Chapter 2
Spreading Fundamentals

Armin Bunde, Christian Chmelik, Jorg Kérger and Gero Vogl

2.1 Diffusion Step by Step

Stimulated by their thermal energy, atoms and molecules are subject to an irregular
movement which, in the course of history, has become known under the term
diffusion. Today, in a more generalized sense, essentially any type of stochastic
movement may be referred to as diffusion.

Diffusion sensu stricto is the motion of individual objects by way of a “random
walk”. For simplicity we start with the one-dimensional problem: our random
walker is assumed to move along only one direction (the x coordinate) and to
perform steps of identical length [ in either forward or backward direction. Both
directions are equally probable and the direction of a given step should in no way
affect the direction of a subsequent one (Fig. 2.1).

Such sequences of events are called uncorrelated. The mean time between
subsequent steps is denoted by z. Obviously, nobody can predict where exactly this
random walker will have got to after n steps, this means, at time ¢t = n 7.
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Fig. 2.1 Random walk in one dimension. a Step to the left and step to the right equally probable.
b Possible displacement after five steps

The randomness of the process allows predicting probabilities only. Let us
consider a large number of random walks, all beginning at the same point. The
probability that at time ¢ a random walker shall have got to position x is then simply
the ratio between the number of random walks leading to this point and the total
number of walks.

We are going to derive the “mean square displacement” (x*(=nr)) as a char-
acteristic quantity of such a distribution. It denotes the mean value of the square of
the net displacement after n steps, corresponding to time ¢ = nr. Mean values are
determined by summing over all values and division by the number of values
considered. For our simple model we obviously have

(P (t=n7))y = ((x; +x2+x3+-..+xn)2) (2.1)
= (0 X5+ 0% 4 X2+ 20000 + 20105 + o+ 20, 1X) '

where x; denotes the length of the i-th step. The magnitude of x; can be either
+I (step in (+x) direction, i.e. step ahead) or —/ (step in (—x) direction), so that all of
the first z terms in the second line become equal to /. Let us now consider the mean
value of each of the subsequent “cross” terms x;x;, with i # j. For a given value of
X;, according to our starting assumption, the second factor x; shall be equal to +/ and
to —/ with equal probability. Hence, the resulting values x;x;, with i # j, will be
equally often +/* and —/2, leading to a mean value of zero.
Equation (2.1) is thus seen to simply become

(*(0)y=nl= Et (2.2)

with the most important message that a diffusant departs from its origin not in
proportion with time as it would be the case with directed motion. It is rather the
square of the displacement which increases with time, so that the (mean) distance
often called x,,,, (rms meaning root of the mean square) increases with only the
square root of time.

Quite formally, we may introduce an “abbreviation”
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lZ
D=— 2.3
R (2:3)
so that now Eq. (2.2) may be noted in the form
(x*(t))=2Dr. (2.4)

We shall find in the subsequent section that the thus introduced parameter D is a
key quantity for quantifying the rate of the random movement which we have
referred to as diffusion. We may rearrange Eq. (2.4), leading to its general
definition,

(P (1))
2t

(2.5)

D is referred to as the self-diffusivity (or coefficient of self-diffusion or
self-diffusion constant). The considerations may be extended to two and three
dimensions, where the factor 2 on the right-hand side of Eq. (2.3) (and, corre-
spondingly, in Eqs. (2.4) and (2.5)) has to be replaced by 4 and 6, respectively.

Abandoning the simplifying condition of equal step lengths, with essentially the
same reasoning as exemplified with Eq. (2.1), Eq. (2.3) may be shown to be still
valid, now with [ as the mean squared step length.

2.2 From Random Walk to Fluxes

Though today it is possible to follow the diffusion path (“trajectory”) of an indi-
vidual molecule [1], the relevance of diffusion becomes more obvious if ensembles
of diffusing particles are considered. This situation is schematically presented in
Fig. 2.2. In the following we shall explain that it illustrates the situation typical of
the three most important ways to measure and characterize diffusion. The circles
represent the diffusing particles and the lattice indicates that the process occurs
within some “framework” formed by, e.g. open spaces (vacancies) in a solid state
lattice, interconnected pores or territorial areas, which may serve as a reference
system. Correspondingly, the scheme has to be modified (see, e.g., Chap. 13 and
Fig. 13.1) when diffusion of the lattice constituents (as in solid-state diffusion) is
considered.

Let us start our discourse with Fig. 2.2a, with the concentration of diffusants
deliberately chosen to decay from left to right. This gradient in concentrations
effects that, irrespective of the random (and, notably, undirected!) movement of
each individual particle, their superposition leads to a directed flux. Macroscopi-
cally, this particle flux abolishes existing concentration gradients, following the
general tendency towards equilibration in nature.
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Fig. 2.2 Microscopic situation corresponding to the measurement of the transport (chemical)
diffusivity (a) and of the self- (tracer) diffusivity (b, ¢) by either observing the flux of a labeled
fraction (see e.g. [2] and Chap. 13) (b), or by recording the individual displacements, e.g. by
methods as PFG NMR ([3] and Chap. 12), quasi-elastic neutron scattering [4, 5], Mdssbauer
spectroscopy [5] or X-ray photon correlation spectroscopy XPCS [6] (¢). Examples of typical
particle distributions on top and corresponding spatial dependencies of concentration below.
Reproduced with permission from Ref. [7], copyright (2013) Wiley-VCH Verlag GmbH & Co.
KGaA

Doubling the concentration gradient will obviously effect a doubling of the
difference between the numbers of particles passing from left to right and from right
to left and, hence, a doubling of the flux. This leads to the famous Fick’s 1st law

dc
= —Dr—. 2.6
Jx de ( )

Jx denotes the flux density in x direction, where the x coordinate is chosen to
indicate the direction of falling concentration and the index 7 indicates “transport”.
The flux density j, = AN / AA - At is defined by the number AN of particles passing
an area AA (perpendicular to the flux direction) during a time interval A¢, divided
by AA and At. In Eq. (2.6), the concentration gradient is represented as a so-called
partial derivative, which has to be introduced whenever a quantity (here the particle
concentration ¢, i.e. the particle number per volume) is a function of various
parameters, such as location (x) and time (¢) in our case. This twofold dependence is
expressed by the notation c(x,f). Partial derivation means that one considers
derivation with respect to one parameter (here x) while the other one(s) is (are) kept
constant. The minus sign in Eq. (2.6) indicates that the particle flux is directed
towards decreasing concentration. The factor of proportionality, Dy, is referred to as
the coefficient of transport diffusion (as indicated by suffix 7). Alternatively also the
terms chemical or collective diffusion are used.

Let us return to Fig. 2.2, where we will now look for an option to quantify
diffusion under equilibrium conditions, i.e. for uniform concentration. In this case,
obviously, the irregular particle movement does not lead to any net flux. As
illustrated by Fig. 2.2b, however, again a macroscopically observable effect may be
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generated if we are able to effect a distinction between the particles of the system
without affecting their microdynamic properties. In Fig. 2.2b it is simply achieved
by considering spheres in two different shades of red, with both of them assumed to
behave identical and the respective concentrations given below in the figure. With
this distinction, again fluxes become macroscopically observable. In complete
analogy to Eq. (2.6) we may note

- ac”
Jx=—D— (2.7)

where the asterisk (*) indicates that only one sort of the differently labelled particles
(i.e. either the red or the pink spheres) is considered. In experiments, such a situ-
ation may be realized by using (two) different isotopes as diffusing particles. With
reference to the use of labelled molecules (“tracers”), the thus defined quantity D is
referred to as the tracer diffusivity. It might come as a surprise that, at the end of this
section, the thus defined tracer diffusivity will be found to coincide with the
self-diffusivity introduced in the previous section.

A macroscopically existing concentration gradient (Fig. 2.2a) will generally give
rise to an additional bias, as a consequence in the difference in the “surroundings”
depending on whether the diffusant is moving into the direction of higher or smaller
concentration. The rate of propagation of the diffusants depends on the existence of
“free sites” in the range where they try to get to. While in “highly diluted” systems
this should not be a problem since “free sites” can be assumed to be anywhere
easily (and, hence, with equal probability) available, the situation becomes more
complicated with increasing density of the diffusants. This is true, e.g., for diffusing
molecules if the cavities in a porous material are occupied already by other guest
molecules, for diffusion in solids where generally the concentration of free sites
(vacancies) is very low, or if a new generation of farmers is forced to leave their
home ground in search for new farming areas, getting into even more densely
populated districts.

Such type of bias does not exist in the absence of macroscopic concentration
gradients (Fig. 2.2b). Hence, reflecting two different microdynamic situations, the
coefficients of tracer and transport diffusion cannot be expected to coincide quite in
general. We shall return to some general rules for correlating these two types of
diffusivities in Sect. 2.3. Before, however, we are going to illustrate why the
coefficients of self-diffusion (as introduced by Eq. (2.5) and as resulting with a
measuring procedure as illustrated by Fig. 2.2c) and of tracer diffusion (Eq. (2.7)
and Fig. 2.2b) are one and the same quantity.

Figure 2.2¢ takes us back to Sect. 2.1 with Fig. 2.1 and Eq. (2.2) illustrating the
evolution of the probability distribution of diffusing particles. Now we are going to
show that this very problem may as well be treated within the frame of Fick’s first
law (Eq. (2.6)). For this purpose, we consider the change of the number of particles
within a volume element due to diffusion. The way of reasoning is sketched in
Fig. 2.3, where again we have made use of the simplifying assumption that the flux
is uniformly directed into x direction (which implies uniform concentration in any
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Fig. 2.3 Particle balance in a volume element AV = Ax - A for diffusion in x-direction. The
change in the number of particles within this volume element per time is equal to the differences of
the fluxes leaving and entering. Reproduced with permission from Ref. [9], copyright (2014)
Leipziger Universititsverlag

y-z plane). For an extension to three dimensions, with the option of also
orientation-dependent diffusivities, we refer to Chap. 12 and, notably, Sect. 12.5.2.

As is evident: particles entering (flux j) into a given volume must leave again or—
if they do not leave again—will increase the density (c¢) in the volume:

J__= 2.8
ox ot (238)
This relation is termed the continuity equation.
Inserting Eq. (2.8) into Eq. (2.6) yields
dc Pc
—=D— 29
ot ox? (29)

where, for simplicity, the diffusivity is assumed to be uniform anywhere in the
system. Equation (2.9) represents Fick’s 2nd law, stating simple proportionality
between the change in concentration with time and the “gradient of the concen-
tration gradient”, i.e. the curvature of the concentration profile. We do, moreover,
disregard the suffix 7 having in mind that our reasoning applies to both transport
and tracer diffusion.

The mathematics to treat the evolution of such a system is provided by Eq. (2.9).
The reader with some background in differential calculus will easily convince
himself that the function

c(x,t)=P(x,t)= (2.10)

1 ( x? >
—exp| — —,
VarDt P 4Dt
namely a so-called Gaussian, obeys this equation (Fig. 2.4). It may be shown that,

as a consequence of the central limit theorem of statistics, a Gaussian results quite
generally for the distribution function of particle displacements after a sufficiently



2 Spreading Fundamentals 17

Fig. 2.4 Evolution of the
probability distribution for the
end points of a “random

walk” starting at t = 0 at — f=100r
x = 0. The curves represent t=300r
the so-called probability i

density P(x,t). Reproduced 1 — +=10007

with permission from Ref. [9],
copyright (2014) Leipziger
Universititsverlag

—100

large series of uncorrelated “elementary” displacements (“steps”) if they are of
identical distribution, symmetric and of finite variance, i.e. of finite mean squared
“step length” (see also Sects. 3.5.1 and 4.1 and Chap. 2 in [8]). Figure 2.1 illus-
trated a most simple example of such a series.

With the probability distribution given by Eq. (2.10), the mean displacement can
be noted as

1 x?
(1) = / P(x,t)x*dx = / \/mexp ( - m) Kdx=2Dt, (2.11)

X= —00 X= —00

which leads to a standard integral. The analytical solution yields the expression
which has been given already by Eq. (2.4) where, via Eq. (2.3), D has been
introduced as a “short-hand expression” for //(27) and, by Eq. (2.5), has been
defined as the self-diffusivity. This expression is now in fact seen to coincide with
the tracer diffusivity as introduced by Fick’s 1st law. It was in one of his seminal
papers of 1905 [10] that Albert Einstein did find this bridge between Fick’s law and
random particle movement. Thus Eq. (2.5) is often referred to as Einstein’s diffu-
sion equation. For a more profound appreciation of this achievement we refer to the
presentation of “hot” Brownian motion in Chap. 8.

Diffusive fluxes in our real world are, as a matter of course, often accompanied
by fluxes emerging from directed rather than from random motion. Such situations
do occur in also the examples considered in our book when, e.g., diffusive fluxes in
plants (Chap. 5) and turbulences in our atmosphere (Chap. 7) have to be considered
in superposition with phenomena of bulk motion, referred to as advection. The
combination of mass transfer by advection and diffusive fluxes is commonly
referred to as convection.

Throughout the book we shall be wondering about the “driving forces” giving
rise to the various types of fluxes occurring within the systems under consideration.
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With Fig. 2.2. we have seen already that, under the existence of concentration
gradients, diffusive fluxes emerge already as a simple consequence of random
movement. In multicomponent systems of interacting particles the situation
becomes more intricate. Chapter 10 gives an example that illustrates how then the
gradient of the “chemical potential” may most conveniently be applied as a “driving
force” of diffusion. Borrowing a conception in common use in hydrogeology,
Chap. 5 deals with directed water fluxes in plants by means of Darcy’s law, with the
gradient in water potential as the driving force. While thus, in physical sciences and
engineering, the search for the driving forces and the quantitation of fluxes is among
the tasks of today, equivalent efforts on considering spreading phenomena in e.g.
humanities appear to be still far before maturity.

In problems of ecology and alike and in many problems in cultural science,
spreading phenomena occur in two rather than in only one dimension as considered
in our introductory example. For diffusion now (r(r)?)=4Dt and again the most
probable place to find a “random walker” is at the origin. As Pearson [11] put it
already in 1905: “The most probable place to find a drunken man who is at all
capable of keeping on his feet is somewhere near his starting point.” That is what
can be seen from the cartoon Fig. 2.5 and has already been the message of Fig. 2.4
(which preserves its pattern in also two- and more-dimensional presentation): the
maximum in the probability distribution of the location of a random walker remains
in his starting point.

In two dimensions it is appropriate to use polar coordinates and Fick’s 2nd law is
written

oc(r,t) D a [ oc(r,t)
o  ror <r or (2.12)
with r = y/x? + y? denoting the distance between the origin of the spreading process
and the considered area. Just as Eq. (2.10) resulted from Eq. (2.9), the solution of
Eq. (2.12) is found to be

n r2
c(r,t)=@exp —m . (213)

n is the number of representatives of a certain species at the origin.

Fig. 2.5 The most probable
place to find a drunken man
who is at all capable of
keeping on his feet is
somewhere near his starting
point




2 Spreading Fundamentals 19

2.3 Interaction, Growth and Conversion

So far all our considerations were based on the simplifying assumption that the
propagation probability of our diffusants is uniform all over the system under study.
This implies uniformity of the medium in which the process of diffusion (spreading)
occurs, as well as the absence of any interaction between the diffusants. With the
lack of interaction, a distinction between equilibrium and non-equilibrium phe-
nomena becomes meaningless [12]. The coefficients of self- and transport diffusion
as considered so far do, therefore, coincide (given by Eq. (2.3) for the considered
step model) and Eq. (2.9) does hold for both self- (=tracer) and transport diffusion.
Due to this coincidence there was, up to this point, no real need for distinguishing
between the two different types of diffusivities. On considering such interactions,
however, this distinction will become necessary.

On considering molecular interactions, the diffusivity D = D(c) becomes a
function of the diffusant concentration ¢ so that Fick’s 2nd law is not correct
anymore in the form of Eq. (2.9). Inserting Eq. (2.6) into Eq. (2.8) does now rather
yield (again for the simple one-dimensional problem)

% = a_ax <D(c) %) =D(c)% + agic) <§>2. (2.14)

The particular dependence D(c) of the diffusivity is determined by the system
under study. Considering a variety of different types of random movement in
nature, technology and society, the book presents a rich spectrum of possibilities for
this dependence.

Starting with Eq. (2.8) we considered, so far, only the change in concentration of
the diffusants in a certain range as resulting from in- and outgoing fluxes. On
considering in particular biological species, however, we do have to consider a
second mechanism, namely the generation of new species. In first order approxi-
mation this growth may be assumed to be proportional to the amount of species
already present at a given instant of time. By correspondingly completing
Eq. (2.12) we arrive at

de(r,t) _Da (rOC(r, t)) +ac(r,1) (2.15)

ot ror or

with the newly introduced parameter a referred to as the growth rate. By insertion
into Eq. (2.15), the expression

n r
c(r,t)= 2:0: P\ ~ 1p; +at (2.16)

is easily seen to be its solution. We note that Eq. (2.16) differs from Eq. (2.13) in
only the additional term af in the exponential on the right hand side of Eq. (2.16).
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This term gives rise to an increase in concentration with increasing time. For
quantifying the speed of spreading we may now consider a distance R from the
origin which we define by the requirement that there is a well-defined number of
spreading species outside of a circle of this radius R, which is assumed to be
negligibly small in comparison with their total amount. This radius R can now, as a
second peculiarity, be shown to linearly increase with time [13, 14]. One finds
R(t) =2+/Dat, from which the speed of spreading following what Fisher called a
“wave of advance” may be noted immediately as

v=2vDa. (2.17)

Nature does clearly forbid unlimited growth as would occur as a consequence of
Eq. (2.16) as discussed above. Most remarkably, a simple correction of the term
added to Fick’s 2nd law does allow a reasonable first-order description of many
phenomena occurring in nature:

dc(r.t) _D o (rGC(r, f)) +a<1 _ L%) c(r,1). (2.18)

ot r or or Coo(F, 1

That type of growth, eventually reaching the limiting concentration cu(r,1)
(saturation), is termed “logistic growth”. Spreading does, correspondingly, occur
with concentrations eventually arriving at the limiting concentration cu(r,?) as
schematically shown by Fig. 2.6. The propagation rate of the concentration front
(speed of spreading) is still given by Eq. (2.17). A more detailed introduction into
the formalism around the “logistic growth” is provided by Sect. 3.4.

If the spreading species (as e.g. molecules during a catalytic reaction) are subject
to chemical conversions or reactions, these conversions as well contribute to
changes in local concentration, in addition to the influence of diffusion. Equa-
tion (2.19) gives an example of the corresponding extension of Fick’s 2nd law,
Eq. (2.9), so-called reaction-diffusion equations, for sake of simplicity in the
one-dimensional scenario:

Fig. 2.6 Scheme of
propagation (“wave of
advance”) of the
concentration (number per
area) of a species on
spreading according to

Eq. (2.17) at subsequent
instants of time (t; < t, < 13)

(9}

8

Concentration ¢ (r;1)

Distance from origin r
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dc dc

—1=p, —21 —kaic1 +kinea
()Cz _ 02C2 k +k
a2 1262 T K21C]

for a monomolecular reaction between species 1 and 2 (of local concentrations c(x, f)
with i = 1, 2) with the reaction rate constants k; for conversion from j to i. For
simplification, the diffusivities D; of the two species are assumed to be independent
of either concentration and the diffusive fluxes on the concentration gradient of the
other component. These are coupled partial differential equations which can easily
be solved by computer programmes.

The idea to use coupled reaction diffusion equations and to consider interactions
in addition to growth was soon applied to the spread of living beings and even to
the spread of abstract objects, in particular languages (see, e.g., Chap. 18). Already
more than 30 years ago Okubo [15] and a little later Murray [16] have reported on
such applications. From the considerable number of more recent applications we
mention the description of diffusion (demic vs. cultural) of the Neolithic transition
(see e.g. [17]) and of the spread and retreat of language [18] by coupled
reaction-diffusion equations.

It is obvious, however, that one reaches limits in the analytical treatment. The
subsequent sections introduce into the options how these limitations may be
overcome. Now spread needs not to follow the dispersal logics of the random walk,
i.e. it is not necessarily of Gaussian type.

2.4 Extending the Tools

With increasing complexity of the system, in particular of the platform on which
spread occurs (network or “habitat”), it becomes increasingly complicated to obtain
analytical solutions as those given by Egs. (2.10), (2.13) and (2.16), and simple
reaction-diffusion models are inadequate for the description of complex, spatially
incoherent spreading patterns. The global spread of epidemics, innovations etc. are
processes on a complex network. In such cases it is common praxis to rely on
numerical solutions of the given equations.

When a network of starting points and destinations is the basis for the spread, for
the travel of individuals between nodes n and m of the network the continuity
equation dc/ot = —0dj/ox (Eq. (2.8)) is replaced by a rate equation

dac,
E = Z (pnmcm _pmncn) (220)
m#n

where p,,;.c,,, stands for the outgoing flux from node m to node n and p,,,c, for the
flux in opposite direction. Exactly this type of analysis we shall encounter in
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Chap. 19 where Brockmann applies such network logics for demonstrating the
spread of diseases [19].

Another set of interesting but complex problems are the diffusional movements
of animals on search for food. For randomly distributed food sources, the Lévy
flight hypothesis predicts that a random search with jump lengths following a power
law minimizes the search time. Such patterns end up with relations deviating from
simple proportionality between the mean square displacement and the observation
time. Examples of this type of motion referred to as “anomalous diffusion” may be
found in Chaps. 4 (“Levy flights”), 6 (diffusion in brain “interstitials”) and 10
(“single-file” diffusion).

However, Lenz et al. [20] find for bumblebees that the crucial quantity to
understand changes in the bumblebee dynamics under predation risk, when the
insects obviously try to avoid meeting predators, is the correlation of velocities
v. These correlations correspond exactly to the sums of cross-terms in Eq. (2.1),
which for the bumblebees do not cancel out. The authors reproduce these changes
by a Langevin equation in one dimension adding a repulsive interaction U of
bumblebee and predator:

=~ ()~ L)+ 200 @21)

where 7 is a friction coefficient and £(¢) a fluctuating force (Gaussian white noise).

2.5 Agent-Based Models of Spread

An alternative possibility of modelling and eventually predicting spreading under
complex conditions is Monte Carlo simulation on the basis of cells occupied by
diffusants, so-called agents, which can be men, animals, plants, bacteria or even
abstract concepts as e.g. innovations and ideas. The method is sometimes called
cellular automaton. This has e.g. been done in ethnology for the spread of agri-
culturalists in the neolithicum [21], in ecology for the spread of neobiota [22] and in
linguistics [23] for language competition, just to give a few examples.

The idea of Monte Carlo simulations is as follows: One reserves, in the com-
puter, a sufficiently large number of memory cells designated i. These cells refer to
the possible positions of the random walker introduced in Sect. 2.1. One considers a
set of numbers m;; which indicate the occupation number of cell i after time step j.

In the introductory example (Fig. 2.1), after each time step (of duration 7) the
random walker was required to definitely step to one of the adjacent sites. Thus, one
half of the given population of a certain cell (of number i) would have to be passed,
after one step, to the next one (to cell number i + 1), the other to the previous one
(cell number i — 1). In our computer simulation this would correspond to the
relation
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mi jy1= %mi—l,j‘i‘ %mi+1,j (2.22)
correlating the cell populations after subsequent steps. After 100, 300 and 1000
steps one would arrive at the occupation distributions as shown in Fig. 2.4 (where
the values given in Fig. 2.4 have to be additionally multiplied by the number of
agents starting at the origin).

We may come closer to the reality of the elementary steps of propagation by a
modification of the simulation procedure. Rather than rigorously requiring that,
after each time step T, the agents have to definitely jump to one of the adjacent sites,
one may introduce the probability p;  that, during one time step, an agent gets from
site k to i. This probability may include the suitability of the cell. In this case,
Eq. (2.22) is replaced by a relation of the type

M jy1=m; j+ XMy jPi k —Mij 2 Dk, i (2.23)
p %

where the terms appearing on the right hand side, in addition to the given occu-
pation number m;j, are easily recognized as population increase of cell i by agents
entering from other cells k£ and population decrease by agent transfer from cell i to
other ones.

With k equal to i — 1 and i + 1 and p;x = A#/27, during a time interval Az, an
agent will leave the cell with the probability At/z, with equal probabilities for both
directions. This probability definition serves as a meaningful definition of a mean
residence time 7.

The need for computer simulations is illustrated with the representation in
Fig. 2.7, which refers to the spreading of a biological species, namely ragweed
(Ambrosia artemisiifolia), a plant which has “invaded” from North America and
continues to enhance its density of occurrence in Europe [22].

In the top of the figure cells populated by ragweed are shown in black. The
number of cells in black will continuously increase with spread of ragweed. The
simulations aim at determining the probability by which, at further instants of time,
so far unpopulated areas shall become populated (“infested”). In the starting
assumption that infested cells remain infested, one notably deviates from the sit-
uation considered with the introductory random walker example. In fact, by con-
sidering infestation spreading, one is already following the situation typical of
growing populations as considered in Sect. 2.3.

A successful step of “spreading” (the probability of which has been just con-
sidered) is not automatically assumed to warrant infestation. In fact, environmental
conditions (“habitat suitabilities”) might be quite different leading to different
survival probabilities. The grid on bottom left provides the numbers considered to
be relevant for the given example. The products of both probabilities, representing
the “total infestation probabilitys” are given on top in the middle. Whether
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0.90/0.8010.90|1.00

0.09/0.72/1.0010.36|  Total infestation

1.000.63|0.72|0.27| ~ Probability

0.10/0.20/0.600.30
— 0.180.48/0.721.00

0.10/0.80/1.00/0.40|  Habitat

1.00/0.70|0.80|0.30| ~ Suitability

0.20/0.60/0.801.00

Fig. 2.7 Algorithm for determining the occurrence of a species in space at subsequent instants of
time. The 4 x4 squares (“grid cells”) symbolize the different areas into which the space is
subdivided. Redrawn from [22]

infestation will indeed occur depends on the relation between the random numbers
(between 0 and 1) produced by the computer and the total infestation probabilities.
Correspondingly, in the top right grid do all these cells appear in black for which
the random number is exceeded by the total infestation probability.

Figure 2.8 shows as example the predicted infestation of grid cells (about 5 X
5 km) by the spread of ragweed over Austria and Bavaria.

Fig. 2.8 Left: Distribution of ragweed in Austria and Bavaria in 2005. Red squares symbolize
infested grid cells. Right: Predicted infestation probability indicated by colors from red (highest
probability) down to blue (lowest probability) in 2050, if no action against ragweed spread is
taken. Redrawn from [24]
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