
Chapter 2
Optimal Power Allocation for Kalman
Filtering over Fading Channels

Kalman filtering with random packet drops has been studied extensively since the
work of [1], which showed that for i.i.d. Bernoulli packet drops, there exists a crit-
ical threshold such that if the packet arrival rate exceeds this threshold, then the
expected error covariance remains bounded, but diverges otherwise. This work has
been extended in various directions such as: multiple sensors [2, 3], further charac-
terizations of the critical threshold [4, 5], probabilistic notions of performance [6,
7], performing local processing before transmission [8], consideration of delays [9]
and Markovian packet drops [10, 11].

As mentioned in Chap.1, in wireless communications, power control is regularly
used to improve system performance and reliability [12, 13]. The primary focus
of the previously mentioned works is on deriving conditions for stability of the
estimator, and power control is not explicitly considered. However, power control
can also be used in Kalman filtering to improve the estimator stability and estimation
performance. For Kalman filtering over continuous fading channels, the use of power
control for outage minimization and expected error covariance minimization has
been studied in [14]. The works of [15, 16] consider the use of power control at
the sensor over a continuous fading channel, with the data being sent over this
channel after digital modulation, which would then give a corresponding packet
loss probability dependent on the transmit power at the sensor. Power allocation
using model predictive control techniques is considered in [15], while optimal power
allocation schemes to guarantee stability are investigated in [16].

In conventional wireless communication systems, the sensors have access either
to a fixed energy supply or have batteries that may be easily recharged/replaced.
In contrast, when energy harvesting capabilities are available, then the sensors can
recharge their batteries by collecting energy from the environment, e.g. solar, ther-
mal, mechanical vibrations, or electromagnetic radiation [17, 18]. In the context of
wireless sensor networks, the use of energy harvesting may be especially useful, e.g.
in remote locations with restricted access to an energy supply, and even mandatory
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where it is dangerous or impossible to change the batteries. The amount of energy
harvested is random as most renewable energy sources are unreliable. Clearly, the
energy expenditure at every time slot is constrained by the amount of stored energy
currently available. This, however, complicates the design of suitable transmission
power allocation policies. Communication schemes for optimizing throughput or
minimizing transmission delay for transmitters with energy harvesting capability
have been studied in [19–23], while a remote estimation problem with an energy
harvesting sensor was considered in [24], which minimized a cost consisting of both
the distortion and the number of sensor transmissions.

In this chapter, we adopt the channel model of [15, 16], but instead of using power
allocation to achieve filter stability, we are interested in the use of power allocation
to improve the estimation performance of the Kalman filter. Section2.1 first studies
optimal power allocation for sensors without energy harvesting capabilities. Here,
we focus on minimizing the trace of the expected error covariance subject to an
average transmit power constraint. The problem is formulated as a Markov decision
process (MDP) problem that can be solved numerically with dynamic programming
techniques. Two simpler suboptimal schemes are also investigated, namely a constant
power allocation scheme and a truncated channel inversion policy. Section2.2 then
investigates the situation with an energy harvesting sensor. An important issue is to
address the trade-off between the use of available stored energy to improve the current
transmission reliability (and thus state estimation accuracy), or the storing of energy
for future transmissionswhichmaybe affected by higher packet loss probabilities due
to severe fading. The optimal transmission energy allocation policies are obtained
by the use of dynamic programming techniques. Using the concept of submodularity
[25], the structure of the optimal transmission energy policies is also studied.

2.1 Optimal Power Allocation for Remote State Estimation

2.1.1 System Model

A diagram of the system model for this section is given in Fig. 2.1. Consider a linear
system

xk+1 = Axk + wk (2.1)

where xk ∈ R
n , and wk is i.i.d. Gaussian with zero mean and covariance matrix

Q > 0.1 The sensor makes a measurement

yk = Cxk + vk (2.2)

1We say that a matrix X > 0 if X is positive definite, and X ≥ 0 if X is positive semi-definite.
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Fig. 2.1 Transmission
power control for remote
state estimation

where yk ∈ R
m , and vk is i.i.d.Gaussianwith zeromean and covariancematrix R > 0.

We assume that the pair (A,C) is detectable and the pair (A, Q1/2) is stabilizable.
The measurement is then sent to a remote estimator over a packet dropping link,

which can be modelled as
zk = γk yk,

where zk is the quantity received at the remote estimator. Here, the measurement
yk is assumed to be encoded to form a single packet, and γk = 1 denotes that the
measurement packet is received (i.e. correctly decoded), while γk = 0 denotes that
the packet is lost (i.e. corrupted).2

Kalman Filter with Random Packet Drops

In order to estimate the state xk , the remote estimator runs a Kalman filter, which also
takes into account the random packet drops [1]. The Kalman filter state estimates
and error covariances are defined as:

x̂k|k = E[xk |z0, . . . , zk, γ0, . . . , γk]
x̂k+1|k = E[xk+1|z0, . . . , zk, γ0, . . . , γk]
Pk|k = E[(xk− x̂k|k)(xk− x̂k|k)T |z0, . . . , zk, γ0, . . . , γk]

Pk+1|k = E[(xk+1 − x̂k+1|k)(xk+1 − x̂k+1|k)T |z0, . . . , zk, γ0, . . . , γk].

The Kalman filtering equations with packet drops are given by:

x̂k|k = x̂k|k−1 + γk Kk(yk − Cx̂k|k−1)

x̂k+1|k = Ax̂k|k
Pk|k = Pk|k−1 − γk Pk|k−1C

T (CPk|k−1C
T + R)−1CPk|k−1

Pk+1|k = APk|k AT + Q,

(2.3)

where Kk = Pk|k−1CT (CPk|k−1CT + R)−1. In this chapter, we will also use the
shorthand Pk � Pk|k−1. Then {Pk} satisfies

Pk+1 = APk A
T +Q−γk APkC

T (CPkC
T +R)−1CPk A

T .

2In practice this can be determined using simple error detecting codes.
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Packet Drop Model

In this chapter, we will adopt a model from [15, 16] for the packet loss process
{γk} that is governed by a time-varying wireless fading channel {gk} and the sensor
transmit power control {uk} over this channel. In this model, the conditional packet
reception probabilities are given by

P(γk = 1|gk, uk) � f (gkuk) (2.4)

where f (.) : [0,∞) → [0, 1] is a monotonically increasing continuous function.
The form of f (.)will depend on the particular digital modulation scheme being used
[26], see e.g. (2.12) for the case of binary phase shift keying (BPSK) transmission.

We will consider the case where {gk} is an i.i.d. block fading process [27], where
the channel remains constant over a fading block (representing the coherence time
of the channel [28]) but can vary from block to block in an i.i.d. manner.

Kalman Filter Stability

We assume that channel state information (CSI) is available at the remote estimator,
such that the remote estimator knows the values of the channel gains gk at time
k.3 Since CSI is assumed to be available, we will allow the sensor transmit power
uk to depend on both gk and Pk . Note that if the energy allocation uk is computed
based on the estimation error covariance (and not the state xk), then the optimal
estimator is still given by the Kalman filter (2.3). In the next section, we consider
optimal power allocation to minimize the trace of the expected error covariance. Due
to limited computational resources at the sensor, the optimal sensor transmit powers
are computed at the remote estimator and fed back to the sensor.4

Using techniques from [29], we can obtain the following sufficient condition for
stability of the Kalman filter, for power control schemes {uk} which are allowed to
depend on the channel gains gk and error covariances Pk .

Theorem 2.1 Let ‖A‖ denote the spectral norm of A. If there exists an r ∈ [0, 1)
such that:

P(γk = 1) ≥ 1 − r

‖A‖2 , ∀k ∈ N,

then {Pk} satisfies
E[tr(Pk)] ≤ αrk + β, ∀k ∈ N (2.5)

for some α, β ∈ R.

3In practice, this can be achieved by periodically sending pilot signals either from the sensor to the
remote estimator to allow the remote estimator to estimate the channel, or from the remote estimator
to the sensor under channel reciprocity.
4In wireless communications, online computation of powers at the base station, which is then fed
back to the mobile transmitters, is commonly done in practice [12], at time scales on the order of
milliseconds.
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2.1.2 Optimal Power Allocation

Theproblemweconsider in this subsection is to determine the optimal sensor transmit
power allocation, in order to minimize the trace of the expected error covariance
subject to an average transmit power constraint P , i.e. we are interested in solving

min{uk }
lim sup
K→∞

1

K

K−1∑

k=0

E[tr(Pk+1)]

s.t. lim sup
K→∞

1

K

K−1∑

k=0

E[uk] ≤ P.

(2.6)

Remark 2.1 When the system matrix A is unstable (i.e. has eigenvalues outside the
unit circle), Kalman filtering with packet losses can have unbounded expected error
covariances in certain situations [1]. This then raises the question as to whether
problem (2.6) is well posed. In [16], we studied the problem of determining the
minimum average power required for guaranteeing that Theorem 2.1 is satisfied.
Choosing P in the average power constraint of problem (2.6) to be greater than
this minimum average power (see [16] for details on how to compute this minimum
average power) will be sufficient to make (2.6) well posed.

The optimization problem (2.6) can be regarded as a constrained average cost
Markov decision process (MDP) problem [30] with (Pk, gk) as the ‘state’ and uk as
the ‘action’ of the MDP. To solve this problem, we will use a Lagrangian technique
similar to [14, 30, 31] that considers instead the following unconstrained MDP
problem:

min{uk }
lim sup
K→∞

1

K

K−1∑

k=0

E[tr(Pk+1) + βuk]

= min{uk }
lim sup
K→∞

1

K

K−1∑

k=0

E[E[tr(Pk+1)|Pk, gk, uk] + βuk],
(2.7)

where β ≥ 0 specifies the trade-off between the average transmit power and expected
error covariance. Solving (2.7) for different values of β will then correspond to
minimizing the trace of the expected error covariance for different average transmit
power constraints in (2.6).

The average cost optimality equation or Bellman equation [32] associated with
problem (2.7) can be written as

ρ+h(Pk, gk) = min
uk

[
E[tr(Pk+1)|Pk, gk, uk] + βuk

+
∫

gk+1,Pk+1

h(Pk+1, gk+1)F(d(Pk+1, gk+1)|Pk, gk, uk)
]
,

(2.8)
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where ρ is the optimal average cost per stage, h the differential cost and F the
probability transition law of (Pk, gk).

We first show that there exist stationary solutions to the MDP (2.7). We will make
the following additional assumption:

Assumption 2.1.1 The range of uk is bounded, i.e. uk ∈ [0, umax ],∀k.
Such an assumption is obviously justified from a practical point of view.

Lemma 2.1 Under Assumption 2.1.1, there exists a stationary solution to the
Bellman equation (2.8) which solves the MDP (2.7).

Proof The proof involves verifying the conditions from [33] that guarantee the exis-
tence of stationary solutions for MDPs with Borel state and action spaces. The veri-
fication of these conditions is very similar to the proof of Lemma 3 in [14], see also
the proof of Theorem 2.3 in the appendix to this chapter. The details are omitted for
brevity. �

For computational purposes, the Bellman equation can be further simplified as
follows:

ρ + h(Pk , gk)

= min
uk

[
E[tr(Pk+1)|Pk , gk , uk ] + βuk

∫

gk+1,Pk+1

h(Pk+1, gk+1)F(d(Pk+1, gk+1)|Pk , gk , uk)
]

= min
uk

{
tr(APk A

T + Q) + βuk − f (gkuk)tr
(
APkC

T (CPkC
T + R)−1CPk A

T
)

+
∫

Pk+1,gk+1

h(Pk+1, gk+1)F(d(Pk+1, gk+1)|Pk , gk , uk)
}

(a)= min
uk

{
tr(APk A

T + Q) + βuk − f (gkuk)tr
(
APkC

T (CPkC
T + R)−1CPk A

T
)

+
∫

Pk+1,gk+1

h(Pk+1, gk+1)F(dPk+1|Pk , gk , uk)F(dgk+1)
}

(b)= min
uk

{
tr(APk A

T + Q) + βuk − f (gkuk)tr
(
APkC

T (CPkC
T + R)−1CPk A

T
)

+
∫

gk+1

[
h(APk A

T + Q, gk+1)(1 − f (gkuk))

+h
(
APk A

T+Q−APkC
T (CPkC

T+R)−1CPk A
T, gk+1

)
f (gkuk)

]
F(dgk+1)

}

(2.9)

where (a) follows from the fact that gk+1 is independent of Pk+1, and (b) follows from
writing out the conditional expectation E[h(Pk+1, gk+1)|Pk, gk, uk]. For numerical
implementation, a discretized version of the Bellman equation (2.9) can then be
solved using, e.g. the relative value iteration algorithm [32] to find solutions to the
MDP (2.7).
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Remark 2.2 The discretized solution is, strictly speaking, a suboptimal approxi-
mation to the true optimal solution, however, the use of discretization is generally
unavoidable forMDPswith continuous state and action spaces. As the number of dis-
cretization levels increases, the discretized solution usually converges to the optimal
solution [34].

Now let p∗(u) be the minimum trace of the expected error covariance such that the
average transmit power is less than u. By solving the MDP (2.7) for different values
of β, one can obtain points of the function p∗(u), corresponding to different trade-
offs between the average transmit power and trace of the expected error covariance,
see Fig. 2.2. We have the following characterization of the function p∗(u):

Lemma 2.2 Suppose f (.) in (2.4) is a strictly concave function. Then p∗(u) is a
decreasing strictly convex function of u.

Proof See Appendix.

An example of a strictly concave f (.) is given by (2.12) in Sect. 2.1.4. Using
Lemma2.2, one can conclude from the theory of Pareto optimality that all points
on the curve p∗(u) can be obtained by solving the MDP (2.7) for an appropriate
choice of β, see [35, 36] for further details.

2.1.3 Suboptimal Power Allocation Policies

The optimal solution considered in the previous section requires the solution of an
MDP, which is computationally demanding, particularly for vector systems. In this
section, we consider two suboptimal policies which are simpler to compute and
implement than the optimal solution of Sect. 2.1.2.

Constant Power Allocation

One very simple scheme is to use constant power allocation, where uk = uconst ,∀k.
With this policy, the conditional packet reception probabilities f (gkuconst ) will
depend only on the channel gain gk .

Truncated Channel Inversion

Another suboptimal scheme is based on the concept of channel inversion, which is a
simple but quite commonly used technique inwireless communications, that attempts
to invert the channel at every time instance to maintain a constant quality of service.
However, it is known that for certain fading distributions such as Rayleigh fading,
channel inversion actually requires infinite average power, so some modifications
to the scheme such as truncation (where channel inversion is only carried out if the
channel gain is sufficiently large) are necessary [37]. The power allocation policy
we consider here is of the following form:
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uk =
{

α/gk, if gk > g∗
α/g∗, otherwise (2.10)

where α and g∗ are values which can be designed. This scheme inverts the channel
gk and multiplies it by a gain α if gk is greater than some threshold g∗, otherwise it
transmits with the constant power α

g∗ . The average transmit power using this scheme
is

E[uk] =
∫ ∞

g∗

α

gk
F(dgk) +

∫ g∗

0

α

g∗ F(dgk)

= αE(g∗) + α

g∗ FG(g∗),∀k

where

E(g∗) �
∫ ∞

g∗

1

gk
F(dgk),

and FG(.) is the cumulative distribution function of gk . For instance, if gk ∼ Exp(1),
which is an example of Rayleigh fading [28], we have E(g∗) = ∫∞

g∗ exp(−gk)/gk
dgk = E1(g∗) (i.e. the exponential integral), and FG(g∗) = 1 − exp(−g∗).

In terms of the packet loss process {γk}, under this power allocation scheme,
γk = 1with conditional probability f (α)when gk > g∗, and γk = 1with conditional
probability f ( αgk

g∗ ) when gk ≤ g∗. That is, we have

γk =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, w.p. f (α)(1 − FG(g∗)) +
∫ g∗

0
f

(
αgk
g∗

)
F(dgk)

0, w.p. (1 − f (α))(1 − FG(g∗)) +
∫ g∗

0

(
1 − f

(
αgk
g∗

))
F(dgk).

Therefore, using this scheme, γk becomes an i.i.d. Bernoulli process with probability
of successful packet reception f (α)(1 − FG(g∗)) + ∫ g∗

0 f ( αgk
g∗ )F(dgk).

As the values α and g∗ can be chosen by us, we can optimize α and g∗ to minimize
the trace of the expected error covariance subject to an average power constraint, i.e.
solving problem (2.6) but with uk restricted to be of the form (2.10). For i.i.d. packet
losses, it is known that the expected error covariance is a decreasing function of the
packet reception probability [1]. Hence, the problem is equivalent to minimizing the
probability of packet loss subject to an average power constraint P , i.e.

min
α,g∗ (1 − f (α))(1 − FG(g∗)) +

∫ g∗

0

(
1 − f

(
αgk
g∗

))
F(dgk)

s.t. αE(g∗) + α

g∗ FG(g∗) = P.

(2.11)

We can further simplify problem (2.11) by rearranging the constraint to express α in
terms of g∗, i.e.
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Fig. 2.2 Average transmit
power versus expected error
covariance

α = P

E(g∗) + 1
g∗ FG(g∗)

.

The optimization problem (2.11) then becomes a one-dimensional line search over
g∗, which can be easily solved numerically.

2.1.4 Numerical Studies

We present here numerical results for a scalar system with parameters A = 1.2,
C = 1, Q = 1, R = 1. We consider the case where the digital communication uses
binary phase shift keying (BPSK) transmission [26] with b bits per packet, so that
we have

P(γk = 1|gk, uk) = f (gkuk) =
⎛

⎜⎝

√
gkuk∫

−∞

1√
2π

e−t2/2dt

⎞

⎟⎠

b

(2.12)

One can verify that f (.) is a strictly concave function for b ∈ {1, 2, 3, 4, 5}. In the
simulations below we use b = 4. The fading channel is taken to be Rayleigh [28],
so that gk is exponentially distributed with p.d.f.

p(gk) = 1

ḡ
exp(−gk/ḡ), gk ≥ 0

with ḡ being itsmean. Here, wewill use ḡ = 1. In solving theBellman equation (2.9),
we use 50 discretization points for each of the quantities Pk, gk, uk , see Remark2.2.
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Fig. 2.3 Optimal power allocations

In Fig. 2.2, we plot the average transmit power versus expected error covariance
trade-off, for the cases of optimal power allocation of Sect. 2.1.2, and the constant
power allocation and truncated channel inversion policies of Sect. 2.1.3. We see that
optimal power allocation has significant performance gains over the simpler subopti-
mal policies of Sect. 2.1.3 for low average transmit powers, with the performance of
the constant power allocation and channel inversion policies being almost identical.
While for higher average transmit powers, the truncated channel inversion policy has
performance approaching that of the optimal power allocation policy.

In Fig. 2.3, we plot a single simulation run of Pk and gk , together with the cor-
responding optimal power allocations uk . We can see that in the optimal power
allocation scheme, the allocated powers will depend on both the current channel
gain gk and error covariance Pk . The allocated power uk tends to be higher when the
error covariance Pk is larger, provided the corresponding channel gain gk is not too
small.

2.2 Optimal Power Allocation with Energy Harvesting

A diagram of the system architecture for this section is shown in Fig. 2.4. The model
for the process (2.1) and (2.2) and packet drops (2.4) is the same as that of Sect. 2.1.
We assume that the packet loss process {γk} is fed back to the sensor, which allows
the sensor to reconstruct the error covariances {Pk} at the remote estimator.
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Fig. 2.4 Transmission power control with energy harvesting

In contrast to Sect. 2.1, here, the sensor is equipped with energy harvesting capa-
bilities. Let the energy harvesting process be denoted by {Hk}, where Hk is the energy
harvested between the discrete time instants k−1 and k. The process {Hk} ismodelled
as a stationary, first-order, homogeneous Markov process, which is independent of
the fading process {gk}. This modelling for the harvested energy process is justified
by empirical measurements in, e.g. the case of solar energy [38].

We assume that the dynamics of the stored battery energy B(·) is given by the
following first-order Markov model

Bk+1 = min{Bk − uk + Hk+1, Bmax}, k ≥ 0, (2.13)

where uk is the transmission energy at time k, and Bmax is themaximum stored energy
in the battery.

2.2.1 Optimal Energy Allocation Problems

In this subsection, we formulate optimal transmission energy5 allocation problems
in order to minimize the trace of the receiver’s expected estimation error covariance.
Unlike the problem formulation in Sect. 2.1, here, the optimal energy policies are
computed at the sensor, since the sensor has information about the energy harvesting
and instantaneous battery levels, as well as knowledge of {Pk} from the feedback of
{γk}.

We consider the scenario of causal information, where the realizations of future
wireless fading channel gains and harvested energies are not a priori known to the
transmitter, see also Remark2.4. More precisely, the information available at the
sensor at any time k ≥ 1 is given by

5We measure energy on a per channel use basis and we will refer to energy and power interchange-
ably in this chapter.
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Ik = {st := (γt−1, gt , Ht , Bt ) : 1 ≤ t ≤ k} ∪ I0 (2.14)

where I0 := {g0, H0, B0, P0} is the initial condition.
The information Ik is used at the sensor to decide uk , the amount of transmission

energy to use at time k. This quantity affects both the packet loss process and the
amount of energy in the battery. A policy {uk} is feasible if the energy harvesting
constraint 0 ≤ uk ≤ Bk is satisfied for all k ≥ 1. The admissible control set is then
given by U := {

u(·) : uk is adapted to sigma-field σ(Ik) and 0 ≤ uk ≤ Bk
}
.

The optimization problems are now formulated as Markov decision processes for
the following two cases:

(i) Finite-time horizon:

min{uk :0≤k≤T−1}

T−1∑

k=0

E[tr(Pk+1)]

s.t. 0 ≤ uk ≤ Bk 0 ≤ k ≤ T − 1

(2.15)

(ii) Infinite-time horizon:

min{uk :k≥0} lim sup
T→∞

1

T

T−1∑

k=0

E[tr(Pk+1)]

s.t. 0 ≤ uk ≤ Bk k ≥ 0

(2.16)

where Bk is the stored battery energy available at time k, which satisfies the battery
dynamics (2.13). It is evident that the transmission energy uk at time k not only
affects the amount of stored energy Bk+1 available at time k+1, but thereby also the
transmission energy uk+1, since 0 ≤ uk+1 ≤ Bk+1 = min{Bk −uk + Hk+1, Bmax} by
(2.13). One of the key issues in solving problems (2.15) and (2.16) is to determine
if one should use a lot of energy at time k, or save up some of the energy for use at
future times.

We now give sufficient conditions under which the infinite horizon stochastic
control problem (2.16) is well posed when the system matrix A is unstable. With
well posedwe, here,mean that an exponential boundedness condition for the expected
estimation error covariance is satisfied. LetG andH be the time-invariant probability
transition laws of the Markovian channel fading process {gk} and the Markovian
harvested energy process {Hk}, respectively.

We introduce the following assumption:

Assumption 2.2.1 The channel fading process {gk}, harvested energy process {Hk}
and the maximum battery storage Bmax satisfy the following:
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sup
(g,H)

∫

gk

∫

Hk

(1−h(gk min{Hk, Bmax}))P(gk |gk−1=g)P(Hk |Hk−1=H)dgkdHk

≤ r

||A||2 , k ≥ 0 (2.17)

for some r ∈ [0, 1), where ||A|| denotes the spectral norm of A.

Theorem 2.2 Assume that Assumption 2.2.1 holds. Then there exist energy alloca-
tions {uk} such that E[Pk] satisfies;

E[tr(Pk)] ≤ αrk + β, k ≥ 0 (2.18)

for some nonnegative scalars α and β, and r ∈ [0, 1). As a result, the stochastic
optimal control problem (2.16) is well posed.

Proof Based on Theorem 1 of [39], a sufficient condition for exponential stability
in the sense of (2.18) is that

sup
(g,H)

P(γk = 0|gk−1 = g, Hk−1 = H)

= sup
(g,H)

∫

gk

∫

Hk

P(γk =0|gk =g′,Hk =H ′,gk−1=g,Hk−1=H)

× P(gk, Hk |gk−1=g, Hk−1=H)dgkdHk

= sup
(g,H)

∫

gk

∫

Hk

P(γk =0|gk =g′,Hk =H ′,gk−1=g,Hk−1=H)

× P(gk |gk−1=g)P(Hk |Hk−1=H)dgkdHk

= sup
(g,H)

∫

gk

∫

Hk

(1 − h(gkuk))P(gk |gk−1 = g)P(Hk |Hk−1 = H)dgkdHk ≤ r

‖A‖2

for some r ∈ [0, 1). We now consider a suboptimal solution to the stochastic optimal
control problem (2.16), where the full amount of energy harvested at each time step
is used, i.e. u0 = B0 and uk = min{Hk, Bmax} for k ≥ 1. Then with this policy
(2.17) will be a sufficient condition for (2.18) in terms of the channel fading process,
harvested energy process and the maximum battery storage. Therefore, Assumption
2.2.1 provides a sufficient condition for the exponential boundedness (2.18) of the
expected estimation error covariance. �

Remark 2.3 In general, condition (2.17) given by Assumption 2.2.1 may be difficult
to verify for all values of g, H and k. However, if we assume that the channel fading
and harvested energy processes are stationary, then it would not be necessary to
verify the condition for all k. Furthermore, in the two most commonly used models,
namely i.i.d. processes and finite state Markov chains, the condition (2.17) can be
simplified as follows:

(i) If {gk} and {Hk} are i.i.d., then (2.17) amounts to
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∫

gk

∫

Hk

(1 − h(gk min{Hk, Bmax}))P(gk)P(Hk)dgkdHk ≤ r

||A||2 .

(ii) If {gk} and {Hk} are stationary finite state Markov chains with state spaces
{1, . . . , M} and {1, . . . , N } respectively, then (2.17) becomes

max
(i, j)

M∑

i ′=1

N∑

j ′=1

(1 − h(i min{ j, Bmax}))P(gk = i ′|gk−1 = i)P(Hk = j ′|Hk−1 = j) ≤ r

‖A‖2 .

2.2.2 Solutions to the Optimal Energy Allocation Problems

The stochastic control problems (2.15) and (2.16) can be regarded as constrained
Markov decision process (MDP) [30] problems with sk := (Pk, gk, Hk, Bk) as the
state and uk as the control action. We will approach the constrained MDPs (2.15)
and (2.16) by the use of dynamic programming techniques.

Note that due to the existence of a perfect feedback link the sensor has knowledge
about whether its transmissions have been received at the receiver or not. Hence, at
time k the sensor knows {Pt : 0 ≤ t ≤ k}. The information available at the sensor at
time instant k ≥ 0 is given by (2.14), which can be easily shown to be equivalent to

Ik := {st = (Pt , gt , Ht , Bt ) : 0 ≤ t ≤ k}.

The causal information Ik is used to decide the amount of transmit energy uk
to be used at time k. The transmit energy policy is computed offline using dynamic
programming.We recall that a policyuk is feasible if the energyharvesting constraints
0 ≤ uk ≤ Bk = min{Bk−1 − uk−1 + Hk−1, Bmax} are satisfied for all k ≥ 1.

For the finite-time horizon problem (2.15), we may define the value function at
time k as

Vk(s) := min
{ul }T−1

l=k

T−1∑

t=k

E[tr(Pt+1)|st , ut ], s.t. sk = s.

The optimality equation or Bellman dynamic programming equation associated
with the constrained stochastic control problem (2.15) is then given by

Vk(sk) = min
0≤uk≤Bk

{
E[tr(Pk+1)|sk, uk] + E[Vk+1(sk+1)|sk, uk]

}
(2.19)

with the terminal condition

VT (sT ) := min
0≤uT ≤BT

E[tr(PT+1)|sT , uT ] = E[tr(PT+1)|sT , BT ],

where we use all available energy for transmission at the final time T .



2.2 Optimal Power Allocation with Energy Harvesting 23

The optimal transmission energy at time instant k ≥ 0 is

u∗
k(sk) = arg min

0≤uk≤Bk

{
E[tr(Pk+1)|sk, uk] + E[Vk+1(sk+1)|sk, uk]

}
(2.20)

where Vk+1(·) is the solution to the Bellman equation (2.19).
We now simplify the terms in (2.19). First, we have

E[tr(Pk+1)|sk , uk ] = tr
(
APk A

T + Q
)− f (gkuk)tr

(
APkC

T [CPkC
T + R]−1CPk A

T
)

with the constraint that 0 ≤ uk ≤ Bk . On the other hand,

E[Vk+1(sk+1)|sk , uk ] =
∫

sk+1

Vk+1(sk+1)F(dsk+1|sk , uk)

=
∫

Pk+1,gk+1,Hk+1,Bk+1

Vk+1(Pk+1, gk+1, Hk+1, Bk+1)F(d(Pk+1, gk+1, Hk+1, Bk+1)|Pk , gk , Hk , Bk , uk)

where F is the probability transition law. But this together with (2.13) implies that

E[Vk+1(sk+1)|sk, uk]
) =

∫

Pk+1,gk+1,Hk+1

Vk+1

(
Pk+1, gk+1, Hk+1,min{Bk − uk + Hk, Bmax}

)

× F(dPk+1|Pk, gk, uk)G(gk+1|gk)H(Hk+1|Hk)

which follows from the fact that the mutually independentMarkovian processes gk+1

and Hk+1 are independent of Pk+1. This gives

E[Vk+1(sk+1)|sk, uk]
)

(2.21)

=
∫

gk+1,Hk+1

{
Vk+1

(
APk A

T + Q, gk+1, Hk+1,min{Bk − uk + Hk, Bmax}
)

× (
1 − f (gkuk)

)

+ Vk+1

(
APk A

T + Q − APkC
T [CPkC

T + R]−1CPk A
T , gk+1, Hk+1,

min{Bk − uk + Hk, Bmax}
)

× f (gkuk)
}
G(gk+1|gk)H(Hk+1|Hk). (2.22)

Define

L (P, γ ) � APAT + Q − γ APCT (CPCT + R)−1CPAT (2.23)
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For the infinite-time horizon problem (2.16), we have the following:

Theorem 2.3 Independent of the initial condition I0 = {g0, H0, B0, P0}, the value
of the infinite-time horizon minimization problem (2.16) is given by ρ, which is the
solution of the average cost optimality (Bellman) equation

ρ + V (P, g, H, B) = min
0≤u≤B

{
E
[
tr
(
L (P, γ )

)∣∣P, g, u
]

+ E

[
V
(
L (P, γ ), g̃, H̃ ,min{B − u + H̃ , Bmax}

)∣∣P, g, H, u
]}

, (2.24)

where V is the relative value function.

Proof See Appendix. �

We note that a discretized version of the Bellman equations (2.19) or (2.24) can
be used for numerical computation to find solutions to the MDP problems (2.15) and
(2.16).

Remark 2.4 The causal information pattern is clearly relevant to most practical sce-
narios. However, it is also instructive to consider the non-causal information scenario
where the sensor has a priori information about the energy harvesting {Hk} process
and the fading channel gains {gk} for all time periods, including the future ones. This
may be feasible in the situation of known environment where the wireless channel
fading gains and the harvested energies are predictable with high accuracy [22].
Furthermore, the performance of the non-causal information case can serve as a
benchmark (a lower bound) for the causal case. Indeed, we will present some perfor-
mance comparisons between the causal and non-causal cases in Sect. 2.2.4. Note that
the energy allocation problems for the non-causal case can be solved using similar
techniques as in the current subsection, thus the details are omitted for brevity. �

2.2.3 Structural Results on the Optimal Energy Allocation
Policies

In this section, the structure of the optimal transmission energy policy (2.20) is
studied for the case of the finite-time horizon stochastic control problem (2.15) with
causal information. Following similar arguments, one can show similar structural
results for the infinite-time horizon problem (2.16). We begin with a preliminary
result, which will be needed for the proof of Theorem 2.4.

Lemma 2.3 Suppose f (·) in (2.4) is a concave function in uk given gk. Then, for
given Pk, gk and Hk, the value function Vk(Pk, gk, Hk, Bk) in (2.19) is convex in Bk

for 0 ≤ k ≤ T . As a result,
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V0(P0, g0, H0, B0) = min
{0≤uk≤Bk }T−1

k=0

T−1∑

k=0

E[tr(Pk+1)]

is convex in B0.

Proof Recall that sk = (Pk, gk, Hk, Bk). First, note that, for given PT , gT and HT ,
the final time value function

VT (sT ) = min
0≤uT ≤BT

E[tr(PT+1)|sT , uT ] = E[tr(PT+1)|sT , BT ]

is a convex function in BT , due to the fact that f (·) is a concave function in uk given
gk (see Lemma 2.2). Assume that Vk+1(sk+1) is convex in Bk+1 for given Pk+1, gk+1

and Hk+1. Then, for given Hk and uk , the function

Vk+1(Pk+1, gk+1, Hk+1,min{Bk − uk + Hk, Bmax})

is convex in Bk , since it is theminimumof the constant Vk+1(Pk+1, gk+1, Hk+1, Bmax)

and (by the induction hypothesis) the convex function Vk+1(Pk+1, gk+1, Hk+1, Bk −
uk + Hk). Since the expectation operator preserves convexity, E[Vk+1(sk+1)|sk, uk]
given in (2.22) is a convex function in Bk .AsVk(sk) in (2.19) is the infimal convolution
of two convex functions in Bk for given Pk, gk and Hk , it is also convex in Bk (see
the proof of Theorem 1 in [22]). �

The following result shows that for fixed Pk, gk and Hk , the optimal energy allo-
cated is increasing with the battery level.

Theorem 2.4 Suppose f (·) in (2.4) is a concave function in uk given gk. Then,
given Pk, gk and Hk, the optimal energy policy uok(Pk, gk, Hk, Bk) in (2.20) is non-
decreasing in Bk for 0 ≤ k ≤ T .

Proof Assume Pk, gk and Hk are fixed. Define

L(B, u) = E[tr(Pk+1)|Pk, gk, u]
+ E[Vk+1(Pk+1, gk+1, Hk+1,min{B − u + Hk, Bmax})|Pk, gk, Hk, u].

We wish to show that L(B, u) is submodular in (B, u), i.e. for every u′ ≥ u and
B ′ ≥ B, we have [25]:

L(B ′, u′) − L(B, u′) ≤ L(B ′, u) − L(B, u). (2.25)

It is evident thatE[tr(Pk+1)|Pk, gk, u] is submodular in (B, u) since it is independent
of B. Let

Z(x) := E[Vk+1(Pk+1, gk+1, Hk+1,min{x + Hk, Bmax})|Pk, gk, Hk, u].
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Since Z(x) is convex in x by Lemma 2.3, we have

Z(x + ε) − Z(x) ≤ Z(y + ε) − Z(y), x ≤ y, ε ≥ 0

(see Proposition 2.2.6 in [40]). Letting x = B − u′, y = B − u and ε = B ′ − B,
we then have the submodularity condition (2.25) for Z̃(B, u) � Z(B − u) [22].
Therefore, L(B, u) is submodular in (B, u). We then note that submodularity is a
sufficient condition for optimality of monotone increasing policies [25], i.e. since
L(B, u) is submodular in (B, u), then u∗(B) = argminu L(B, u) is non-decreasing
in B. �

As discussed in [22], the structural result of Theorem 2.4 implies that if uuck is the
unique solution to the convex unconstrained minimization problem

uuck (Pk, gk, Hk)

= argmin
uk

{
E[tr(Pk+1)|Pk, gk, uk] + E[Vk+1(Pk+1, gk+1, Hk+1)|Pk, gk, Hk, uk]

}
,

then the solution to the constrained problem (2.20), where 0 ≤ uk ≤ Bk , will be of
the form

u∗
k(Pk, gk, Hk, Bk) =

⎧
⎨

⎩

0, if uuck ≤ 0
uuck , if 0 < uuck < Bk

Bk, if uuck ≥ Bk .

In the case that the transmission energy allocation uk belongs to a two element
set {E0, E1}, the monotonicity of Theorem 2.4 yields a threshold structure. This
threshold structure implies that, for fixed Pk, gk and Hk , the optimal transmission
energy allocation is of the form

u∗
k(Pk, gk, Hk, Bk) =

{
E0, if Bk ≤ B∗
E1, otherwise,

where B∗ is the corresponding battery storage threshold. The threshold structure
of the optimal energy allocation policy in the case of a binary energy allocation
set simplifies the implementation of the optimal energy allocation significantly. A
stochastic gradient algorithm for computing B∗ is presented in [41].

2.2.4 Numerical Studies

We present here numerical results for a scalar process with the following parameters:
A = 1.2, C = 1, Q = 1, R = 1. We assume that the sensor uses a binary phase
shift keying (BPSK) transmission scheme with b bits per packet. Therefore, (2.4) is
of the form [26]:
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Fig. 2.5 Infinite-time
horizon average error
covariance versus maximum
battery storage
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P(γk = 1|gk, uk) = f (gkuk) =
⎛

⎜⎝

√
gkuk∫

−∞

1√
2π

e−t2/2dt

⎞

⎟⎠

b

where we use b = 4 in the simulations.
The fading channel is taken to be Rayleigh [28], so that {gk} is i.i.d. expo-

nentially distributed with probability density function (p.d.f) of the form P(gk) =
1
ḡ exp(−gk/ḡ), with ḡ being its mean. We also assume that the harvested energy

process {Hk} is i.i.d. and exponentially distributed, with p.d.f. P(Hk) = 1
H̄

exp(−Hk/H̄), with H̄ being its mean.
For the following simulation results, we use 50 discretization points for each of

the quantities Pk, gk, Bk, uk in the Bellman equations.
We first fix the mean of the fading channel gains to ḡ = 1 decibel (dB) and

the mean of the harvested energy to H̄ = 1 milliwatt hour (mWh). Then, we plot in
Fig. 2.5 the expected error covariance versus themaximum battery storage energy for
the infinite-time horizon problem (2.16), where both cases of causal and non-causal
fading channel gains and energy harvesting information are shown, see Remark2.4.
We see that the performance gets better as the maximum battery storage energy
increases in both cases. Figure2.5 also shows that, as expected, the performance
for the non-causal information case is generally better than the performance of the
system with only causal information.

Finally, we fix the mean of the harvested energy to H̄ = 1 (mWh), and the max-
imum battery storage energy to 2 (mWh). For the infinite-time horizon formulation
(2.16), the expected error covariance versus the mean of the fading channel gains is
plotted in Fig. 2.6, for both cases of causal and non-causal information. As shown in
Fig. 2.6, in both cases, the performance improves as the mean of the fading channel
gain increases.
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Fig. 2.6 Infinite-time
horizon average error
covariance versus mean of
fading channel gains
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2.3 Conclusion

In this chapter, we have investigated transmission power control for Kalman filtering
with random packet drops over a fading channel, where the packet reception proba-
bility depends on both the time-varying fading channel gain and the sensor transmit
power. We first studied the problem of minimizing the trace of the expected error
covariance subject to an average power constraint. The resulting Markov decision
process problems are solved by the use of dynamic programming techniques. Simpler
suboptimal power allocation policies such as a constant power allocation policy and
a truncated channel inversion policy have also been considered. Numerical studies
suggest that, for low average transmit powers, optimal power allocation significantly
outperforms the suboptimal policies, while for higher average transmit powers, the
performance of the truncated channel inversion policy approaches the performance
of the optimal policy.

We then studied the problem of optimal transmission energy allocation for esti-
mation error covariance minimization, when the sensor is equipped with energy har-
vesting capabilities. In this problem formulation, the trace of the expected estimation
error covariance of the Kalman filter is minimized, subject to energy harvesting con-
straints. Using the concept of submodularity, some structural results on the optimal
transmission energy allocation policy have also been obtained.

Notes: Section2.1 is based on [42], while Sect. 2.2 is based on [41]. The case
of imperfect feedback acknowledgements, and a stochastic gradient algorithm for
computing the threshold in the case of binary energy levels, is also considered in
[41]. The work of [41] has since been extended to control with an energy harvesting
in [43]. Energy harvesting in the context of estimation and control has also been
subsequently studied in [44, 45], see also Sect. 3.2.

http://dx.doi.org/10.1007/978-3-319-65614-4_3
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In this book, power allocation decisions are often made at the remote estimator
(this is analogous to the situation inwireless communications,where power allocation
is often done at the base station and fed back to the mobiles), which motivates us to
consider decisions based on the estimation error covariance. When power allocation
decisions are made at the sensor, researchers have tried to make use of additional
state (or measurement) information [46, 47].

Appendix

Proof of Lemma 2.2

Proof The proof uses similar ideas to the proof of Proposition3.1 in [36]. The
decreasing property follows from the relation

E[Pk+1] = E[Pk+1|Pk, gk, uk]
= E[APk AT+Q− f (gkuk)APkC

T(CPkC
T+R)−1CPk A

T ]

and the assumption that f (.) is an increasing function.
For the proof of convexity, let u1 and u2 be two average transmit powers, where

u1 �= u2, with p∗(u1) and p∗(u2) the corresponding traces of the expected error
covariances. We want to show that

p∗(λu1 + (1 − λ)u2) < λp∗(u1) + (1 − λ)p∗(u2),∀λ ∈ (0, 1).

Let {u1k(Pk, gk)} be the optimal power allocation policy that achieves p∗(u1), and
{u2k(Pk, gk)} be the optimal power allocation policy that achieves p∗(u2). Define a
new policy {uλ

k (Pk, gk)} such that

uλ
k (Pk, gk) = λu1k(Pk, gk) + (1 − λ)u2k(Pk, gk),∀Pk, gk .

We will first show that for a given Pk , we have:

(1) E[uλ
k |Pk] ≤ λE[u1k |Pk] + (1 − λ)E[u2k |Pk], and

(2) E[tr(Pλ
k+1)|Pk] < λE[tr(P1

k+1)|Pk] + (1 − λ)E[tr(P2
k+1)|Pk],

where P j
k+1 is the value of Pk+1 that follows fromusing policy {u j

k (.)}, for j = 1, 2, λ,
respectively. For (1), this clearly follows from the definition of uλ

k . For (2), we have



30 2 Optimal Power Allocation for Kalman Filtering over Fading Channels

E[tr(Pλ
k+1)|Pk]

=
∫ (

tr(APk A
T + Q) − f (gku

λ
k )tr(APkC

T (CPkC
T + R)−1CPk A

T )
)
F(dgk)

<

∫ (
tr(APk A

T + Q) − (λ f (gku
1
k) + (1 − λ) f (gku

2
k))

× tr(APkC
T (CPkC

T + R)−1CPk A
T )
)
F(dgk)

= λE[tr(P1
k+1)|Pk] + (1 − λ)E[tr(P2

k+1)|Pk]

where the inequality comes from the strict concavity of f (.).
From (1) and (2), we have

lim
K→∞

1

K

K∑

k=1

E[uλ
k ] = lim

K→∞
1

K

K∑

k=1

E[E[uλ
k |Pk]]

≤ lim
K→∞

1

K

K∑

k=1

E[λE[u1k |Pk] + (1 − λ)E[u2k |Pk]]

= λu1 + (1 − λ)u2

and

lim
K→∞

1

K

K∑

k=1

E[tr(Pλ
k+1)] = lim

K→∞
1

K

K∑

k=1

E[E[tr(Pλ
k+1)|Pk ]]

< lim
K→∞

1

K

K∑

k=1

E

[
λE[tr(P1

k+1)|Pk ] + (1 − λ)E[tr(P2
k+1)|Pk ]

]

= λp∗(u1) + (1 − λ)p∗(u2).

By the definition of p∗(u) being theminimum expected error covariance such that the
average transmit power is less than or equal to u, we then have p∗(λu1+(1−λ)u2) ≤
1
K

∑K
k=1 E[tr(Pλ

k+1)] < λp∗(u1) + (1 − λ)p∗(u2).

Proof of Theorem 2.3

We first establish the inequality

ρ + V (P, g, H, B) ≥ min
0≤u≤B

{
E
[
tr
(
L (P, γ )

)∣∣P, g, u
]

+ E

[
V
(
L (P, γ ), g̃, H̃ ,min{B − u + H̃ , Bmax}

)∣∣P, g, H, u
]}

(2.26)
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by verifying conditions (W) and (B) of [48], that guarantee the existence of solutions
to (2.26) for MDPs with general state space. Denote the state space byS and action
space by A , i.e. (Pk, gk, Hk, Bk) ∈ S and uk ∈ A . Condition (W) of [48] in our
notation says that:

(1) The state space S is locally compact.
(2) Let U (·) be the mapping that assigns to each (Pk, gk, Hk, Bk) the nonempty set
of available actions. ThenU (Pk, gk, Hk, Bk) lies in a compact subset ofA andU (·)
is upper semicontinuous.
(3) The transition probabilities are weakly continuous.
(4) E

[
tr
(
L (P, γ )

)∣∣P, g, u
]
is lower semicontinuous.

By our assumption that uk ≤ Bk ≤ Bmax, (0) and (1) of (W) can be easily verified.
The conditions (2) and (3) follow from the definition (2.23).

Define wδ(P0, g0, H0, B0) = vδ(P0, g0, H0, B0) − mδ , where

vδ(P0, g0, H0, B0) = inf{uk :k≥0}E

[ ∞∑

k=0

δkE
[
tr
(
L (Pk, γk)

)∣∣Pk, gk, uk
]∣∣P0, g0, H0, B0

]

and mδ = inf (P0,g0,H0,B0) vδ(P0, g0, H0, B0). Condition (B) of [48] in our notation
says that

sup
δ<1

wδ(P0, g0, H0, B0) < ∞, ∀ (P0, g0, H0, B0).

Following Sect. 4 of [48], define the stopping time

τ = inf{k ≥ 0 : vδ(Pk, gk, Hk, Bk) ≤ mδ + ς}

for someς ≥ 0.Givenς > 0 and an arbitrary (P0, g0, H0, B0), consider a suboptimal
power allocation policy where the sensor transmits based on the same policy as the
one that achieves mδ (with a different initial condition) until vδ(PN , gN , HN , BN ) ≤
mδ + ς is satisfied at some time N . By the exponential forgetting property of initial
conditions for Kalman filtering, we have N < ∞with probability 1 and E[N ] < ∞.
Since τ ≤ N , we have E[τ ] < ∞. Then by Lemma4.1 of [48],

wδ(P0, g0, H0, B0) ≤ ς + inf{γk }
E

[
τ−1∑

k=0

E
[
tr
(
L (Pk, γk)

)∣∣Pk, gk, uk
]∣∣P0, g0, H0, B0

]

≤ ς + E[τ ] × Z < ∞ (2.27)

where the second inequality uses Wald’s equation, with Z being an upper bound to
the expected error covariance, which exists by Theorem 2.2. Hence, condition (B)
of [48] is satisfied and a solution to the inequality (2.26) exists.

To show equality in (2.26), we will require a further equicontinuity property of the
optimal cost for the related discounted cost MDP to be satisfied. This can be shown
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by a similar argument as in the proof of Proposition3.2 of [49]. The assumptions in
Sects. 5.4 and 5.5 of [33] may then be verified to conclude the existence of a solution
to the average cost optimality equation (2.24).
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