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Abstract The recent advances in hyperspectral remote sensing technology allow
the simultaneous acquisition of hundreds of spectral wavelengths for each image
pixel. This rich spectral information of the hyperspectral data makes it possible to
discriminate different physical substances, leading to a potentially more accurate
classification and thus opening the door to numerous new applications. Throughout
the history of remote sensing research, numerous methods for hyperspectral image
analysis have been presented. Depending on the spatial resolution of the images,
specific mathematical models must be designed to effectively analyze the imagery.
Some of these models operate at a sub-pixel level, trying to decompose a mixed spec-
tral signature into its pure constituents, while others operate at a pixel or even object
level, seeking to assign unique labels to every pixel or object in the scene. The spec-
tral mixing of the measurements and the high dimensionality of the data are some of
the challenging features of hyperspectral imagery. This chapter presents an overview
of unmixing and classification methods, intended to address these challenges for
accurate hyperspectral data analysis.

2.1 Introduction

Hyperspectral remote sensors allow the simultaneous acquisition of hundreds of spec-
tral bands with narrow bandwidths for each image pixel. For example, the AVIRIS
sensor (airborne visible/infrared imaging spectrometer) provides images with 224
contiguous bands with a bandwidth of 10 nm each, and the ROSIS sensor (reflec-
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tive optics system imagining spectrometer) provides 115 bands with a bandwidth
of 4 nm each. In the spectral domain, pixels are represented as vectors for which
each component is a measurement corresponding to specific wavelengths. The size
of the vector is equal to the number of spectral bands that the sensor collects. For
hyperspectral images, over a hundred of bands are typically available, while for con-
ventional multispectral images up to ten bands are usually provided (see Chap. 3).
This detailed spectral information increases the possibility of more accurately dis-
criminating materials of interest [35]. The capabilities of hyperspectral sensors go
beyond the identification of land cover, facilitating also the characterization of min-
erals [37], soils [17] and biodiversity [43]. Due to the increasing amount of data,
the automatic analysis of hyperspectral images is then of paramount importance in
remote sensing. One of the ultimate goals of remote sensing image analysis is to
construct a thematic map associated to the image. Such a map indicates the elements
present in the image, at every location, out of a set of possible classes of interest.
These could go from physical substances to higher-level semantic objects, depending
on the application.

While the spectral signatures collected at every pixel of a hyperspectral image are
very detailed, they are usually a mixture of the signatures of the various materials
found in their spatial vicinity [14]. Thus, if the spectrum is not pure, comparing a
pixel’s spectral signature with a set of reference signatures to identify the material
is not an effective approach. In the earliest sensors, spatial resolution was low and
the size of objects was comparable to the size of pixels. In such a low spatial res-
olution setting, spectral mixing compromises the key feature of the sensors: their
ability to discriminate materials based on their spectral responses [13]. This drove
much attention of the research community to the so-called unmixing of the spectral
signatures, i.e., decomposing a mixed spectral signature into pure components. This
can be seen as a sub-pixel analysis of the data. In hyperspectral images, the number
of bands typically exceeds the amount of components in the mix, allowing to express
the unmixing problem as an over-determined system of equations [47]. This chapter
reviews one of the most common unmixing models, linear spectral unmixing, which
assumes that the spectrum in a hyperspectral image is a linear combination of pure
spectra.

As technology evolved, the spatial resolution of hyperspectral imagery increased,
and objects of interest started to be composed of multiple pixels. Spectral mixing
being less of a hassle, the assignment of a unique label to every pixel became an
active research area, a process known as classification [13]. Since the assumption of
classification is that pixels are pure, an unmixing technique is preferable if that prop-
erty does not stand. The high-dimensional nature of hyperspectral imagery imposes
certain challenges to perform classification, and conventional algorithms for multi-
spectral images do not adapt well [68]. When there is a limited number of reference
samples to train a classification system, as the number of dimensions increases (i.e.,
the number of spectral bands) the accuracy of the classification tends to drop. This
is because the reliable estimation of statistical class parameters becomes more and
more difficult as dimensionality increases. This phenomenon, the Hughes effect [59],
is often referred to as the curse of dimensionality. A vast number of classification
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techniques for hyperspectral imagery have been presented in the literature, which
share the goal of attenuating the Hughes effect and accurately identifying the pixels’
classes.

The first classification techniques were pixelwise, i.e., considering every pixel as
an isolated entity and classifying it based solely on its spectrum. The next generation
of techniques introduced the notion of a spatial arrangement of the pixels, with some
interaction between spatially neighboring pixels at the time of classifying. This family
of methods are known as spectral-spatial and tend to outperform purely pixelwise
approaches [41]. The overall principle is to introduce a certain spatial regularity in
the pixel label assignment, by incorporating information of the spatial neighbors.
A third category is the so-called object-based analysis, which naturally emerged
from the increase in the amount of pixels per object [15]. Object-based methods are
spectral-spatial methods that seek to delineate readily usable objects to incorporate
into other systems (such as geographic information systems). These techniques both
segment the image into significant regions and label each of the segments. This
chapter reviews pixelwise and spectral-spatial techniques, and described in detail a
recent object-based model based on binary partition trees.

2.2 Unmixing

Spectral unmixing has been an alluring exploitation goal since the earliest days of
hyperspectral image and signal processing [1, 14, 44, 106]. No matter the spatial
resolution, the spectral signatures collected in natural environments are invariably a
mixture of the signatures of the various materials found within the spatial extent of
the ground instantaneous field view of the imaging instrument. For instance, the pixel
vector labeled as “vegetation” in Fig. 2.1 may actually comprise a mixture of vegeta-
tion and soil, or different types of soil and vegetation canopies. In this case, several
spectrally pure signatures (called endmembers in hyperspectral imaging terminol-
ogy) are combined into the same (mixed) pixel. The availability of hyperspectral
imagers with a number of spectral bands that exceeds the number of spectral mixture
components [47] has allowed to cast the unmixing problem in terms of an over-
determined system of equations in which, given a set of endmembers, the actual
unmixing to determine apparent abundance fractions can be defined in terms of a
numerical inversion process [16].

A standard technique for spectral mixture analysis is linear spectral unmixing
[55, 90, 92], which assumes that the collected spectra at the spectrometer can be
expressed in the form of a linear combination of endmembers weighted by their
corresponding abundances. It should be noted that the linear mixture model assumes
minimal secondary reflections and/or multiple scattering effects in the data collection
procedure, and hence the measured spectra can be expressed as a linear combination
of the spectral signatures of materials present in the mixed pixel (see Fig. 2.2a).
Although the linear model has practical advantages such as ease of implementation
and flexibility in different applications [28], nonlinear spectral unmixing may best
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Fig. 2.1 Mixed pixels in hyperspectral imaging

Fig. 2.2 Linear versus nonlinear mixture models: single versus multiple scattering

characterize the resultant mixed spectra for certain endmember distributions, such as
those in which the endmember components are randomly distributed throughout the
field of view of the instrument [49, 95]. In those cases, the mixed spectra collected
at the imaging instrument is better described by assuming that part of the source
radiation is multiply scattered before being collected at the sensor (see Fig. 2.2b). In
this case, interactions can be at a classical, or multilayered, level or at a microscopic,
or intimate, level. Mixing at the classical level occurs when light is scattered from
one or more objects, is reflected off additional objects, and eventually is measured
by hyperspectral imager. A nice illustrative derivation of a multilayer model is given
by Borel and Gerstl [18] who show that the model results in an infinite sequence
of powers of products of reflectances. Generally, however, the first order terms are
sufficient and this leads to the bilinear model. Microscopic mixing occurs when
two materials are homogeneously mixed [52]. In this case, the interactions consist
of photons emitted from molecules of one material and absorbed by molecules of
another material, which may in turn emit more photons. The mixing is modeled
by Hapke [52] as occurring at the albedo level, i.e., the fraction of solar energy
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reflected from the Earth, and not at the reflectance level (for more details on the
physical quantities acquired by passive cameras see Chap. 3). The apparent albedo
of the mixture is a linear average of the albedos of the individual substances but
the reflectance is a nonlinear function of albedo, thus leading to a different type of
nonlinear model.

In the following, we focus on describing recent advances in the linear spectral
unmixing domain. The reason is that, despite its simplicity, it is an acceptable approx-
imation of the light scattering mechanisms in many real scenarios. Furthermore, in
contrast to nonlinear mixing, the linear mixing model is the basis of a plethora of
unmixing models and algorithms spanning back at least 25 years. A sampling can
be found in [12, 27, 54, 56, 58, 63, 64, 78, 85, 87, 90, 92, 105, 107, 130], see also
[14] and references therein. As shown in Fig. 2.2a, the linear mixture model assumes
that mixed pixels are a linear combination of the endmembers. This scenario holds
when the mixing scale is macroscopic [108] and the incident light interacts with just
one material, as is the case in checkerboard type scenes [36, 51]. In this case, the
mixing occurs within the instrument itself. It is due to the fact that the resolution
of the instrument is not fine enough. The light from the materials, although almost
completely separated, is mixed within the measuring instrument.

In order to define the linear mixture model in mathematical terms, let us assume
that Y ∈ R

l×n is a hyperspectral image with l bands and n pixels. In this case the
matrix Y = [y1, . . . , yn] represents a hyperspectral image in a matrix form, in which
the columns of the matrix Y are the spectral signatures of the image pixels yi , and
the rows of Y are the bands of the hyperspectral image. Under the linear mixture
assumption, we can model the hyperspectral data as follows:

Y = MA + N, (2.1)

where M ∈ R
l×p,M = [m1, . . . ,mp] is a matrix containing endmembers mi in

columns andA ∈ R
p×n,A = [a1, . . . , an] contains the abundance fractionsa j,k asso-

ciated to each endmember in each pixel. Finally, N ∈ R
l×n is a matrix which rep-

resents the noise introduced in the model by the acquisition process. Usually two
constraints are imposed to the abundance fractions in the linear mixture model. The
first one is the abundance non-negativity (ANC), which enforces to all the abundances
fractions to be non-negative [31], i.e. a j,k ≥ 0, j = 1, . . . , p, k = 1, . . . , n. The sec-
ond constraint is the abundance sum-to-one (ASC), which enforces the abundances of
a given pixel to sum to one, i.e.

∑p
j=1 a j,k = 1, k = 1, . . . , n. The unmixing process

which considers both constraints is called fully constrained linear spectral unmixing
(FCLSU). The linear mixture model can be interpreted graphically by using a scatter
plot between two bands or, more generally, between two non-colinear projections
of the spectral vectors. For illustrative purposes, Fig. 2.3 provides a simple graphi-
cal interpretation in which the endmembers are the most extreme pixels defining a
simplex which encloses all the other pixels in the data, so that we can express every
pixel inside the simplex as a linear combination of the endmembers. As a result, a
key aspect when considering the linear mixture model is the correct identification of
the endmembers, which are extreme points in the l-dimensional space.

http://dx.doi.org/10.1007/978-3-319-66330-2_3
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Fig. 2.3 Graphical
interpretation of the linear
mixture model

The solution of the linear spectral mixture problem described in (2.1) relies on
two major requirements:

1. A successful estimation of how many endmembers, p, are present in the input
hyperspectral scene Y, and

2. the correct determination of a set M of p endmembers and their correspondent
abundance fractions at each pixel.

In order to address these issues, a standard spectral unmixing chain consisting of
three steps is generally applied. In a first step, an (optional) dimensionality reduction
step is conducted. This step is strongly related to the estimation of the number of
endmembers present in the hyperspectral scene, p. Once the number of endmembers
has been determined, an endmember extraction step identifies the pure spectral sig-
natures present in a scene. Finally, the abundance estimation step requires as input the
endmember signatures obtained in the endmember extraction process and produces
as output the set of abundance maps associated to each endmember. Figure 2.4 shows
the different steps involved in the processing chain, which are briefly summarized
next and described in more detail in the following subsections (discussing specific
implementation options for each step).

1. Dimensionality reduction. The dimensionality of the space spanned by spectra
from an image is generally much lower than the available number of bands.
Identifying appropriate subspaces facilitates dimensionality reduction, improving
algorithm performance and data storage complexity. Furthermore, if the linear
mixture model is accurate, the signal subspace dimension is one less than the
number of endmembers, a crucial figure in hyperspectral unmixing.

2. Endmember extraction. This step consists in identifying the endmembers in
the scene. Geometrical approaches exploit the fact that linearly mixed vectors
are in a simplex set or in a positive cone. Statistical approaches focus on using
parameter estimation techniques to determine endmembers. Different techniques
may or may not include spatial information and assume or not the presence of
pure pixels in the original data set.
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Fig. 2.4 Spectral unmixing chain

3. Abundance estimation. Given the identified endmembers, the abundance estima-
tion step consists in solving a constrained optimization problem which minimizes
the residual between the observed spectral vectors and the linear space spanned
by the inferred endmembers in order to derive fractional abundances which are,
very often, constrained to be nonnegative and to sum to one (i.e., they belong
to the probability simplex). There are, however, some hyperspectral unmixing
approaches in which the endmember determination and inversion steps are imple-
mented simultaneously.

2.2.1 Dimensionality Reduction

The number of endmembers p present in a given scene is, very often, much smaller
than the number of bands l. Therefore, assuming that the linear model is a good
approximation, spectral vectors lie in or very close to a low-dimensional linear sub-
space. The identification of this subspace enables low-dimensional yet accurate rep-
resentation of spectral vectors. It is usually advantageous and sometimes necessary to
operate on data represented in the signal subspace. Therefore, a signal subspace iden-
tification algorithm is often required as a first processing step in the spectral unmix-
ing chain. Unsupervised subspace identification has been addressed in many ways.
Projection techniques seek for the best subspaces to represent data by optimizing
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objective functions. For example, principal component analysis (PCA) maximizes
the signal variance; singular value decomposition (SVD) maximizes power; mini-
mum noise fraction (MNF) and noise-adjusted principal components (NAPC) min-
imize the ratio of noise power to signal power. NAPC is mathematically equivalent
to MNF [70] and can be interpreted as a sequence of two principal component trans-
forms: the first applied to the noise and the second applied to the transformed data
set.

The identification of the signal subspace is a model order inference problem to
which information theoretic criteria come to mind. These criteria have in fact been
used in hyperspectral applications [30] adopting the approach introduced by Wax
and Kailath [127]. In turn, Harsanyi, Farrand, and Chang [53] developed a Neyman-
Pearson detection theory-based thresholding method to determine the number of
spectral endmembers in hyperspectral data, referred to as virtual dimensionality
(VD). This method is based on a detector built on the eigenvalues of the sample
correlation and covariance matrices. A modified version includes a noise-whitening
step [30]. The hyperspectral signal identification with minimum error (HYSIME)
adopts a minimum mean squared error based approach to infer the signal subspace.
The method is eigendecomposition based, unsupervised, and fully-automatic (i.e.,
it does not depend on any tuning parameters). It first estimates the signal and noise
correlation matrices and then selects the subset of eigenvalues that best represents
the signal subspace in the least square error sense.

2.2.2 Endmember Extraction

Over the last decade, several algorithms have been developed for automatic or semi-
automatic extraction of spectral endmembers by assuming the presence of pure pix-
els in the hyperspectral data [92]. Classic techniques include the pixel purity index
(PPI), N-FINDR, iterative error analysis (IEA), convex cone analysis (CCA), ver-
tex component analysis (VCA), and orthogonal subspace projection (OSP), among
many others [14]. Other advanced techniques for endmember extraction have been
recently proposed [9, 26, 32, 33, 81, 89, 126, 132], but none of them considers spa-
tial adjacency. However, one of the distinguishing properties of hyperspectral data
is the multivariate information coupled with a two-dimensional (pictorial) represen-
tation amenable to image interpretation. Subsequently, most endmember extraction
algorithms listed above could benefit from an integrated framework in which both
the spectral information and the spatial arrangement of pixel vectors are taken into
account. An example of this situation is given in Fig. 2.5, in which a hyperspec-
tral data cube collected over an urban area (high spatial correlation) is modified by
randomly permuting the spatial coordinates of the pixel vectors, thus removing the
spatial correlation. In both scenes, the application of a spectral-based endmember
extraction method would yield the same analysis results while it is clear that a spatial-
spectral technique could incorporate the spatial information present in the original
scene into the endmember searching process.
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Fig. 2.5 Example illustrating the importance of spatial information in hyperspectral analysis

To the best of our knowledge, only a few attempts exist in the literature aimed at
including the spatial information in the process of extracting spectral endmembers.
Extended morphological operations [93] have been used as a baseline to develop
the automatic morphological endmember extraction algorithm (AMEE) for spatial-
spectral endmember extraction. Also, spatial averaging of spectrally similar endmem-
ber candidates found via SVD was used in the development of the spatial-spectral
endmember extraction algorithm (SSEE). In the following, we describe in more detail
three selected spectral-based algorithms (N-FINDR, OSP and VCA) and two spatial-
spectral endmember extraction algorithms (AMEE and SSEE) that will be used in our
comparisons in this chapter. The reasons for our selection are: (1) these algorithms are
representative of the class of convex geometry-based and spatial processing-based
techniques which have been successful in endmember extraction; (2) they are fully
automated; (3) they always produce the same final results for the same input para-
meters; and (4) the number of endmembers to be extracted, p, is an input parameter
for all algorithms, while AMEE and SSEE have additional input parameters related
to the definition of spatial context around each pixel in the scene. This section con-
cludes with a description of algorithms that, as opposed to the previously mentioned
ones, do not assume the presence of pure pixels in the hyperspectral data. Techniques
in this category comprise minimum volume simplex analysis (MVSA) and a vari-
able splitting augmented Lagrangian approach (SISAL). Also, we deliberately do
not cover sparse unmixing methods [60], which are detailed in other chapters of this
book.

2.2.2.1 N-FINDR

This algorithm looks for the set of pixels with the largest possible volume by inflating
a simplex inside the data. The procedure begins with a random initial selection of
pixels (see Fig. 2.6a). Every pixel in the image must be evaluated in order to refine
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(a) Initialization (b) Replacement (c) Final result

Fig. 2.6 Graphical representation of the N-FINDR algorithm

the estimate of endmembers, looking for the set of pixels that maximizes the volume
of the simplex defined by selected endmembers. The volume of the simplex is calcu-
lated with every pixel in the place of each endmember. The corresponding volume is
calculated for every pixel in each endmember position by replacing that endmember
and finding the resulting volume (see Fig. 2.6b). If the replacement results in a an
increase of volume, the pixel replaces the endmember. This procedure is repeated
until there are no more endmember replacements (see Fig. 2.6c). The mathematical
definition of the volume of a simplex formed by a set of endmember candidates is
proportional to the determinant of the set augmented by a row of ones. The determi-
nant is only defined in the case where the number of features is p − 1, p being the
number of desired endmembers [29]. Since in hyperspectral data typically l � p, a
transformation that reduces the dimensionality of the input data is required. Often,
the PCA transform has been used for this purpose, although another widely used
alternative that decorrelates the noise in the data is MNF. A possible shortcoming
of this algorithm is that different random initializations of N-FINDR may produce
different final solutions. In this chapter, we consider an N-FINDR algorithm imple-
mented in an iterative fashion, so that each sequential run is initialized with the
previous algorithm solution, until the algorithm converges to a simplex volume that
cannot be further maximized.

2.2.2.2 Orthogonal Subspace Projection (OSP)

This algorithm starts by selecting the pixel vector with maximum length in the scene
as the first endmember. Then, it looks for the pixel vector with the maximum absolute
projection in the space orthogonal to the space linearly spanned by the initial pixel,
and labels that pixel as the second endmember. A third endmember is found by
applying an orthogonal subspace projection to the original image [54]. This is done
by selecting the signature that has the maximum orthogonal projection in the space
orthogonal to the space linearly spanned by the first two endmembers. This procedure
is repeated until the desired number of endmembers, p, is found [98]. A shortcoming



2 Models for Hyperspectral Image Analysis … 47

of this algorithm is its sensitivity to noise, since outliers are good candidates to be
selected in the iterative process adopted by OSP. The VCA method discussed in the
following subsection addresses this issue.

2.2.2.3 Vertex Component Analysis (VCA)

This algorithm also makes use of the concept of orthogonal subspace projections.
However, as opposed to the OSP algorithm described above, VCA exploits the fact
that the endmembers are the vertices of a simplex, and that the affine transformation
of a simplex is also a simplex [84]. As a result, VCA models the data using a
positive cone, whose projection onto a properly chosen hyperplane is another simplex
whose vertices are the final endmembers. After projecting the data onto the selected
hyperplane, the VCA projects all image pixels to a random direction and uses the
pixel with the largest projection as the first endmember. The other endmembers are
identified in sequence by iteratively projecting the data onto a direction orthogonal
to the subspace spanned by the endmembers already determined, using a procedure
that is quite similar to that used by OSP. The new endmember is then selected as the
pixel corresponding to the extreme projection, and the procedure is repeated until a
set of p endmembers is found [84]. For illustrative purposes, Fig. 2.7 shows a toy
example depicting an image with three bands and three endmembers. Due to the
mixing phenomenon, all the data is in the plane S. If we project the data onto that
plane we can represent the same data in two dimensions instead of three. Then we
can apply OSP to the projected dataset in order to obtain the endmembers.

A possible shortcoming of the VCA algorithm can be illustrated by the following
example: if there are two endmembers with similar spectral signatures and the power
of noise is high, then the subspace identification step could miss one of the two
similar endmembers. This problem could be avoided by using spatial information as
follows. The idea is that, although the endmembers are very similar in the spectral
domain, they may be located in different areas in the spatial domain. As a result,

Fig. 2.7 Toy example
illustrating the impact of
subspace projection on
endmember identification
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spatial information could help in the distinction of the endmembers. In the following
subsections we describe different algorithms which make use of spatial information
in order to solve some of these potential problems in the endmember identification
process.

2.2.2.4 Automatic Morphological Endmember Extraction (AMEE)

The AMEE [91] algorithm runs on the full data cube with no dimensional reduction,
and begins by searching spatial neighborhoods around each pixel vector in the image
for the most spectrally pure and mostly highly mixed pixel. This task is performed
by using extended mathematical morphology operators [93] of dilation and erosion,
which are graphically illustrated in Fig. 2.8. Here, dilation selects the most spectrally
pure pixel in a local neighborhood around each pixel vector, while erosion selects the
most highly mixed pixel in the same neighborhood. Each spectrally pure pixel is then
assigned an eccentricity value, which is calculated as the spectral angle (SA) [28, 64]
between the most spectrally pure and mostly highly mixed pixel for each given spatial
neighborhood. This process is repeated iteratively for larger spatial neighborhoods
up to a maximum size that is predetermined. At each iteration the eccentricity values
of the selected pixels are updated. The final endmember set is obtained by applying a
threshold to the resulting greyscale eccentricity image, which results in a large set of
endmember candidates. The final endmembers are extracted after applying the OSP
method to the set of candidates in order to derive a final set of spectrally distinct
endmembers M, where p is an input parameter to the OSP algorithm.

Fig. 2.8 Extended morphological operations of erosion and dilation
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2.2.2.5 Spatial Spectral Endmember Extraction (SSEE)

The SSEE algorithm uses spatial constraints to improve the relative spectral contrast
of endmember spectra that have minimal unique spectral information, thus improving
the potential for these subtle yet potentially important endmembers to be selected.
With SSEE, the spatial characteristics of image pixels are used to increase the relative
spectral contrast between spectrally similar but spatially independent endmembers.
The SSEE algorithm searches an image with a local search window centered around
each pixel vector and comprises four steps [100]. First, the SVD transform is applied
to determine a set of eigenvectors that describe most of the spectral variance in the
window or partition (see Fig. 2.9). Second, the entire image data are projected onto the
previously extracted eigenvectors to determine a set of candidate endmember pixels
(see Fig. 2.10). Then, spatial constraints are used to combine and average spectrally
similar candidate endmember pixels by testing, for each candidate pixel vector, which
other pixel vectors are sufficiently similar in spectral sense (see Fig. 2.11). Instead
of using a manual procedure as recommended by the authors in [100], we have used
the OSP technique in order to derive a final set of spectrally distinct endmembers M,
where p is an input parameter to the OSP algorithm.

At this point, it is important to note that SSEE includes spatial information in a
different way as AMEE does. The SSEE method uses first a spectral SVD method to
extract some candidate endmembers and then includes the spatial information. On
the other hand, AMEE combines the spatial and spectral information at the same
time using extended morphological operations, and then uses a spectral endmember
extraction technique in order to select the final endmember set. In both cases (as it
is also the case of all endmember identification algorithms discussed thus far) the
assumption is that pure spectral signatures are present in the original hyperspectral
data. In the following subsection we describe methods which operate under the
assumption that pure spectral signatures may not be present at all in the original
hyperspectral scene.

Fig. 2.9 First step of the SSEE algorithm.AOriginal data.BSubset data after spatial partitioning.C
Set of representative SVD vectors used to describe spectral variance. (Figure reproduced from [100])
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Fig. 2.10 Second step of the SSEE algorithm. A Original data. B Spectral distribution in
2-dimensional space. C Projection of data onto eigenvectors. D Set of candidate pixels. (Figure
reproduced from [100])

Fig. 2.11 Third step of the SSEE algorithm. A Set of candidate pixels. B Updated candidate pixels
after including pixels which are spectrally similar to those in the original set. C Spatial averaging
process of candidate endmember pixels using a sliding window centered on each candidate. D First
iteration of spatial-spectral averaging. Averaged pixels shown as thick lines, with original pixels
shown as thinner lines. E Second iteration of spatial-spectral averaging. F Continued iterations
compress endmembers into clusters with negligible variance. (Figure reproduced from [100])

2.2.2.6 Algorithms Without the Pure Pixel Assumption

This section describes endmember identification techniques which do not operate
under the pure pixel assumption [57, 94]. In this case, the algorithms do not need the
presence of pure pixels in the dataset in order to generate the endmembers. Figure 2.12
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scriptsize

(a) True endmembers (b) With pure pixel assumption

(c) Without pure pixel assumption (d) With pixels at the simplex facets

Fig. 2.12 Illustration of different strategies for endmember extraction

shows a graphical interpretation of the difference between algorithms that assume
and do not assume the presence of pure pixels in the dataset. Specifically, Fig. 2.12a
represents the true endmembers. In this case, there is no pixel at the simplex vertices
so the endmembers are not present in the original data. Figure 2.12b represents a
possible solution of an algorithm which does not assume the presence of pure pixels
in the dataset. As we can see in Fig. 2.12b, there are two pixels outside of the simplex,
which are outliers in this particular case. Figure 2.12c represents a possible solution
of a method which does not assume the presence of pure pixels in the data. In this
case, the algorithm tries to estimate a set of endmembers by enclosing the whole
dataset. This approach does not guarantee the correct identification of endmembers
in the case that the data are highly mixed and there are no pixels in the facets of the
simplex. However, if there are pixels in the simplex facets, the true endmembers can
be correctly identified even if there are no pixels at the simplex vertex, as depicted
in Fig. 2.12d.

Most of the techniques in this category adopt a minimum volume strategy aimed
at finding the endmember matrixM by minimizing the volume of the simplex defined
by its columns and containing the endmembers. This is a non-convex optimization
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problem much harder than those considered in the previous subsection in which the
endmembers are assumed to belong to the input hyperspectral image.

Craig’s seminal work [38] established the concepts regarding the algorithms of
minimum volume type. Most of these algorithms formulate the endmember estima-
tion as the nonnegative matrix factorization of the mixing and abundance matrices
[9, 73, 81, 96, 131, 133], with a minimum volume constraint imposed on M. Non-
negative matrix factorization is a hard non-convex optimization problem prone to get
stuck in local minima. Aiming at obtaining lighter algorithms with more desirable
convergence properties, the works [2, 10, 25, 71] sidestep the matrix factorization
by formulating the endmember estimation as an optimization problem with respect
to Q = M−1. The MVSA and SISAL algorithms implement a robust version of the
minimum volume concept. Robustness is introduced by allowing the ANC to be
violated. These violations are weighted using a soft constraint given by the hinge
loss function, hinge (x), an elementwise operator that returns 0 if xi ≥ 0 and −xi if
xi < 0, for every element xi in x. After reducing the dimensionality of the input data
from l to p − 1, MVSA/SISAL aim at solving the following optimization problem:

Q̂ = arg max
Q

log (| det (Q) |) − λ1Tphinge (QY) 1n

s.t.: 1TpQ = qm,
(2.2)

where Q ≡ M−1, 1p and 1n are column vectors of ones of sizes p and n, respec-
tively, qm ≡ 1TpY

−1
p with Yp being any set of linearly independent spectral vectors

taken from the hyperspectral data set Y, and λ is a regularization parameter. Here,
maximizing log(|det(Q)|) is equivalent to minimizing the volume of M.

2.2.3 Abundance Estimation

Once a set of endmembers M have been extracted, their correspondent abundance
fractions A can be estimated (in least squares sense) by the following unconstrained
expression [28]:

A ≈ (MTM)−1MTY. (2.3)

However, it should be noted that the fractional abundance estimations obtained by
means of Eq. (2.3) do not satisfy the ASC and ANC constraints. As indicated in [30],
a non-negative constrained least squares (NCLS) algorithm can be used to obtain
a solution to the ANC-constrained problem in an iterative fashion [31]. In order
to take care of the ASC constraint, we replace the hard constraint 1TA = 1 by the
soft constraint

√
δ||1TA − 1||22 added to the quadratic data term ||Y − MA||22. This

is equivalent to using a new endmember signature matrix, denoted by M′, and a
modified version of the abundance estimates A, denoted by A′, are introduced as
follows:



2 Models for Hyperspectral Image Analysis … 53

M′ =
[
M
δ1T

]

,A′ =
[
A
δ1

]

, (2.4)

where 1 = (1, 1, · · · , 1
︸ ︷︷ ︸

p

)T and δ controls the impact of the ASC constraint. Using the

two expressions in (2.4), a fully constrained estimate can be directly obtained from
the NCLS algorithm by replacing M and A with M′ and A′. The fully constrained
(i.e., ASC-constrained and ANC-constrained) linear spectral unmixing model is
referred to as FCLSU.

2.2.4 Experimental Validation

In this section we will describe the experiments performed with a real hyperspectral
dataset collected by the airborne visible infrared imaging spectrometer (AVIRIS)
over the Cuprite mining district. The scene, available online in reflectance units after
atmospheric correction,1 is characterized by the availability of some very reliable
reference information available from the United States Geological Survey (USGS).
Specifically, the portion used in experiments corresponds to a 350 × 350-pixel sub-
set of the sector labeled as “f970619t01p02_r02_sc03.a.rfl” in the online data. The
scene comprises 224 spectral bands between 0.4 and 2.5 µm, with full width at half
maximum of 10 nm and spatial resolution of 20 m per pixel. Prior to the analysis,
several bands were removed due to water absorption and low signal-to-noise ratio
(SNR) in those bands, leaving a total of 188 reflectance channels to be used in the
experiments. The Cuprite site is well understood mineralogically, and has several
exposed minerals of interest, all included in the USGS library considered in experi-
ments, denoted “splib06” and released in September 2007.2 In our experiments, we
use spectra obtained from this library to validate endmember extraction algorithms.
For illustrative purposes, Fig. 2.13 shows a mineral map produced in 1995 by USGS,
in which the Tricorder 3.3 software product was used to map different minerals
present in the Cuprite mining district.3 It should be noted that the Tricorder map is
only available for hyperspectral data collected in 1995, while the publicly available
AVIRIS Cuprite data was collected in 1997. Therefore, a direct comparison between
the 1995 USGS map and the 1997 AVIRIS data (as well as a comparison in terms of
fractional abundances) is not possible.

We show a comparison of the results obtained for the endmember extraction
algorithms in terms of accuracy and also in terms of computational complexity.
Accuracy is measured in terms of the spectral angle (SA), i.e., the angle between
two spectral signature vectors. Table 2.1 tabulates the SA scores, in degrees, obtained
after comparing the USGS library spectra of alunite, buddingtonite, calcite, kaolinite

1http://aviris.jpl.nasa.gov/html/aviris.freedata.html.
2http://speclab.cr.usgs.gov/spectral.lib06.
3http://speclab.cr.usgs.gov/cuprite95.tgif.2.2um_map.gif.

http://aviris.jpl.nasa.gov/html/aviris.freedata.html
http://speclab.cr.usgs.gov/spectral.lib06
http://speclab.cr.usgs.gov/cuprite95.tgif.2.2um_map.gif
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Fig. 2.13 USGS map showing the location of different minerals in the Cuprite mining district in
Nevada. The map is available online at: http://speclab.cr.usgs.gov/cuprite95.tgif.2.2um_map.gif.
The white rectangle depicts the area used in our experiments

andmuscovite, with the corresponding endmembers extracted by different algorithms
from the AVIRIS Cuprite scene. In all cases, the input parameters of the different
endmember extraction methods tested have been carefully optimized so that the best
performance for each method is reported. The smaller the SA values across the
five minerals in Table 2.1, the better the results. It should be noted that Table 2.1
only displays the smallest SA scores of all endmembers with respect to each USGS
signature for each algorithm. As a reference, the mean SA values across all five
USGS signatures is also reported. The number of endmembers to be extracted was

http://speclab.cr.usgs.gov/cuprite95.tgif.2.2um_map.gif
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Table 2.1 Spectral similarity scores (in degrees) between USGS mineral spectra and their corre-
sponding endmembers extracted by several algorithms from the AVIRIS Cuprite scene

Algorithm Alunite Buddingtonite Calcite Kaolinite Muscovite Mean

GDS84 GDS85 WS272 KGa-1 GDS107

N-FINDR 4.81 4.29 7.60 9.92 5.05 6.33

OSP 4.81 4.16 9.52 10.76 5.29 6.91

VCA 6.91 5.38 9.53 9.65 6.47 7.59

MVSA 12.72 8.41 5.69 15.04 5.36 9.44

SISAL 9.78 5.13 12.78 13.53 8.00 9.84

AMEE 4.81 4.17 5.87 8.74 4.61 5.64

SSEE 4.81 4.16 8.48 10.73 4.63 6.57

N-FINDR OSP VCA MVSA SISAL
(0.090) (0.129) (0.081) (0.025) (0.025)

AMEE (0.265) SSEE (0.101)

Fig. 2.14 Errors measured for various endmember extraction algorithms after reconstructing the
AVIRIS Cuprite scene

set to p = 19 in all experiments after the consensus reached between HYSIME [11]
and the VD concept [30], implemented using PF = 10−3 as the input false alarm
probability. In this experiment, the best performance (in terms of SA) was obtained
by the endmember extraction algorithms AMEE which include both spatial and
spectral information.

Additionally, Fig. 2.14 shows the root mean squared error (RMSE) maps obtained
after reconstructing the AVIRIS Cuprite scene using p = 19 endmembers extracted
by different methods. As shown by this experiment, MVSA and SISAL provide the
best results in terms of image reconstruction although they may provide unrealistic
endmembers, as described in the previous experiment. To conclude this section,
Table 2.2 reports the processing times of the compared algorithms.
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Table 2.2 Processing times
(in seconds) measured in a
desktop PC with intel core i7
920 CPU at 2.67 Ghz with 4
GB of RAM

Algorithm Total processing time

N-FINDR 466.08

OSP 136.09

VCA 31.12

MVSA 	25000

SISAL 170.40

AMEE 76.06

SSEE 1051.23

2.3 Classification

The general hyperspectral image classification problem can be described as follows:
At the input a B-band hyperspectral data cube is given, which can be considered as
a set of n pixel vectors X = {x j ∈ R

B, j = 1, 2, . . . , n}. Let Ω = {ω1, ω2, . . . , ωK }
be a set of information classes in the scene. Classification consists in assigning each
pixel to one of the K classes of interest. An information class can represent either a
physical substance (a ground cover material, for instance, snow, water, wheat), or a
specific group of objects which may be made of several different physical materials
(for instance, roof, shadows, trees).

In this chapter, we focus on supervised classification, which assumes that classes
are defined by a set of training samples. Unsupervised classification, or clustering
techniques have also been described in the literature. We refer the reader to [35]
for a survey on unsupervised methods. An important assumption for classification
techniques is that the spatial resolution of the image is high enough so that the data
contains mostly pure pixels, i.e., pixels representing a single information class. In
the opposite case, i.e., when the data is mostly composed of mixed pixels, spectral
unmixing methods are more appropriate for image analysis.

The first attempts to classify hyperspectral images would assign each pixel to
one of the classes based on its spectrum only [66]. These are often referred to as
pixelwise (or non-contextual) classification techniques. However, with the increase
of spatial resolution of hyperspectral sensors, objects in the image are typically large
compared to the size of a pixel. In the ideal case, all the pixels of these objects should
be assigned to the same class. It has then become then very important to simulta-
neously use spectral and spatial information for image classification [88]. Spectral-
spatial classification (also referred to as spatial-contextual) assigns each pixel to one
information class based on: (1) its own spectrum; (2) information extracted from
its neighborhood, i.e., the spatial information. A multitude of methods have been
proposed for this purpose, which differ in the ways of extracting spatial contextual
information from the image scene and in the ways of combining spectral and spatial
information.

The following sections review the keystone methods of pixelwise and spectral-
spatial classification. We also include a detailed explanation of a recently-proposed
mathematical model for spectral-spatial classification, based on a binary partition
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tree representation [76]. This method first constructs a hierarchical region-based
representation of the image stored in a tree structure, and then extracts objects of
interest from the tree.

2.3.1 Supervised Pixelwise Classification

Landgrebe et al. were seminal in exploring procedures for hyperspectral data analysis
and classification [66, 67]. They adapted pattern recognition procedures for this
purpose. A simplified version of their proposed classification scheme, widely used
until nowadays, is depicted in Fig. 2.15. There are two inputs to the system: the
hyperspectral image and a set of observations of the ground which are labeled into
classes of interest. From the hyperspectral image, there is first a process of feature
extraction and selection. Features can be seen as an abstraction layer with meaningful
descriptors derived from the raw input. This representation should me meaningful
in the sense that it must be useful for the classification problem, describing and
separating the classes of interest. Some input from the training labels themselves
might be used to decide which features are relevant. The features associated to every
pixel can be seen as a point in a high-dimensional space. The next step consists in
training a classifier based on the set of labeled samples, i.e., partitioning the entire
feature space into K exhaustive, nonoverlapping regions, so that every point in the
feature space is uniquely associated with one of the K classes.

In the pixelwise approach, each image pixel is seen as a pattern to classify. One
possibility is to use the pixel spectrum as the set of features that describe every
pixel. Since this is often redundant, it is common to perform a more sophisticated
feature extraction/selection step with the goal of reducing the dimensionality of the
feature set and maximizing separability between classes. Different feature extraction
techniques have been proposed and explored for this purpose, such as Discrimi-
nant Analysis Feature Extraction, Decision Boundary Feature Extraction and Non-
parametric Weighted Feature Extraction [39, 67]. Once this step is accomplished,
each pixel is classified according to its feature set.

The set of training samples is typically obtained by visually interpreting and
manually labeling a small number of pixels in the data set, or by performing an in
situ field campaign. The training data is used to define a model of the classes in the
feature space. Assuming that each class can be described by a normal distribution,

Fig. 2.15 Schematic diagram of the hyperspectral image classification process
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Gaussian Maximum Likelihood classification has been for many years the standard
thematic mapping procedure in hyperspectral remote sensing [99]. Essentially, it
assigns a given pixel to the class ωi that maximizes the posterior probability P(ωi |x)
in the Gaussian model. A serious drawback of this method consists in the primary
assumption about the shape of the class-conditional probability density functions. If
this assumption is wrong, classification results are no longer accurate. Furthermore,
the high number of features available, usually coupled with a limited number of
training samples, makes estimation of statistical class parameters unreliable. As a
result, with a limited training set, the classification accuracy tends to decrease as
the dimensionality increases, an issue often referred to as the Hughes phenomenon
[66, 88]. High-dimensional spaces are mostly empty [62], making density estimation
even more difficult.

In the 1990s, neural network approaches for classifying hyperspectral images
received a lot of attention [7, 80, 111, 129]. Neural network models have an advantage
over statistical methods in that they are distribution-free and thus no prior knowledge
about the statistical distribution of classes is needed. In a neural network, a set
of weighted sums and nonlinearities describe the function that classifies the input
features. The training procedure involves finding the appropriate weights, which is
done iteratively. The interest in such approaches greatly increased in the 1990s with
improvements in the training techniques [6]. Yet there has been a limited use of neural
networks for hyperspectral image classification primarily due to their algorithmic and
training complexity [99]. Genetic algorithms for classification of hyperspectral data
have also been presented [121], capable to deal with nonlinearly separable patterns
but computationally demanding.

Early in this century, kernel methods such as Support Vector Machines (SVMs)
have become very popular for hyperspectral image analysis, proving to be extremely
well suited to classify high-dimensional data when a limited number of training sam-
ples is available [22, 48]. The SVM method seeks to trace an optimal hyperplane that
linearly separates features into two groups with a maximum margin (see Fig. 2.16).
A soft margin is typically used, where misclassified samples (i.e., on the wrong side
of the hyperplane) are tolerated but penalized. To account for nonlinear separation
boundaries, the data points are mapped to a higher-dimensional space by using a
kernel function, and the linear SVM classification is performed on the transformed
space. More details on SVMs can be found in Chap. 10. For hyperspectral image
classification, two kernel functions have been widely used: the polynomial kernel
and the Gaussian radial basis function. While initially devised for binary classifica-
tion, the K -class problem can be solved by training K classifiers to distinguish each
class from all the rest (one vs all) or K (K − 1)/2 classifiers to distinguish every pair
of classes (one vs one) [104].

To conclude, SVMs directly exploit the geometrical properties of data, without
involving a density estimation procedure. This method can efficiently handle high-
dimensional data, exhibiting low sensitivity to the Hughes phenomenon [59, 79].
Therefore, it is an excellent approach to attenuate the usually time-consuming feature
extraction/selection procedure, thus simplifying the traditional pattern recognition
scheme of Fig. 2.15. In hyperspectral image classification with SVMs, the dimen-

http://dx.doi.org/10.1007/978-3-319-66330-2_10
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Fig. 2.16 Support vector
machines (SVMs) search for
an optimal hyperplane to
linearly separate the data
points with a maximum
margin. This SVM uses a soft
margin, adding robustness to
difficult samples

sionality reduction step is often skipped and the spectrum directly used as the feature
vector. Finally, SVMs exhibits a good generalization capability, fully exploiting the
discrimination capability of the relatively few training samples available. All these
advantages of the SVM method have made it the most widely used classifier for
hyperspectral data in the last decade [13].

To further boost up classification accuracies, ensemble classification systems have
been investigated for hyperspectral image classification. These approaches combine
multiple learning algorithms to improve the predictive accuracy. Ham et al. [50]
investigated the use of Random Forest framework and Ceamanos et al. [24] proposed
an SVM-based ensemble approach, where separate SVM predictions are performed
for subsets of spectral bands, and all outputs are used as the input for an additional
SVM classifier.

All the described approaches assign each pixel to one of the classes based on its
spectral properties alone, with no account being taken of how spatially adjacent pixels
are classified. In the following, we summarize the key concepts for spectral-spatial
classification of hyperspectral data.

2.3.2 Spectral-Spatial Classification

It is a proven fact that for images with high-spatial resolution, combining the spectral
and the spatial information improves significantly the performance of classification
methods. Surveys of spectral-spatial classification methods can be found in [13, 41].

A common spectral-spatial approach is to incorporate spatial information as part
of the pixelwise classification process. Some feature extraction is applied to the
surrounding area of a pixel and the result is integrated as part of the features associated
to the individual pixel, in addition to the usual spectral features. In order to perform
classification with a kernel method such as an SVM, the two sets of features must be
combined. This can be done in different ways, ranging from a naive stacking of the
feature vectors to more versatile methods. Different strategies of combining the two
sources of information have been reviewed and compared in [23, 88].
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To apply this scheme, one must define which is the neighborhood of a pixel from
where spatial features are extracted. An idea as simple as the use of a fixed window
already shows an improvement with respect to purely pixelwise approaches [88].
Benediktsson et al. [8] proposed to use morphological filters to obtain the spatial
neighborhoods in an adaptive manner. In this method, a so-called structuring element
is used to perform morphological opening and closing operations [109]. The effect of
applying these operations is that image structures smaller than the structuring element
are removed, otherwise preserved. These operations are applied with structuring
elements of different sizes to create the morphological profile. This idea was applied
in hyperspectral image classification [5] by computing the morphological profiles of
the first principal components of the data, and combining them to obtain the features
for classification.

Later on, Fauvel et al. [40] proposed to use the so-called self-complementary
filters [110] for spatial feature extraction, which remove small structures from the
image based on an area criterion, yielding a map of flat connected zones. This filter is
applied on the first principal component of the hyperspectral image to extract adaptive
spatial neighborhoods. The vector median [4] is then computed for each connected
zone of the filtered result, and used as the spatial feature vector for all the pixels within
the zone. Finally, SVM classification is performed with a weighted summation kernel
to combine spectral and spatial information. More advanced morphological filters,
called attribute filters, have been recently proposed to further enhance classification
performance [3, 74].

Another important approach to characterize pixel entities using the spatial and
the spectral information is the Markov random field (MRF) [42, 61]. MRFs (see also
Chaps. 4 and 7) are probabilistic models widely used to include spatial context into
image analysis schemes in terms of minimization of suitable energy functions [83].
The MRF energy function for image classification is commonly computed as a lin-
ear combination of a data term, which measures for each pixel the disagreement
between a prior probabilistic model and the observed data, and a spatial context
term, which expresses interaction between neighboring pixels. The first MRF-based
models employed time-consuming energy minimization algorithms, such as iter-
ated conditional modes and simulated annealing [82, 117]. More advanced methods,
such as graph-cuts [19, 20] provided powerful alternatives from both theoretical and
computational viewpoints, resulting in a growing use of the MRF-based models [72,
118]. For example, Tarabalka et al. [118] used probabilities derived from an SVM as
the data term of an MRF energy, and used the α-expansion graph cut algorithm [20]
to solve the K -class classification problem in hyperspectral imagery.

Finally, an important family of methods involves the segmentation of images and
the classification of each of the individual segments. Segmentation methods partition
an image into non-overlapping homogeneous regions with respect to some criterion
of interest or homogeneity criterion (e.g., based on the intensity or on the texture) [46].
Hence, each region in the segmentation map can be seen as a connected spatial neigh-
borhood for all the pixels within this region. One of the pioneering spatial-spectral
techniques belongs to this category: the well-known ECHO (Extraction and Classifi-
cation of Homogeneous Objects) classifier [65], which has been extensively used by

http://dx.doi.org/10.1007/978-3-319-66330-2_4
http://dx.doi.org/10.1007/978-3-319-66330-2_7
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the remote sensing community. It is based on region growing to find homogeneous
groups of adjacent pixels, which are then classified as single objects by a Gaussian
maximum likelihood method. Since then, different techniques have been proposed
for hyperspectral image segmentation, such as watershed, partitional clustering and
Hierarchical Segmentation (HSeg) [112, 113, 116]. From a segmentation map, an
SVM classifier and majority voting can be applied to combine spectral and spatial
information: for every region in the segmentation map, all the pixels are assigned to
the most frequent class within this region, based on SVM classification results [113].
This method yields an improvement of classification accuracies when compared to
spectral-spatial techniques using local spatial neighborhoods.

It is however a challenging task to perform hyperspectral image segmentation
automatically. The performance is highly dependent both on the measure of region
homogeneity and on the algorithm parameters. Several alternatives have been pro-
posed to deal with this challenge. Tarabalka et al. [114, 115] proposed to perform a
marker-controlled segmentation for this purpose. The classification probabilities are
used to automatically select the most reliably classified pixels (i.e., pixels belong-
ing with the high probability to the assigned class). The classification map is then
obtained by building a minimum spanning forest from the image graph rooted on the
selected markers. Another alternative for automatic segmentation consists in build-
ing first a hierarchy of segmentations at different levels of details, and then selecting
from this hierarchy the regions at different scales that correspond to the objects of
interest. Valero et al. proposed to use a binary partition tree (BPT) model for this
purpose [122]. In this method, a BPT is first constructed by iteratively clustering
similar regions based on a criterion specifically designed for hyperspectral images.
Each BPT node is then modeled by its mean spectrum and classified by using an
SVM. A so-called misclassification rate is computed for each node, which can be
understood as the error incurred by assigning the entire node to the wrong class.
A spectral-spatial classification map is finally built in a bottom-up traversal of the
tree by extracting regions with a low misclassification rate. In the next section we
describe an energy minimization BPT-based model recently proposed in [76].

2.3.3 Object-Based Classification with Binary Partition Trees

The goal of classification is to convert the image data into tangible information that
can be interpreted and incorporated into other systems. The ultimate elementary
units which we want to identify are the objects present in the image. In the earlier
years of remote sensing research, the per-pixel or sub-pixel analysis were particu-
larly relevant given that pixel sizes were coarser than the objects themselves. The
boundary between pixel-based and object-based analysis was still vague. As sensors
improved their spatial resolution, objects started to be comprised of many pixels and
object-based analysis emerged as a natural consequence of this. While pixelwise and
spectral-spatial classification may constitute the first of a series of steps in the image
analysis pipeline, object-based methods aim at delineating readily usable objects
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from the image [15]. Contrary to the well-established pixelwise and spectral-spatial
approaches described before, this section presents a recent object-based classification
model for hyperspectral imagery, based on binary partition trees.

Binary partition trees (BPTs) were presented by Salembier and Garrido [103] as
a way of representing a set of meaningful image regions in a compact and structured
manner. The root node corresponds to the entire image, the following level represents
the subdivision of the entire image into two disjoint regions, and so on. It consti-
tutes then a hierarchical abstraction of an image, which can be navigated to extract
meaningful regions at different scales. The typical workflow involves an initial tree
construction stage, followed by a second stage of information extraction from the
tree. For example, once a tree is constructed, an exhaustive segmentation of the image
can be obtained by performing a horizontal “cut” on the structure (see Fig. 2.17). In
this procedure, commonly referred to as pruning, branches can be selected at different
scales, an inherent advantage of such hierarchical structure.

The construction of a BPT is done in a bottom-up fashion, by iteratively clustering
pairs of similar regions together. The starting point is an initial subdivision of the
image represented by a region adjacency graph (RAG), where every node conveys a
region and the edges link spatial neighbors (i.e., candidates for merging). The typical
initial RAG is the pixel grid, though nothing prevents the approach to be used with
other inputs too (e.g., a RAG of small regions containing similar pixels, known as
superpixel segmentation). Every edge in the RAG is labeled with a dissimilarity value
that compares the two associated regions.

BPTs are constructed by following a global mutual best fitting region merging
approach [69]: at each iteration, the two most similar regions in the current sub-
division are merged together (i.e., the least weighted edge out of all edges in the
RAG). When a merge occurs, a new region is added to the BPT, connected to its two
corresponding children, as illustrated in Fig. 2.18). The process finishes when there
are no more edges left in the RAG. A BPT constitutes then a record of the history of
merges that occurred during the execution of a region merging algorithm.

The overall process can be implemented efficiently by using an updatable priority
queue structure on top of the RAG edges to keep track of the highest priority element.
Such a structure is first constructed in linear time and every subsequent update incurs
in a logarithmic time cost. When two regions R1 and R2 are merged into a new

Fig. 2.17 A binary partition
tree (BPT) is a hierarchical
subdivision of an image. An
exhaustive partitioning can
be extracted by “cutting”
branches at different scales
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Fig. 2.18 A BPT is
constructed by iteratively
removing edges in a region
adjacency graph (RAG). The
resulting BPT encodes the
history of the merges

region R12, one must update the RAG (and the associated priority queue). The edge
connecting R1 and R2 must be removed, but let us also remark that all the edges
adjacent to R1 and R2 must also be eliminated from the RAG, since none of both
regions exists anymore. We must then add the adjacency relations of the new region
R12. The computation is straightforward: the neighbors of the new region R12 are
nothing but the union of the neighbors of the old R1 and R2 (with spatial care to
remove any duplicates that may arise). The dissimilarity value associated to each of
these edges must be computed and pushed to the priority queue. The complexity of
the overall BPT construction process is O(n log(n)M), n being the initial number
of nodes and M the maximum number of neighbors of a merged region during the
construction. Given that typically M 
 n, the algorithm is quasilinear in practice.

The final tree contains exactly 2n − 1 nodes, which is a very space-efficient repre-
sentation. Let us remark though that only a subset of all possible planar subdivisions
is represented by the tree, hence the research efforts to construct a good initial tree
that conveys meaningful objects of the underlying image.

The key elements to define the behavior of a BPT are the region model, i.e. how
regions are represented, and the dissimilarity function, i.e., the function to compare
the region models, used to define the priority of the merges during tree construction.
The next paragraphs review the contributions related to these two elements.

Region Model

The object-based nature of BPTs allows to have rich representations of the region
that go beyond pixel spectra. Every BPT node can convey regional information,
describing the region as a whole and not as a set of individual pixels. The standard
variation of the spectral signatures in the region or shape features such as compactness
are some of the regional data that can be associated to every node.

To represent the spectrum of a region (and then compare it to the spectra of other
regions) there are essentially two alternatives: parametric and non-parametric mod-
els. A parametric model makes assumptions about the homogeneity or Gaussian
distribution inside the regions. A typical parametric model is to represent the spec-
trum of a region as the mean spectrum of its pixels. Non-parametric models, on the
contrary, consist of per-band histograms of the pixel values, hence they represent the
real observed distributions. In hyperspectral imagery, non-parametric models have a
better performance since they can describe the internal variability of a region [122].
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For example, a texture might correspond to several peaks in the histogram. When
averaging spectra in regions with high variability, one might end up representing the
region with a “false” spectrum that is not present in any of the individual pixels.

In addition to spectral data, the model usually stores the area of the region, since
it is commonly used in the dissimilarity function. Other shape descriptors such as
solidity, rectangularity index, elongatedness and compactness can also be efficiently
stored and computed from the children nodes [77].

Dissimilarity Function

To establish a priority for merging during BPT construction, it is required to provide
a means to compare models of two regions. A dissimilarity function O(R1, R2)

typically used for this purpose comprises two factors as follows:

O(R1, R2) = min(|R1|, |R2|)βD(R1, R2), (2.5)

where |Ri | denotes the area of region Ri . The first part of (2.5), min(|R1|, |R2|)β ,
is the so-called area-weighting factor. This is an agglomerative force intended to
cluster regions that are very small compared to the rest of the elements in the RAG.
When no area-weighting is used (i.e., β = 0), the resulting BPT might isolate small
noisy areas and connect them to the rest only near the root of the tree. With moderate
values of β, small regions are merged at some point, forcing the trees to better look
like a hierarchical subdivision. When β is too large, the trees might be too biased to
be balanced, hampering their representation capabilities. Even though this parameter
is barely discussed in the literature, being mostly set to β = 0.5 or β = 1, we must
point out that it is indeed a parameter that has to be selected. In our experience, no
area-weighting leads to poor representations (e.g., the root containing two children:
one noisy pixel and all the rest of the image), while low values of β solve this
issue without biasing the trees too much. Alternatively, Calderero and Marques [21]
proposed to keep track of the out-of-scale regions and force their merging at some
point, while Valero et al. [122] used a weighted sum of pixel values in a window to
initialize the histograms, as a way of smoothing out outliers.

The second factor, D(R1, R2), compares both regions based on their spectra.
Kullback-Leiber divergence and Bhattacharyya distance are popular choices both
in hyperspectral imagery and other types of images [21, 122]. Spectra are seen as
probability distributions and compared using standard information theory concepts.
Every bin of one histogram is compared against the corresponding bin of the other
histogram. However, using cross-bin measures, which go beyond individual bins, has
proven to be more robust [122]. The average of Earth Mover’s Distances [101] among
histograms of all bands can be used as a robust and efficient cross-bin dissimilarity
function. Every distribution is seen as a pile of dirt, and the difference between two
distributions is seen as the amount of work required to turn one pile into the other one.
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2.3.3.1 Multi-class Segmentation with BPTs

The problem of object-based classification can be seen as the simultaneous segmen-
tation of an image and the assignment of a label to every segment. This section first
formulates this problem as the minimization of an energy, and describes an algorithm
to extract the optimal segmentation with respect to that energy from a BPT. This algo-
rithm outputs the lowest-energy solution from all the segmentations represented by
the BPT, which are a subset of all possible image partitions. It is then a matter of high
importance to construct good BPTs whose solution space contains relevant candi-
dates for object-based analysis. For this we describe a supervised BPT construction
technique that incorporates class probabilities to cluster objects together.

Multi-class Segmentation as Energy Minimization

Let X = {xi ∈ R
B, i = 1, 2, . . . , n} be a B-band image seen as a set of n pixel vec-

tors. Multi-class segmentation consists in an exhaustive partitioning of the pixels
into a non-overlapping set of regions R = (R j ), with associated labels L = (L j ),
where every label L j belongs to the set Ω of available information classes. From
each object class, we suppose we are given training examples from which we can
derive posterior probabilities P(L j |xi ) of assigning a certain label L j after the spec-
tral observation xi is taken into account. Such posterior probability may be derived
from a support vector machine [128]. The negative log-likelihood − log P(L j |xi ) is
typically used to express a cost that penalizes the assignment of label L j to pixel xi .

Our task is to find the labeled partitioning (R, L) from a BPT that minimizes the
following energy:

E(R, L) = λ||R|| −
∑

R j∈R

∑

xi∈R j

log P(L j |xi ). (2.6)

Let us first observe that the same label L j is assigned to all pixels xi in region R j ,
since the entire segments take a single label. The first term is a regularizer on the
number of regions in the partition ||R||, and controls the coarseness of the output
through parameter λ. In the absence of this term (i.e., λ = 0), the optimal solution
is to create one segment per pixel and assign to it the lowest-cost label. To introduce
the notion of object we must then set λ > 0. We here set this parameter manually,
but let us mention that in recent work the regularization term was directly learned
from training samples [77].

From a BPT, the best possible labeled segmentation with respect to Eq. 2.6 can be
extracted efficiently [102]. This task can be interpreted as the extraction of a minimal
horizontal s-t cut on the tree (see Fig. 2.17), i.e., with a source at every leaf and a
sink at the root. Let us denote C(R) the energy of the cut on R with minimal (2.6)
among all possible cuts.

Considering that the branches in the tree are independent, the globally optimal
cut can be found by a dynamic programming algorithm. Let us denote E (R) =
min
L∈Ω

E({R}, {L}) the lowest possible energy of a region R (by assigning the label
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that incurs the lowest cost). The tree is traversed in a bottom-up manner. Whenever
a region R is visited, the following property is evaluated:

E (R) � C(Rle f t ) + C(Rright), (2.7)

where Rle f t and Rright are the children of R. If the property does not stand, we set
C(R) = C(Rle f t ) + C(Rright ) and keep the best cuts of both children. Otherwise,
we setC(R) = E (R) and replace the cuts by R with label L . This process is executed
recursively until reaching the root of the tree. The overall algorithm is linear in the
image size, since only one BPT traversal is required, and guarantees the optimal cut
in the space of solutions represented by the BPT.

Supervised BPT Construction

Even though the globally optimal cut on a BPT can be found efficiently, not all
the possible ways of segmenting an image are represented in the structure. In some
images, objects have considerable internal variability. For example, it is known that
the different parts of a roof often contrast more with each other than with other
surrounding objects [45]. This is more prevalent in high-resolution imagery and in
cluttered urban scenes.

In such images, it is common to observe objects that are split into different
branches of the tree instead of being contained in a single node. This behavior is
illustrated in Fig. 2.19, which shows a BPT built on an image of a non-uniform roof.
During BPT construction, a part of the roof (b) is merged first to something else (a)
than to the rest of the object (c-d-e) because it is more similar in terms of Eq. (2.5).
As a consequence, the entire building (b-c-d-e) cannot be extracted by selecting a
single node in the tree.

Figure 2.20 illustrates this phenomenon on real image data. Two fragments of the
Pavia Center image, which will be introduced in the experimental section, are shown
in Fig. 2.20a. The scene contains multiple buildings, streets and cars adjacent to
each other. A BPT with a non-parametric region model and Earth Mover’s Distance
was constructed for this image. The energy minimization scheme (2.6) was then
applied, and the objects labeled as tile isolated from the rest to aid the interpretation.
Figure 2.20b depicts the surface covered by tiles, as predicted by the BPT cut. This
way of illustrating the classification is purely pixelwise, since no distinction about
the objects extracted from the tree is made. This is a common way of illustrating
results in the literature, even when the goal is to perform object detection (e.g., [123]).

Fig. 2.19 Faulty BPT: the
object (bcde) is not
represented in a single node,
since a part of it (b) merged
first to something else
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However, observing the actual objects extracted from the BPT (Fig. 2.20c) we can
see that the regions hardly correspond to actual objects in the image. Even though the
surface covered by these objects might be satisfactory from a pixelwise perspective,
an object-based analysis would certainly be less impressive.

Let us recall that the use of non-parametric region models is to represent internal
variability. However, commonly used dissimilarity functions such as (2.5) penalize
the merging of dissimilar regions. In an unsupervised context, where there is no
notion of object class, there is little to do to deal with this, since there is no reason to
cluster dissimilar regions together. However, when class probabilities are available
we propose to include an additional force that clusters regions belonging to the same
class, despite being spectrally dissimilar. The new function is as follows:

O(R1, R2) = min(|R1|, |R2|)β
[
(1 − α)D(R1, R2) − α log P(LR1 = LR2)

]
.

(2.8)

As in the original dissimilarity function (2.5), there is an area-weighting factor and an
unsupervised term D(R1, R2), which is computed by comparing spectral histograms
of regions without any preliminary training. Equation 2.8 adds a supervised term
P(LR1 = LR2 |R1, R2), the probability of assigning the same label to both regions.
This way, while the unsupervised term penalizes spectral dissimilarity, the supervised
term will encourage merging regions that are likely to belong to the same class. The
trade-off between both terms is controlled by parameter α.

The term P(LR1 = LR2 |R1, R2) is computed by marginalizing over the classes as
follows:

P(LR1 = LR2 |R1, R2) =
K∑

j=1

P(L j |R1)P(L j |R2), (2.9)

(a) Color composition (b) Areas labeled tile (c) Extracted objects

Fig. 2.20 Analyzing classification from a pixelwise b vs object-based c perspective. Even though
the area covered by the tile objects might be satisfactory (b), the objects that constitute this area
often do not correspond to the real objects (c)
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where K is the number of classes and P(L j |Rk), with k ∈ {1, 2}, represents the
probability of assigning a certain label L j to segment Rk . We must now define a way
to compute P(L j |Rk) based on the posteriors of the individual pixels contained in
the region. One way to do this is to compute the probability of assigning the label
to all pixels, conditioned by the fact that all labels are known to be equal inside the
region:

P(L j |Rk) =
∏

xi∈Rk

P(L j |xi )/
⎡

⎣
∑

ωm∈Ω

∏

xi∈Rk

P(ωm |xi )
⎤

⎦ . (2.10)

Alternatively, one can estimate P(L j |Rk) by averaging the individual pixel proba-
bilities:

P(L j |Rk) = 1

|Rk |
∑

xi∈Rk

P(L j |xi ). (2.11)

While the first expression is closer to a strict Bayesian interpretation, we found the
second one to be a simple yet useful approximation.

By introducing (2.8) we expect to better cluster semantically significant objects
together. The advantage of such an outcome is two-fold: first of all, the classification
accuracy is improved. Secondly, there is a notion of object, which constitutes a
higher-level interpretation of the input image rather than mere pixelwise labeling.

2.3.4 Experimental Results

This sections describes two series of experiments to analyze and compare different
methods of hyperspectral image classification. We report results for the most repre-
sentative pixelwise and spectral-spatial methods discussed in the previous sections,
as well as the BPT model. The first set of experiments is performed on a dataset over
the University of Pavia, Italy. The goal of this evaluation is to compare the different
approaches in terms of per-pixel classification accuracy, with the particular goal of
verifying that the introduction of spatial information improves the results.

A second set of experiments is carried out on the Pavia center hyperspectral
dataset. The goal of these experiments is to evaluate the behavior of the techniques
from an object-based perspective, providing an object overlap measure between ref-
erence and detected objects. We compare the typical unsupervised BPT construction
approach and the supervised alternative introduced in Sect. 2.3.3.1.

Both images were acquired with the Reflective Optics System Imaging Spectrom-
eter (ROSIS-03). This optical sensor provides 115 bands with a spectral coverage
ranging from 0.43 to 0.86 µm and 1.3 m spatial resolution.
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Fig. 2.21 University of Pavia hyperspectral dataset

University of Pavia

This image is of size 610 × 340 and contains 103 spectral channels (after excluding
12 noisy bands). Figure 2.21a illustrates a false color composition of the hyperspectral
image. The reference data contains nine classes of interest, as depicted in Fig. 2.21b.

In the next paragraphs we summarize the classification methods that were executed
and compared on this dataset. As described in Sects. 2.3.1–2.3.3, these techniques
have become the standard in the remote sensing literature.

SVMA support vector machine (SVM) was trained on 50 randomly selected samples
for every class. A multi-class one vs one SVM with Gaussian kernel was used (with
parameters C = 128 and γ = 0.125, set by fivefold cross-validation).
Graph cut A graph cut with α-expansion [20] (which proved to be effective in
hyperspectral image classification [118]) was executed on probabilities derived the
SVM. Its regularity parameter was set empirically to optimize the accuracy.
HSeg The technique presented in [113] was also implemented, which consists in first
performing a segmentation and then labeling every segment. A recursive hierarchical
image segmentation (HSeg) is used, followed by a majority voting procedure in
which every segment is labeled as the majority class of the SVM predictions inside the
segment. Parameter ‘spclust_wght’ was set to 0.1, following the original publication.
BPT For the binary partition tree (BPT) model described in this chapter, the tree was
constructed by using a non-parametric model with 30 histogram bins per band, the
Earth Mover’s Distance to compare histograms and mild area-weighting (β = 0.1).
The coarseness parameter λ in (2.6) was empirically set to 40. Two variants were
tested: (a) totally unsupervised construction, i.e., setting α = 0 in (2.8), which is
equivalent to the old function (2.5); (b) supervised construction with equal contri-
bution from both terms in (2.8), i.e., α = 0.5.
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Table 2.3 Numerical evaluation on University of Pavia dataset (in %)

SVM Graph cut HSeg [113] BPTα=0 BPTα=0.5

AA 88.03 95.13 95.35 95.49 97.32

OA 80.38 91.69 90.75 94.45 93.13

Asphalt 77.66 94.58 95.40 97.83 99.15

Meadows 72.74 86.10 83.63 92.65 86.07

Gravel 79.55 86.58 98.98 84.87 99.17

Trees 95.95 97.38 96.28 91.44 96.72

Metal 99.61 100.0 99.15 99.07 99.92

Bare soil 89.38 98.39 94.86 97.99 98.31

Bitumen 94.37 95.55 95.23 99.92 97.19

Bricks 82.89 97.74 97.88 95.59 99.31

Shadows 100.0 99.89 96.77 100.0 100.0

The test dataset was created by excluding the pixel used from SVM from the
ground truth. To measure the performance we use the average accuracy (AA) and
overall accuracy (OA). The first one computes for every class the percentage of
correctly classified pixels from the test data, and averages these values over all the
classes. The latter is the proportion of correctly classified pixels. The pixels used for
SVM training are excluded in the evaluation. The numerical results are deployed on
Table 2.3. The accuracies for individual classes are also included in the table. We can
verify that purely pixelwise methods such as SVM have a lower performance than
spectral-spatial approaches. The BPT models (with α = 0 and α = 0.5) outperform
the other techniques. The inclusion of class probabilities in tree construction (α =
0.5) boosts the AA with a mild decrease of OA with respect to the unsupervised
construction.

The overall classification map for the BPTα=0.5 method is shown in Fig. 2.21c
and two fragments are amplified and compared with other methods in Fig. 2.22.
These results show that in general BPTs constitute an improvement with respect to
the other techniques. The benefit of supervised (α = 0.5) over unsupervised (α = 0)
construction is not entirely clear in this dataset. First of all, there are few objects of
every class in the reference data and the labeled pixels do not cover the entire surface
of the objects. Moreover, there seems to be a significant contrast between objects and
their surroundings, a situation in which the supervised term in (2.8) may not be very
relevant. While BPTs have proved to be competitive from a pixelwise perspective,
we require a different dataset to evaluate the performance of the methods from an
object-based perspective and compare the unsupervised vs supervised construction
models.

Pavia Center

This image has spatial dimensions 400 × 300 and contains 102 bands. A color com-
position of the image is shown in Fig. 2.23a. Compared to the University dataset, this
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Fig. 2.22 University of Pavia: closeups of classification maps with different methods

image presents a more cluttered scene with objects composed of dissimilar parts. As
illustrated previously in Fig. 2.20, BPT nodes may not correspond to entire objects
because parts of them grow into other adjacent objects during the construction.

A reference image that labels entire objects and not just isolated pixels was built,
including four classes (see Fig. 2.23b). This reference was constructed by combining
the labeling of isolated pixels provided with the original image, visual inspection
and official Italian records of building boundaries, which are available for this area
through the OpenStreetMap.org database. Since the boundaries of buildings are well
defined, there is a particular interest in analyzing the performance of BPTs to extract
buildings.
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Fig. 2.23 Experiments on Pavia Center hyperspectral image

An SVM is first trained on randomly selected samples (parameters C = 128,
γ = 2−5). The SVM classification is shown in Fig. 2.23c. A BPT is then con-
structed on top of the SVM probabilities, in a similar experimental setting as with
the University of Pavia dataset, and the classification map is extracted by setting
λ = 20 in Eq. (2.6). The resulting classification map with supervised tree construc-
tion (α = 0.5) is shown in Fig. 2.23d.

Figure 2.23e, f and the close-ups of Fig. 2.24 compare the results obtained by
applying the unsupervised and supervised approaches for BPT construction. These
figures isolate the tile objects from the rest and assign a random color to every
individual object. From these illustrations we can appreciate that including class
probabilities during BPT construction has the effect of better clustering the objects
together. To validate this numerically we compute the overlap between every build-
ing (belonging either to tiles or bitumen classes) in the reference data and the most
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Fig. 2.24 Unsupervised b versus supervised c BPT construction. In the supervised case, regions
are better clustered together to represent significant objects

Table 2.4 Numerical evaluation on the Pavia Center dataset

SVM Graph cut BPTα=0 BPTα=0.5

Building overlap 0.51 0.51 0.54 0.56

Overall accuracy 0.88 0.94 0.91 0.94

overlapping building region in the BPT output. The overlap is measured with Dice’s
coefficient defined as: 2|R1 ∩ R2|/(|R1| + |R2|). The resulting overlap coefficients
are averaged over all reference buildings to produce an estimation of how well the
BPT output matches the reference data from an object-based perspective. The numer-
ical results, together with the overall accuracy, are summarized in Table 2.4, which
also includes the values for SVM and graph cut. A first observation we can make
is that BPTα=0.5 performs better than BPTα=0, corroborating the visual impression
from Fig. 2.23e, f. Secondly, while graph cut is known to improve the SVM classi-
fication, we can see that this is true from a pixelwise perspective (in terms of OA)
but not from an object-based perspective (in terms of building overlap). Finally, the
use of BPTα=0.5 outperforms the other methods in terms of object overlap. This
validates the idea of including class probabilities during tree construction for a better
object-based analysis of hyperspectral imagery.

2.4 Challenges

The classification of hyperspectral imagery presents a number of challenges proper to
the nature of this image modality. The integration of spatial and spectral information
is one of the most widely addressed issues, as we have reviewed throughout this
chapter. This concern will certainly continue to intrigue the scientific community
and will remain an active research area. However, the imbalance between the high
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dimensionality of hyperspectral data and the low amount of training samples is still
probably one of the largest sources of difficulty.

There is a growing trend to study new training schemes to deal with the limited
availability of labeled data. Notably, semi-supervised algorithms are arising in the
hyperspectral literature (e.g., [97, 119]). These algorithms combine a low amount
of labeled training data with unlabeled samples, under the assumption that the latter
can be obtained with little effort. A smart combination of labeled and unlabeled data
may significantly improve the accuracy of classification. Among semi-supervised
algorithms,active learningmethods interact with the user to actively query for helpful
labels [86, 120, 125].

With the recent advent of deep learning in multiple application domains, it will
certainly gain increasing attention in the hyperspectral image analysis community.
Some first research efforts in this direction can be already identified in the litera-
ture [34, 75].

To conclude, we can say that hyperspectral remote sensing image analysis uses
and adapts frontier concepts, frameworks and algorithms from the fields of signal
and image processing, statistical inference and machine learning. The compendium
of techniques presented in this chapter reflects the increasing sophistication of a field
that is rapidly maturing at the intersection of many different disciplines.
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