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Abstract. MTL is the logic of all left-continuous ¢-norms and their
residua. The equivalent algebraic semantics of MTL is constituted by
the variety of MTL-algebras, MTL. The variety WNM of weak nilpotent
minimum algebras is a major subvariety of MTL, containing several sub-
varieties of MTL which have been subjects of study in the literature,
such as Goédel algebras, Nilpotent Minimum algebras, Drastic Product
and Revised Drastic Product algebras, NMG-algebras, as well as Boolean
algebras. In this paper we introduce and axiomatise DNMG, a proper
subvariety of WNM which contains all the aforementioned varieties. We
show that DNMG is singly generated by a standard algebra. Further, we
determine the structure of the lattice of subvarieties of DNMG, and we
provide the axiomatisation of every subvariety.

Keywords: WNM-algebras - DNMG-algebras - NM-algebras - Godel-
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1 Introduction

Nilpotent minimum t-norm Ny [14] was one of the first examples of a left-
continuous but not continuous t-norm. The logic related to #xn, NM, was intro-
duced by Esteva and Godo in [12]. In the same paper they presented a gener-
alisation of NM, the logic of Weak Nilpotent Minimum, WNM, and the related
algebraic semantics, the variety of WNM-algebras WNM. WNM is an extension
of MTL, the logic of all left continuous t-norms and their residua [12,20]. Several
extensions of WNM have been extensively studied in the literature. In particular,
Godel logic G, Drastic Product DP ([4], firstly introduced as SsMTL in [23]),
Revised Drastic product RDP ([9,25], based on the ¢-norm introduced in [19]),
NMG [26], NM [12], and classical Boolean logic B. During the years a number of
topics concerning WNM and its algebraic semantics has been investigated: the
papers [5,13,16,21,24] are only few examples. WNM has been extensively stud-
ied in [23], where the problem of axiomatising its extensions has been partially

© Springer International Publishing AG 2018
J. Kacprzyk et al. (eds.), Advances in Fuzzy Logic and Technology 2017,
Advances in Intelligent Systems and Computing 641, DOI 10.1007/978-3-319-66830-7_2



The Classification of All the Subvarieties of DNMG 13

solved. The task of characterising and axiomatising the lattice of extensions of
a given extension of WNM has been accomplished in some cases. Gispert [17],
solved the case for NM. The lattice of extensions of G is well known. The exten-
sions of EMTL, which is the largest common fragment of G and DP, have been
axiomatised in [6].

In this article we introduce the variety DNMG, the algebraic semantics of
DNMG, which is an extension of WNM which is a particularly tame single-chain
complete common fragment of G, NM and DP (and hence, of all the aforemen-
tioned extensions of WNM). We prove standard completeness for DNMG. Gen-
eralising Gispert’s result, we describe the structure of the lattice of subvarieties
of DNMG, showing that each one of them is generated by finitely many chains.
We further provide a uniform way to axiomatise each one of these subvarieties.

2 Preliminaries

We assume that the reader is acquainted with many-valued logics in Héjek’s
sense, and with their algebraic semantics. We refer to [11,18] for any unexplained
notion. We recall that MTL is the logic, on the language {&, A, V,—,—, L, T},
of all left-continuous ¢-norms and their residua, and that its associated alge-
braic semantics in the sense of Blok and Pigozzi [7] is the variety MTL of
MTL-algebras, that is, prelinear, commutative, bounded, integral, residuated
lattices [11]. In an MTL-algebra A = (A4,*,=,M,U,~,0,1) the connectives
&,—,A\,V,—, L, T are interpreted, respectively, by *,=- M, 1,~,0,1. Totally
ordered MTL-algebras are called MTL-chains. In every chain M = min and
U = max. An MTL-algebra is called standard whenever its lattice reduct is
([0,1], <), with the usual order.

Given an MTL-algebra A, with V(A) we mean the variety generated by
A, which is said to be generic for V(A). A logic L is the extension of MTL
via a set of axioms {y;};cr if and only if L is the subvariety of MTL-algebras
satisfying {@; = 1}ier, where @; is obtained from ¢; by replacing the connectives
with the corresponding operations, and every propositional variable in ¢ with
an individual variable. With A = @ = 1 we mean that A satisfies ¢ = 1.

The logic WNM [12] is axiomatised as MTL plus:

~(p&)) V ((p A1) — (p&r))). (wnm)
The logics G, DP, EMTL, RDP, NM, NMG [1,4,6,12,25,26] are axiomatised as
WNM plus, respectively:

¢ — (pkep). (id

@V =(pep). (dp

(o = (p&ep)) V (¢ V ~(&et))). (emtl

(o = ) Vo (rdp

= — Q. (inv

==V (7 — ). (nmg
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NM~ [17] is axiomatised as NM plus —((=(?))?) < (=((=¢)?))?, where 2
stands for p& . B is classical logic, axiomatised as MTL plus ¢ V —p.
As shown in [17], the operations x,= of a WNM-chain A, are:

0 ife <~y 1 ife <y
THY = . . T=yY= .
min(z,y) Otherwise. max(~z,y) Otherwise.

Where ~, the negation of A, is a (generalised) weak negation, that is a map
~: A — Asuch that ~1 =0, ~~a > a, and if a < b, then ~a > ~b. Each weak
negation is the negation of a uniquely determined WNM-chain. WNM is locally
finite, i.e. for every WNM-algebra each one of its finitely generated subalgebras
is finite. For each integer n > 2, with G,,, DP,,, NM,, we will denote the variety
generated, respectively, by the Gddel chain with n elements, the DP-chain with
n elements, and the NM™-chain with 2n elements.

3 DNMG-algebras

DNMG is the variety of WNM-algebras satisfying the following identity.
g U (v = ) U (v & ~x) = 1 (DNMG)

Since each variety of MTL-algebras is generated by its chains, we immediately
have that two subvarieties of MTL-algebras coincide iff they have the same class
of chains. We are then going to analyse the structure of DNMG-chains.

Definition 1. Let A be a WNM-chain. Let us define the following sets.

~-At={a€A:a>~a},and A~ ={a€A: a< ~a}.
- S(A)={acA| ~~a=1,a#1}.

F(A)={a€ A| ~a=~~a}.

- I (A)={acA| ~~a=a,0<a< ~a}.
~IT(A)={a€A| ~~a=a,1>a>~a}.

I(A) =1 (A)UIT(A).

Clearly, I=(A) N I (A) = 0. Further, ~ is a bijection of I(A)* onto I(A)~.
Notice that S(A) is disjunct from I(A) and F(A). Given B,C C A, we write
B < C whenever b <4 ¢, for every b € B and ¢ € C. The following is immediate.

Proposition 1. For every WNM-chain A it holds that I-(A) < F(A) <
IT(A) < S(A). In particular, I(A)~ U F(A) U {0} = A\ AT, and I(A)t U
S(A)U{1} =A".

By Proposition 1, the sets S(A), F(A),I~(A),I"(A) are pairwise disjoint.
For any subset S C A, let (S) be the subalgebra of .4 generated by S.
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Proposition 2. Let A be a WNM-chain and pick S C A.

1. If S CI(A), then (S) =S U{~a|a€ StU{0,1} is an NM~ algebra.
2. If S C F(A), then (S) =SU{~a|a€ StU{0,1} is a DP-algebra.
3. If S C S(A) then (S) = SU{0,1} is a Gidel algebra.

Proof. Using (1) an easy check shows that the sets (SNI(A))U{~a|a€ SN
(I1(A))}uf0,1}, (SNF(A))U{~a | a € SN(F(A))}U{0,1} and (SNS(A))u{0,1}
are subuniverses of A. The rest follows by Definition 1. O

Theorem 1. A WNM-chain A is a DNMG-chain iff A= S(A)UF(A)UI(A)U
{0,1}.

Proof. Let A be a WNM-chain such that A = S(A)UF(A)UI(A)U{0,1}. Then,
each element in a € S(A) satisfies ~~a = 1, each element a € F(A) satisfies
~rq = ~a, and each element a € I(A) satifies ~~a = a. The elements 0 and
1 both satisfy ~~a = a. Whence A satisfies the identity (DNMG). Conversely,
let A be a WNM-chain such that there is a € A\ (S(A)UF(A)UI(A)U{0,1}).
Then ~~a # 1, ~~a # ~a and ~~a # a. Whence A is not a DNMG-chain. O

Lemma 1. Let V € {DP,NM~,G}. For each subvariety W of V, a chain A is
generic for W iff each finite chain in W embeds into A. Moreover, V(A) =V
iff A is infinite.

Proof. Let V € {DP,NM~,G}, and pick two chains A, B € V. By the results
of [6,17] we have two consequences. First, V(A) = V iff A is infinite. Next, if
|A| < |B] then A embeds into B. The claim follows immediately. 0

Definition 2. Let C C {F,I,S}, and let A be a WNM-chain. We say that A
is C'-semigeneric iff for any X € C and for any finite chain B € WNM, it holds
that (X (B)) embeds into (X (A)).

In the following, for any X € {F, I, S}, by L(X)-chain we mean: DP-chain if
X = F, NM~-chain if X = I, and G-chain if X = S.

Lemma 2. For each X € {F,I,S}, a WNM-chain A is X-semigeneric iff
(X (A)) is generic for the variety generated by L(X)-chains.

Proof. By Lemma 1 and Proposition 2. a
Definition 3. For each n > 0, we let e, (F), e, (I) and e,(S) denote the follow-

g terms
en(F) = || ((~vmi) U (v = ) 1 (~(~(20))%) & (~((~0)))?)

i=1

en(D) = || ((~vrmi) U (i) U (v 5 ~ai)),

en(S) = |_|((~~3:i & ~x) U (v = x5)) .

1
n
=1

%
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Lemma 3. Let A be a DNMG-chain, X € {F,I,S} and, for each n > 0, let
(a1,a9,...,a,) € A™. Then, (en(X))(a1,...,a,) <1 iff (a1,...,a,) € X(A).

Proof. By Definition 1, it is sufficient to note that the ith disjunct of e, (X)
evaluates to 1 iff a; € A\ X(A). O

Lemma 4. Let A be a non-trivial DNMG-chain, and t(x1,...,2,) = 1
equation. Then, for every X € {F,I,S}, the equation t =1 holds in (X(A
tUe,(X) =1 holds in A.

be a
)>

Proof. If X(A) = 0, then (X (A)) is isomorphic with the two-element Boolean
algebra {0, 1}, and by Lemma3 A = e, (X) = 1. The claim follows immediately.
We then assume X (A) # 0: by Lemma3 we have that (X(A)) E e (X) =
1. Assume first that A | t Ue,(X) = 1: we must have (X(A)) = t =

Conversely, suppose A = t U e,(X) = 1: by Lemma3 we have that for some
a,...,an, € (X(A), en(X)(a1,...,a,) <1 and t(ay,...,a,) < 1. We conclude
that A W ¢ = 1. O

Lemma 5. A DNMG-chain A embeds into a DNMG-chain B iff (X(A)) embeds
into (X (B)) for each X € {F,I,S}.

Proof. One direction is trivial. Assume then that there is X € {F,I,S} such
that (X (A)) does not embed into (X (B)), and assume further, by contradiction,
that f: A — B is an embedding of A into B. Then there is a € (X(A)) such
that f(a) € (X(B)), for otherwise f would embed (X (A)) into (X (B)). Assume
X = F and f(a) € B\ (F(B)). Then ~~a = ~a, while ~~f(a) # ~f(a),
contradicting the fact that f is an homomorphism. The other cases X = I or
X =S, are dealt with analogously. a

Lemma 6. Let V be a subvariety of DNMG. Then a DNMG-chain A € V s
generic for V iff each finite chain B in V embeds into A.

Proof. Assume that each finite chain B in V embeds into .A. Since V has the finite
model property, being locally finite, then it is generated by the class of its finite
chains. This implies that V(A) = V. On the other hand, assume that B does not
embed into A. Then, by Lemma 5, there is X € {F, I, S} such that (X (B)) does
not embed into (X (A)). By Lemma 1, (X (B)) is an L(X)-chain which does not
belong to the variety generated by the L(X)-chain (X (A)). Whence there is an
equation t(z1,...,2,) = 1 holding in (X(A)) and failing in (X (B)). Then, by
Lemma 4, the equation ¢ Ue,(X) =1 holds in A and fails in B, proving that A
is not generic for V. O

Lemma 7. Let V C DNMG be a single chain generated variety. Then there is a
chain B € V such that every countable chain in'V embeds into it, and V(B) = V.

Proof. Immediate by Lemma6, [10, Theorem 3.8] and [22, Theorems 3 and 5].
Lemma 8. A DNMG-chain is {F, I, S}-semigeneric iff it is generic for DNMG.

Proof. Immediate, from Lemmas2, 5 and 6. O
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Theorem 2. A chain A is generic for DNMG iff the sets F(A),I(A) and S(A)

are infinite.
Proof. By Lemmas 1 and 8. O

We are ready to prove standard completeness for the logic DNMG whose asso-
ciated algebraic semantics is given by DNMG.

Definition 4. Let *: [0,1]% — [0,1] be defined by:

o — 0 ifx+y<3/4 or max{z,y} <1/2
vy= min{x, y} otherwise.

It is immediate to check that * is a left-continuous t-norm. Moreover * is
the monoidal operation of the standard W N M-chain [0, 1] determined by the
following negation: ~0 = 1, ~x = 3/4 — x for all x € (0,1/4) U (1/2,3/4],
~x =1/2for all z € [1/4,1/2], ~z =0 for all = € [3/4,1].

Lemma 9. The WNM-chain [0, 1], determined by the t-norm in Definition 4 is
a DNMG-chain.

Proof. We just check that any element a € [0,1/4) U (1/2,3/4) is such that
~r~q = a, while any element a € [1/4,1/2] is such that ~~a = ~a = 1/2, and
finally any element a € [3/4, 1] is such that ~~a = 1. O

Theorem 3. The logic DNMG is standard complete, since the variety DNMG
is generated by [0, 1]..

Proof. By Lemma9, [0,1]. € DNMG. Now, F([0,1],) = [1/4,1/2], I([0,1].) =
(0,1/4) U (1/2,3/4), and S([0,1].) = [3/4,1). By Lemma8 and Theorem 2, the
standard chain [0, 1], is generic for DNMG. O

4 The Lattice of Subvarieties of DNMG

Let w denote the ordinal {0,1,2,...} of the natural numbers, and let w + 1 be
the ordinal w U {w}. For any integer n > 0 and any sequence ki, ks, ..., Ky of
ordinals, the direct product k1 X ko X - - - X Ky, is the poset obtained equipping the
cartesian product with the pointwise order: (aq,...,a,) < (b1,...,b,) iff a; < b;
for alli € {1,2,...,n}. We write x(™) to mean the nth direct power of the ordinal
K, that is, the direct product of n copies of k.! A subset S C k1 X -+ X ky, is an
antichain if for each a,b € S, neither a < b nor b < a. The set of all antichains
of a poset P is denoted AC(P).

Lemma 10. Forn > 0, every antichain of P = K1 X Ko X -+ X Ky s finite.

! We use this notation to distinguish direct powers from ordinal exponentiation.
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Proof. By [8, Exercise 2.3.4] a poset is a well-quasi-order (wqo) iff (1) it has
no infinite strictly decreasing sequences, i.e. xg > x1 > ..., and (2) it has no
infinite antichains. As every ordinal k; is well-ordered, then it satisfies (1) and
(2): whence it is a wqo. By [8, Lemma 2.3.9] P is also a wqo, whence each one
of its antichains is finite. O

Corollary 1. For each integer n > 0, the set AC((w+ 1)) has cardinality Ro.

Proof. By Lemma 10, every antichain of (w + 1) is a finite set of n-tuples of
wU{w}. Hence it can be coded in the natural numbers, i.e. there is an injective
map AC((w+1)™) — w. Whence, |AC((w+1)(™)| < Ry. To conclude, note that
AC((w +1)M) = w + 1, whence, |AC((w + 1)™M)| > JAC((w + 1)) =Ry. O

The set AC((w + 1)) can be equipped with a lattice structure by putting
X <Y if for each n-tuple x € X there is y € Y such that x <y, for all X,Y €
AC((w 4+ 1)™). In this section we shall prove that the lattice of subvarieties of
DNMG is isomorphic with AC((w + 1)®).

Definition 5. Let A be a DNMG-chain. Then the triplet T(A) associated with
A is an element (a,b,c) € (w+ 1)) defined as follows.

1. If S(A) is infinite then a = w, otherwise a = |S(A)].
2. If - (A) is infinite then b = w, otherwise b = |1~ (A)|.
3. If F(A) is infinite then ¢ = w, otherwise ¢ = |F(A)|.

Lemma 11. Let A and B be two DNMG-chains with A of finite cardinality.
Then A embeds into B iff T(A) < T(B) in the pointwise order.

Proof. A embeds into B iff, by Lemmab, (S(A)) embeds into (S(B)), (I(A)
embeds into (I(B)) and (F(A)) embeds into (F(B)), iff T'(A) < T(B).

gt

N O

Lemma 12. Let A and B be two DNMG-chains. Then V(A) C V(B) iff T(A)
T(B). As a consequence, V(A) = V(B) iff T(A) = T'(B).

Proof. Assume first that V(A) C V(B). Then each chain in V(A) belongs to
V(B), too. By Lemma 6, each finite chain C € V(A) embeds into both A and
B. By Lemma 11 this occurs only if T(C) < T(A) and T(C) < T(B). But then
(X(A)) embeds into (X (B)) for each X € {F,1,S}, or they are both of infinite
cardinality. In both cases T(A) < T(B).

For the other way round, assume T'(A) < T(B). Take now any finite chain
C € V(A). Then by Lemma6, C embeds into A, and by Lemma 11, T'(C) < T(A).
By our standing assumption, 7'(C) < T(B), too. Whence, again by Lemma 11, C
embeds into B, which implies that each finite chain in V(A) belongs to V(B),
too. We conclude V(A) C V(B). O

Notice that by Lemmas2 and 8 and Theorem 2, if C' is a set of DNMG-chains
containing an infinite chain A of any cardinality, then V(C) = V(C”) for ¢’ =
(CU{A'})\ {A}, for a suitable A’. More precisely, A’ is obtained from A by
replacing, for every X € {F,I,S} such that X(A) is infinite, the subalgebra
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(X (A)) with a fresh copy of a fixed denumerable L(X)-chain B, where we safely
identify the extremes of B with those of A. We call A" a regular chain.

Then we may assume that each subvariety of DNMG is generated by a set of
regular chains. Two regular DNMG-chains 4 and B are isomorphic iff T'(A) =
T(B). We now fix, once and for all, one representative regular chain Ar, for
each triple T € (w + 1)), Notice that given two regular representative DNMG-
chains A and B, we have that A embeds into B iff T(A) < T(B). A set C
of DNMG-chains is irredundant if each A € C is representative regular and
V(C\{A}) C V(C) for all A € C. Otherwise C is redundant.

Lemma 13. FEvery irredundant set C' of DNMG-chains is finite. Moreover, the
map A — T(A) is a bijection between C and Cr = {T(A) : A € C}, which is
the underlying set of a finite antichain of (w + 1)(3).

Proof. Let C be an irredundant set of DNMG-chains. Then, for every A, B € C,
with A4 # B we have that T(A) is incomparable with T'(B). Indeed, if not, by
Lemma 12 either V(C'\ {A}) = V(C) or V(C \ {B}) = V(C). In both cases we
have a contradiction. By the previous observations we have that Cr must be the
underlying set of an antichain of (w + 1)(®), and by Lemma 10 C7 is finite. The
proof is settled by noticing that the map A — T(A) is a bijection between C
and Cr. O

Lemma 14. The lattice A(DNMG) of all subvarieties of DNMG, ordered by
inclusion, is isomorphic with the lattice I'(DNMG) of all irredundant sets of
DNMG-chains, ordered by inclusion.

Proof. Clearly, each irredundant set of DNMG-chains generates a subvariety of
DNMG, and each subvariety is generated by some irredundant set of DNMG-
chains. We prove than no subvariety can be generated by two distinct irredundant
sets C, D of DNMG-chains, with C' # D: by Lemma 13 we can assume C' =
{A1,..., Ap} and D = {By, ..., By }. By contradiction, suppose V(C) = V(D).

Then, without loss of generality, there is a chain A, € C'\ D. By [6, Theorem
7], we have that the class of chains in V(C) = V(D) coincides with the one in
U?Zl V(A;) and with the one in Ule V(B;). This means that there is B, € D
such that V(A,) C V(By), and clearly Bs ¢ C (otherwise C' would be redun-
dant). This implies T'(A,) < T(Bs) and hence A, embeds into B, being both
chains regular representative. On the other hand, for the same reasons, this in
turns implies that B, embeds into some chain A; € C. Note that ¢t # r, as other-
wise A, ~ Bg, and since both chains are regular representative we would conclude
A, = Bs, in contrast with the fact that A, ¢ D. But then also .4, embeds into
Ay, contradicting the fact that C' is irredundant. It is obvious that both the
bijective correspondence C' — V(C) and its inverse are order-preserving. a

Theorem 4. The lattice A(IDNMG) is isomorphic with AC((w + 1)®).

Proof. By Lemma 14, we prove that I'(DNMG) is isomorphic with AC((w+1)®)).
Consider a set C of pairwise non-isomorphic representative chains in DNMG
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such that the set Cp = {T(A) | A € C} is not an antichain. Then there are
chains A and B € C such that T(A) < T(B). By Lemma12, V(A) C V(B).
Whence, V(C) = V(C \ {A}). That is C is redundant. Whence, each element
of I'(DNMG) is a set C of chains such that Cr is an antichain, that is 7" maps
I'(DNMG) to AC((w+ 1))). T is injective by construction. For surjectivity, let
A€ AC((w+1)®). With each triple (a,b,c) € A we associate the representative
regular DNMG-chain A, ) such that T(Agp,)) = (a,b,¢). Call C(A) the
set of chains so obtained. Clearly, T(C(A)) = A and all chains in C'(A) are
representative and regular. Finally, for any triple (a,b,c) € A we have that
V(C(A)\{A@p,e)}) S V(C(A)), for otherwise there is a triple (d, e, f) € A such
that (a,b,c) < (d,e, f), contradicting the fact that A is an antichain. Whence
C(A) is irredundant, that is, it belongs to I'(DNMG). Surjectivity is proved. O

Corollary 2. There are countably many subvarieties of DNMG. Every subvari-
ety of DNMG 1is generated by a finite number of DNMG-chains.

Proof. By Theorem 4, Lemma 10 and Corollary 1. O

5 Uniform Axiomatisations

In this section we axiomatise all the subvarieties of DNMG in a uniform way.

Definition 6. For each integer n > 0 let Q,, be the term:

1<i#j<n+1
Furthermore let Qo =0 and Q, = 1, and e, 41(X) =1 for each X € {F,1,S}.

Given (a,b,c) € (w+1)®), we write V(a, b, c) to mean the variety generated by
a DNMG-chain A such that T'(A) = (a, b, c).

Theorem 5. For each (a,b,c) € (w+ 1)), the variety V(a,b,c) is the subva-
riety of DNMG satisfying the following equation.

(QaUear1(8) M (Qp Ueps1 (1)) M(Qe Uecr1(F)) =1.

Proof. Let D be a DNMG-chain such that T(D) = (a,b,c). We show that
D E Qo Ueqt1(S) = 1. As a matter of fact, if a = 0 then by Lemma3
1=¢eq+1(d1,...,dat1) = (Qalleat1(5))(d1, ... ,dat1), since d; € D\S(D) for all
i€{1,2,...,a+1}.Ifa = wthen (Q,Ueq1+1(S))(d1, ..., dms1) = 1 for Q, = 1. If
a is a positive integer, then (Q,Ueq+1(5))(dy, ... ,de+1) = 1. Indeed, if d; € S(D)
for all ¢ € {1,2,...,a+1} then there are distinct indices 4, j such that d; < d; =
1, for |S(A)| = a, whence (Qa (W 6a+1(5))(d17 ey da+1) = Qa(dla ey da-{—l) =1.
If on the other hand there is some d; € D \ S(D), then, by Lemma3,
eat1(S)(d1, ... dar1) =1=(QaUest1(5))(d1,...,dat1). We proceed similarly,
to show that D = QpyUep1(I) =1 and D = Q. Uecr1(F) = 1, mutatis mutan-
dis. Let now D be a DNMG-chain not in V(a,b,c), whence T(D) = (a’,V',¢)
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with (a/,b',¢") £ (a,b,c). If ' > a then picking pairwise distinct elements
a,...,aq+1 € S(D) we have that Qu(d1,...,dqt1) < 1. Further, by Lemma 3,
€at+1(S)(dy1, ..., dat1) < 1, too. We conclude that D & Qq, U esy1(S) = 1. The
cases b’ > b and ¢’ > ¢ are dealt with in the same manner, mutatis mutandis. O

Clearly, if some index a, b, ¢ is zero, the associated conjunct in the axiomatis-
ing equation can be simplified: Q,Ueq+1(S) to eq11(S) and so forth. Analogously,
if some index a, b, ¢ is w, the associated conjunct can be totally disregarded. For
instance V(w,w,w) = DNMG, and as a matter of fact the axiomatising equa-
tion in this case is identically 1 = 1. As DNMG contains all major subvarieties
of WNM, several varieties of the form V(a,b, ¢) have already been studied and
axiomatised in the literature. The following theorems report on this aspect.

Theorem 6. V(0,0,0) = B. For each integer n > 0, V(n,0,0) = Gy 42,
V(0,n,0) = NMay, 42, V(0,0,n) = DP,12. Also, V(w,0,0) = G, V(0,w,0) =
NM~ and V(0,0,w) = DP.

Proof. Immediate by [6,17], and Definition 5. O

We now show how the axiomatisation provided in Theorem 5 can be simplified,
when exactly one element in the triplet (a, b, ¢) is zero. In this case V(a,b,c) is
either a subvariety of RDP = V(w, 0,w), or of one of the following two subvari-
eties. The variety DNM = V (0, w, w), axiomatised as WNM plus:

(v = z) U (v & ~x) = 1. (IF)
The variety NMG~ = V(w,w,0), axiomatised as NMG plus:
~((~(2%)?) & (~((~2)?))? = 1. (NF)

Theorem 7. 1. For allb,c € (w+1)® with b # 0 # ¢, the variety V(0,b,c) is
axiomatised as DNM plus

(QvUep1(1) M (QeUecyr(F)) =1.

2. For all a,c € (w4 1)@ with a # 0 # ¢, the variety V(a,0,c) is aziomatised
as RDP plus

(Qa Ueat1(5)) M (QeUecrr(F)) =1.

3. For all a,b € (w+1)®) with b # 0 # a, the variety V(a,b,0) is aziomatised
as NMG™ plus

(QaUear1(5)) M (QpUepa(l)) =1.
Proof. Immediate by Theorem 5.

We now provide the general criterion to axiomatise the subvarieties of DNMG.
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Theorem 8. Let C = {A;}ier be an irredundant set of DNMG-chains. Let
further t;(z1,...,xy;) =1 be the equation aziomatising V(A;) for each i € I, as
given by Theorem 5. Then V(C) contains exactly the DNMG-algebras satisfying
the equation

|_| ti(yi,lv e 7yi,n7-,) = 17

il
where all the variables y; ;, fori € I, and j € {1,...,n;}, are pairwise distinct.

Proof. First notice that by Corollary 2, | |;.;t; = 1 is indeed an equation, as I is
a finite index set. The proof is settled by noting that V(C) = | |;c; V(A;), and
by using [15, Lemma 5.25]. O

Corollary 3. Every element of A(DNMG) is the join of a finite set of join
trreducible elements.

Proof. By [2, Theorem 5.1] a variety of MTL-algebras is join irreducible, in the
lattice of the subvarieties of MITL, if and only if it is generated by a single chain.
The claim follows by Theorem 8. O

Theorem 9. DNMG is the smallest subvariety in A(DNMG) which contains
DP, NM~, G and it is generated by a single chain.

Proof. Immediate by Theorem 6 and Lemma 12, since DNMG = V(w,w,w). O

Remark 1. Notice that NM = V(0,w, 1), and its lattice of subvarieties is given
by all antichains C' € AC((w + 1)) such that all T € C have either the form
T = (0,b,1) or T = (0,b,0) for some integer b > 0, or T = (0,w,0), whose
corresponding variety is NM ™.

The almost minimal subvarieties of DNMG are exactly Gg = V(1,0,0),
NMy = V(0,1,0), and NM3 = DP3 = V(0,0,1). Whence they coincide with
the almost minimal subvarieties of WNM (see [3]).

By Lemma 7 and [10, Theorem 3.5], every variety of DNMG-algebras of the
form V(a,b,c) is such that the corresponding logic has the strong single chain
completeness (see [2,22]).

The subvarieties of DNMG generated by a standard algebra are exactly G =
V(w,0,0), NM = V(0,w, 1), NMG = V(w,w, 1), RDP = V(w,0,w), DNM =
V(0,w,w), and, clearly, DNMG = V (w, w, w).

Finally, EMTL = V({(w,0,0),(0,0,w)}) is an example of a subvariety of
DNMG which cannot be generated by a single chain [6].
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