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Abstract. Multidisciplinary Design Optimization (MDO) uses optimization
methods to solve design problems by incorporating all relevant disciplines
simultaneously. In vehicle engineering the objective typically is to optimize
weight while maintaining performance involving various load cases from
multiple CAE attributes. The MDO process can be divided into three successive
steps: (1) data generation entailing creation, submission and post-processing of
various DoE’s, (2) meta-modeling and optimization, and (3) validation of
optimization proposals. Recent efforts have been targeted at improving the
efficiency of the “meta-modeling and optimization” phase in terms of throughput
time and quality of solutions by the development of:

e Automated preparation and submission of CAE models to the HPC
cluster.

e Automated meta-modeling producing reproducible, high-quality
meta-models based on Gaussian Processes with Automatic Rele-
vance Determination at reduced HPC work load.

e An enhanced NSGA-II algorithm for constrained multi-objective
optimization.

These developments resulted in 20% reduction in throughput times in con-
junction with further weight saving potential. The viability of these improve-
ments is illustrated by findings in recent optimization projects.
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1 Introduction

Multidisciplinary Design Optimization (MDO) uses optimization methods to solve
design problems by incorporating all relevant disciplines simultaneously. In vehicle
engineering the objective typically is to optimize the weight of the body exterior while
maintaining attribute performance involving various load cases from crash safety, NVH,
durability & strength, forming and vehicle dynamics. The MDO process, which has
been embedded in Ford’s Global Product Development System, can be divided into
three phases (Fig. 1): (1) data generation entailing creation, submission and
post-processing of various DoE’s, (2) meta-modeling and optimization, and (3) valida-
tion of optimization proposals. The software supporting this process has been developed
in-house in Matlab. It is noted that in the data generation phase commercially available
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software (ModeFrontier) is deployed as well. As closed loop optimization of large finite
element models is impracticable, the MDO process is relying on optimization of
meta-models, which act as real-time substitutes of numerically intensive finite element
models. In addition, they provide detailed system knowledge and can be used for
scenario analysis and design sensitivity studies. In what follows emphasis will be on
efficiency improvements in the “meta-modeling and optimization phase” of the MDO
process.
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Fig. 1. MDO process

2 Gaussian Processes

Meta-model selection requires establishing a balanced trade-off between under-fitting
and over-fitting the data obtained from the DOE. Over-fitting occurs when the
meta-model is trying to fit the noise in the training data, which has a detrimental effect
on the performance of the model on new data. Under-fitting refers to a meta-model that
is too simple to model the training data and to generalize to new data [1]. The data
obtained from DoE’s are available as design vectors xi(i = 1, 2, ..., N) with associated
outputs y. Then, a general model for observation y; corrupted by independent and
identically distributed Gaussian noise ¢ can be written as:

yi=f(x;)+& with &=N(0,0,) (1)

Gaussian Processes (GP) can be adopted to characterize the latent response
f- A Gaussian Process is a stochastic process, such that any finite sub-collection of
random variables has a multivariate Gaussian distribution [2, 3]. GP regression uses the
similarity between points to predict the value for an unseen point from training data.
A GP model is fully defined by a mean function m(x) and covariance function K(x, x"):
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f(x)) m(x;) K(xp,x) oo K(xp,x)
N S : - : or f~ GP(m(.),K(..))

f(x) m(x) | LK(x,x) o Kx,x)
(2)

Without loss of generality, the mean function is usually defined to be zero.
Choosing among alternative covariance functions is a way of reflecting prior knowl-
edge about the physical process under investigation. For new predictions based on
given training data it is assumed that the prediction process is jointly Gaussian dis-
tributed with the training points. Then, using the rules for conditioning Gaussians the
conditional distribution of new observations 2 for known training data y, x, and new x
can be expressed as:

Sy xx~N(iL, £) 3)

where:
jt=K(&x)(K(x,x)+ o)y (4)
5 =K(&x)+ 0 — K(x,x)(K(x,x) + *I) " K(x,%) (5)

Model parameter settings 6 are obtained by minimizing the negative log marginal
likelihood (probability of the data given the model):

1 1 _ N
—log p(y]0) = Elog detK(0)+ EyTK '(H)y—i— Elog(Zn) (6)

Adopting Gaussian Processes for meta-modeling and optimization has a number of
distinct advantages:

e The predictive uncertainty stemming from both the intrinsic noise g, and the errors
in the parameter estimation procedure is quantified.

e Arbitrarily complex relationships can be fitted.

e Immune to over-fitting the model to the training data.

e Prior knowledge of the data can be incorporated via covariance functions.

It is noted that the training effort needed is O(N*). Hence, for large data sets so
called sparse GP approximation methods or alternative modeling techniques, such as
neural networks, should be preferred.

3 Efficiency Improvement Actions

Large-scale MDO projects are extremely numerically intensive. Typically over 50
DoE’s are needed to cover all performance requirements. For each DoE several hun-
dreds of CAE models with run times of up to 25 h are generated to adequately scan the
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design space. In this context compression of turnaround times is of paramount
importance. Recently, significant improvements in MDO efficiency could be accom-
plished based on:

e Automated preparation and submission of CAE models to the HPC cluster.
e Automated Meta-Modeling for fast, reproducible, and high quality meta-models.
e Faster multi-objective optimization based on an enhanced NSGA-II algorithm.

These efficiency improvements resulted in an overall lead time compression by
20% in conjunction with an increased weight savings potential.

3.1 Automated Meta-modeling

Meta-modeling is an interactive, time consuming and tedious process. Modular soft-
ware for fully automated meta-modeling has been developed in Matlab. The software
can be pre-configured through an interactive GUI, and progress can be monitored
through a web-browser. During meta-modeling, sub-processes are triggered automat-
ically to accomplish the best possible predictive quality. Reproducible high-quality
meta-models in conjunction with a dramatic reduction in throughput time are accom-
plished by: data preprocessing using clustering and multivariate outlier detection, GP
Regression with Automatic Relevance Determination, and cross-validation.

Data preprocessing using clustering and outlier detection

Data preprocessing involves removal of failed runs and redundant RV*s. First hierar-
chical clustering is applied to the data to identify and remove highly covariant
responses from the data set. Hierarchical clustering is a sequential clustering algorithm
[1]. An agglomerative approach is adopted starting with data points as individual
clusters. Then, in subsequent steps the closest pair of clusters based on an average
distance matrix using correlations for distance measures is merged, thus creating a set
of nested clusters organized as a hierarchical tree. In Fig. 2 an example is displayed of a
dendrogram showing clusters in CAE model responses based on a distance metric in
terms of correlation coefficients. Clusters of highly correlated response variables are
highlighted. In order to prevent redundancies, only one response is retained in each
cluster with highly covariant elements.

Next multivariate outliers are identified and removed from the data set. Outlier
detection is the identification of observations which do not fit to the remainder of the
data set [4]. For this purpose it is assumed that the data are multivariate normally
distributed. Multivariate outliers can’t be detected by applying outlier detection rules
on each variable separately, but rather they are detected by measuring the Mahalanobis
distance of each data point. The Mahalanobis distance is a distance measure that
de-correlates correlated variables by inverse Cholesky transformation. As classical
estimators of mean and covariance are highly sensitive to outliers, robust estimation is
accomplished by deployment of the Minimum Covariance Determinant estimator
(MCD) [5, 6]. Outliers can be found by comparing each data point with a critical value
of the % distribution, as the sum of squares of N independent normal random variables
follows a y? distribution with N degrees of freedom. These outliers are subsequently
removed from the data set. An example of multivariate outlier detection in DoE
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Fig. 2. Dendrogram
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Fig. 3. Mahalanobis distances for DoE responses

responses is given in Figs. 3 and 4, with Fig. 3 showing the runs which are designated
as outliers based on the MCD estimator, and Fig. 4 showing the corresponding matrix
scatter plot including outliers.

In addition, the implementation of multivariate outlier detection has been extended
with clustering based on Gaussian Mixtures [3], which can be deployed to prevent
undesired deletion of clusters of CAE runs exhibiting multi-modal responses, e.g. local
instabilities.

GP regression with Automatic Relevance Determination

In Gaussian Processes with Automatic Relevance Determination (ARD) length scale
parameters are introduced for each input dimension in the covariance function. For
example, the ARD version of the squared exponential covariance is given by:
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Fig. 4. Multivariate outlier detection: outliers marked as ‘+’

>
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K(x,X') = 6% exp -3 (v xd (7)
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with A4 the characteristic length scale measuring the distance for being correlated along
xq. If the reciprocal length scale 1/A4 is small the covariance will become almost
independent of the associated inputs x4 [2, 7]. By discarding the irrelevant inputs, the
dimensionality of the data is reduced enabling smaller sized DoE’s and smaller pre-
diction errors. A practical application from NVH is displayed in Fig. 5. The reciprocal
ARD length scales for multiple responses are indicative of the relevance of the input
dimensions based on Eq. (7).
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Fig. 5. Reciprocal ARD length for multiple outputs
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Cross-validation
In automated meta-modeling the predictive quality is verified by utilizing
cross-validation [1], where all data points are used for validation once. A major
advantage of cross-validation is that no DoE runs are wasted for validation of predictive
quality. However, the validation process can take a long time as multiple training passes
are required depending on the number of folds (training sessions) in the data set. In
general N/K folds on N — K points each are conducted, with N the number of training
data, and K the number of validation data. The limit case is Leave-One-Out
cross-validation, where N — 1 points are used for training and 1 point for validation.
By implementing a closed form solution for Leave-One-Out cross-validation the
standard process of conducting N training sessions could be circumvented [3]. For
Leave-One-Out cross-validation the predictive quality in terms of Coefficient of
Determination R? can be expressed as:

R —1—lZN:
LOO — N,‘:] [B]

[

[By]; B=[K+o2]" (8)

i

3.2 Enhanced NSGA-II for Multi-objective Optimization

In MDO multiple potentially conflicting objectives must be minimized simultaneously.
The best trade-offs among the objectives must exhibit Pareto optimality. A Pareto
optimal solution implies that while moving from one Pareto solution to another, any
improvement in one objective requires a degradation of at least one other objective [8].
The set of all feasible non-dominated solutions is referred to as the Pareto optimal set,
and the set of corresponding objective function values is referred to as the Pareto front.
The final solution selected from the Pareto set is always a trade-off between critical
performance parameters, e.g. vehicle weight vs intrusions. In general, viable
multi-objective optimization procedures should exhibit following characteristics:

e Strong approach to the true Pareto front.
e Wide coverage of the true Pareto front.
e Pareto set with uniformly distributed solutions.

The most popular heuristic optimization procedures to attain these characteristics
deploy population based evolutionary algorithms (EA), which are capable of coping
with non-convex, discontinuous, and multi-modal solutions spaces. An enhanced
version of NSGA-II, a computationally fast and Pareto dominance based multi
objective EA [9], has been embedded in Ford’s MDO process. Enhancements include
vectorization and constraint handling. NSGA-II has been benchmarked against several
alternative heuristic procedures for various cross attribute weight optimization prob-
lems. In general, it was observed that NSGA-II exhibited a wider coverage area in the
objective function space and converged closer to the true Pareto front. In Fig. 6
NSGA-II has been compared to the aggregation based MOEA/D [10]. The Pareto front
shows normalized mass vs. total constraint violation as specified by Egs. (9) and (10).
It is noted that a comparable Pareto front is rendered 8 times faster for NSGA-II, which
can be attributed to vectorization of the NSGA-II algorithm.
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Fig. 6. Pareto fronts established by NSGA-II and MOEA/D

Enhanced NSGA-II is capable of properly handling constraints in the design
variables. In addition, inconsistent settings for constraints and ranges in the design
variables are revealed.

Handling of compliance with multiple performance targets can be achieved by
imposing a penalty on normalized response values violating lower and upper constraint
boundaries X; and Xy,

x—X U
* N —
|Xul+ 7IXe|
)
with scaling factor y < < 1. The total violation of performance targets is captured by

one penalty function via a multiplicative criterion, which reaches zero if all constraints
are met:

— X
Ci(x) = max(sign(X, — x),0) | al + max(sign(x — Xy), 0)

L
Xi| 47Xy

Nconstr

Cr= H (Gi+1)-1 (10)

i=1

4 Optimization Under Uncertainty

Compliance with performance targets must be validated for the final solution(s)
selected from the Pareto front based on CAE models for all relevant load cases. Due to
predictive uncertainty in meta-modeling, validation may result in violation of certain
performance targets. Predictive uncertainty can be attributed to selection of inappro-
priate regression techniques, lack of data from the DoE, a too large set of design
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variables or excessive noise in the data (lack of CAE model robustness). In order to
mitigate the risk of constraint violations in confirmation runs predictive uncertainty
should be accounted for in optimization. For this purpose, the NSGA-II algorithm been
extended to optimization under uncertainty. By combining optimization under uncer-
tainty with Gaussian Processes fully probabilistic predictions for each point in the
design space are available, which can be used to add a tolerance in terms of predictive

uncertainty o to the expected value prediction. Then, the optimization problem can be
formulated as [11]:

n}}“[l‘oz(x) + 691 (X), pgy(X) +a002(X), ..., poy (X) + aggm (X)] (11)

With u the expected value and ae the associated standard deviation scaled by a;
o = 0 implies standard constraint handling, whereas o > 0 implies more stringent
constraint handling. The resulting non-dominated solutions are referred to as the mean
value penalty Pareto front. In Fig. 7a it is shown that risk of constraint violation in
performance confirmation is mitigated by the mean value penalty Pareto front
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Fig. 7a. Risk of constraint violation for mean value penalty PF optimization
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optimization. In Fig. 7b it is shown that the mean value penalty Pareto front as
established by optimization under uncertainty based on Eq. (11) with o = 2 yields
more conservative solutions than the Pareto front determined based on standard opti-
mization (o = 0).

5 MDO Applications

5.1 Cross-Attribute Weight Optimization of Body-In-White Structures

In order to support efficient Body-In-White (BIW) development of passenger cars,
multi-disciplinary design optimization is conducted aiming at weight reduction whilst
maintaining relevant attribute performance levels. A large-scale MDO typically
involves in excess of 50 load cases, 150 design variables and 1000 responses. In
Table 1 an example of attribute load cases considered in BIW weight optimization is
shown. Potential design variables are gauges, material grades, and shape parameters. In
addition, tailor rolled blanks, adhesives and spot weld groups can be included as design
parameters. Tailor rolled blanks comprise sections of non-constant thickness and

Table 1. Example of load cases considered in BIW weight optimization

Crash |NVH Durability & | Closures CAE | Closures Chassis Forming
safety strength CAE CAE
FOF | Modes SB28 2nd row | FSD Pole RSD Pole Body Part mass
Intrusion Intrusion Y-Low
FON | Torsional | SB28 2nd FSD Open RSD Open | FRT SBFR | Part
Stiffness Row Ch. Seat | Slam Slam Modes Feasibility
FP2L | Dynamic |SB28 1st Row | FSD Close RSD Sag GSS
Stiffness Slam Sheet Ajar Pos.
FPL | Equivalent | SB28 1st Row | FSD Close Sag Open GEDL
Stiffness HA Slam SW Pos.
RD6 | Seat Att. Dash Cowl FSD Sag Fr Rigidity | FRT SBFR
Stiffness Fatigue Drop-Off Ajar | Def. B-Pill | Stiffness
RDS8 |IP Att. Full Body FSD Sag Fr Rigidity
Stiffness Fatigue Drop-Oft Open | Def. C-Pill
RD8A PTL Brake FSD Fr Fr
Rigidity Mid | Rigidity PS
B-Pill
SI9 PTL Clutch | FSD Fr Rig. Rr | Fr Rig.PS
C-Pill
SP6 VIS Rear FSD Fr Rig
Locl Perm Set Mid
SP7 VIJS Rear FSD Fr Rig
Loc2 Perm Set Rr
Roof VIS Rear High Speed
Crush Loc3 Def.
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Fig. 8. Pareto front for load cases acc. to Table 1.

provide challenging constraints in terms of allowable thickness increments, thickness
gradients, and nesting symmetry.

In real world applications of vehicle structure optimization, various scenarios are
usually investigated, e.g. by imposing commonality and manufacturing constraints for
relevant parts, or by relaxing certain performance targets. Pareto optimal solutions can be
obtained for each scenario using weight and total constraint violation as given by
Eq. (10). For example, in Fig. 8 the Pareto front for normalized mass vs total constraint
violation associated with the load cases in Table 1 is displayed. It can be observed that a
4% weight reduction is feasible at equivalent attribute performance levels. Using
meta-model based optimization, fast turn-around times of the scenarios considered can be
warranted. Hence, MDO is a viable approach for supporting the decision making process.

5.2 Optimization of Weight and Adhesive Application in Body-in-White
Structures

Adhesives are applied to increase the bonding stiffness between vehicle parts. Smart
application of adhesives allows for gauge reductions without compromising stiffness
targets. As adhesive application incurs additional cost a trade-off is required between
the incremental length of adhesive application and BIW weight. In Fig. 9a, adhesive
groups are displayed which can be activated via a binary switch. Total adhesive length
and weight of affected parts were minimized while maintaining cross attribute per-
formance involving crash safety, durability and NVH load cases. In Fig. 9b it is
illustrated that an incremental weight reduction can be achieved without performance
deterioration by adding adhesives lines.

5.3 Optimization of Margin and Flushness

The hood of a vehicle should align with the fender plane. To meet this requirement, the
hood inner panel must be tuned by increasing local stiffness such that the requirements
for maximum displacements of the hood are met with minimal weight. The opti-
mization problem has been addressed by dividing the hood inner panel into a grid of
squares with tunable sheet metal thicknesses (Fig. 10a). The maximum displacement of
the hood inner panel could be accurately described as evidenced by the LOO R-squared
of 0.95 acc. to Eq. (8). Subsequent optimization reveals the trade-off between weight
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Fig. 10a. Hood inner panel divided in grid of thickness zones
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Fig. 10b. Pareto front of mass vs. maximum displacement of hood inner panel

and margin flushness as characterized by the maximum displacement of the hood inner
panel (Fig. 10b).

6 Discussion

Multidisciplinary design optimization (MDO) is deployed in all major vehicle pro-
grams at Ford to reduce weight and cost while meeting performance targets. Recently,
significant improvements in efficiency of the MDO process have been accomplished by
the development of: automated preparation and submission of CAE models to the HPC
cluster, automated meta-modeling, and multi-objective optimization based on a fast
NSGA-II algorithm. These improvements resulted in 20% reduction in throughput
times in conjunction with better solutions, i.e. increased weight savings in
cross-attribute structural optimization. Future developments will focus on continuous
improvements of the MDO process. Potential topics include the application of adaptive
sampling techniques in conjunction with Gaussian Processes to further reduce the
computational effort for creating meta-models, and mixtures of Gaussian processes for
reliably predicting multi-modal responses. Furthermore, the deployment of the in-house
developed software tools will be extended to a wide range of problems involving data
analysis.
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