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Abstract. Modern composite scientific applications, also called scientific work‐
flows, require large processing capacities. Cloud environments provide high
performance and flexible infrastructure, which can be easily employed for work‐
flows execution. Since cloud resources are paid in the most cases, there is a need
to utilize these resources with maximal efficiency. In this paper we propose
dynamic resources coevolutionary genetic algorithm, which extends previously
developed coevolutionary genetic algorithm for dynamic cloud environment by
changing computational capacities of execution nodes on runtime. This method
along with using two types of chromosomes – mapping of tasks on resources and
resources configuration – allows to greatly extend the search space of the algo‐
rithm. Experimental results demonstrate that developed algorithm is able to
generate solutions better than other scheduling algorithms for a variety of scien‐
tific workflows.

Keywords: Workflow scheduling · Dynamic coevolution · Coevolutionary
algorithm · Genetic algorithm · Virtualization

1 Introduction

Composite scientific applications containing thousands tasks today drive scientific
progress in many areas. For example, CyberShake application, which is used by the
Southern California Earthquake Center (SCEC) to characterize earthquake hazards,
consists of 815823 execution tasks, reads 217 terabytes of data and writes 920 gigabytes
[1]. Workflow formalism is used for organization of execution of such large applications
in the distributed high-performance environments within Workflow Management
Systems (WMS) [2, 3]. The main feature of WMS is a workflow scheduling, which
allows to efficiently utilize resources of the environment, minimize execution time and
cost of resources for the paid platforms. Workflow scheduling also allows to meet
various constraints, like execution deadlines or limited budget [4, 5].

Workflow scheduling is an NP-complete problem [6] and there are two main classes
of algorithms used to solve it. The first class is heuristic algorithms, which provide
determined solution in a short time. Heterogeneous Earliest Finish Time (HEFT) algo‐
rithm [7] is very popular algorithm of this group – it provides very efficient solutions in
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a very short time. The second class of algorithms for the workflow scheduling is meta‐
heuristic algorithms. These algorithms usually provide better solutions, than heuristics,
but require much more time for their execution. Among popular metaheuristic algo‐
rithms are genetic algorithm, ant colony optimization, particle swarm optimization,
GRASP [8], memetic algorithm [9]. Better quality of resulting solutions is achieved by
searching through a solution space instead of using predefined algorithm.

In this work we present a Dynamic Resources Coevolutionary Genetic Algorithm
(DRCGA), which uses two types of chromosomes – resources configurations and
mappings of tasks on resources – to extend a search space in order to generate better
solutions than standard GA with one population. The main improvement of the devel‐
oped algorithm in comparison with the scheme proposed earlier [10] is ability of the
algorithm to schedule changes in the configuration of virtual machines on runtime to
adapt the environment to the changing requirements of the workload.

2 Related Works

Liu et al. [11] proposed the coevolutionary genetic algorithm for deadline-constrained
scientific workflow scheduling problem in clouds. The main idea of the algorithm is in
the existence of two coevolution populations. The first population is composed of several
sub-populations which evolve the original scheduling problem – the assignment of
workflow’s tasks on various computation nodes. Simultaneously, the second population
evolves mutation and crossover probabilities for each sub-population. Therefore, the
second population allows to adapt these parameters during the evolution process. More‐
over, authors proposed an adaptive penalty function for the estimation of penalty in
fitness function. This adaptive penalty function depends on the proportion of feasible
individuals in the population. Authors compared their proposed CGA with several
scheduling algorithms, including random, heuristic HEFT and metaheuristic PSO and
GA. Experiments were provided in the simulated environment under various workflows,
such as Epigenomics, Montage, Inspiral, CyberShake. The results of experiments
showed, that all metaheuristic algorithms together with CGA were able to find a solution,
which doesn’t exceed a deadline. However, the main optimization criterion was the
execution cost, and the proposed CGA outperformed other algorithms almost in all cases.

The heuristic list-based scheduling algorithm called Improved Predicted Earliest
Finish Time (IPEFT) was introduced by Zhou et al. [12]. The algorithm is based on the
computation of optimistic cost table which is used to identify priorities of tasks and the
computation of critical node cost table, which is used for selection of an optimal node
for a task. This work is a continuation of authors’ previous work, where original PEFT
algorithm was proposed. Since, proposed IPEFT is a heuristic, the main goals of IPEFT
algorithm is to outperform other low-complexity heuristic algorithms (HEFT, PEFT)
and save the time-complexity. According to the results of experiments, proposed IPEFT
outperforms HEFT and PEFT algorithms with the same quadratic complexity on
randomly generated and several real-world workflows.

The Global League Championship Algorithm (GBLCA) for scheduling of scientific
applications was proposed in [13]. This algorithm is one of population based
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metaheuristics as GA, which is inspired from sport league championships. The experi‐
ments were conducted in CloudSim simulation environment. The input data of incoming
workload for the experiments is taken from Parallel Workload Archive in SWF format,
generated by San Diego Supercomputer Center. The proposed algorithm was compared
with GA and ACO. As a performance metrics, authors used makespan and response
time. The results of the experiments showed the efficiency of proposed GBLCA in
comparison to GA and ACO by makespan and response time for various number of tasks
in the input workload.

The energy-efficient online scheduling algorithm (EONS) is proposed by Chen et al.
[14]. As a list-based heuristic algorithm, it includes two phases: tasks ranking and node
selection. The ranking phase is based on the estimation of latest start time of workflows’
tasks. The main idea of selection phase is in the ability to rescale virtual machines up
and down. Moreover, algorithm may start a new inactive physical host, if it is required
to place a new VM. In addition, authors provided a complete problem definition with
corresponding workflow, system, performance and energy consumption models. There‐
fore, proposed EONS algorithm with defined models allows to outperform several
popular heuristic algorithms in terms of energy consumption, resource utilization and
do not exceed the specified deadlines.

3 Problem Statement

In order to define a formal problem statement for the workflow scheduling, we need to
specify representations for both workload and execution environment. Workload
consists of several workflows and can be defined as follows:

W =
{
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}
=
{
< Ai, Ei >

}

where every workflow wi contains a set of tasks Ai =

{
ai

j

}
 and a set of dependencies

between tasks:
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where every entry is a tuple of parent (ai
j
) and child (ai

k
) tasks, and a volume of data

di
j,k, which is transferred from ai

j
 to ai

k
.

To simplify the representation of the workload we can use global indexing of tasks.
In this case all workflows are combined into one, which contains all tasks and depend‐
encies between them:

W =
{
<

{
ai

}
,
{

ej,k
}
>

}

Execution environment is defined using two sets. The first one – R – is a set of
physical resources, each of which includes hardware characteristics, such as CPU cores
number, CPU frequency, RAM volume, etc.:
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R =
{

ri|(cpui, rami, gpui,…) ∈ ri

}

The second set – B – represents a set of network routes between resources:

B =

{(
bl

)
|
{

rk

}
∈
(
bl

)}

Every resource is split into several virtual resources. All virtual resources form a set
of computational nodes N, which can be used for scheduling tasks on them. Computa‐
tional node inherits some characteristics of the parent resource:

N =
{

ni|ni ∈ rk;(cpui,…) ≤ (cpuk,…)
}

Now we can formulate the scheduling problem. Schedule S is a mapping of tasks
onto resources:

S =
{
(ai, nk)

}

Performance P of the task ai on the node nk is obtained using performance models,
which can be generated analytically or statistically:

P = p(ai, nk)

There can be several optimization criteria G =
{

gi(S)
}
, which we need to maximize,

and several constraints C =
{

ci(S)
}
. All solutions must meet the constraints, otherwise

they can be marked as invalid or get a high penalty, depending on the type of the
constraint.

Taking into account all aforementioned, we can formulate a problem statement. The
main aim of scheduling is to find an optimal schedule Sopt:

∃Sopt:∀S
′

≠ Sopt:
{

gi(Sopt) ≥ gi(S
′

),∀gi ∈ G

cj(Sopt) ≤ cj(S
′

),∀cj ∈ C

In other words, an optimal schedule maximizes the optimization criteria while
meeting all constraints. But, since workflow scheduling is an NP-complete problem, it
would take an enormous amount of time to find such solution for the complex workflow
with more than one optimization criteria.

4 Proposed Solution

In our previous work [15] we have proposed genetic algorithm for joint evolution of two
populations – resources configurations and mappings of tasks on resources – in a
dynamically changing computational environment. This approach allows to greatly
expand the search space for the optimal solution generation in order to efficiently adapt
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the environment for the changing requirements of the workload. General principle of
the coevolutionary genetic algorithm (CGA) is demonstrated in Fig. 1.

Fig. 1. General principle of CGA

CGA allows to produce an optimal configuration of virtual machines for the target
workflow. But sometimes topology of the workflow requires dynamic reconfiguration
of the resources for the maximum efficiency. In Fig. 2a sample workflow, which has six
levels of tasks, is presented. In Fig. 2b we can see two schedules created for that work‐
flow on a single resource with four CPU cores. For the sake of representability, we
assume that the schedule shown in the top of Fig. 2b is the most optimal schedule
obtained using CGA. It can be seen that in that schedule there are situations when virtual
machines are staying idle, because parent tasks of the task mapped on that machines did
not finish yet. To eliminate such situations, we propose to dynamically change config‐
uration of the resources during the workflow execution. This can help to utilize compu‐
tational resources to maximum effect. And while modern virtualization software allows
to dynamically change properties of virtual machines on runtime, this approach brings
little to no reconfiguration overheads. Example of the schedule generated with the use
of dynamic reconfiguration is presented in the bottom of Fig. 2b.
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Fig. 2. Sample workflow (a) and its schedules (b)

To achieve the described effect, we have developed a dynamic resources coevolu‐
tionary genetic algorithm (DRCGA). Two main differences between DRCGA and CGA
are representation of resources configuration chromosome and fitness function.

Representation of the resources configuration chromosome is presented in Fig. 3.
The chromosome consists of independent reconfiguration schedules for all resources
(R1 and R2 in Fig. 3). Every such schedule includes a set of time points (t0 – t4). Time
point stores a required configuration of virtual machines. All reconfiguration schedules
have initial time point t0, which cannot be changed or moved. In Fig. 3 reconfiguration
is applied only to CPU cores, but the same method can be applied to other parameters,
e.g. RAM volume.

Fig. 3. Resources configuration chromosome representation

Before chromosomes generation maximal execution time is calculated as a sum of
execution times for all tasks of the workflow on the least powerful node. Before the start
of scheduling all chromosomes are initialized with randomly generated reconfiguration
schedules – random set of time points with a random resources’ configurations.
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During the crossover operation child chromosome for every resource receives parti‐
tioning randomly selected from one parent or another. In Fig. 4 schema of crossover
operation is presented. In the presented example child chromosome receives partitioning
for R1 from the first parent and partitioning for R2 from the second parent.

Fig. 4. Resources configuration crossover example

Mutation includes several scenarios of modifying resources configuration chromo‐
some:

1. Transfer of capacity from one virtual machine to another. During this operation
algorithm selects physical resource, two virtual machines located on this resource
and the amount of capacity to transfer.

2. Addition of time point for the resource. Algorithm selects physical resource and adds
new time point with a random configuration.

3. Removal of time point. Algorithm selects physical resource and removes some time
point from it. This operation is available only if at least one resource of the chro‐
mosome has more than one time points.

4. Shift of time point. Algorithm selects a random time point for some resource and
shifts upward or downward with regard to initial time point and maximal execution
time.

Fitness function was also modified for proper consideration of dynamic character‐
istics of virtual machines. Fitness calculation models execution process. To do this
algorithm takes tasks from the mapping chromosome one by one and estimates their
execution time using performance models and virtual machine’s parameters, which it
has during the execution of the task. Algorithm also takes into account overheads of
virtual machines reconfiguration.
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5 Experimental Study

Experiments were conducted using our own workflow execution simulator. Computa‐
tional environment is presented by a set of resources, each of which has a certain number
of CPU cores and core capacity. Resources are partitioned into virtual machines. There
are two types of network connections in the system – global (between resources) and
local (between virtual machines of the same resource). Network bandwidth for local
connections is much higher than for global ones – 100 Mbit/sec and 10 Mbit/sec respec‐
tively. Dynamic nature of the system was represented by probability of successful
execution of the task on the virtual machine. This probability was set to 95% throughout
the experiment. In case of the task failure virtual machine becomes unavailable for 60 s
for the recovery.

In our work we used synthetic workflows, which replicate real scientific applications:
Montage (astronomy), CyberShake (earthquake science) and Inspiral (gravitational
physics) [16]. Workflows generator allows to create synthetic workflows of different
sizes, which follow a general structure of the application. Synthetic workflows provide
information about structure of the application, dependencies between tasks, data used
for tasks execution and average execution time on benchmarking workstation. For the
experimental evaluation of DRCGA following synthetic workflows were used –
Montage 25, Montage 50, CyberShake 30, CyberShake 50, Inspiral 30 and Inspiral 50
(number in the name represents a number of tasks in the application).

Computational environment consists of three resources; every resource has four CPU
cores. Initial distribution of cores between virtual machines in presented in Table 1.

Table 1. CPU cores distribution between virtual machines

Resource 1 Resource 2 Resource 3
Virtual machine 1 1 core 2 cores 4 cores
Virtual machine 2 1 core − −
Virtual machine 3 1 core 2 cores −
Virtual machine 4 1 core − −

Experimental evaluation was performed for four algorithms:

1. Heterogeneous Earliest Finish Time heuristic algorithm (HEFT) was used as a base‐
line for measuring quality of solutions.

2. Standard GA with one population and no resources reconfiguration.
3. CGA with two populations and static resources reconfiguration.
4. DRCGA with two populations and dynamic resources reconfiguration.

Parameters of metaheuristic algorithms are following:

– Crossover probability: 0.4
– Mutation probability: 0.4
– Population size: 100
– Iterations number: 2000
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To provide statistical significance to the obtained results, all experiments were
repeated 50 times. Results of experiments – average performance increase for 50 times –
are presented in Table 2. As we can see, DRCGA outperforms other algorithms in all
cases with the maximum performance increase 51.5%.

Table 2. Performance increase compared to HEFT (in %)

Workflow Algorithm
GA CGA DRCGA

Montage 25 36.4 51.0 51.4
Montage 50 27.6 28.6 33.3
Montage 75 18.7 22.4 30.5
Montage 100 15.4 15.9 24.9
CyberShake 30 3.1 51.5 51.5
CyberShake 50 10.9 13.6 32.8
Inspiral 30 0.2 4.9 15.6
Inspiral 50 5.3 9.5 17.0

Fig. 5. Workflow execution time estimations change during algorithms processing
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Advantage of wide search space of coevolutionary algorithms is demonstrated in
Fig. 5. For small workflows (Figs. 5a and d) all algorithms converge to the optimum
relatively fast (about 500 iterations), and coevolutionary algorithms require slightly
more time to find the best solution. For larger workflows, on the other hand, it is likely
for DRCGA to find more optimal solution even after many iterations – there are make‐
span improvements both for Montage 25 and CyberShake 50 after 1500 iterations.

6 Conclusion

In this paper we proposed a dynamic resources coevolution genetic algorithm (DRCGA),
which extends previously developed approach of joint evolution of both computational
environment configuration and mapping of tasks onto execution nodes. DRCGA utilizes
virtualization mechanics to partition physical resources into virtual machines. Algorithm
allows to reconfigure virtual machines on runtime to minimize idle time of the nodes,
thus extending the search space and making possible to find more optimal solutions.
DRCGA is able to handle changes in the computational environment, such as nodes
failures. Algorithm was experimentally evaluated against HEFT, standard GA and
DCGA in the dynamically changing simulation environment, where failures and other
changes might occur. Results demonstrate that DRCGA generates better solutions for
various types of scientific workflows and preserves capability to improve the solution
for larger number of iterations than other metaheuristic algorithms.
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