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Abstract. MTL is the logic of all left-continuous t-norms and their
residua. The equivalent algebraic semantics of MTL is constituted by
the variety of MTL-algebras, MTL. The variety WNM of weak nilpotent
minimum algebras is a major subvariety of MTL, containing several sub-
varieties of MTL which have been subjects of study in the literature,
such as Gödel algebras, Nilpotent Minimum algebras, Drastic Product
and Revised Drastic Product algebras, NMG-algebras, as well as Boolean
algebras. In this paper we introduce and axiomatise DNMG, a proper
subvariety of WNM which contains all the aforementioned varieties. We
show that DNMG is singly generated by a standard algebra. Further, we
determine the structure of the lattice of subvarieties of DNMG, and we
provide the axiomatisation of every subvariety.

Keywords: WNM-algebras · DNMG-algebras · NM-algebras · Gödel-
algebras · DP-algebras · Axiomatisations of subvarieties · Single chain
completeness

1 Introduction

Nilpotent minimum t-norm ∗NM [14] was one of the first examples of a left-
continuous but not continuous t-norm. The logic related to ∗NM, NM, was intro-
duced by Esteva and Godo in [12]. In the same paper they presented a gener-
alisation of NM, the logic of Weak Nilpotent Minimum, WNM, and the related
algebraic semantics, the variety of WNM-algebras WNM. WNM is an extension
of MTL, the logic of all left continuous t-norms and their residua [12,20]. Several
extensions of WNM have been extensively studied in the literature. In particular,
Gödel logic G, Drastic Product DP ([4], firstly introduced as S3MTL in [23]),
Revised Drastic product RDP ([9,25], based on the t-norm introduced in [19]),
NMG [26], NM [12], and classical Boolean logic B. During the years a number of
topics concerning WNM and its algebraic semantics has been investigated: the
papers [5,13,16,21,24] are only few examples. WNM has been extensively stud-
ied in [23], where the problem of axiomatising its extensions has been partially
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solved. The task of characterising and axiomatising the lattice of extensions of
a given extension of WNM has been accomplished in some cases. Gispert [17],
solved the case for NM. The lattice of extensions of G is well known. The exten-
sions of EMTL, which is the largest common fragment of G and DP, have been
axiomatised in [6].

In this article we introduce the variety DNMG, the algebraic semantics of
DNMG, which is an extension of WNM which is a particularly tame single-chain
complete common fragment of G, NM and DP (and hence, of all the aforemen-
tioned extensions of WNM). We prove standard completeness for DNMG. Gen-
eralising Gispert’s result, we describe the structure of the lattice of subvarieties
of DNMG, showing that each one of them is generated by finitely many chains.
We further provide a uniform way to axiomatise each one of these subvarieties.

2 Preliminaries

We assume that the reader is acquainted with many-valued logics in Hájek’s
sense, and with their algebraic semantics. We refer to [11,18] for any unexplained
notion. We recall that MTL is the logic, on the language {&,∧,∨,→,¬,⊥,�},
of all left-continuous t-norms and their residua, and that its associated alge-
braic semantics in the sense of Blok and Pigozzi [7] is the variety MTL of
MTL-algebras, that is, prelinear, commutative, bounded, integral, residuated
lattices [11]. In an MTL-algebra A = (A, ∗,⇒,	,
,∼, 0, 1) the connectives
&,→,∧,∨,¬,⊥,� are interpreted, respectively, by ∗,⇒,	,
,∼, 0, 1. Totally
ordered MTL-algebras are called MTL-chains. In every chain 	 = min and

 = max. An MTL-algebra is called standard whenever its lattice reduct is
([0, 1],≤), with the usual order.

Given an MTL-algebra A, with V(A) we mean the variety generated by
A, which is said to be generic for V(A). A logic L is the extension of MTL
via a set of axioms {ϕi}i∈I if and only if L is the subvariety of MTL-algebras
satisfying {ϕ̄i = 1}i∈I , where ϕ̄i is obtained from ϕi by replacing the connectives
with the corresponding operations, and every propositional variable in ϕ with
an individual variable. With A |= ϕ̄ = 1 we mean that A satisfies ϕ̄ = 1.

The logic WNM [12] is axiomatised as MTL plus:

¬(ϕ&ψ) ∨ ((ϕ ∧ ψ) → (ϕ&ψ)). (wnm)

The logics G, DP, EMTL, RDP, NM, NMG [1,4,6,12,25,26] are axiomatised as
WNM plus, respectively:

ϕ → (ϕ&ϕ). (id)
ϕ ∨ ¬(ϕ&ϕ). (dp)
(ϕ → (ϕ&ϕ)) ∨ (ψ ∨ ¬(ψ&ψ)). (emtl)
(ϕ → ¬ϕ) ∨ ¬¬ϕ. (rdp)
¬¬ϕ → ϕ. (inv)
¬¬ϕ ∨ (¬¬ϕ → ϕ). (nmg)
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NM− [17] is axiomatised as NM plus ¬((¬(ϕ2))2) ↔ (¬((¬ϕ)2))2, where ϕ2

stands for ϕ&ϕ. B is classical logic, axiomatised as MTL plus ϕ ∨ ¬ϕ.
As shown in [17], the operations ∗,⇒ of a WNM-chain A, are:

x ∗ y =

{
0 if x ≤ ∼y

min(x, y) Otherwise.
x ⇒ y =

{
1 if x ≤ y

max(∼x, y) Otherwise.
(1)

Where ∼, the negation of A, is a (generalised) weak negation, that is a map
∼ : A → A such that ∼1 = 0, ∼∼a ≥ a, and if a ≤ b, then ∼a ≥ ∼b. Each weak
negation is the negation of a uniquely determined WNM-chain. WNM is locally
finite, i.e. for every WNM-algebra each one of its finitely generated subalgebras
is finite. For each integer n ≥ 2, with Gn, DPn, NM

−
2n we will denote the variety

generated, respectively, by the Gödel chain with n elements, the DP-chain with
n elements, and the NM−-chain with 2n elements.

3 DNMG-algebras

DNMG is the variety of WNM-algebras satisfying the following identity.

∼∼x 
 (∼∼x ⇒ x) 
 (∼∼x ⇔ ∼x) = 1. (DNMG)

Since each variety of MTL-algebras is generated by its chains, we immediately
have that two subvarieties of MTL-algebras coincide iff they have the same class
of chains. We are then going to analyse the structure of DNMG-chains.

Definition 1. Let A be a WNM-chain. Let us define the following sets.

– A+ = {a ∈ A : a > ∼a}, and A− = {a ∈ A : a < ∼a}.
– S(A) = {a ∈ A | ∼∼a = 1, a �= 1}.
– F (A) = {a ∈ A | ∼a = ∼∼a}.
– I−(A) = {a ∈ A | ∼∼a = a, 0 < a < ∼a}.
– I+(A) = {a ∈ A | ∼∼a = a, 1 > a > ∼a}.
– I(A) = I−(A) ∪ I+(A).

Clearly, I−(A) ∩ I+(A) = ∅. Further, ∼ is a bijection of I(A)+ onto I(A)−.
Notice that S(A) is disjunct from I(A) and F (A). Given B,C ⊆ A, we write
B ≺ C whenever b <A c, for every b ∈ B and c ∈ C. The following is immediate.

Proposition 1. For every WNM-chain A it holds that I−(A) ≺ F (A) ≺
I+(A) ≺ S(A). In particular, I(A)− ∪ F (A) ∪ {0} = A \ A+, and I(A)+ ∪
S(A) ∪ {1} = A+.

By Proposition 1, the sets S(A), F (A), I−(A), I+(A) are pairwise disjoint.
For any subset S ⊆ A, let 〈S〉 be the subalgebra of A generated by S.
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Proposition 2. Let A be a WNM-chain and pick S ⊆ A.

1. If S ⊆ I(A), then 〈S〉 = S ∪ {∼a | a ∈ S} ∪ {0, 1} is an NM− algebra.
2. If S ⊆ F (A), then 〈S〉 = S ∪ {∼a | a ∈ S} ∪ {0, 1} is a DP-algebra.
3. If S ⊆ S(A) then 〈S〉 = S ∪ {0, 1} is a Gödel algebra.

Proof. Using (1) an easy check shows that the sets (S ∩ I(A)) ∪ {∼a | a ∈ S ∩
(I(A))}∪{0, 1}, (S∩F (A))∪{∼a | a ∈ S∩(F (A))}∪{0, 1} and (S∩S(A))∪{0, 1}
are subuniverses of A. The rest follows by Definition 1. 	

Theorem 1. A WNM-chain A is a DNMG-chain iff A = S(A)∪F (A)∪ I(A)∪
{0, 1}.
Proof. Let A be a WNM-chain such that A = S(A)∪F (A)∪I(A)∪{0, 1}. Then,
each element in a ∈ S(A) satisfies ∼∼a = 1, each element a ∈ F (A) satisfies
∼∼a = ∼a, and each element a ∈ I(A) satifies ∼∼a = a. The elements 0 and
1 both satisfy ∼∼a = a. Whence A satisfies the identity (DNMG). Conversely,
let A be a WNM-chain such that there is a ∈ A \ (S(A) ∪ F (A) ∪ I(A) ∪ {0, 1}).
Then ∼∼a �= 1, ∼∼a �= ∼a and ∼∼a �= a. Whence A is not a DNMG-chain. 	

Lemma 1. Let V ∈ {DP, NM

−, G}. For each subvariety W of V, a chain A is
generic for W iff each finite chain in W embeds into A. Moreover, V(A) = V

iff A is infinite.

Proof. Let V ∈ {DP, NM
−, G}, and pick two chains A,B ∈ V. By the results

of [6,17] we have two consequences. First, V(A) = V iff A is infinite. Next, if
|A| < |B| then A embeds into B. The claim follows immediately. 	

Definition 2. Let C ⊆ {F, I, S}, and let A be a WNM-chain. We say that A
is C-semigeneric iff for any X ∈ C and for any finite chain B ∈ WNM, it holds
that 〈X(B)〉 embeds into 〈X(A)〉.

In the following, for any X ∈ {F, I, S}, by L(X)-chain we mean: DP-chain if
X = F , NM−-chain if X = I, and G-chain if X = S.

Lemma 2. For each X ∈ {F, I, S}, a WNM-chain A is X-semigeneric iff
〈X(A)〉 is generic for the variety generated by L(X)-chains.

Proof. By Lemma 1 and Proposition 2. 	

Definition 3. For each n > 0, we let en(F ), en(I) and en(S) denote the follow-
ing terms

en(F ) =
n⊔

i=1

((∼∼xi) 
 ((∼∼xi ⇒ xi) 	 (∼((∼(x2
i ))

2) ⇔ (∼((∼xi)2)))2) ,

en(I) =
n⊔

i=1

((∼∼xi) 
 (∼xi) 
 (∼∼xi ⇔ ∼xi)),

en(S) =
n⊔

i=1

((∼∼xi ⇔ ∼xi) 
 (∼∼xi ⇒ xi)) .
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Lemma 3. Let A be a DNMG-chain, X ∈ {F, I, S} and, for each n > 0, let
(a1, a2, . . . , an) ∈ An. Then, (en(X))(a1, . . . , an) < 1 iff (a1, . . . , an) ∈ X(A).

Proof. By Definition 1, it is sufficient to note that the ith disjunct of en(X)
evaluates to 1 iff ai ∈ A \ X(A). 	

Lemma 4. Let A be a non-trivial DNMG-chain, and t(x1, . . . , xn) = 1 be an
equation. Then, for every X ∈ {F, I, S}, the equation t = 1 holds in 〈X(A)〉 iff
t 
 en(X) = 1 holds in A.

Proof. If X(A) = ∅, then 〈X(A)〉 is isomorphic with the two-element Boolean
algebra {0, 1}, and by Lemma 3 A |= en(X) = 1. The claim follows immediately.
We then assume X(A) �= ∅: by Lemma 3 we have that 〈X(A)〉 �|= en(X) =
1. Assume first that A |= t 
 en(X) = 1: we must have 〈X(A)〉 |= t = 1.
Conversely, suppose A �|= t 
 en(X) = 1: by Lemma 3 we have that for some
a1, . . . , an ∈ 〈X(A)〉, en(X)(a1, . . . , an) < 1 and t(a1, . . . , an) < 1. We conclude
that A �|= t = 1. 	

Lemma 5. A DNMG-chain A embeds into a DNMG-chain B iff 〈X(A)〉 embeds
into 〈X(B)〉 for each X ∈ {F, I, S}.
Proof. One direction is trivial. Assume then that there is X ∈ {F, I, S} such
that 〈X(A)〉 does not embed into 〈X(B)〉, and assume further, by contradiction,
that f : A → B is an embedding of A into B. Then there is a ∈ 〈X(A)〉 such
that f(a) �∈ 〈X(B)〉, for otherwise f would embed 〈X(A)〉 into 〈X(B)〉. Assume
X = F and f(a) ∈ B \ 〈F (B)〉. Then ∼∼a = ∼a, while ∼∼f(a) �= ∼f(a),
contradicting the fact that f is an homomorphism. The other cases X = I or
X = S, are dealt with analogously. 	

Lemma 6. Let V be a subvariety of DNMG. Then a DNMG-chain A ∈ V is
generic for V iff each finite chain B in V embeds into A.

Proof. Assume that each finite chain B in V embeds into A. Since V has the finite
model property, being locally finite, then it is generated by the class of its finite
chains. This implies that V(A) = V. On the other hand, assume that B does not
embed into A. Then, by Lemma 5, there is X ∈ {F, I, S} such that 〈X(B)〉 does
not embed into 〈X(A)〉. By Lemma 1, 〈X(B)〉 is an L(X)-chain which does not
belong to the variety generated by the L(X)-chain 〈X(A)〉. Whence there is an
equation t(x1, . . . , xn) = 1 holding in 〈X(A)〉 and failing in 〈X(B)〉. Then, by
Lemma 4, the equation t 
 en(X) = 1 holds in A and fails in B, proving that A
is not generic for V. 	

Lemma 7. Let V ⊆ DNMG be a single chain generated variety. Then there is a
chain B ∈ V such that every countable chain in V embeds into it, and V(B) = V.

Proof. Immediate by Lemma 6, [10, Theorem 3.8] and [22, Theorems 3 and 5].

Lemma 8. A DNMG-chain is {F, I, S}-semigeneric iff it is generic for DNMG.

Proof. Immediate, from Lemmas 2, 5 and 6. 	
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Theorem 2. A chain A is generic for DNMG iff the sets F (A), I(A) and S(A)
are infinite.

Proof. By Lemmas 1 and 8. 	

We are ready to prove standard completeness for the logic DNMG whose asso-
ciated algebraic semantics is given by DNMG.

Definition 4. Let ∗ : [0, 1]2 → [0, 1] be defined by:

x ∗ y =
{

0 if x + y ≤ 3/4 or max{x, y} ≤ 1/2
min{x, y} otherwise.

It is immediate to check that ∗ is a left-continuous t-norm. Moreover ∗ is
the monoidal operation of the standard WNM -chain [0, 1]∗ determined by the
following negation: ∼0 = 1, ∼x = 3/4 − x for all x ∈ (0, 1/4) ∪ (1/2, 3/4],
∼x = 1/2 for all x ∈ [1/4, 1/2], ∼x = 0 for all x ∈ [3/4, 1].

Lemma 9. The WNM-chain [0, 1]∗ determined by the t-norm in Definition 4 is
a DNMG-chain.

Proof. We just check that any element a ∈ [0, 1/4) ∪ (1/2, 3/4) is such that
∼∼a = a, while any element a ∈ [1/4, 1/2] is such that ∼∼a = ∼a = 1/2, and
finally any element a ∈ [3/4, 1] is such that ∼∼a = 1. 	

Theorem 3. The logic DNMG is standard complete, since the variety DNMG

is generated by [0, 1]∗.

Proof. By Lemma 9, [0, 1]∗ ∈ DNMG. Now, F ([0, 1]∗) = [1/4, 1/2], I([0, 1]∗) =
(0, 1/4) ∪ (1/2, 3/4), and S([0, 1]∗) = [3/4, 1). By Lemma 8 and Theorem 2, the
standard chain [0, 1]∗ is generic for DNMG. 	


4 The Lattice of Subvarieties of DNMG

Let ω denote the ordinal {0, 1, 2, . . .} of the natural numbers, and let ω + 1 be
the ordinal ω ∪ {ω}. For any integer n > 0 and any sequence κ1, κ2, . . . , κn of
ordinals, the direct product κ1×κ2×· · ·×κn is the poset obtained equipping the
cartesian product with the pointwise order: (a1, . . . , an) ≤ (b1, . . . , bn) iff ai ≤ bi

for all i ∈ {1, 2, . . . , n}. We write κ(n) to mean the nth direct power of the ordinal
κ, that is, the direct product of n copies of κ.1 A subset S ⊆ κ1 × · · · × κn is an
antichain if for each a, b ∈ S, neither a ≤ b nor b ≤ a. The set of all antichains
of a poset P is denoted AC(P ).

Lemma 10. For n > 0, every antichain of P = κ1 × κ2 × · · · × κn is finite.

1 We use this notation to distinguish direct powers from ordinal exponentiation.
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Proof. By [8, Exercise 2.3.4] a poset is a well-quasi-order (wqo) iff (1) it has
no infinite strictly decreasing sequences, i.e. x0 > x1 > . . . , and (2) it has no
infinite antichains. As every ordinal κi is well-ordered, then it satisfies (1) and
(2): whence it is a wqo. By [8, Lemma 2.3.9] P is also a wqo, whence each one
of its antichains is finite. 	

Corollary 1. For each integer n > 0, the set AC((ω +1)(n)) has cardinality ℵ0.

Proof. By Lemma 10, every antichain of (ω + 1)(n) is a finite set of n-tuples of
ω ∪ {ω}. Hence it can be coded in the natural numbers, i.e. there is an injective
map AC((ω+1)(n)) → ω. Whence, |AC((ω+1)(n))| ≤ ℵ0. To conclude, note that
AC((ω + 1)(1)) = ω + 1, whence, |AC((ω + 1)(n))| ≥ |AC((ω + 1)(1))| = ℵ0. 	

The set AC((ω + 1)(n)) can be equipped with a lattice structure by putting
X ≤ Y if for each n-tuple x ∈ X there is y ∈ Y such that x ≤ y, for all X,Y ∈
AC((ω + 1)(n)). In this section we shall prove that the lattice of subvarieties of
DNMG is isomorphic with AC((ω + 1)(3)).

Definition 5. Let A be a DNMG-chain. Then the triplet T (A) associated with
A is an element (a, b, c) ∈ (ω + 1)(3) defined as follows.

1. If S(A) is infinite then a = ω, otherwise a = |S(A)|.
2. If I−(A) is infinite then b = ω, otherwise b = |I−(A)|.
3. If F (A) is infinite then c = ω, otherwise c = |F (A)|.
Lemma 11. Let A and B be two DNMG-chains with A of finite cardinality.
Then A embeds into B iff T (A) ≤ T (B) in the pointwise order.

Proof. A embeds into B iff, by Lemma 5, 〈S(A)〉 embeds into 〈S(B)〉, 〈I(A)〉
embeds into 〈I(B)〉 and 〈F (A)〉 embeds into 〈F (B)〉, iff T (A) ≤ T (B). 	

Lemma 12. Let A and B be two DNMG-chains. Then V(A) ⊆ V(B) iff T (A) ≤
T (B). As a consequence, V(A) = V(B) iff T (A) = T (B).

Proof. Assume first that V(A) ⊆ V(B). Then each chain in V(A) belongs to
V(B), too. By Lemma 6, each finite chain C ∈ V(A) embeds into both A and
B. By Lemma 11 this occurs only if T (C) ≤ T (A) and T (C) ≤ T (B). But then
〈X(A)〉 embeds into 〈X(B)〉 for each X ∈ {F, I, S}, or they are both of infinite
cardinality. In both cases T (A) ≤ T (B).

For the other way round, assume T (A) ≤ T (B). Take now any finite chain
C ∈ V(A). Then by Lemma 6, C embeds into A, and by Lemma 11, T (C) ≤ T (A).
By our standing assumption, T (C) ≤ T (B), too. Whence, again by Lemma 11, C
embeds into B, which implies that each finite chain in V(A) belongs to V(B),
too. We conclude V(A) ⊆ V(B). 	

Notice that by Lemmas 2 and 8 and Theorem 2, if C is a set of DNMG-chains
containing an infinite chain A of any cardinality, then V(C) = V(C ′) for C ′ =
(C ∪ {A′}) \ {A}, for a suitable A′. More precisely, A′ is obtained from A by
replacing, for every X ∈ {F, I, S} such that X(A) is infinite, the subalgebra
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〈X(A)〉 with a fresh copy of a fixed denumerable L(X)-chain B, where we safely
identify the extremes of B with those of A. We call A′ a regular chain.

Then we may assume that each subvariety of DNMG is generated by a set of
regular chains. Two regular DNMG-chains A and B are isomorphic iff T (A) =
T (B). We now fix, once and for all, one representative regular chain AT , for
each triple T ∈ (ω + 1)(3). Notice that given two regular representative DNMG-
chains A and B, we have that A embeds into B iff T (A) ≤ T (B). A set C
of DNMG-chains is irredundant if each A ∈ C is representative regular and
V(C \ {A}) � V(C) for all A ∈ C. Otherwise C is redundant.

Lemma 13. Every irredundant set C of DNMG-chains is finite. Moreover, the
map A �→ T (A) is a bijection between C and CT = {T (A) : A ∈ C}, which is
the underlying set of a finite antichain of (ω + 1)(3).

Proof. Let C be an irredundant set of DNMG-chains. Then, for every A,B ∈ C,
with A �= B we have that T (A) is incomparable with T (B). Indeed, if not, by
Lemma 12 either V(C \ {A}) = V(C) or V(C \ {B}) = V(C). In both cases we
have a contradiction. By the previous observations we have that CT must be the
underlying set of an antichain of (ω + 1)(3), and by Lemma 10 CT is finite. The
proof is settled by noticing that the map A �→ T (A) is a bijection between C
and CT . 	

Lemma 14. The lattice Λ(DNMG) of all subvarieties of DNMG, ordered by
inclusion, is isomorphic with the lattice Γ (DNMG) of all irredundant sets of
DNMG-chains, ordered by inclusion.

Proof. Clearly, each irredundant set of DNMG-chains generates a subvariety of
DNMG, and each subvariety is generated by some irredundant set of DNMG-
chains. We prove than no subvariety can be generated by two distinct irredundant
sets C,D of DNMG-chains, with C �= D: by Lemma 13 we can assume C =
{A1, . . . ,Ah} and D = {B1, . . . ,Bk}. By contradiction, suppose V(C) = V(D).

Then, without loss of generality, there is a chain Ar ∈ C \D. By [6, Theorem
7], we have that the class of chains in V(C) = V(D) coincides with the one in⋃h

i=1 V(Ai) and with the one in
⋃k

i=1 V(Bi). This means that there is Bs ∈ D
such that V(Ar) ⊆ V(Bs), and clearly Bs /∈ C (otherwise C would be redun-
dant). This implies T (Ar) ≤ T (Bs) and hence Ar embeds into Bs, being both
chains regular representative. On the other hand, for the same reasons, this in
turns implies that Bs embeds into some chain At ∈ C. Note that t �= r, as other-
wise Ar � Bs, and since both chains are regular representative we would conclude
Ar = Bs, in contrast with the fact that Ar /∈ D. But then also Ar embeds into
At, contradicting the fact that C is irredundant. It is obvious that both the
bijective correspondence C �→ V(C) and its inverse are order-preserving. 	

Theorem 4. The lattice Λ(DNMG) is isomorphic with AC((ω + 1)(3)).

Proof. By Lemma 14, we prove that Γ (DNMG) is isomorphic with AC((ω+1)(3)).
Consider a set C of pairwise non-isomorphic representative chains in DNMG
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such that the set CT = {T (A) | A ∈ C} is not an antichain. Then there are
chains A and B ∈ C such that T (A) ≤ T (B). By Lemma 12, V(A) ⊆ V(B).
Whence, V(C) = V(C \ {A}). That is C is redundant. Whence, each element
of Γ (DNMG) is a set C of chains such that CT is an antichain, that is T maps
Γ (DNMG) to AC((ω + 1)(3)). T is injective by construction. For surjectivity, let
A ∈ AC((ω+1)(3)). With each triple (a, b, c) ∈ A we associate the representative
regular DNMG-chain A(a,b,c) such that T (A(a,b,c)) = (a, b, c). Call C(A) the
set of chains so obtained. Clearly, T (C(A)) = A and all chains in C(A) are
representative and regular. Finally, for any triple (a, b, c) ∈ A we have that
V(C(A)\{A(a,b,c)}) � V(C(A)), for otherwise there is a triple (d, e, f) ∈ A such
that (a, b, c) ≤ (d, e, f), contradicting the fact that A is an antichain. Whence
C(A) is irredundant, that is, it belongs to Γ (DNMG). Surjectivity is proved. 	

Corollary 2. There are countably many subvarieties of DNMG. Every subvari-
ety of DNMG is generated by a finite number of DNMG-chains.

Proof. By Theorem 4, Lemma 10 and Corollary 1. 	


5 Uniform Axiomatisations

In this section we axiomatise all the subvarieties of DNMG in a uniform way.

Definition 6. For each integer n > 0 let Qn be the term:

Qn =
⊔

1≤i�=j≤n+1

(xi ⇔ xj) .

Furthermore let Q0 = 0 and Qω = 1, and eω+1(X) = 1 for each X ∈ {F, I, S}.
Given (a, b, c) ∈ (ω + 1)(3), we write V(a, b, c) to mean the variety generated by
a DNMG-chain A such that T (A) = (a, b, c).

Theorem 5. For each (a, b, c) ∈ (ω + 1)(3), the variety V(a, b, c) is the subva-
riety of DNMG satisfying the following equation.

(Qa 
 ea+1(S)) 	 (Qb 
 eb+1(I)) 	 (Qc 
 ec+1(F )) = 1 .

Proof. Let D be a DNMG-chain such that T (D) = (a, b, c). We show that
D |= Qa 
 ea+1(S) = 1. As a matter of fact, if a = 0 then by Lemma 3
1 = ea+1(d1, . . . , da+1) = (Qa
ea+1(S))(d1, . . . , da+1), since di ∈ D\S(D) for all
i ∈ {1, 2, . . . , a+1}. If a = ω then (Qa
ea+1(S))(d1, . . . , dm+1) = 1 for Qa = 1. If
a is a positive integer, then (Qa
ea+1(S))(d1, . . . , da+1) = 1. Indeed, if di ∈ S(D)
for all i ∈ {1, 2, . . . , a+1} then there are distinct indices i, j such that di ⇔ dj =
1, for |S(A)| = a, whence (Qa 
 ea+1(S))(d1, . . . , da+1) = Qa(d1, . . . , da+1) = 1.
If on the other hand there is some di ∈ D \ S(D), then, by Lemma 3,
ea+1(S)(d1, . . . , da+1) = 1 = (Qa 
ea+1(S))(d1, . . . , da+1). We proceed similarly,
to show that D |= Qb 
 eb+1(I) = 1 and D |= Qc 
 ec+1(F ) = 1, mutatis mutan-
dis. Let now D be a DNMG-chain not in V(a, b, c), whence T (D) = (a′, b′, c′)
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with (a′, b′, c′) �≤ (a, b, c). If a′ > a then picking pairwise distinct elements
a1, . . . , aa+1 ∈ S(D) we have that Qa(d1, . . . , da+1) < 1. Further, by Lemma 3,
ea+1(S)(d1, . . . , da+1) < 1, too. We conclude that D �|= Qa 
 ea+1(S) = 1. The
cases b′ > b and c′ > c are dealt with in the same manner, mutatis mutandis. 	


Clearly, if some index a, b, c is zero, the associated conjunct in the axiomatis-
ing equation can be simplified: Qa
ea+1(S) to ea+1(S) and so forth. Analogously,
if some index a, b, c is ω, the associated conjunct can be totally disregarded. For
instance V(ω, ω, ω) = DNMG, and as a matter of fact the axiomatising equa-
tion in this case is identically 1 = 1. As DNMG contains all major subvarieties
of WNM, several varieties of the form V(a, b, c) have already been studied and
axiomatised in the literature. The following theorems report on this aspect.

Theorem 6. V(0, 0, 0) = B. For each integer n > 0, V(n, 0, 0) = Gn+2,
V(0, n, 0) = NM2n+2, V(0, 0, n) = DPn+2. Also, V(ω, 0, 0) = G, V(0, ω, 0) =
NM

− and V(0, 0, ω) = DP.

Proof. Immediate by [6,17], and Definition 5. 	

We now show how the axiomatisation provided in Theorem5 can be simplified,
when exactly one element in the triplet (a, b, c) is zero. In this case V(a, b, c) is
either a subvariety of RDP = V(ω, 0, ω), or of one of the following two subvari-
eties. The variety DNM = V(0, ω, ω), axiomatised as WNM plus:

(∼∼x ⇒ x) 
 (∼∼x ⇔ ∼x) = 1. (IF)

The variety NMG
− = V(ω, ω, 0), axiomatised as NMG plus:

∼((∼(x2))2) ⇔ (∼((∼x)2))2 = 1. (NF)

Theorem 7. 1. For all b, c ∈ (ω + 1)(2) with b �= 0 �= c, the variety V(0, b, c) is
axiomatised as DNM plus

(Qb 
 eb+1(I)) 	 (Qc 
 ec+1(F )) = 1 .

2. For all a, c ∈ (ω + 1)(2) with a �= 0 �= c, the variety V(a, 0, c) is axiomatised
as RDP plus

(Qa 
 ea+1(S)) 	 (Qc 
 ec+1(F )) = 1 .

3. For all a, b ∈ (ω + 1)(2) with b �= 0 �= a, the variety V(a, b, 0) is axiomatised
as NMG

− plus

(Qa 
 ea+1(S)) 	 (Qb 
 eb+1(I)) = 1 .

Proof. Immediate by Theorem 5.

We now provide the general criterion to axiomatise the subvarieties of DNMG.
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Theorem 8. Let C = {Ai}i∈I be an irredundant set of DNMG-chains. Let
further ti(x1, . . . , xni

) = 1 be the equation axiomatising V(Ai) for each i ∈ I, as
given by Theorem5. Then V(C) contains exactly the DNMG-algebras satisfying
the equation ⊔

i∈I

ti(yi,1, . . . , yi,ni
) = 1 ,

where all the variables yi,j, for i ∈ I, and j ∈ {1, . . . , ni}, are pairwise distinct.

Proof. First notice that by Corollary 2,
⊔

i∈I ti = 1 is indeed an equation, as I is
a finite index set. The proof is settled by noting that V(C) =

⊔
i∈I V(Ai), and

by using [15, Lemma 5.25]. 	

Corollary 3. Every element of Λ(DNMG) is the join of a finite set of join
irreducible elements.

Proof. By [2, Theorem 5.1] a variety of MTL-algebras is join irreducible, in the
lattice of the subvarieties of MTL, if and only if it is generated by a single chain.
The claim follows by Theorem 8. 	

Theorem 9. DNMG is the smallest subvariety in Λ(DNMG) which contains
DP, NM

−, G and it is generated by a single chain.

Proof. Immediate by Theorem 6 and Lemma 12, since DNMG = V(ω, ω, ω). 	

Remark 1. Notice that NM = V(0, ω, 1), and its lattice of subvarieties is given
by all antichains C ∈ AC((ω + 1)(3)) such that all T ∈ C have either the form
T = (0, b, 1) or T = (0, b, 0) for some integer b ≥ 0, or T = (0, ω, 0), whose
corresponding variety is NM

−.
The almost minimal subvarieties of DNMG are exactly G3 = V(1, 0, 0),

NM4 = V(0, 1, 0), and NM3 = DP3 = V(0, 0, 1). Whence they coincide with
the almost minimal subvarieties of WNM (see [3]).

By Lemma 7 and [10, Theorem 3.5], every variety of DNMG-algebras of the
form V(a, b, c) is such that the corresponding logic has the strong single chain
completeness (see [2,22]).

The subvarieties of DNMG generated by a standard algebra are exactly G =
V(ω, 0, 0), NM = V(0, ω, 1), NMG = V(ω, ω, 1), RDP = V(ω, 0, ω), DNM =
V(0, ω, ω), and, clearly, DNMG = V(ω, ω, ω).

Finally, EMTL = V({(ω, 0, 0), (0, 0, ω)}) is an example of a subvariety of
DNMG which cannot be generated by a single chain [6].
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