Chapter 2
Canonical Correlation Analysis

Canonical correlation analysis (CCA), which is a multivariate analysis method, tries
to quantify the amount of linear relationships between two sets of random variables,
leading to different modes of maximum correlation [1]. In this chapter, we explain
how CCA works from a signal processing perspective.

2.1 Preliminaries

Let a and b be two zero-mean complex-valued circular random vectors of lengths L,
and Ly, respectively, where, without loss of generality, it is assumed that L, < Ly,.
Let us define the longer random vector:

c=[a"b"]", 2.1)

where the superscript 7 denotes transpose of a vector or a matrix. The covariance
matrix of ¢ is then

® = E (cc”)

o, o,
= , 22
[qn,a o, ] (2:2)

where E(-) denotes mathematical expectation, the superscript 7 is the conjugate-
transpose operator, ®, = E (aaH ) is the covariance matrix of a, ®, = E (be ) is
the covariance matrix of b, ®,, = E (ab*) is the cross-covariance matrix between
a and b, and &y, = <I>f{,. It is assumed that rank (®,,) = L, and, unless stated
otherwise, ®, and ®}, are assumed to have full rank.
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The Schur complement of ®, in ® is defined as [2]
Pyja = B — Pra®,  Pa (2.3)
and the Schur complement of ®y, in ® is
D = Dy — D@, B (24

Clearly, both matrices ®y,/, and ®,,p, are nonsingular. An equivalent and more inter-
esting way to express the two previous expressions is

@, 0,0, =1, — @, 0, ;' ©,,®, "
—1,, - (‘P;l/zq’ba‘l’;]/z) (q,;l/zq)abq)l:l/z)
=1, — 00"
=1, — ¥, (2.5)

and

@, 20, @, 7 =1, — 0,20 @, B, @,

a

-V, (2.6)

where I, and I, are the identity matrices of sizes Ly, x Ly, and L, X L,, respectively,
0 =9,"®,®,', ¥, = @O, and ¥, = ©®"©. From (2.5) and (2.6), it can
be observed that the eigenvalues of Wy, and ¥, are always smaller than 1 (and, of
course, positive or null). Furthermore, the matrices ¥y, and ¥, have the same nonzero
eigenvalues [2]. Indeed, since

det (IL, — \Ila) = det (ILb — \Ilb) , 2.7
where det stands for determinant, it follows that
Ardet (M, — W,) = Afedet (AL, — W), (2.8)
which shows that W, and W}, have the same nonzero characteristic roots. Obviously,
W, is nonsingular while ¥y, is singular.
Using the well-known eigenvalue decomposition [3], the Hermitian matrix W,

can be diagonalized as

Ufw,U, = A,, (2.9)
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where
Ua - [ua,l Uy -+ ua,La] (210)

is a unitary matrix, i.e., U?U, = U,U# =1, , and

Ay = diag (A, Aoy ..oy AL) (2.11)
is a diagonal matrix. The orthonormal vectors u, 1, Uy 2, . .., Uy 7, are the eigenvec-
tors corresponding, respectively, to the eigenvalues A;, Ay, ..., A, of the matrix ¥,,
where 1 > A\; > Ay > -+~ > A, > 0. In the same way, the Hermitian matrix ¥y,
can be diagonalized as

U W, Up = Ay, (2.12)
where
Up = [up, upp -+ up g, | (2.13)

is a unitary matrix and

Ab:diag()\l,/\g,...,)\La,O,O,...,O)
= diag (A,, 0) (2.14)

is a diagonal matrix.
For/ =1,2,..., L,, we have

Yyup, = 00w, = \uy,. (2.15)

Left multiplying both sides of the previous equation by @7 //;, we get

@H @Hllhl
—@@Hllb,l =0"e :
A/ /\1 hY /\l
@Hllbl
=N ~, (2.16)
VA
We deduce that
@Hllbl
Uy = ——. 2.17
a,l \/)\—l ( )

Similarly, for/ =1, 2, ..., L,, we have

Vu,, =070u,; = \u,,. (2.18)
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Left multiplying both sides of the previous expression by @/4/);, we get

Q] @lla i
—0"0u,, = 00"
i oy
9ua l
=N\ =, (2.19)
VA
from which we find that
Gua !
Uy = e (220)
VA

Relations (2.17) and (2.20) show how the first L, eigenvectors of ¥, = efe
and ¥y, = ©®0" are related. From the above, we also have

@ = U, ALPUl, (2.21)
where

Uy = [up1 upp - up g, |
— @UaA;I/Z (2.22)

is a semi-unitary matrix of size Ly X L,. In (2.21), we recognize the singular value
decomposition (SVD) of @. In fact, from a practical point of view, this is all what
we need for CCA.

2.2 How CCA Works

Let g and h be two complex-valued filters of lengths L, and Ly, respectively. Apply-
ing these filters to the two random vectors a and b, we obtain the two random signals:

Z, = ga, (2.23)
Zy = hfp. (2.24)

The Pearson correlation coefficient (PCC) between Z, and Zj, is then [4]
E(2.2;)

VE(1ZP) E (126P)
_ qu’abh
/g ®,g x hFdyh’

p(gh) =

(2.25)
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where the superscript * is the complex conjugate. The objective of CCA [1, 5, 6] is
to find the two filters g and h in such a way that p (g, h) 4+ p* (g, h), i.e., the real
part of the PCC, is maximized. This is equivalent to maximizing g/ ®,,h +h* &y, g
subject to the constraints g’ ®,g = h'’ ®yh = 1, i.e.,

gH<I)ag =1

AR 1 (2.26)

max (g” @,ph +h” @y,g) 5. t. [
g.h

The Lagrange function associated with the previous criterion is
L (g h) = g" ®aph + h" Brag + 15 (8" ®ag — 1) + pn (W @ph — 1), (2.27)

where p1g # 0 and pp # 0 are two real-valued Lagrange multipliers. Taking the
gradient of £ (g, h) with respect to g and h and equating the results to zero, we get
the two equations:

®,ph + p P8 =0, (2.28)
®pag + upnPph =0, (2.29)
which can be rewritten as
|
g=——®, ®;h, (2.30)
Hg
1
h=——9&, &g (2.31)
Hh

Left multiplying both sides of (2.28) and (2.29) by g/’ and h¥, respectively, and
using the constraints, we easily find that

g ®,ph

qu>ag

— —g"®,h, (2.32)
h" ®y,g

~ h#dph

—hf ®p,g. (2.33)

Hg = —

As a result,

lp (@ W)* = pgpin (2.34)

and p (g, h) must be a real-valued number. From all previous equations, we deduce
that
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[, @@, @0 @, — p (g W1, ] @,%g =0, (2.35)
2, 20 00, — @ WP @ h =0, (236

or, using the notation from the previous section,

[a—lp(g W1, ] @,/ g=0, (2.37)
[¥ — 1p (g I*1,] @,/ h =0, (2.38)

where we recognize the studied eigenvalue problem. From the results of Sect. 2.1, it
is clear that the solution to our optimization problem in (2.26) is

g =@, u,, (2.39)
h; = d’;l/zub,l, (2.40)

which are the first canonical filters. They lead to the first canonical correlation:

p(g, h) =V (2.41)
and to the first canonical variates:
Z,1=gl'a
=u) @, a, (2.42)
Zp1 =h{'b
=uf! @, b (2.43)

The second canonical filters are obtained from the criterion:

gld,g =1
h®pyh =1
H H b
®,,h+h" o .t . 2.44
ng],?il,x (2" ®.ph + bag) St g’ ®,g =0 (2.44)
h®yh; =0

It is not hard to see that the optimization of (2.44) gives the second canonical
filters:

g = &, u,,, (2.45)
h, = @, *up, (2.46)

the second canonical correlation:

p (g, h) =/, (2.47)
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and the second canonical variates:

Z,o=ga

=u/,®, ' a, (2.48)
Zp, =hb

=ul,®,"b. (2.49)

Obviously, following the same procedure, we can derive all the L, canonical
modes (Il =1,2,..., L,).

e The /th canonical filters:

g =&, 7u,, (2.50)
h = @, up,. (2.51)

It is important to notice that instead of g; and h;, we can use the filters ¢ g and
Gnhy, where ¢, # 0 and ¢, # 0 are arbitrary real numbers, since the canonical
correlations will not be affected.

e The /th canonical correlation:

p (g h) =\ (2.52)
e The /th canonical variates:
Za.l = nga
=ul, @, a, (2.53)
Zp; =h/'b
=u @, . (2.54)

Considering all the modes of the canonical filters, they can be combined in a
matrix form as

G=[gi g 8]

=&.'2y,, (2.55)
H=[h h, - hg,]
=o'y, (2.56)

Then, it is easy to check that G ®,G = H/®,H = I, and G ®,H =
H"” ®,,,G = AL/*. Tt can also be verified that HA)*G" = &, ' ®},,®,". In the same
way, we can combine all the modes of the canonical variates:
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Z, = [Za,l Za,2 Za,L,,]

zy = Zn1 Zno - Zor, |
= H"D. (2.58)

Then, it can be verified that E (z,zf) = E (zpz}/) = I, and E (z,2{') =
E (zpzl) = A}

Let us now briefly discuss the two particular cases: L, = Lp = 1 and L, =
1, Lb > 1.

When L, = Ly = 1, the two random vectors a and b become the two random
variables A and B. In this case, CCA simplifies to the classical PCC between Z4 = A
and Zg = B, i.e.,

E (ABY)
pAB = . (2.59)
£ (AP £ (181

In the second case (L, = 1, Ly, > 1), we only have one canonical mode. We find
that the canonical filters are

G=1 (2.60)
h= o, " u, (2.61)

where
u = @, Zns (2.62)

is the (unnormalized) eigenvector corresponding to the only nonzero eigenvalue:

— ¢11)1A<I>[:1 ¢bA

A
Pa

(2.63)

of the rank-1 matrix @0 = &>y 0, ®, "% /4, with ¢pps = E (bA*) and
or=E (|A|2). As a result, the canonical correlation is
hah
RV qu x h# <I’bh
=\ (2.64)

p (G, h) =

and the canonical variates are
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Zi=A, (2.65)
Zy = oL @, 'b. (2.66)

2.3 The Singular Case

Now, assume that the covariance matrix @, is singular but the covariance matrix ®y,
is still nonsingular." In this case, it is clear that CCA as explained in the previous
section cannot work since the existence of the inverse of ®, is required. One way to
circumvent this problem is derived next.

Let us assume that rank (®,) = rank (®,,) = P < L,. We can diagonalize ®,
as

Q"®,Q=A/, (2.67)
where
Q=[q1 @ - q] (2.68)
is a unitary matrix and
A’ = diag (X1 Nyy oo, XLa) (2.69)
is a diagonal matrix. The orthonormal vectors q, qo, . .., qz, are the eigenvectors
corresponding, respectively, to the eigenvalues A, Ay, ..., A} of the matrix @,,
where \| > Xy > --- > X, >0and \p | = \p,, =---= A1, =0. Let
Q=[T E] (2.70)

where the L, x P matrix T contains the eigenvectors corresponding to the nonzero
eigenvalues of ®, and the L, x (L, — P) matrix E contains the eigenvectors corre-
sponding to the null eigenvalues of ®,. It can be verified that

I, =TT? + 227, 2.71)

Notice that TT# and EE are two orthogonal projection matrices of rank P
and L, — P, respectively. Hence, TT? is the orthogonal projector onto the signal
subspace (where all the energy of the signal is concentrated) or the range of ®,, and
2 1 is the orthogonal projector onto the null subspace of ®,. Using (2.71), we can
write the random vector a (of length L,) as

The same approach discussed in this section can be applied when ®y, is singular or when both @,
and @y, are singular.
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a=0QQ"a
=TT a
=Ta, (2.72)
where
a="T"a (2.73)

is the transformed random signal vector of length P. Therefore, instead of working
with the pair of random vectors a and b as we did in Sect. 2.2, we propose to handle
the pair of random vectors a and b since now the covariance matrix of a denoted
®; = TH®,T has full rank. As a result, CCA with P different canonical modes
can be performed by simply replacing in previous derivations ®, by ®z and @, by
Oz, = TH @y,
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