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Abstract. The Dempster-Shafer theory can be extended for fuzzy focal
elements. When knowledge from different sources is combined, member-
ship functions of the elements should be also joined. The paper suggests
a combination of knowledge by means of the conjunction of data-driven
membership functions. A discussion on an influence of the combination
on the basic probability assignment is provided. The method can be
helpful for medical knowledge transfer.
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1 Introduction

The Dempster-Shafer theory of evidence (DST) [1,5] may be extended for fuzzy
focal elements [6]. The extension consists in defining focal elements by means of
membership functions (mfs) that correspond to linguistic values. For instance if
a variable is a ‘glucose level’ then the mf ‘high’ can be used in a premise of a
diagnostic rule and this mf represents the medical symptom. A conclusions of
the rule is a diagnose, for example ‘diabetes’. Thus, a set of focal elements is
determined for each diagnosis. The basic probability assignment (bpa) which is
next defined becomes an evaluation of the rule weights. Afterwards, the belief
[1,5] can be calculated for all considered diagnoses and compared to chose the
diagnosis of the greatest belief value as the final conclusion. Such a use of the
DST is convenient in medical diagnosis support, but fuzzy focal elements create
not only new opportunities, but also new problems to solve. One of them is the
combination of assignments.

Medical knowledge represented by focal elements and the bpa should be sub-
jected to combination from different sources, i.e. an expert and a training data-
base or from two experts, as well as from two databases [7]. The classical DST
combination refers only to bpas, while mfs require an individual treatment [7].
The present paper suggests an approach for the fuzzy focal elements combination
and makes an attempt to solve several related problems. Firstly, a conjunction
is proposed for the combination. Secondly, a dependence between a similarity of
combined focal elements and changes in resulting bpa are studied. Since similar-
ity factors for a comparison of mfs and bpas are necessary, a choice of the factors
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as well as an evaluation criteria for the combination effectiveness are proposed.
Conclusions are driven as a result of multiple numerical simulations, which are
close to a simplified task of medical diagnosis support and face usual difficulties
of medical knowledge transfer. Theoretical background for the extension of the
DST for fuzzy focal elements is given in [6,7] and other works of the author.
Because of the limited length of this paper, only the most necessary information
is provided. For the same reason experiments are shortly summarized. Yet, every
interested reader can easily build and investigate the proposed diagnostic model.

2 DST for Fuzzy Focal Elements

The bpa for fuzzy focal elements [6] is defined as:

m(f) = 0,
∑

si∈S,i=1,...,n
ηi>ηBP A

m(si) = 1. (1)

where ηBPA is the minimal level of precision for which a symptom is considered
as carrying information. The symptom is defined by means of the μ(x) mf and η
is the actual precision of a symptom found for the x∗ data case, i.e. η = μ(x∗).
For a premise including n symptoms η = minj=1,...,n(μj(x∗

j ). The bpa can be
found from data when mfs for symptoms are determined. To this end, the ηBPA

threshold is assumed and a number of data cases that fit mfs better than the
threshold (η ≥ ηBPA) is counted. After normalization of the numbers for all
symptoms the (1) conditions hold true [7].
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Fig. 1. Mfs for two competitive diagnoses: D1 (solid line) and D2 (dashed line).

Shapes of mfs are based on quartiles and intersection points of the training
data distributions [6]. The quartile indicates the point for which μ(x) = 1, while
the intersection point determines the point of half membership (μ(x) = 0.5).
The intersection point is the x value for which theoretical distributions of x
for two competitive diagnoses crosses [6]. When quartiles and the intersection
point do not correspond each other then quartiles make the mfs with ‘steep’
slopes, e.g. with 100 coefficient gradient. The Fig. 1 shows mfs for two diagnoses
(D1, D2), each of them considering symptoms as low and high values of the
variables x1, x2 and x3. Training data distributions for x2 are incompatible, so
mfs shapes for this variable are ‘steep’.
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3 A Model of a Diagnosis

Let us assume that the diagnosis is based on three symptoms: X1, X2 and X3.
The symptoms are numerical variables which low values are assigned to the D1

diagnosis and high values to the D2. The symptoms X2 and X3 are correlated,
since disorders of the human body are often related. Thus, four rules can be
formulated for Dk, k = 1, 2:

s
(k)
j : IF Xj is A

(k)
j then Dk, j = 1, 2, 3,

s
(k)
4 : IF X2 is A

(k)
2 and X3 is A

(k)
3 then Dk.

The linguistic values A
(k)
j , j = 1, 2, 3, for D1 are represented by the ‘low’ mf

μ(1)(xj), and for D2 by the ‘high’ mf μ(2)(xj). Mfs are data driven using simu-
lated data of numbers generated from the normal distribution: one-dimensional
for X1 and two-dimensional for X2 and X3. In the present model it is assumed
that X1–X3 have different distributions for the D1 diagnosis and the same dis-
tribution for the D2. Obviously, parameters of the distributions differ and each
training data case is independently simulated. The bpas are calculated assuming
ηbpa = 0.5. Bpas for different data sets are compared.

Similarity of bpas can be determined concerning a cardinality of focal ele-
ments. To this end, the Jaccard index matrix [2] is defined:

J (k)(si, sj) =

∣∣∣s(k)i ∩ s
(k)
j

∣∣∣
∣∣∣s(k)i ∪ s

(k)
j

∣∣∣
, i, j = 1, 2, 3; k = 1, 2. (2)

The index matrix for the proposed focal elements and the both diagnoses is:

B =

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0.5
0 0 1 0.5
0 0.5 0.5 1

⎤

⎥⎥⎦ . (3)

Let us assume that the diagnostic knowledge comes from two sources of
information, particularly, the mfs originate from two populations. A combination
of them could be the conjunction, since a cautious approach is presumed in
medicine [7]. Let us use the simplest conjunction which is the minimum of mfs.
Now, it should be investigated how differences in training data may influence
variability of bpas. Various diagnostic situations are considered as it is described
in the next section. Mfs of two sets will be compared, then combined and the
result will be compared to the mf obtained for the data of both sets put into
the one set. The bpas change along with mfs, so they will be compared in the
same way. The comparisons should show how resistant are bpas for changes of
knowledge, or – on the other hand, if we can tell irrelevant data from the changes
of mfs or bpas.
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4 Simulated Data

Five samples of data are simulated, each of them includes 100 data sets. Every
data set contain 400 cases, i.e. 200 for each of two diagnoses. Each data sample
is generated for different parameters of the normal distribution N(x̄, σ), where
x - mean, σ) - variance. When correlated data are necessary, data of two-
dimensional distribution of the mentioned mean and variance are generated.
Normality of data is verified by the Matlab� Liliefors test. The correlation coef-
ficient maintains r ≥ 0.5, except for N(10, 5) sample, for which r ≥ 0.2. In the
present paper the following samples are used:

Sample 1 – is the ‘mixed sample’. Its single set includes 100 cases from distrib-
ution 1 and 100 from distribution 2, for each diagnosis. Distribution 1 for D1 is:
N(1,1) for x1, two-dimensional normal distribution of means x̄2 = x̄3 = 1 and
variances σ2 = 2, σ3 = 3 for x2 and x3. Distribution 2 for D1 is: N(1,2) for x1,
two-dimensional normal distribution of means x̄2 = x̄3 = 1 and variances σ2 = 3,
σ3 = 4 for x2 and x3. Distribution 1 for D2 is: N(5,1) for x1, two-dimensional
normal distribution of means x̄2 = x̄3 = 5 and variances σ2 = σ3 = 1 for x2

and x3. Distribution 2 for D2 is: N(5,2) for x1, two-dimensional normal distri-
bution of means x̄2 = x̄3 = 5 and variances σ2 = σ3 = 2 for x2 and x3. This
sample should simulate combining knowledge from two similar, but not identical
populations, for instance social groups of different living conditions or habits.

Sample 2 – is another ‘mixed sample’. A data set includes 200 data cases from
one distribution for the D1 and twice 100 cases from various distributions for the
D2. Distribution for D1 is: N(1,2) for x1, two-dimensional normal distribution
of means x̄2 = x̄3 = 1 and variances σ2 = 3, σ3 = 4 for x2 and x3. Distribution
1 for D2 is: N(5,2) for x1 and two-dimensional normal distribution of the same
means and variances for x2 and x3. Distribution 2 for D2 is: N(10,5) for x1and
two-dimensional normal distribution of the same means and variances for x2 and
x3. This sample may simulate situation when irrelevant data are attached to the
training set.

Sample 3 – is a ‘uniform sample’, its sets include 200 data cases from one dis-
tribution for the D1 diagnosis and the same number from another distribution
for the D2. Distribution for D1 is: N(1,1) for x1, two-dimensional normal dis-
tribution of means x̄2 = x̄3 = 1 and variances σ2 = 2, σ3 = 3 for x2 and x3.
Distribution for D2 is: N(5,1) for x1, two-dimensional normal distribution of the
same means and variances for x2 and x3. Consistent knowledge from two sources
is simulated by this sample. Variances are small and means are not close to each
other which means that symptoms are quite significant and the diagnosis is easy.

Sample 4 – is the second ‘uniform sample’, with greater variances. Its structure
is analogical to Sample 3. Distribution for D1 is: N(1,2) for x1, two-dimensional
normal distribution of means x̄2 = x̄3 = 1 and variances σ2 = 3, σ3 = 4
for x2 and x3. Distribution for D2 is: N(5,2) for x1, two-dimensional normal
distribution of means x̄2 = x̄3 = 5 and variances σ2 = σ3 = 2 for x2 and x3.
The sample simulates consistent knowledge when symptoms are less significant
and the diagnosis is more difficult.
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Fig. 2. A comparison of similarity factors for mfs.

Sample 5 – is the third ‘uniform sample’, yet the D2 symptoms are very ambigu-
ous with great variance and a distant mean. Its structure is the same as two
previous samples. Distribution for D1 is the same as for the Sample 4. Distri-
bution for D2 is: N(10,5) for x1, two-dimensional normal distribution of means
x̄2 = x̄3 = 10 and variances σ2 = σ3 = 5 for x2 and x3. The sample simulate a
diagnosis when symptoms of D1 and D2 have very different characteristics.
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Fig. 3. A comparison of similarity factors for bpas.

5 Similarity Factors

Numerical experiments on mfs and bpas must be preceded by the choice of proper
similarity factors. Let us first discuss factors of mfs comparison. The simplest is
the maximum absolute distance:

cu(μ1, μ2) = max
x

(|μ1(x) − μ2(x)|), (4)

that is numerically calculated for multiple x points (e.g. n = 300). The distance
represents rather a difference than a similarity, but the minimal distance cannot
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Fig. 4. Change of shape of mfs for two data sets of Sample 3.
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Fig. 5. Values of cs for Sample 1,3,4 and 5.

be used for trapezoid mfs, as there must be a point in which compared mfs both
equal 1 (see Fig. 4). The Euclidean distance is also applicable:

ce(μ1, μ2) =

√√√√
n∑

i=1

(μ1(xi) − μ2(xi))2. (5)

Another possible similarity factor is [4]:

cs(μ1, μ2) =
∣∣∣min

x
(μ1(x), μ2(x))

∣∣∣ +
∣∣∣max

x
(μ1(x), μ2(x))

∣∣∣ − 1, (6)

calculated for the same points as (4) and (5).
In the Fig. 2 means, standard deviations, value intervals and outliers for sim-

ilarity factors cs, ce and cu for mfs of variables x1, x2 and x3 and two diagnoses
are presented. The mfs for the D1 are determined as in sample 2 and for the D2

according to the second distribution of this sample. The diagram is obtained for
100 data sets. The factors behave similarly. It is shown that for great variance
(for the N(10,5) distribution) outliers of similarity factors appear. For the D1

the factors cs and ce have small standard deviations. The former has greater
values, so it is chosen for further research of the mf comparison.
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Secondly, factors of evaluation the bpas similarity should be selected. Several
factors can be used. The simplest is the distance [8]:

da(m1,m2) = min(|m1 − m2|). (7)

The Euclidean distance can be also used:

de(m1,m2) =
√

(m1 − m2)′(m1 − m2). (8)

The distance with the Jaccard index (2), (3) evaluates focal elements [3]:

db(m1,m2) =
√

(m1 − m2)′B(m1 − m2). (9)

These distances have proved to be useful for combination of bpas [8], hence they
are also applied for the present evaluation. Results of their performance tests
are in the Fig. 3. Means, standard deviations, value intervals and outliers for the
factors are presented. They are obtained for a comparison of two bpas (m1 and
m2) calculated for the same data as mfs. The worst differentiation among various
data sets is given by da, while db and de are comparable. It can be expected that
if mf shapes are more sophisticated, db could work better than de. Thus, the db
factor (9) will be used further on.

Table 1. Similarity µ1 and µ2

Diagnosis D1 Diagnosis D2

smp par cs(x1) cs(x2) cs(x3) cs(x1) cs(x2) cs(x3)

1 x̄ 0.9339 0.9544 0.9456 0.9987 0.9968 1.0000

std 0.0521 0.0364 0.0349 0.0117 0.0321 0.0000

2 x̄ 0.1738 0.1857 0.1954 0.2015 0.2300 0.2300

std 0.3183 0.3402 0.3580 0.3711 0.4208 0.4208

3 x̄ 0.9555 0.9672 0.9568 0.9915 0.9978 0.9835

std 0.0490 0.0308 0.0383 0.0664 0.0152 0.0580

4 x̄ 0.9473 0.9535 0.9505 1.0000 1.0000 0.9976

std 0.0441 0.0393 0.0397 0.0000 0.0000 0.0243

5 x̄ 0.9721 0.9759 0.9718 0.9751 0.9880 0.9878

std 0.0187 0.0137 0.0133 0.0479 0.0248 0.0220

6 Similarity of Focal Elements and Its Influence
on Probability Assignment

The shapes of mfs influence the bpa, since it is calculated using frequency of
occurrence of training data cases. However, the dependence is not straightfor-
ward as the slope of the mf concerns an interval of a variable domain in which
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cases fall less frequently (the tail of the distribution) and one bpa value is influ-
enced by the other focal elements. The Fig. 4 illustrates mfs μ

(k)
1 (xj) and μ

(k)
2 (xj)

k = 1, 2, j = 1, 2, 3, obtained using two data sets of 100 elements each, μ
(k)
both

found as minimum of the mfs and μ
(k)
all determined for the joined cases (200

elements). Differences between mfs of the individual samples are easy to notice,
while between μboth and μall are less significant. This observation allows to sup-
pose that the conjunction can properly combine information given by mfs.

Table 2. Similarity µall and µboth

Diagnosis D1 Diagnosis D2

smp par cs(x1) cs(x2) cs(x3) cs(x1) cs(x2) cs(x3)

1 x̄ 0.9670 0.9769 0.9718 0.9999 1.0000 1.0000

std 0.0286 0.0190 0.0208 0.0010 0.0000 0.0000

2 x̄ 0.1820 0.2226 0.2257 0.2171 0.2216 0.2293

std 0.3344 0.4079 0.4130 0.3985 0.4057 0.4196

3 x̄ 0.9802 0.9809 0.9749 1.0000 1.0000 0.9998

std 0.0159 0.0175 0.0230 0.0000 0.0000 0.0013

4 x̄ 0.9736 0.9773 0.9742 0.9998 1.0000 1.0000

std 0.0219 0.0213 0.0226 0.0022 0.0000 0.0000

5 x̄ 0.9848 0.9856 0.9826 1.0000 1.0000 0.9998

std 0.0093 0.0077 0.0079 0.0000 0.0001 0.0007

The Table 1 show mean values (x̄) and standard deviations (std) of
cs(μ

(1)
1 (xj), μ

(1)
2 (xj)), j = 1, 2, 3, calculated for D1 and D2 for 100 sets of

data. The cs values for the D2 are very close to 1, since the variance of dis-
tribution for this diagnosis is quite low. The Sample 2 is an exception - this
sample is simulated for the distribution of high variance and its cs is low. In
Fig. 5 the cs(μ

(k)
1 (xj), μ

(k)
2 (xj)) vs. cs(μ

(k)
both(xj), μ

(k)
all (xj)), k = 1, 2, j = 1, 2, 3,

are depicted (except for Sample 2). In the left diagram it is noticeable, that a
dependence between the two cs is linear or better, i.e. the mf after combining
(μ(1)

both) is at least as similar to the mf μ
(1)
all as μ

(1)
1 to μ

(1)
2 . Few different values

of cs(μ
(2)
1 (xj), μ

(2)
2 (xj)) and cs(μ

(2)
both(xj), μ

(2)
all (xj)) are obtained. Points in the

right diagram represent multiple values and because of low sample variance the
similarity is even better. Complete calculation results of cs(μ

(k)
both(xj), μ

(k)
all (xj)),

k = 1, 2, j = 1, 2, 3 are in Table 2. They confirm that similarity of mfs after com-
bination is high for uniform mfs or mfs with low data variability. The standard
deviation of cs for the mfs is low. The opposite is observed for Sample 2.

The divergence between mfs influences differences of bpas, but a relation is
not straightforward. The Table 3 presents db(mboth,mall) related to db(m1,m2).
The mean values of the db are not very different, which may suggest that the
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bpa is quite resistant to changes of knowledge. It is noticeable that the standard
deviation of db(mboth,mall) is low for the uniform samples and high for the mixed
samples. Generally, this parameter for db(mboth,mall) is lower in comparison to
db(m1,m2) for uniform samples and higher for mixed samples. The only excep-
tion is the standard deviation for D2 and sample 1, but for this sample the mixed
distributions do not vary much. The cs and db values are not comparable, since
they are completely different measures. Yet, if we study the x̄/std coefficient for
the measures using values from Tables 1, 2 and 3, we see that this coefficient is
similar for sample 1, 3, 4 and 5 and very different for sample 2. Thus, the bpa is
resistant for small changes of data samples, but it is changed significantly when
irrelevant data are introduced.

Table 3. Similarity of bpas

db(m1,m2) db(mboth,mall)

D1 D2 D1 D2

1 x̄ 0.0135 0.0738 0.0082 0.0292

std 0.0140 0.1438 0.0154 0.0718

2 x̄ 0.0135 0.0107 0.0137 0.0067

std 0.0071 0.0066 0.0265 0.0137

3 x̄ 0.0171 0.0567 0.0115 0.0120

std 0.0117 0.1229 0.0070 0.0162

4 x̄ 0.0119 0.0499 0.0134 0.0105

std 0.0120 0.0926 0.0086 0.0074

5 x̄ 0.0117 0.0080 0.0045 0.0082

std 0.0070 0.0058 0.0023 0.0040

7 Conclusions

In the paper a method of fuzzy focal elements combination is suggested. Tests
performed on simulated data show that the conjunction of the elements defined
as minimum of mfs is the proper operation of joining knowledge represented
by the same linguistic values, but different fuzzy sets. Data simulated for the
normal distribution confirm that mfs after combining provide functions more
similar to the functions found for unified data, than the mfs to each other before
combining. If the combined mfs originate from consistent sources of data, also
the standard deviation of the bpa determined for combined focal elements is low.
It indicates that the generalization of knowledge is correct. On the contrary, the
great standard deviation of the resulting assignment appears when combined
mfs derive from differently distributed data. This means that the focal elements
and the assignment are sufficiently sensitive to a change of training data.
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Three diagnostic situations were modeled to test the combination character-
istics. The first was combining knowledge from the same source with different
training data sets. The tests resulted with similar mfs and the similarity factor
of basic probability values of low standard deviation. Thus, the method do not
spoil the basic assignment when the sources of information are consistent.

The second was joining knowledge from various, but not very different
sources. The combination outputs were similar mf and the similarity factor of
bpa with the standard deviation not very different from the previous test. Hence,
the method allows for some generalization of knowledge.

The third situation was modeled by different distributions and resulted with
less similar mfs and the bpa similarity factors of high standard deviation. There-
fore, knowledge from diverse sources should not be combined and fuzzy focal
elements as well as the bpa should be build separately for each individual popu-
lation. Moreover, if an assignment values after combination show high variance,
it should be suspected that the combination was unjustified.

The proposed method of knowledge combination and its features presented
for simulated data may facilitate medical knowledge transfer when diagnostic
rules remain the same, but populations disclose slightly different characteristics.
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