m

g
i,Nz−1]T (2)

Pg
t =

⋃

i∈0,1,...,Np−1

tgi , t
g
i = [t gi,0, t gi,1, ..., t gi,Nz−1]T (3)

At first, the initial population is generated by randomly assigning values between the
upper bounds zub and lower bounds zlb:

z0i, j = rand(0, 1) · (zub, j − zlb, j ) (4)

To evolve the existing generation, we first create the mutant population Pg
m . For each

mutant vector, we randomly pick three parameter vectors zgr0, z
g
r1 and z

g
r2, and add the

weighted difference vector of zgr1 and zgr2 with weight F ∈ [0, 1] to the base vector
zgr0:

mg
i = zgr0 + F · (zgr1 − zgr2) (5)

From the mutant vector mg
i , the trial vector tgi is constructed via crossover of the

elements, with crossover probability pc ∈ [0, 1]:

t gi, j =
{
mg

i, j i f (rand(0, 1) ≤ pc)

zgi, j else
(6)

Figure2 illustrates the generation of a trial vector in a two dimensional parameter
space. The grey lines in Fig. 2 represent the isolines of the cost function J .
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In the selection phase, the trial vectors tgi compete against the target vectors zgi
from the current population, by comparing their objective function values J (tgi )
and J (zgi ). The vectors with the lower cost values win and become part of the next
generation:

zg+1
i =

{
tgi i f J (tgi ) ≤ J (zgi )
zgi else

(7)

Algorithm 1 Differential Evolution - DE/rand/1/bin
1: F ← [0, 1], pc ← [0, 1],g ← 0
2: for all i ∈ 0, 1, ..., Np − 1, j ∈ 0, 1, ..., Nz − 1 do
3: z0i, j = rand(0, 1) · (zub, j − zlb, j )
4: end for
5: while g ≤ gmax do
6: g ← g + 1

Mutation

7: for all i ∈ 0, 1, ..., Np − 1 do
8: Select zgr0, z

g
r1, z

g
r2

9: mg
i = zgr0 + F · (zgr1 − zgr2)

10: end for

Crossover

11: for all i ∈ 0, 1, ..., Np − 1, j ∈ 0, 1, ..., Nz − 1 do

12: t gi, j =
{
mg

i, j i f (rand(0, 1) ≤ pc)

zgi, j else
13: end for

Selection

14: for all i ∈ 0, 1, ..., Np − 1 do

15: zg+1
i =

{
tgi i f J (tgi ) ≤ J (zgi )
zgi else

16: end for
17: end while

Please note that for the workflow proposed in Sect. 2, we modify the steps 2–
4 in Algorithm 1, and use Latin Hypercube Sampling (LHS) to initialize the first
generation. By doing so, we ensure that the algorithm is “warmstarted” with the
worst cases found by LHS, and explore the region around these worst cases using
DE.
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3.2 Optimal Control Theory

3.2.1 General Problem Statement

Optimal Control Theory [1–3] seeks to solve the following problem: Find the optimal
control u∗(t) which minimizes the Bolza cost function J

J = e(x(t f ), t f ) +
∫ t f

t0

L(x(t),u(t), t) dt. (8)

subject to the dynamic equation

ẋ = f(x(t),u(t), t) (9)

the initial and final boundary conditions at the initial time t0 and the final time t f

ψ(x(t0), x(t f )) = 0 (10)

and the equality and inequality path constraints

CPeq (x(t),u(t)) = 0 (11)

CPineq (x(t),u(t)) ≤ 0 (12)

which are defined on the time interval t ∈ [t0, t f ]. The general case of the Bolza
cost function includes the Mayer cost e(x(t f ), t f ), which only depends on the state
values at the end of the time horizon and the Lagrange cost L(x(t),u(t), t), which
is integrated from the starting time t0 to the terminal time t f . Note, that the above
formulation also allows for the introduction of the parameter p by introducing an
additional state xn+1 with:

ẋn+1 = 0 (13)

and the initial condition
xn+1(t0) = p (14)

3.2.2 Solution Strategies

Most of the solution strategies for optimal control problems can be classified into two
basic approaches. The first one is named the indirect approach and relies on deriv-
ing necessary conditions (Minimum Principle) and numerically solving a resulting
boundary value problem. To do so, it is useful to introduce the Hamiltonian H by
adjoining the right hand side of the dynamic equation (9), to the Lagrange cost
function L , using the costates λλλ(t) and the multiplier l0:
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H = λλλ(t) · f(x(t),u(t), t) + l0 · L(x(t),u(t), t) (15)

The Minimum Principle states that for the optimal control u∗, the Hamiltonian H
has to be stationary:

H(x∗(t),λλλ(t),u∗(t), t) = min
u

H(x∗(t),λλλ(t),u(t), t) (16)

and additionally the Euler Lagrange Equation:

λ̇λλ
T
(t) = −∇xH(x∗(t),λ(t)λ(t)λ(t),u∗(t), t) (17)

as well as the transversality conditions

λλλ(t0) = −∇x0 [l0 · e(x∗(t0), x∗(t f )) + σσσ T · ψ(x∗(t0), x∗(t f ))]T (18)

λλλ(t f ) = −∇x f [l0 · e(x∗(t0), x∗(t f )) + σσσ T · ψ(x∗(t0), x∗(t f ))]T (19)

have to be satisfied for (l0,λλλT ,σσσ T ) �= 0. The solution of the necessary conditions
usually requires the knowledge of the switching structure of the problem, and in
most real world applications with complex dynamics or constraints, the solution
using indirect methods is very difficult and often only possible for heavily simplified
models.

The second approach for solving optimal control problems is called the direct
approach and transcribes the infinite dimensional optimal control problem into a
finite dimensional parameter optimization problem. There exist various methods for
the transcription e.g. single shooting, multiple shooting or collocation. All of these
methods discretize the dynamic equation in time, and introduce additional equality
constraints, which ensure that the dynamic equation is satisfied. The main difference
between these transcription schemes is how the dynamics are discretized on the time
grid t = [t0, t1...t f ].

In case of single shooting using a Euler discretization scheme

xi+1 = xi + (ti+1 − ti ) · f(xi ,ui , ti ) (20)

we only introduce the initial state x0 and the controls u0... f additional to the np

parameters p1...np to obtain the optimization parameter vector zSS:

zSS = [p1...np , x0,u0... f ]T (21)

In order to improve numerical stability it is often necessary to introduce ns addi-
tional shooting-nodes xs0...ns−1 at distinct time points ti at which the dynamic equality
constraints
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Cdyn, j = xs j − x(ti ) = 0, j = 0...ns − 1 (22)

have to be fulfilled. This method is called multiple shooting and yields the following
parameter vector:

zMS = [p1...np , xs0...ns−1 ,u0... f ]T (23)

A third option is to use collocation methods e.g. the trapezoidal collocation scheme
for which we introduce one state and control per time discretization point. The
dynamic constraints Cdyn,i , i = 0... f − 1 in this case become:

Cdyn,i = xi+1 − xi − 1

2
· (f(xi ,ui , ti ) + f(xi+1,ui+1, ti+1)) · (ti+1 − ti ) (24)

and the parameter vector contains the parameters p1...np and the fully discretized
states and controls x0... f ,u0... f :

zCol = [p1...np , x0... f ,u0... f ]T (25)

In case of collocation methods the resulting optimization problem exhibits a strongly
decoupled and hence sparse structure at the cost of a greatly increased number of
optimization variables and constraints.

Additional to the dynamic constraintsCdyn the equality and inequality constraints
(11) and (12) are discretized on the time grid t:

CPeq ,i (xi , ui ) = 0 (26)

CPineq ,i (xi , ui ) ≤ 0 (27)

The residual vector F holds the cost function (8), the dynamic constraints (22) or
(24) and the discretized inequality and equality constraints (26), (27) to be satisfied:

F = [ψ(x(t0), x(t f )),CPeq ,0... f ,CPineq ,0... f ,Cdyn,0...ns−1/ f −1]T (28)

Both, the parameter vector z and the residual vector F are required to satisfy box
constraints with the respective upper and lower bounds zub, zlb,Fub, Flb:

zlb ≤ z ≤ zub (29)

Flb ≤ F ≤ Fub (30)
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3.3 Post-optimal Sensitivity Analysis

Postoptimal Sensitivity Analysis [4, 7] provides the sensitivities of the optimal solu-
tion with respect to parametersωωω. The derivation of the local sensitivities is based on
the Fiacco equation, which is obtained by applying the implicit function theorem to
the Karush–Kuhn–Tucker (KKT) conditions. The resulting sensitivity equation for
the parameter vector z, and the Lagrange-multipliers λλλ, for the constraints reads:

(
dz
dωωω
dλλλ
dωωω

)
=

[∇zzL ∇zCa
T

∇zCa 0

]−1

·
(∇zωωωL

∇ωωωCa

)
(31)

In (31), Ca are the active equality constraints and L is the Lagrangian defined as:

L (z,λλλ;ωωω) = J (z;ωωω) + λλλT · Ca(z;ωωω) (32)

This equation provides a first order approximation for perturbations Δωωω, to obtain
updates for the parameter vector and the Lagrange multipliers:

ẑ = z + dz
dωωω

· Δωωω (33)

λ̂λλ = λλλ + dλλλ

dωωω
· Δωωω (34)

Furthermore, the first and second order sensitivities of the objective function can
be computed as follows [4]:

d J

dωωω
= ∇z J

dz
dωωω

+ ∇ωωω J (35)

d2 J

dωωω2
=

(
dz
dωωω

)T

∇zzL
dz
dωωω

+ 2

(
∇ωωωzL

dz
dωωω

)T

+ ∇ωωωωωωL (36)

These sensitivities are used to study the effect of parameters on the objective function
of the optimization problem. In particular, they provide sensitivities of second order
for the worst cases, found by solving the optimal control problem for the respective
clearance criteria.
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4 Case Study: Testing of the Preliminary Design of a
Tilt-Rotor

4.1 Plant - Model Equations

For the case study a 2-D model of a vertical take-off and landing vehicle with tilt
rotor mechanism is considered. The reduced model has three degrees of freedom
where the translational motion is described in xB and zB direction and the rotation
is considered around the pitch axis yB . This aerial vehicle possesses seven control
effectors: two rotors on the fuselage, two rotors on the wings with tilt mechanisms
and symmetrical elevators at the tail. The propulsion, gravitational and aerodynamic
forces acting on the airframe are described in the following.

4.1.1 Propulsion Forces and Moment

Thrust and drag forces from the propeller are taken as follows:

T = CTω2ρ
d4π2

4
(37)

D = CHω2ρ
d4π2

4
V R
A (38)

Here V R
A is the aerodynamic velocity at the aircraft reference point R, and CH and

CT are drag and thrust constants of the propeller, ω is the motor rotational speed, d is
the diameter of the rotor and ρ is the atmospheric density. The resulting propulsion
force (FP

P)P at the propulsion point P in the propulsion frame P reads:

(FP
P)P =

[−D
−T

]

P

(39)

Using the tilt rotor angle δ, the transformationMPB from body frame B to propulsion
frame P is defined as follows:

MPB =
[
cos(δ) sin(δ)

−sin(δ) cos(δ)

]
(40)

Note, that the tilt angle δ is zero for rotors on fuselage. Using this transformation we
obtain the propulsion forces and moments at the reference point R in the body fixed
frame B:

(FR
P)B = MT

PB · (FP
P)P (41)

(MR
P)B = rRP × (FP

P)B (42)
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4.1.2 Gravitational Forces and Moments

The gravitational forces andmoments resulting from aircraftmassm and acceleration
g is transformed from the North-East-Down frame O to the body fixed frame B using
the Euler angle θ around the pitch axis:

(FR
G)B =

[
cos(θ) −sin(θ)

sin(θ) cos(θ)

]
·
[

0
m · g

]

O

(43)

(MR
G)B = rRG × (FR

G)B (44)

Here rRG is the distance from the reference point R to the center of gravity G.

4.1.3 Aerodynamic Forces and Moments

For the aerodynamic forces and moments, the wing and tail section are considered
separately. The aerodynamic angle of attack for thewingαw is determined as follows:

αw = atan2

(
(wG

A )EB − (ωI B
y )B · (x RW )B

(uG
A )EB + (ωI B

y )B · (zRW )B

)
+ α0 + i (45)

Here (uG
A )EB and (wG

A )EB are aerodynamic velocities at the center of gravity G in xB
and zB direction of the body frame B. (ωI B

y )B is the angular velocity around the pitch
axis, (x RW )B and (zRW )B are the distances from the wing reference point W to the
reference point R, α0 is the angle of attack at zero velocities and i is the inclination
angle. The transformation matrix from body axis to wing axis is determined as:

MWB =
[
cos(αw) − sin(αw)

sin(αw) cos(αw)

]
(46)

The aerodynamic forces for the wing (FW
W )W originating from the lift and drag forces

LW and DW at thewing reference pointW in wing frameW are calculated as follows:

LW = 1

2
· ρV R

A
2
SWCLα,Wαw (47)

DW = 1

2
· ρV R

A
2
SWCDα,Wαw (48)

(FW
W )W =

[−DW

−LW

]

W

(49)
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Here CLα,W and CDα,W are the wing aerodynamic coefficients, αW is the angle of
attack of the wing and SW is the wing reference area. The aerodynamic forces and
moments from the wing at the reference point R denoted in the body frame B are
determined as:

(FR
W )B = MT

W B · (FW
W )W (50)

(MR
W )B = rRW × (FW

W )B (51)

with the distance from the reference point R to the wing reference point W being
rRW . The whole tail section of the aircraft is allowed to move, and hence acts as
elevators. Similar to (45) the angle of attack of the tail αt is calculated as follows:

αt = atan2

(
(wR

A)EB − (ωI B
y )B · (x Rt )B

(uR
A)

E
B + (ωI B

y )B · (zRt )B

)
(52)

and the transformation matrix from body axis B to tail axis t is determined as

Mt B =
[
cos(αt ) − sin(αt )

sin(αt ) cos(αt )

]
(53)

The aerodynamic forces (Ft
t )t for the tail at the tail reference point t in tail frame t are

computed from the lift and drag forces Lt and Dt using the aerodynamic coefficients
CLα,t andCDα,t , the reference area St , the angle of attack at the tail αt and the elevator
deflection η:

Lt = 1

2
· ρV R

A
2
SCLα,t (αt + η) (54)

Dt = 1

2
· ρV R

A
2
SCDα,t (αt + η) (55)

(Ft
t )t =

[−Dt

−Lt

]

t

(56)

The aerodynamic forces and moments from the tail t at reference point R in body
frame B can then be determined as:

(FR
t )B = MT

t B · (Ft
t )t (57)

(MR
t )B = rRt × (Ft

t )B (58)

with the distance from the reference point R to the tail reference point r being rRt .
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4.1.4 Total Forces and Moment

The forces and moments are summed together to obtain the total forces (FR
T )B and

the moment (MR
T )B in the body frame B and acting on the airframe at reference point

R:
(FR

T )B = (FR
P)B + (FR

G)B + (FR
W )B + (FR

t )B (59)

(MR
T )B = (MR

P )B + (MR
G )B + (MR

W )B + (MR
t )B (60)

4.1.5 Equations of Motion

The state derivatives are finally determined from following equations of motions
with the aircraft mass m and the moment of inertia around the pitch axis Iyy :

• Position: [
ẋ
ḣ

]
=

[
cos(θ) sin(θ)

sin(θ) −cos(θ)

]
·
[
(uR

K )EB
(wR

K )EB

]
(61)

• Attitude:
θ̇ = (ωI B

y )BB (62)

• Translation: [
(u̇ R

K )EBB
(ẇR

K )EBB

]
=

[
−(ωI B

y )B · (wR
K )EBB

(ωI B
y )B · (uR

K )EBB

]
+ (FR

T )B

m
(63)

• Rotation:
(ω̇I B

y )BB = (Iyy)
−1(MR

T )B (64)

Furthermore we consider PT2 transfer functions between the commanded values δc
and the effector reactions δ

G(s) = δ

δc
= ω2

n

s2 + 2ξωns + ω2
n

(65)

This is done for each of the control effectors, namely the elevator η, the tilt angles
for the rotors at the wing tips δ1 and δ2, the two propellers at the left and right wing
tips ω1 and ω2 and the propellers at the tail section ω3 and ω4. In order to introduce
a smooth wind disturbance we additionally introduce a first order filter

(V̇R
W )EBB = (VR

W )EB,cmd − (VR
W )EB

τw
(66)

for the wind components of (VR
W )EB : the velocities (uR

W )EB and (wR
W )EB relative to the

earth E , acting on the reference point R and denoted in the body fixed frame B.
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The resulting state space model for the plant thus consists of 22 states comprised
of the rigid body equations of motions, the second order actuator transfer functions
and the first order filters for the wind disturbance.

4.2 Incremental NDI Control Structure

4.2.1 Governing Equations

The baseline control law implements the incremental nonlinear dynamic inversion
technique [15]. Consider an aircraft dynamic model,

ẋ = F(x,u) = f(x) + g(x,u) (67)

y = h(x) (68)

using Taylor expansion,

ẋ = f(x0) + g(x0,u0) + ∂f
∂x

∣∣∣∣
x0

(x − x0) + ∂g
∂u

∣∣∣∣
x0,u0

(u − u0) (69)

ẋ = ẋ0 + ∂[f(x) + g(x,u)]
∂x

∣∣∣∣
(x0,u0)

(x − x0) + ∂g
∂u

∣∣∣∣
x0,u0

(u − u0) (70)

and differentiating equation (68):

ẏ = ∂h
∂x

ẋ (71)

ẏ = ∂h
∂x

ẋ0 + ∂h
∂x

∂[f(x) + g(x,u)]
∂x

∣∣∣∣
(x0,u0)

(x − x0) + ∂h
∂x

∂g
∂u

∣∣∣∣
x0,u0

(u − u0) (72)

yields:
ẏ − ẏ0 = δẏ = A(x0,u0)δx + B(x0,u0)δu (73)

The control effectors directly controls accelerations, while the states are integra-
tions of accelerations. For high control frequencies, the increments of states aremuch
smaller than the increments of inputs. Therefore, Eq. (73) can be further simplified
by eliminating the term A(x0,u0)δx:

δẏ = B(x0,u0)δu (74)
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4.2.2 Controller Structure

The pilot commands velocities in xO and zO direction of the NED frame, and the
pitch angle θ . A linear reference model is designed to force the controlled variables
to follow a reference trajectory. A relative degree 1 reference model is implemented
for the velocities, and a relative degree 2 reference model is used for the pitch angle.
Furthermore error controllers are implemented to account for model uncertainties.
The reference model and error controller states add six additional states to the 22
plant states, which results in a total number of 28 states for the closed loop system.
The on-board plant model, which is used to determine the control effectiveness B
consists of the complete set of aerodynamic, propulsion and the gravitation model
from Sect. 4.1. Current state accelerations are estimated using equations of motion in
this on-board plantmodel and the estimated reactionνννest and the control effectiveness
matrixB are given as outputs. The desired pseudo-commandΔνννdes is then calculated
as

Δνννdes = νννre f − νννest (75)

In this preliminary case study the required control effector deflectionΔucmd is deter-
mined using weighted-pseudo inverse with weighting matrix Λu :

Δucmd = Λu(BΛu)
+Δνννdes (76)

Finally Δucmd is added to ui−1 from the previous time step, and subsequently fed to
the plant.

4.3 Problem Formulation and Results

4.3.1 General Problem Formulation

The problem we solve using the proposed workflow from Sect. 2, is to test for height
loss during the transition phase from hovering mode to forward flight. The cost
function J to be minimized is the maximum height loss over the time horizon t ∈
[t0, t f ]:

min
z

J (z) = min
z

min
t∈[t0,t f ]

h(t) (77)

The simulation is performed byEuler’smethod using a step size ofΔt = 0.001swith
an initial time of t f = 0 s and a final time of t f = 10 s. This time span is sufficient
to allow the vehicle to perform the complete transition. Additionally, we set the
initial condition for hover flight with zero velocities in 10m height. Throughout the
optimization, the commanded velocity ucmd is 5m

s and the other control inputs are
zero:
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⎛

⎝
ucmd

wcmd

θcmd

⎞

⎠ =
⎛

⎝
5m

s
0
0

⎞

⎠ (78)

4.3.2 Step 1: Latin Hypercube Sampling

In the first step, Latin Hypercube Sampling is performed with 250 samples using the
MATLAB function lhsdesign(). For the wind gust parametrization we introduce the
timepoints for the wind commands Tu and Tw and the command values for the wind
gusts uW,cmd and wW,cmd

t0 ≤ Tu ≤ t f (79)

t0 ≤ Tw ≤ t f (80)

uW,cmd,lb ≤ uW,cmd ≤ uW,cmd,ub (81)

wW,cmd,lb ≤ wW,cmd ≤ wW,cmd,ub (82)

with uW,cmd,lb = wW,cmd,lb = −2m
s and uW,cmd,ub = wW,cmd,ub = +2m

s and the time
constant τW = 3s for the filter in (66).

Additionally,we add twoparameters for the uncertainties inmassΔm andmoment
of inertia ΔIyy :

Δmmin ≤ Δm ≤ Δmmax (83)

ΔIyymin ≤ ΔIyy ≤ ΔIyymax (84)

These parameters have the bounds Δmmin = ΔIyymin = 90% and Δmmax =
ΔIyymax = 110% and are used to pertube the nominal values Iyynom and mnom as
follows:

m = Δm · mnom (85)

Iyy = ΔIyy · Iyynom (86)

Please note, that the bounds of the wind disturbance and parameter uncertainties are
chosen very carefully here as the control structure is still under development.

4.3.3 Step 2: Differential Evolution

The following global optimization is initialized by the 25 worst cases found by LHS.
In case of Differential Evolution, we now use five parameters for each wind gust
command ucmd,1,...5, wcmd,1,...5 on a fixed equidistant grid for the control inputs. To
translate the step inputs from LHS with step times Tu and Tw on the DE grid, we take
the closest value on the equidistant time grid (see Fig. 3).
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Fig. 3 Translation of the worst case wind command input from LHS to DE

For the classic DE algorithm “DE/rand/1/bin” implemented in the solver DeMat
[14], we set the population size to Np = 25, the weighting factor to F = 0.8, the
crossover probability to pc = 0.7 and themaximumnumber of generations to gmax =
50.

4.3.4 Step 3: Optimal Control

The initial guess for the subsequentOptimalControl (OC)problem is the best solution
from the DE optimization. In the example presented here the minimum height found
from global optimization was at the final time t f . The cost function is now altered to
maximize the height loss at this particular time point.

Now we refine the discretization even further using 40 discretization points for
each of thewind gust commands ucmd andwcmd . For this particular problemwe found
it sufficient to use single shooting due to the short time frame of the optimization.
For other problems, especially those who exhibit highly sensitive parameters or long
time intervals it may be required to introduce additional shooting nodes to lower the
sensitivities and thus enhance convergence.

The solver used here is the SQP-solver SNOPT [9] which requires the gradient of
the problem. We compute the gradient by the complex step method as described in
[11]. This method exploits the fact that using a complex step x + ih for a function
f (z) with sufficiently small step size h we can approximate the derivative of this
function up to machine precision by dividing the imaginary part of f (z + ih) and
by h. For the scalar case the equation reads:
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Table 1 Summary of worst cases

Step Height loss (m) Δm (%) ΔIyy (%)

Step 1: LHS 0.42 106.45 93.47

Step 2: DE 0.46 109.80 96.56

Step 3: OC 0.58 110.00 90.00

∂ f

∂z
≈ 	[ f (z + ih)]

h
(87)

On the one hand, the main drawbacks of this method are the fact that the complex
evaluation is computationally more expensive and that some of the functions, such as
<, >, min(), max() and abs() to name a few have to be redefined in order to evaluate
the model properly. On the other hand the derivatives are extremely accurate (in
the order of the machine precision) which reduces the “numerical noise” introduced
from finite difference approximations. Additionally, in MATLAB and SIMULINK
most of the built-in functions can be used both for complex and real algebra such
that the additional modeling requirements are greatly reduced.

4.3.5 Step 4: Postoptimal Sensitivities

For the Postoptimal Sensitivities we need to compute the Hessian of the Lagrangian
(see (31)) with respect to the optimal parameter vector zopt . Similarly we again use
the complex step method from [10] to compute the second derivatives.

The first and second order sensitivities d J
dωωω and d2 J

dωωω2 of the cost function (77) w.r.t.
ωωω = [Δm,ΔIyy]T are computed using (35) and (36) which allows us to approximate
the change in the cost function ΔJ (worst case) when changing the parameters by
Δωωω:

ΔJ = d J

dωωω
· Δωωω + ΔωωωT · d

2 J

dωωω2
· Δωωω (88)

4.3.6 Results

The comparison between the baseline height history without uncertainties and the
height trajectories for the different steps (LHS, DE, OC) for the transition phase is
depicted in Fig. 4.

The worst case height loss and the corresponding parameter combinations are
summarized in Table1.

The Postoptimal Sensitivities forωωω = [Δm,ΔIyy]T in this example revealed that
for theworst case the uncertainty in themassΔm has significant influence on the opti-
mal solution, but the uncertainty in the moment of inertiaΔIyy is almost neglectable.
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Fig. 4 Comparison of the height loss during transition from hover-mode to forward-flight

d J

dωωω
= [−0.98, 6.52 · 10−6]T (89)

d2 J

dωωω2
=

[ −0.34 −2.43 · 10−5

−2.43 · 10−5 −4.76 · 10−7

]
(90)

This can be explained by the fact that the influence of Iyy is mostly seen in dynamic
maneuvers where the attitude of the vehicle changes. In the example presented here,
the controller tries to keep the attitude angle at zero as required by θcmd = 0 and only
accelerates by tilting the rotors at the wings forward. This means that for the most
part of the transition phase the attitude remains approximately constant zero which
results in an acceleration maneuver without attitude change. For this maneuver Iyy
has almost no influence whereas the uncertainty in mass significantly influences the
acceleration and height loss for the worst case found.

Furthermore, as the parameters are subject to optimization we would expect a
zero first order sensitivity d J

dωωω at the optimal point, which is not necessarily the case

for the second order sensitivity d2 J
dωωω2 . In this specific case study the parameter values

converged to the boundary of the admissible parameter set. Therefore, the first order
sensitivity d J

dωωω is non-zero and provides the sensitivity of the cost function value with
respect to a change in the boundary value.
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5 Conclusions

In the present paper, we investigated a novel workflow for the clearance of flight
control laws with continuous control or disturbance inputs using Optimal Control
Theory and Postoptimal Sensitivity Analysis. For this methodology, sampling and a
global optimizationmethod are used to obtain good initial guesses for the application
of direct Optimal Control Methods. Additionally, first and second order approxima-
tions for the objective function (clearance criteria) were revised which can be derived
from Postoptimal Sensitivity Analysis. The workflow is illustrated in a case study for
the preliminary design of an INDI controller for a tilt rotor system. In the example
presented here the maximum height loss during the transition phase of this tilt-rotor
system with respect to uncertainties in mass, moment of inertia and wind gusts was
investigated. The results gave meaningful insights concerning the robustness of the
controller and allowed to determine the sensitivities of the solutionwith respect to the
uncertainties. Future work will be devoted towards the extension for more realistic
models and additional clearance criteria.
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