Chapter 2

Attribute Selection Based on Reduction
of Numerical Attributes During
Discretization

Jerzy W. Grzymala-Busse and Teresa Mroczek

Abstract Some numerical attributes may be reduced during discretization. It hap-
pens when a discretized attribute has only one interval, i.e., the entire domain of
a numerical attribute is mapped into a single interval. The problem is how such
reduction of data sets affects the error rate measured by the C4.5 decision tree gen-
eration system using ten-fold cross-validation. Our experiments on 15 numerical
data sets show that for a Dominant Attribute discretization method the error rate
is significantly larger (5% significance level, two-tailed test) for the reduced data
sets. However, decision trees generated from the reduced data sets are significantly
simpler than the decision trees generated from the original data sets.

Keywords Dominant attribute discretization + Multiple scanning discretization *
C4.5 Decision tree generation + Conditional entropy

2.1 Introduction

Discretization based on conditional entropy of the concept given the attribute (fea-
ture) is considered to be one of the most successful discretization techniques [1-9,
11, 12, 15-17, 19-22]. During discretization of data sets with numerical attributes
some attributes may be reduced, since the entire domain of the numerical attribute is
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mapped into a single interval. A new numerical data set may be created by removing
attributes from the original numerical data set indicated by single-intervals. Such
data sets are called reduced. Our main objective is to compare quality of numerical
data sets, original and reduced, using the C4.5 decision tree generation system. To
the best of our knowledge, no similar research was ever conducted.

We conducted a series of experiments on 15 data sets with numerical attributes.
All data sets were discretized by the Dominant Attribute discretization method [12,
14]. In Dominant Attribute method, first the best attribute is selected (it is called
the Dominant Attribute), a then for this attribute the best cutpoint is chosen. In
both cases, the criterion of quality is the minimum of corresponding conditional
entropy. New, reduced data sets were created. For pairs of numerical data sets: original
and reduced, the ten-fold cross-validation was conducted using C4.5 decision tree
generation system. Our results show that the error rate is significantly larger (5%
significance level, two-tailed test) for the reduced data sets. However, decision trees
generated from the reduced data sets are significantly simpler than the decision trees
generated from the original data sets. Complexity of decision trees is measured by
the depth and size.

2.2 Dominant Attribute Discretization

An example of a data set with numerical attributes is presented in Table2.1. In this
table all cases are described by variables called attributes and one variable called a
decision. The set of all attributes is denoted by A. The decision is denoted by d. The
set of all cases is denoted by U. In Table 2.1 the attributes are Length, Width, Height
and Weight, while the decision is Quality. Additionally, U = {1, 2, 3,4, 5, 6, 7, 8}.
A concept is the set of all cases with the same decision value. In Table 2.1 there are
three concepts, {1, 2, 3}, {4, 5} and {6, 7, 8}.

Table 2.1 A numerical data set

Case Attributes Decision
Length Height Width Weight Quality
1 4.7 1.8 1.7 1.7 High
2 4.5 1.4 1.8 0.9 High
3 4.7 1.8 1.9 1.3 High
4 4.5 1.8 1.7 1.3 Medium
5 43 1.6 1.9 1.7 Medium
6 4.3 1.6 1.7 1.3 Low
7 4.5 1.6 1.9 0.9 Low
8 4.5 14 1.8 1.3 Low
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Let a be a numerical attribute, let p be the smallest value of a and let g be the
largest value of a. During discretization, the domain [p, g] of the attribute a is divided
into the set of k intervals,

{laiy, ai), lai,, ai,), ..., lai_,, ai_), lai_,, a1},

where a;, = p, a;, =¢q, and a;, < a;,, for [ =0,1,...,k — 1. The numbers a;,,
ajy,..., a;,_, are called cut-points. Such intervals are denoted by

[ ¢ P I ¢ N IR ¢ I £ R /7

For any nonempty subset B of the set A of all attributes, an indiscernibility relation
IND(B) is defined, for any x, y € U, in the following way

(x,y) € IND(B) if and only ifa(x) = a(y) for any a € B, 2.1

where a(x) denotes the value of the attribute a € A for the case x € U. The relation
IND(B) is an equivalence relation. The equivalence classes of IND(B) are denoted
by [x]s.

A partition on U is the set of all equivalence classes of IND(B) and is denoted by
B*. Sets from {d}* are concepts. For example, for Table2.1, if B = {Length}, B* =
{{1,3},{2,4,7,8}, {5,6}} and {d}* = {{1, 2, 3}, {4,5}, {6,7, 8}}. A data set is
consistent if A* < {d}*, i.e., if for each set X from A* there exists set Y from {d}*
such that X C Y. For the data set from Table 2.1, each set from A* is a singleton, so
this data set is consistent.

We quote the Dominant Attribute discretization algorithm [12, 14]. The first task
is sorting of the attribute domain. Potential cut-points are selected as means of two
consecutive numbers from the sorted attribute domain. For example, for Length there
are two potential cut-points: 4.4 and 4.6.

Let S be a subset of the set U. An entropy Hg(a) of an attribute a, with the values
ai, az,..., a, is defined as follows

— > pla) - logp(a, 22)
i=1
where p(a;) is a probability (relative frequency) of the value a; of the attribute
a, ay, a, ..., a, are all values of a in the set S, logarithms are binary, and i =
1,2,...,n.

A conditional entropy for the decision d given an attribute a, denoted by
Hs(d|a) is

> pla) - Y pdjlay) - log p(djlay), 2.3)

i=1 =1
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p(d;|a;) is the conditional probability of the value dj of the decision d given the value
a;ofaandd,, d,, ..., d, are all values of d in the set S. The main ideas of Dominant
Attribute discretization algorithm are presented below.

Procedure Dominant Attribute
Input: a set U of cases, a set A of attributes, a set {d}* of concepts
Output: a discretized data set
{A:={U};

{B}Y* :=0;

while {A}* £ {d}* do
X := SelectBlock({A}*);
a := BestAttribute(X);
¢ := BestCutPoint(X, a);
{S1, S2} := Split(X, c);
{BY* := {B}* U {S1, S2};
{A} == (B}

end

In the Dominant Attribute discretization method, initially we need to select the
dominant attribute, defined as an attribute with the smallest entropy Hg(a). The
process of computing of Hy (Length) is illustrated in Fig. 2.1. In the Figs.2.1 and 2.2
[ stands for low, m for medium, and /4 for high, where {low, medium, high} is the
domain of Quality.

1/ 1 1 1 o 1 N1
Hy (Length) = — (== -Tog= )2+ = ((== -Tog=)2— = -log= ) + - -0 = 1.
y (Length) 4( 2 ng) +2(( 4 °g4) 2 °g2)+4

Similarly, we compute remaining three conditional entropies: Hy (Height) ~ 0.940,
Hy(Width) ~ 1.439 and Hy (Weight) = 1.25. We select Height since its entropy is
the smallest.

Let a be an attribute and g be a cut-point of the attribute a that splits the set S into
two subsets, S; and S». The conditional entropy Hg(d|a, g) is defined as follows

|51 |52 |
— d — dla), 2.4
5] s, (d|a) + S| s, (d|a) 2.4

Fig. 2.1 Computing
conditional entropy
Hy (Length)

m 1 hml 1 h h
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Fig. 2.2 Computing
conditional entropy
Hy (Quality|Height, 1.5)

Height

1.8
2,8 1,3,4,5,6,7
h 1 hhmml 1

where |X| denotes the cardinality of the set X. The cut-point ¢ for which the condi-
tional entropy Hg(d|a, q) has the smallest value is selected as the best cut-point.

Thus, the next step is to find the best cutpoint for Height. There are two
candidates: 1.5 and 1.7. We need to compute two conditional entropies, namely
Hy (Quality|Height, 1.5) and Hy(Quality|Height, 1.7). Computing the former
entropy is illustrated in Fig.2.2. Hy(Quality|Height, 1.5) = 1(—1 -log )2 + 3
(—1 -log 1)3 ~ 1.439.

Similarly, Hy (Quality|Height, 1.7) ~ 1.201. We select the cut-point with the
smaller entropy, i.e., 1.7.

After any selection of a new cut-point we test whether discretization is completed,
i.e., if the data set with discretized attributes is consistent. So far, we discretized
only one attribute, Height. Remaining, not yet discretized attributes, have values
p-.q, where p is the smallest attribute value and ¢ is the largest attribute value. The
corresponding table is presented in Table2.4. For Table2.4, A* = {{1, 3, 4}, {2, 5,
6,7,8}},s0 A* j<_ {d}*, the data set from Table 2.4 needs more discretization. The
cut-point 1.7 of Height splits the original data set from Table2.1 into two smaller
subtables, the former with the cases 1, 3 and 4 and the latter with the cases 2, 5,
6, 7 and 8. The former subtable is presented as Table?2.2, the latter as Table2.3.
The remaining computing is conducted by recursion. We find the best attribute for
Table 2.2, then the best cut-point, and we check whether the currently dicretized
data set is consistent. If not, we find the best attribute for Table 2.3, the best cut-
point, and we check again whether the currently dicretized data set is consistent. If
not, we compute new numerical data sets that result from current cut-points, and
again, compute the best attribute, the best cut-point, and check whether the currently
discretized data set is consistent.

Table 2.2 Numerical data set restricted to {1, 3, 4}

Attributes Decision
Case Length Height Width Weight Quality
1 4.6.4.7 1.7..1.8 1.7..1.9 1.5..1.7 High
3 4.6.4.7 1.7..1.8 1.7..1.9 09..1.5 High
4 43.4.6 1.7..1.8 1.7..1.9 0.9..1.5 Medium
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Table 2.3 A numerical data set restricted to {2, 5, 6, 7, 8}
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Attributes Decision
Case Length Height Width Weight Quality
2 4.3.4.6 1.4..1.7 1.7..1.9 09..1.5 High
5 43.4.6 1.4.1.7 1.7..1.9 1.5..1.7 Medium
6 43.4.6 1.4.1.7 1.7..1.9 0.9..1.5 Low
7 43.4.6 1.4.1.7 1.7..19 09..1.5 Low
8 43.4.6 1.4.1.7 1.7..1.9 0.9..1.5 Low
Table 2.4 Numerical data set with discretized Height
Attributes Decision
Case Length Height Width Weight Quality
1 4.3.4.7 1.7..1.8 1.7..1.9 0.9..1.7 High
2 4.3.4.7 1.4.1.7 1.7..1.9 0.9..1.7 High
3 4.3.4.7 1.7..1.8 1.7..1.9 09..1.7 High
4 4.3.4.7 1.7..1.8 1.7..1.9 0.9..1.7 Medium
5 4.3.4.7 1.4.1.7 1.7..1.9 0.9..1.7 Medium
6 4.3.4.7 1.4.1.7 1.7..1.9 09..1.7 Low
7 4.3.4.7 1.4..1.7 1.7..1.9 0.9..1.7 Low
8 4.3.4.7 1.4.1.7 1.7..1.9 0.9..1.7 Low
Table 2.5 Completely discretized data set
Attributes Decision
Case Length Height Width Weight Quality
1 4.6.4.7 1.7..1.8 1.7..1.9 1.5..1.7 High
2 43.4.6 14.1.5 1.7..1.9 0.9..1.1 High
3 4.6.4.7 1.7..1.8 1.7..1.9 1.1..1.5 High
4 43.4.6 1.7..1.8 1.7..1.9 1.1..1.5 Medium
5 43.4.6 1.5..1.7 1.7..1.9 1.5..1.7 Medium
6 43.4.6 1.5..1.7 1.7..19 1.1..1.5 Low
7 43.4.6 1.5..1.7 1.7..1.9 0.9..1.1 Low
8 43.4.6 1.4.1.5 1.7..1.9 1.1..1.5 Low

Our finally discretized data set, presented in Table 2.5, is consistent. The last step
is an attempt to merge successive intervals. Such attempt is successful if a new
discretized data set is still consistent. It is not difficult to see that all cut-points are
necessary. For example, if we remove cut-point 4.6 for Length, cases 3 and 4 will be
indistinguishable, while these two cases belong to different concept.

Note that the discretized data set, presented in Table 2.5, has four attributes and
five cut-points. One of attributes, Width, is redundant. Thus, the reduced attribute set

consists of three attributes: Length, Height and Weight.
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2.3 Multiple Scanning Discretization

The Multiple Scanning discretization is also based on conditional entropy. However,
this method uses a different strategy. The entire attribute set is scanned ¢ times,
where ¢ is a parameter called the total number of scans. During every scan the best
cut-point is computed for all attributes. The parameter ¢ is provided by the user.
If ¢ is too small, the discretized data set is not consistent and Dominant Attribute
method is used.

Procedure Multiple Scanning

Input: a set U of cases, a set A of attributes, a set {d}* of concepts, a number of scans t

Output: a discretized data set

{AY .= {U}k

foreach scan := 1 to t do

if {A}* < {d}* then

| break;

end

C:=0;

foreach a € A do
cut_point := BestCutPointMS({A}*, a);
C :=CU {cut_point};

end

{A}* := Split({A}*, ©);

end

The main ideas of the Multiple Scanning algorithm are presented above. For
details see [10, 11, 13, 14]. Obviously, for the same data set, data sets discretized
by the Dominant Attribute and Multiple Scanning methods are, in general, different.
We consider the Multiple Scanning method as auxiliary one.

Since during every scan all attributes are discretized, usually the discretized data
set has all original attributes. The only chance to eliminate some attributes is during
the last step, i.e., merging successive intervals.

2.4 Experiments

Our experiments were conducted on 15 data sets with numerical attributes presented
in Table2.6. All of these data sets are accessible at the University of California at
Irvine Machine Learning Repository. First we discretized all data sets using Domi-
nant Attribute method. Then we identified data sets with single interval attributes, i.e.,
discretized values in which the entire domain of a numerical attribute was mapped
into a single interval. For two data sets, Abalone and Iris, no single interval attributes
were discovered, so these two data sets were removed from further experiments. For
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Table 2.6 Data sets

Data set Cases Number of attributes | Concepts
Abalone 4,177 8 29
Australian 690 14 2
Bankruptcy 66 5 2
Bupa 345 2
Connectionist Bench 208 60 2
Echocardiogram 74 2
E coli 336 8
Glass 214 6
Image Segmentation 210 19 7
Ionoshere 351 34 2
Iris 150 3
Pima 768 8 2
Wave 512 21 3
Wine Recognition 178 13 3
Yeast 1,484 8 9

any data set with single interval attributes, a new data set with numerical attributes
was created by removing single interval attributes from the original, numerical data
set. Such data sets are called reduced.

Reduced data sets are presented in Table2.7. As it was observed in Sect.2.3,
Multiple Scanning discretization seldom produces reduced data sets. In our exper-
iments, Multiple Scanning produced reduced data sets only for three original data
sets: Connectionist Bench, Image Segmentation and lonosphere, so during analysis
of experimental results Multiple Scanning was ignored.

All numerical data sets, original and reduced, were subjected to single ten-fold
cross-validation using C4.5 system [ 18]. The system C4.5 was selected as well-known
classifier. Note that C4.5 has an internal discretization method similar to Dominant
Discretization algorithm. Error rates computed by C4.5 and ten-fold cross-validation
are presented in Table 2.8. For our results we used the Wilcoxon matched-pairs two-
tailed test with 5% significance level. We conclude that the error rate is significantly
larger for reduced data sets. An additional argument for better quality of original data
sets was reported in [10, 11, 13, 14]. Multiple Scanning discretization method was
better than other discretization methods since in the majority of data sets discretized
by Multiple Scanning all discretized attributes have more than one interval.
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Table 2.7 Reduced data sets

Data set Number of single-interval attributes for data sets reduced by
Dominant Attribute Multiple Scanning
Abalone 0 0
Australian 9 0
Bankruptcy 3 0
Bupa 2 0
Connectionist Bench 57 8
Echocardiogram 0
E coli 0
Glass 0
Image Segmentation 15 1
Ionoshere 29 1
Iris 0 0
Pima 2 0
Wave 15 0
Wine Recognition 0
Yeast 0

Table 2.8 C4.5 error rate, data sets reduced by dominant attribute

Name Original data set Reduced data set
Australian 16.09 15.36
Bankruptcy 6.06 12.12
Bupa 35.36 35.94
Connectionist Bench 25.96 25.96
Echocardiogram 28.38 44.59
E coli 17.86 19.35
Glass 33.18 33.18
Image Segmentation 12.38 10.48
Ionoshere 10.54 11.97
Pima 25.13 26.95
Wave 26.37 3242
Wine Recognition 8.99 8.99
Yeast 44.41 48.45

We compared complexity of decision trees generated by C4.5 from original and
reduced data sets as well. Results are presented in Tables 2.9 and 2.10. The tree depth
is the number of edges on the longest path between the root and any leaf. The tree
size is the total number of nodes of the tree. These numbers are reported by the C4.5
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Table 2.9 C4.5 tree depth, data sets reduced by dominant attribute

Name Original data set Reduced data set
Australian 11 5
Bankruptcy 1 3
Bupa 8 8
Connectionist Bench 7 2
Echocardiogram 4 3
E coli 9 7
Glass 8 8
Image Segmentation 8 7
Ionoshere 11 10
Pima 9 7
Wave 10 9
Wine Recognition 3 3
Yeast 22 20

Table 2.10 C4.5 tree size, data sets reduced by dominant attribute

Name Original data set Reduced data set
Australian 63 11
Bankruptcy 3 7
Bupa 51 33
Connectionist Bench 35 5
Echocardiogram 9

E coli 43 37
Glass 45 45
Image Segmentation 25 25
Ionoshere 35 25
Pima 43 35
Wave 85 63
Wine Recognition 9 9
Yeast 371 411

system. Using the same Wilcoxon test we conclude that decision trees generated
from reduced trees are simpler. The depth of decision trees is smaller for reduced
data sets with significance level 5%. On the other hand, the size of decision trees is
smaller with significance level 10%.
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2.5 Conclusions

Let us recall that our main objective is to compare quality of numerical data sets,
original and reduced, using the C4.5 decision tree generation system. Our experi-
ments on 15 numerical data sets show that for a Dominant Attribute discretization
method the error rate computed by C4.5 and ten-fold cross-validation is significantly
larger (5% significance level, two-tailed test) for the reduced data sets than for the
original data sets. However, decision trees generated from the reduced data sets are
significantly simpler than the decision trees generated from the original data sets.
Thus, if our top priority is accuracy, the original data sets should be used. On the
other hand, if all what we want is simplicity we should use reduced data sets.
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