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Abstract An evolutionary algorithm (EA) is said to be spatially structured when its
individuals are arranged in an incomplete graph and interact only with their
neighbors. Previous studies argue that spatially structured EAs are less likely to
converge prematurely to local optima. Furthermore, they have been initially
designed for distributed computing and it is often claimed that their parallelization
is simpler than the equivalent non-structured algorithm. However, most of the
empirical studies on spatially structured EAs use a predefined and fixed population
size, whereas the full potential of this or any other any kind of EA can only be
explored if the population size is properly set. This paper investigates optimal
population sizes of spatially structured EAs (cellular EAs, in particular) and the
relationship between that size, convergence speed and the degree of the structuring
network. EAs structured by regular graphs with different degrees have been tested
on different types of fitness landscapes. We conclude that in most cases graphs with
low degree require smaller populations to converge consistently to global optima.
However, if the population size is properly set, EAs structured by graphs with
higher degrees not only converge to global optima with high probability, but also
converge faster.
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1 Introduction

Evolutionary Algorithms (EAs) [2] are a class of metaheuristics based on the theory
of evolution. Initially, an EA generates a population of solutions. Then, a set of
those solutions is selected according to their fitness and recombined for generating
new individuals. The new population replaces the whole or part of the parents’
population and the process repeats until a stopping criterion is met. This simple
procedure increases the average fitness of the population and, eventually, finds a
local or global solution to the problem.

Standard EAs use what is known as panmictic populations: each individual can
interact (recombine) with every other individual. However, parallel and distributed
implementations of EAs may benefit from alternative, restricted forms of recom-
bination. In recent years, spatially structured EAs [13], which restrain the interac-
tion according to a population structure, are gaining increasing attention. The
structure specifies a network of acquaintances for individuals to interact, that is,
mating or selection is restricted to neighborhoods within the network structure. As
argued in [2], non-panmictic EAs, such as cellular [1] or distributed EAs [3, 8],
provide a better sampling of the search space and improve the performance of the
equivalent panmictic EA.

This paper focuses on the particular case of spatially structured EAs called
cellular EAs (cEAs). The efficiency of cEAs has been systematically demonstrated
[1, 2, 13] and is attributed to their ability to maintain fitness and genetic diversity
[2]. Since individuals only interact with a restricted number of other individuals,
information diffuses slower through the network. This means that the balance
between exploration and exploitation of panmictic EAs (under the same selection
and recombination strategies) is severely altered: exploration is more intense, while
exploitation takes place only in local neighborhoods. This results in higher takeover
times: the diffusion of good individuals is slower. Consequently, the convergence is
also slower, but the algorithm is less likely to converge to local optima.

There are several studies that investigate selection pressure, convergence speed
and takeover times of cellular EAs [1, 2, 4, 6, 7]. However, to the extent of our
knowledge, the relationship between population size, convergence speed, accuracy
and the degree of the underlying graph has not been studied yet. Since population
size is a key factor not only in the convergence speed of EAs, but also for efficient
parallel implementations, we propose to investigate the optimal population size of
structured EAs on regular graphs with different degree. For that purpose, we use the
bisection method for assessing optimal population size in different fitness land-
scapes. Under these settings, we are able to determine which graph maximizes the
performance of the algorithm in each type of landscape, as well as the smallest
population that guarantees a high probability of convergence to the global optimum.
With such knowledge, we can improve our comprehension of the mechanisms
behind efficient cEAs, while optimizing the computational resources required for
real-world implementations of cEAs.
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The remainder of the paper is structured as follows: Sect. 2 gives a background
review on cellular EAs; Sect. 3 describes the methodology used in this study;
Sect. 4 presents and discusses the results; Sect. 5 concludes the paper and outlines
future lines of work.

2 Background Review and Motivation

Genotypic representation, operators, selection schemes and population size are
typical EAsmoduli that require design choices. Population size, in particular, must be
set to a minimal size that guarantees a sufficient supply of raw building blocks. If the
population is too small, the algorithm loses diversity prematurely and converges to
local optima. Conversely, if the population is excessively large, the convergence
speed of the algorithm may be affected. The population must grasp a proper balance
between genetic diversity and convergence speed, and methods have been devised
for determining the minimal size that assures a high probability of convergence to
global optima [12]. These methods can be applied to any kind of EA, including cEAs.

The initial objective of spatially structured EAs was to develop a framework for
studying massive parallelization. However, the need to provide traditional EAs with
a proper balance between exploration and exploitation motivated several lines of
research that explore the potentiality of different population structures in main-
taining genetic diversity [13]. The primary focus of the field has been on static
regular lattices: every individual has a fixed number of potential interaction part-
ners. Giacobini et al. [7] present mathematical models for the selection pressure of
cEAs on regular lattices. The experiments confirmed the theoretical results. The
validation of the model has been made on 32 × 32 grids (1024 individuals), but
the authors identified a breakdown of the usual logistic approximation for
low-dimensional lattices.

Alba and Dorronsoro [2] dynamically change the ratio that defines the neigh-
borhood of interaction in cEAs. Since the ratio may affect selection pressure, the
authors analyze its influence on the balance between exploration and exploitation.
However, the base-structure of the cEA (i.e. a grid lattice) is maintained throughout
the run and the population size is set to fixed value for all problems and configu-
rations of the algorithm.

Standard cEAs have some drawbacks: synchronicity (in most cases) and a strong
dependence on the problem since the genetic diversity promoted by a prefixed
topology is uncorrelated with the problem structure. In order to overcome these
limitations, complex population structures have been also studied, sometimes using
recent developments in network theory [10]. Giacobini et al. [6] studied takeover
times in random and small-world structures. Again, the population size is set to a
fixed value in every experiment. Whitacre et al. [14] focus on two important
conditions missing in EA populations: a self-organized definition of locality and
interaction epistasis. With that purpose in mind, they propose a dynamic structure
and conclude that these two features, when combined, provide behaviors not

Spatially Structured Evolutionary Algorithms … 17



observed in the canonical EAs or traditional spatially structured EAs. The most
noticeable change in the behavior is an unprecedented capacity for sustainable
coexistence of genetically distinct individuals within a single population. The
population size varies on the range [50, 400], but the authors not give a reason for
choosing this interval. Fernandes et al. [5] proposed dynamic and partially con-
nected ring topologies for cEAs. The structures improve the rate of convergence to
global optima when compared to cEAs with standard topologies on
quasi-deceptive, deceptive and NP-hard problems. In this case, the authors con-
ducted optimal population size tests, demonstrating that the proposed topologies
require smaller populations when compared to traditional cEAs.

Our purpose is to investigate how population size of cEAs correlates with the
structure and the fitness landscape. Since takeover times decrease with graph
degree, it is expected that structures with higher degrees require larger populations.
However, since good solutions diffuse more quickly when the individuals have
more neighbors, it is possible that larger populations required by higher degree
graphs converge faster than smaller populations in less connected structures.

3 Methodology

In order to investigate the optimal population size of different types of graphs, we
have implemented cEAs with increasing degree. Most of the studies on spatially
structured EAs on regular graphs use 1-D or 2-D grids—see [1, 2, 9]. In fact, a grid
topology does not restrict the study [11]. However, we have chosen a more general
basic structure, exemplified in Fig. 1.

Starting from a ring structure (k = 2) the degree is doubled by linking each
individual to its neighbors’ neighbors, creating regular graphs with
k= 2, 4, 8, 16, 32 . . .f g. Additionally, EAs with k= n− 1 (i.e., with panmictic
populations), where n is the population size, have been tested.

This study is restricted to synchronous cEAs, i.e., offspring are placed in the
secondary population and replacement is made when the size n’ of the offspring

Fig. 1 Regular graphs for population size n = 8
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population is equal to the size n of the parents population. The selection scheme is
the binary tournament, two-point crossover is the recombination method and bit-flip
is the mutation type. In each iteration, each individual (parent1) is recombined with
one of its

neighbors (parent2). From the set of two children generated by crossover, one is
randomly chosen and replaces parent1 if its fitness is higher. The pseudo-code of
the cEA is in Algorithm 1.

Finding an appropriate population size for a given problem is critical for the
performance of any EA. To determine the optimal population size of the cEAs we
have used a selectorecombinative version of the algorithms (i.e., without mutation)
and the bisection method [12]. Please note the bi-section method is performed in
EAs without mutation. The objective is to determine the minimal population size
that guarantees a sufficient supply of building blocks for the search process to
converge to the global optimum without needing mutation. Then, it is expected that
smaller populations can be used effectively when mutation probability is set to a
non-zero value.
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The bisection method is a simple yet effective technique used to determine the
optimal population size of selectorecombinative EAs and it is described by Algo-
rithm 2. For this particular case the threshold T was set to 0.1 and initial population
size was set to 200. Every configuration was run 30 times before updating and the
convergence criteria is met if 29 of those 30 runs converge towards the global
optimum. The algorithms were tested with pc = 1.0. Mutation probability was set
to 0. After determining the optimal population size, that configuration was executed
for 50 times and the number of evaluations necessary to reach the optimum was
averaged over the successful runs.

4 Experimental Setup and Results

The algorithms were tested with onemax, 2-trap, 3-trap, 4-trap and MMDP. A trap
function is a piecewise-linear function defined on unitation (the number of ones in a
binary string) that has two distinct regions in the search space, one leading to the
global optimum and the other leading to a local optimum. Depending on its
parameters, trap functions may be deceptive or not. The trap functions in these
experiments are defined by:

F x ⃗ð Þ= k, if u x ⃗ð Þ= k
k− 1− u x ⃗ð Þ, otherwise

�
ð1Þ

where u(x ⃗) is the unitation function and k is the problem size (and also the fitness of
the global optimum). With these definitions, order-3 traps are in the region between
deceptive and non-deceptive, while order-2 are non-deceptive and order-4 are fully
deceptive. For the experiments, order-2, -3 and -4 trap functions were constructed
by juxtaposing, respectively, 150, 75 and 60 subproblems, generating 300- (2-trap),
150- (3-trap) and 120-bit (4-trap) problems. The fitness values of the best solutions
are, respectively, 300, 150 and 120.

The onemax problem is the 1-trap function and consists in maximizing the
number of ones in a binary string. The size of the string in the onemax problem
used for this study is l = 400, corresponding to an optimal fitness of 400.

The MMDP is an NP-hard, deceptive and multimodal. It consists of k 6-bits
subproblems with two global optima and a deceptive attractor in the middle of the
fitness landscape. Each subproblem fitness values depend on the unitiation function.
Table 1 shows the contribution of each subproblem to the fitness value of a string.
For the experiments, 120-bit strings were used. Optimal solutions have fitness
values of 20. Table 2 summarizes the test set.

Table 1 MMDP. Contribution of each subproblem configuration to the fitness value

u x⃗ð Þ 0 1 2 3 4 5 6

F x⃗ð Þ 1.000000 0.000000 0.360384 0.640576 0.360384 0.000000 1.000000
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First experiments determine the optimal population size of cEAs with
k= 2, 4, 8, 16, 32, 64, 128, n− 1f g, where n is population size. Results are in
Table 3. As expected, optimal size increases with the degree of the underlying
structures.

Table 4 shows the average number of evaluations required to reach the global
optimum when the population size is set to the values found previously and shown

Table 2 Functions: type,
string size and best solution
fitness

Function Type String size Best fitness

onemax Non-deceptive 400 400
2-trap Non-deceptive 300 300
3-trap Nearly deceptive 150 150
4-trap Deceptive 120 120
MMDP Deceptive 120 20

Table 3 Optimal population
size

onemax 2-trap 3-trap 4-trap MMDP

k = 2 400 500 350 400 500
k = 4 450 500 350 450 500
k = 8 500 550 350 500 500
k = 16 550 700 400 550 500
k = 32 800 750 500 550 550
k = 64 1000 1000 650 650 650
k = 128 1200 1300 700 750 750
k = n − 1 2200 2275 1100 1200 800

Table 4 Convergence speed: average number of evaluations and standard deviation

onemax 2-trap 3-trap 4-trap MMDP

k = 2 319,986.21 348,483.33 133,712.07 146,560.00 168,266.67
±17,253.56 ±22,773.05 ±16,085.69 ±18,423.25 ±29,590.81

k = 4 219,930.00 222,433.33 86,205.00 104,167.24 108,866.67
±12,784.26 ±26,610.77 ±10,812.42 ±12,786.66 ±14,151.84

k = 8 157,233.33 147,836.21 54,961.67 73,206.90 66,100.00
±7,747.89 ±1,1261.46 ±5,178.70 ±10,743.37 ±8,515.10

k = 16 114,210.34 129,173.33 41,701.67 51,645.00 44,724.14
±5,271.88 ±7,495.93 ±4,602.52 ±4,915.85 ±5,630.89

k = 32 122,560.00 99,795.00 38,683.33 40,425.00 35,806.90
±5,366.15 ±5,847.96 ±3,100.29 ±4,175.58 ±2,988.51

k = 64 117,933.33 104,068.97 40,913.33 37,812.07 33,979.31
±4,448.42 ±4,008.30 ±2,966.80 ±2,395.00 ±3,254.16

k = 128 120,331.03 110,196.67 37,727.59 38,700.00 33,725.00
±3,887.07 ±4,601.69 ±1,947.32 ±3,275.69 ±2,904.63

k = n − 1 181,462.07 160,463.33 51,920.00 49,646.67 33,296.55
±5,010.59 ±3,995.89 ±3,792.95 ±3,989.5 ±2,142.51
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in Table 3. The optimal convergence speed (in bold) is attained with highly con-
nected graphs. The panmictic population (k= n− 1) does not attain the best con-
vergence speed values in every function but it is significantly better than lower
degree graphs (k = 2 and k = 4) in every fitness landscapes. (In this study,
Mann-Whitney U tests were performed at the 5% level of significance to determine
if two distributions of numerical results are significantly different). Furthermore,
k= n− 1 attains the best performance in the MMDP problem.

The following experiment was performed to stress out the importance of
determining the optimal population size of EA for a particular fitness landscape.

Table 5 Fitness (median, best and worst values) and success rates (SR)

onemax
n = 200

2-trap
n = 250

3-trap
n = 175

4-trap
n = 200

MMDP
n = 250

k = 2 Median 400 300 150 120 20

Best 400 300 150 120 20

Worst 400 300 149 118 19.64

SR 30 30 28 24 23

k = 4 Median 400 300 150 120 20

Best 400 300 150 120 20

Worst 400 300 148 118 19.64

SR 30 30 25 23 22

k = 8 Median 400 300 150 119 20

Best 400 300 150 120 20

Worst 400 300 148 118 19.64

SR 30 30 20 12 23

k = 16 Median 400 300 149 119 20

Best 400 300 150 120 20

Worst 400 300 146 116 19.64

SR 30 30 7 7 22

k = 32 Median 400 300 147 117.5 20

Best 400 300 150 120 20

Worst 400 300 144 115 19.28

SR 30 30 1 1 20

k = 64 Median 400 300 146 116 19.64

Best 400 300 149 120 20

Worst 400 300 142 113 19.28

SR 30 30 0 1 6

k = 128 Median 400 300 145 116 19.64

Best 400 300 148 120 20

Worst 400 300 140 112 18.20

SR 30 30 0 1 16

k = n − 1 Median 400 300 146 116 19.64

Best 400 300 149 119 20

Worst 400 300 142 113 18.92

SR 30 30 0 0 9
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For each problem, the population size n of each cEA was set to nmin ̸2, where nmin
is the population size in Table 3. Mutation probability is set to pm =1 ̸l, where l is
the string size, and crossover probability is pc =1.0. The algorithms were all run for
1,000,000 function evaluations or until reaching the global optimum. Results are
averaged over 30 runs and shown in Tables 5 and 6.

Table 5 shows the median, best and worst fitness attained by each configuration
in each problem, as well as the success rates (the number of runs in which the
algorithm found the global optimum). The global optimum of onemax and 2-trap
functions is found in every run by every cEA. These are simple and unimodal
problems without local optima. Therefore, provided with variation and mutation
operators and given enough time, an EA will eventually find the optimum. Com-
parison of performance can therefore be made using convergence speed. Table 5
shows that the convergence speed in the onemax problem increases with k. Optimal
speed in 2-trap is attained with k = 8. However, better convergence speed is
attained for 2-trap using larger populations—see cEAs with k = 32 and k = 64 in
Table 4.

For the 3-trap problems, better results are clearly attained by the cEAs with
optimal population size, except for k = 2, which attains a good success rate with
lower convergence speed. For 4-traps, the accuracy is clearly degraded when
population size is set to n=200. The same goes for MMDP problem.

These results show that deceptive functions require a careful tuning of the
population size. Furthermore, the numerical results in Tables 3, 4, 5 and 6
demonstrate that setting the population size to suboptimal values may mislead the
conclusions on the performance of cEAs, mainly in deceptive and multimodal

Table 6 Convergence speed: average number of evaluations and standard deviation

onemax 2-trap 3-trap 4-trap MMDP

k = 2 95,900.00 235,716.67 99,497.22 110,708.33 124,673.91
±3,626.24 ±23,382.20 ±15799.90 ±21,653.64 ±58,068.80

k = 4 72,460.00 148,950.00 65,856.00 67,452.17 151,840.91
±2,769.36 ±16,527.33 ±12,553.7 ±10,967.43 ±200,212.74

k = 8 55,493.33 117,900.00 58,403.95 43,233.33 114,608.70
±2,183.79 ±49,055.90 ±89,744.99 ±5,718.13 ±166,207.75

k = 16 43,646.67 217,041.67 25,300.00 26,914.29 116,761.36
±2,058.24 ±371,359.30 ±2,710.82 ±4,989.13 ±230,706.28

k = 32 35,793.33 423,041.67 17,675.00 18,600.00 162,950.00
±1,960.64 ±203,743.01 – – ±230,706.28

k = 64 32,866.67 615,841.67 – 15,000.00 86,708.33
±1,590.78 ±228,150.17 – – ±119,648.17

k = 128 32,333.33 608,983.33 – 13800.00 287,468.75
±2,074.03 ±239,684.09 – – ±304,905.86

k = n − 1 31,600.00 611,441.67 – – 127,277.78
±1,702.74 ±232,371.70 – – ±153,606.36
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problems. These problems require a proper balance between the initial supply of
building blocks, the selection pressure and the variation operator. The results in this
paper call into question the efficiency of cEAs in deceptive and multimodal
problems—please remember that the most efficient EA in the tested MMDP
problem is the panmictic EA. However, further tests are required in order to confirm
the hypothesis.

5 Conclusions

This paper investigates the relationship between population size, convergence speed
and graph degree of cEAs with populations structured by regular graphs. In order to
determine the minimal population size that guarantees convergence to global
optimum with high probability, the bisection method has been applied to cEAs with
different degree. The numerical results show that graphs with lower degree require
smaller populations. However, the larger populations required by graphs with
higher degree converge faster to global optima. These results suggest that when the
population is properly set, higher degree or even panmictic populations are more
efficient than cEAs in ring structures or low degree graphs. Furthermore, conclu-
sions on the performance of the different structures are entirely different and almost
certainly misleading if the population size is set to the same value for all
configurations.

The study has been restricted to regular and static graphs. In the future, we
intend to apply the same experimental procedure to random, small-world and
dynamic structures. The takeover times of the different graphs with different pop-
ulation size will be investigated as well as the behavior and performance of the
different structures with different string sizes (scalability tests). Finally, the impli-
cations of a proper setting of the population size in parallel and distributed cEAs
will also be studied.
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