Chapter 2
Architectures and Algorithms for Building
Automation—An Industry View

Petr Stluka, Girija Parthasarathy, Steve Gabel and Tariq Samad

2.1 Introduction

The importance of buildings in developed societies can hardly be overstated. Most
of us live, work, and shop in buildings. When we travel, much of our time is spent in
airports and hotels, restaurants, and museums. Our children are educated in schools
and colleges. When we are ill, or for preventative purposes, we go to hospitals and
other buildings housing healthcare services. Government offices, data centers, sports
complexes, and law courts are other prominent examples.

If there is one parameter that highlights the prominence of buildings in society, it is
energy. Altogether, buildings are responsible for over 40% of the energy, and almost
75% of the electricity consumed in the U.S. [1]. The consumption is marginally
higher in residences versus commercial buildings. The energy footprint is correlated
with the carbon footprint, with 39% of the nation’s CO2 emissions coming directly
(e.g., natural gas combustion for heating and cooking) and indirectly (emissions from
fossil-fueled power plants that are generating electricity that is used in buildings) from
buildings [2]. Both in terms of energy consumption and carbon dioxide emissions,
buildings are the largest secto—more than industrial plants and transportation.

Much research in buildings is focused on energy efficiency and reducing energy
use. Intelligent automation and control technologies in particular have garnered
much attention. Specific topics of research include heating, ventilation, and cool-
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ing (HVAC) control; automated demand response for smart grids; optimization of
equipment such as compressors and chillers; advanced lighting and comfort con-
trol; new vapor compression systems; and thermal energy storage through building
envelopes and radiant slabs. All of these topics, among others, are represented in
this volume, and some of our own work, which has also focused on several building
energy management solutions, is discussed in more detail later.

Before we review this work, there is an important point that bears emphasis.
Despite the high energy, electricity, and greenhouse gas footprint of buildings, sub-
stantial obstacles exist in incorporating promising, and even validated, research
advances into commercial practice. These include the following:

e In many cases, buildings are occupied by tenants who do not pay utility bills
themselves; these bills are paid by the building owner or manager. Thus, tenants
have little economic incentive to adopt efficiency measures.

e Return-on-investment (ROI) periods on innovative energy-saving technologies,
especially where new equipment needs to be installed, are often as long as a few
years. The ROl is, of course, exacerbated by the current low price of energy.

e Energy expenditure is often not a significant part of the operating budget. Consider
a home, overall, a 5% reduction in electricity use in most residences would have
a huge impact on the nation’s consumption and emissions, but a $5 reduction in a
monthly utility bill may not be sufficient incentive for many homeowners to make
the time or financial investment involved.

e Advanced technologies often require appropriately trained technicians and engi-
neers to use them, and most buildings do not have such staff available; hiring such
staff would be a significant additional expense.

e Retrofitting new technologies into existing buildings, which were designed and
built without the prospect of such future enhancements, is especially expensive.
Building lifetimes are typically on the order of a few or several decades, and
building equipment typically has a lifetime of a few decades as well; it will be a
long while before the building stock can accommodate research advances easily.

e While energy management systems are widely used for large commercial build-
ings, they are rare in small commercial buildings. Brambley et al. [3] reported
that the percentage of buildings equipped with energy management and control
systems (EMCS) increases from about 5% for buildings of 1,000—10,000 sq. ft.
to about 70% for buildings larger than 500,000 sq. ft.

e Government investment in applied research and technology transfer in building
technologies is low. A recent report [4] notes that the federal government spends
more than 30 times as much on research for electricity generation as it does on
research on the buildings that consume three-quarters of this electricity.

It is certainly not the case that energy efficiency plays no role when building
developers or refurbishers are specifying a building automation system. But energy
is not the sole concern and indeed it is usually not the principal concern. According
to one market report, the substantial growth in Building Automation Systems (BASs)
compounding at an annual rate of 10.65% to reach over $100 billion by 2022 is being
led by security and access control [5].
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The multifunctional nature of building automation systems [6] will be evident in
the next section of this chapter, where we provide an overview of BASs using a major
commercial product as an example and we discuss some related technology trends.

With this background, we then discuss three topics in building automation that
leverage some of these technology trends in BASs:

e An adaptive control strategy for HVAC based on model predictive control princi-
ples, with models automatically updated as more data is collected. The algorithm
is executed in the cloud, enabling applications where onsite computing resources
may be limited. Results of pilot implementations are presented.

e Central plant optimization for campuses and large commercial buildings. Multiple
models and forecasts are integrated into an optimization scheme. The solution
was implemented at a large military base although issues with data quality did not
permit reliable validation.

e Automated demand response, leveraging connectivity with the smart grid. In par-
ticular, we discuss the development of the OpenADR standard, which is facilitating
applications worldwide.

These and other applications have been successfully implemented, but the path from
research to practice can be tortuous. Therefore, in the final section, we present a
path for technology transfer to commercial product and we describe some of the
challenges involved.

2.2 Building Automation Systems

BAS control and monitor mechanical and electrical equipment, such as HVAC,
lighting, power systems, fire systems, and security systems. Over the years, BASs
have advanced through several major evolution stages [7]. They initially relied on
pneumatic controls with compressed air (starting in the 1950s) but later these sys-
tems were replaced by microprocessors and Direct Digital Controls (DDC) in the
1980s, subsequently leading to the introduction of standardized building protocols,
such as BACnet®, LONWORKS®, or Modbus®, in the 1990s. While the first decade
of the new millennium brought significant progress with wide adoption of wireless
technologies (ZigBee®, EnOcean®, Z-Wave®, Bluetooth®, etc.) that allowed indi-
vidual devices and controls to communicate wirelessly, the follow-up trends evolved
directly into the new era of the IoT that we experience today.

2.2.1 BAS Overview

BASs deliver multiple functions, including the following:

e Control of the building’s environment is primarily delivered through the automated
control of the HVAC system and its individual components (air handlers, fan coils,
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fans, pumps, chillers, boilers, etc.). The other important aspects include the control
of lighting and indoor air quality (IAQ).

e Energy management that aims to minimize overall energy costs in the building
through the systematic monitoring and intelligent operation of HVAC systems
with respect to occupancy, weather, and prices of electricity, gas or other energy
sources.

e Monitoring of facility assets has the objective of detecting performance problems
of HVAC equipment and addressing them early enough before they cause bigger
issues.

e Security and access control help to minimize risks related to security breaches and
improve situational awareness. Access control, video surveillance, and perimeter
protection systems all together play important roles in mitigation of high-risk
threats.

e Fire detection and life safety help to ensure that people and assets are protected
from fires and other environmental risks. This is accomplished by the deployment
of systems for fire and smoke detection, sprinkler supervision, and emergency
communication.

All these functions enable building owners and facility managers to address a
variety of operational goals, such as reducing energy consumption and maintenance
and life-cycle costs, ensuring tenants’ comfort and compliance with regulations (e.g.,
on the minimum required volume of fresh air in a given building), minimizing safety
and security risks, and facilitating active participation in demand response or related
energy trading schemes enabled by smart grid technologies [8].

The architectural complexity of today’s building automation systems largely
depends on the number of subsystems deployed. Figure2.1 provides a complete
view of one leading BAS, Honeywell Enterprise Building Integrator (EBI), with its
modules for HVAC control (named Building Manager), energy management, life
safety, security, and video surveillance. Each part can be installed independently of
others but they together form a complete building management system.

2.2.2 HVAC Control Infrastructure

The infrastructure for monitoring and control of HVAC systems is the most com-
monly implemented part of any BAS, and it is also perhaps the largest and most
complicated building system because of the variety of control devices involved and
the multiple ways they can affect a building’s operation. In Fig. 2.1, the HVAC control
infrastructure is depicted in a simplified way inside the block labeled Building Man-
ager. However, when physically deployed, it is usually structured into several logical
layers of the traditional HVAC control architecture (see Fig. 2.2), complemented with
the cloud environment that allows the implementation of additional functions:

e Field devices comprise the sensors, meters, variable speed drives, valves, and actu-
ators that are used for monitoring or changing system variables, such as temper-
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Fig. 2.1 Architectural view of the BAS system [9]
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Fig. 2.2 Hierarchical layers of HVAC control architecture

ature, humidity, flow rate, and pressure. Efficient HVAC control depends heavily
on the quality of the field devices and the information these provide.

e Unitary controllers are stand-alone devices executing basic control algorithms
and routines, designed for specific control applications, such as controlling a fan
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coil unit or sequencing a pump. The scope of the controlled system is usually
limited to a specific constrained environment, such as a single zone. The unitary
controller receives signals from sensors and determines appropriate output signals
for the actuators, based on the closed-loop control logic. Its operation can also be
influenced by commands received from the respective supervisory controller.

e Supervisory controllers implement higher level control logic on the level of a plant,
subsystem, floor, or entire building. This may include starting or stopping plants
(boilers or chillers) according to correct or optimal timing, as well as adjusting
the set points of unitary controllers based on conditions defined by weather or
occupancy levels. These adjustments are typically implemented by a set of rules.

e Server applications integrate all useful data received from devices and controllers
in a local data historian. It is possible to visualize trends, logs, alarms, and other
events generated by the BAS. Server applications also typically include tools for
system management and configuration. In addition, the computing power at this
level can be leveraged for execution of building-wide optimization applications.

2.2.3 New and Emerging Trends

BASs are continuously evolving to efficiently address new challenges and enable
flawless and cost-effective operation of high-performance buildings. The whole
ecosystem of technologies that are being deployed in buildings has a direct influence
on BAS, their architectures and functions. The most important technology trends
over the last few years relate to the increasing use of cloud technologies and data
analytics [10], prevalence of the [oT paradigm [11], and the growing emphasis on
user experience and comfort [12, 13].

The cloud and data analytics have made significant progress over the last years
in many domains and they continue to create impact in building applications. The
capability to collect data from multiple and potentially heterogeneous data sources
and move them to a cloud repository allows the implementation of powerful applica-
tions that may provide insights into building operations [14]. Cloud connectivity and
real-time processing will enable the data to become fluid versus static with vast new
opportunities. The sophistication of new and more powerful building analytics will
likely be increasing from visualization and reporting dashboards to fault detection
and diagnostics too, ultimately, applications in predictive maintenance and holistic
dynamic optimization of buildings [10]. Currently deployed building analytics can
better inform facility managers about deviations from the expected energy consump-
tion, likely HVAC equipment faults [15] and underperforming controllers [16].

IoT paradigms enable connecting building automation components to the IT net-
work and generally improves the interoperability and connectivity of control devices.
The IoT can help overcome the issue of isolated building systems and support creation
of more cohesive environments. In this new context, building automation systems
will potentially require fundamental changes in how they are designed and installed.
New types of intelligent devices and systems will be required that collect and move
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data directly to cloud databases, where it can be used by specific analytics applica-
tions and exposed to end users. Also, new [oT technologies and applications will
have a major impact on building occupants whose interactions with smart things
could be monitored and leveraged for improved control and delivery of personalized
comfort in interior spaces [17].

User experience aspects play an important role in the design of new applications
for facility managers and building owners that take advantage of connected HVAC
equipment, devices, and automation systems whose data can be shared in real time.
New types of applications and user interfaces are delivered via smartphones and
tablets that can provide multiple real-time functions such as secure monitoring of
equipment operation, changing set points, viewing and acknowledging alarms, and
adjusting schedules. The other categories of users are tenants and occupants where
the main emphasis is on delivering healthy and comfortable indoor environments
[18]. This goes beyond traditional thermal comfort [19]; for example, modern LED
bulbs can make lighting conditions far more personalized than before.

Collapse of control layers—With the proliferation of the cloud, open architectures,
and IoT technologies, we already observe tendencies to separate typical functions into
only two levels: highly intelligent field devices and the cloud. Although this direction
might be more typical for low-end installation of BAS, e.g., light commercial build-
ings [20]—it can imply that powerful building controllers may not be needed in some
cases [21, 22]. The base level closed-loop control functionality will be implemented
through a flat architecture of cooperating field devices, while supervisory functions
will be pushed to the cloud environment. This concept can potentially be cheaper
to deploy but the overall impact on the performance of such a control architecture
still needs to be explored, primarily with respect to the potential issues with latency,
jitter, or bandwidth in nondeterministic communication networks.

Distributed optimization and analytics on the edge—Economic optimization of
building systems can be formulated at the whole-building level, integrating all impor-
tant subsystems such as HVAC, lighting, onsite generation, and storage. However, the
fundamental issue with this approach lies with building-wide optimization models,
which will always be too complex and hampered by significant inaccuracy, uncer-
tainty, and lack of data measurements. On the other hand, distributed optimization
approaches could be more viable; these would focus on meaningful subsystems and
their optimization according to their local objectives but not independently of others.
The topic of distributed cooperative control has already been studied in the areas
of renewable generation [23], power storage [24], and control of HVAC systems
[25-27].

Human-in-the-loop control—Given the increased emphasis on user experience
and occupants’ health and productivity, the thermal comfort and other environmen-
tal aspects of buildings, such as lighting quality, should be maintained in a way
that satisfies the maximum number of occupants. This can be achieved by allowing
individuals to define their personal comfort preferences and providing immediate
feedback on the current comfort conditions [28, 29]. Then new algorithms will be
needed to aggregate and properly process all such inputs from occupants to deter-
mine new global set points in the most cost-effective way, or alternatively make
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localized adjustments that would respond directly to occupants’ feedback. Beyond
optimized comfort control, similar crowd-sourcing mechanisms have already proven
to be useful for learning of occupancy patterns [30], one of the difficult-to-measure
disturbance variables in HVAC control applications. Occupancy and behavior pat-
terns can also be learned by processing of the data generated by indoor location
tracking systems [17] under the assumption that the new family of smartphone-based
context-aware applications would be properly integrated with BAS where they will
be leveraged for improved control.

All these technological trends are expected to have an enormous impact on the
architecture of BAS and the mechanisms they use for delivering control functions.

2.3 Adaptive HVAC Control: A Cloud-Based Solution

2.3.1 Rule-Based Methods

Rule-based methods enable the translation of best practices, experience, and knowl-
edge of HVAC control engineers into a set of rules, which are applied to manipu-
late key set points and schedules (optimal start/stop, pre-cooling, etc.) and ensure
coordination between controllers. For instance, a rule-based control strategy for
air handlers can involve the supply air temperature reset, night purge, CO2-based
demand-controlled ventilation, and other concepts; see summaries in [31, 32].

Rule-based methods are popular because their implementation is intuitive and
offers good opportunities to run HVAC more efficiently, under the assumption that
rules are implemented properly. In practice, this approach has several limitations.
With respect to the large variety of building types—and variety of HVAC systems
used—application engineers have to configure customized solutions on a project-to-
project basis, and the quality of rules may vary significantly with the knowledge and
experience of the application engineer. Further, if the set of rules becomes too exten-
sive, it is hard to ensure consistency within the rule set and the overall performance
will deteriorate sooner or later. In other cases, the application engineers may have
fairly limited time to tune the rules properly and keep the configuration regularly
updated. Then, the natural tendency is to choose robust parameter settings for indi-
vidual rule resets that will ensure occupant comfort for a wide range of conditions.
However, this approach will control the HVAC system in a suboptimal way and with
higher operating expenses.

2.3.2 Model Predictive Control

An attractive possibility for addressing the above limitations is represented by the
model predictive control (MPC) strategy, which can dynamically adjust all main
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HVAC set points based on current/future conditions. Unlike a safely defined set of
set point resets, which requires adjustments relatively rarely and thus operates the
HVAC system in more or less constant regimes for long periods of time, MPC has
the capability to adjust set points several times per hour, operate the HVAC system
more efficiently and closer to its boundaries, and ensure it is responding dynamically
to changes in outdoor or indoor conditions.

An MPC-based solution is usually formulated to address the primary goal of
HVAC control: to maintain predefined comfort levels in zones while minimizing the
overall operating costs, which are usually reduced to the costs of primary energy
sources. The MPC controller then determines the optimal actions based on relation-
ships among optimized variables, zone comfort, and energy cost. Mathematically,
the optimal control problem is formulated over a finite future horizon:

N—1

min > ci (e, e, yi) @.1)
" k=0

subject to

Xo =X
Xey1 = [ u, di)  yie = g0, uy, dy)
Ymin < Yk = Ymax

Umin = Uk = Umax,

where k is the discrete time step, N is the prediction horizon, and ¢ is the cost
function. x, y, u, and d are vectors defined as follows:

e x is a vector of system state variables that characterize conditions in zones (pre-
dicted thermal comfort, heating/cooling demand) or in the HVAC system (mode
of operation).

e y is a vector of system output variables, which are maintained as close as possi-
ble to their reference values. Output variables are the temperatures in zones and
potentially other parameters such as humidity. Their reference values are given by
the desired comfort conditions. The other part of output variables includes energy
consumption of the HVAC system.

e u is a vector of action variables or set points for supply air temperature, chilled
water temperature, hot water temperature, pump speed, fan speed, and others.

e d is a vector of disturbance variables, including usually weather conditions but
potentially also occupancy, if available.

The cost function ¢; can be formulated as a tradeoff between the precision of
tracking reference values (maintaining comfort) and energy costs, as discussed in
detail in [33]. A numerical solver is typically used to minimize the function ¢; over
the defined optimization horizon N while keeping future comfort variables y as close
as possible to their reference values and all set points satisfying the box constraints
Umin and Umax (€.g., pump speed between 60 and 100%).
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2.3.3 Implementation of Adaptive MPC

A specific implementation of MPC was pursued by the Honeywell team with the
objective of delivering a concept that would be easy to commercialize [16]. Taking
into account the specifics of the building controls industry, two important design
decisions were made:

e The MPC controller was implemented as a cloud-based solution, following the
high-level architecture depicted in Fig.2.3 where the existing BAS is connected
with the cloud controller via a dedicated communication interface.

e The standard MPC scheme was extended by a module for regular adaptation of
the predictive model for state variables. This need came from the fact that in many
application projects there are not enough observations available to identify good
models, while running step tests to get a dynamic response of building systems is
impossible due to the costs involved. Model adaptation is also useful in the long
run because built environments are always subject to change.

The execution engine (see Fig.2.3) is initialized every 15 min by a timer and it
runs through the following sequence of steps.

1. The engine receives new data from the local BAS, which includes the latest sensor
and meter readings as well as all relevant control signals and other parameters.
Some of the data points need to be processed; for instance, cumulative meter con-
sumption is converted to interval consumption. Then all new points are inserted
into the data storage.

2. Regular update of model parameters is initiated with respect to the recent data and
applied to all predictive models, which are typically specific instances of a gen-
eral multi-input multi-output autoregressive exogenous (ARX) class model. This
includes the state model, disturbance model, and energy consumption model that

New
set-points
Local BAS Engiie Data Storage
Data
collected
l from sensors, Historical
meters and data
controllers
Building
Optimizer State Model Comfort
I Disturbance Weather
Model Occupancy
Electricity prices
Gas prices Cost Function
Comfort limits Constraints
Equipment limits

Fig. 2.3 High-level architecture of the cloud-based MPC controller
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is used for evaluation of the cost function. New model parameters are estimated
in a robust way ensuring iterative removal of outliers.

3. The optimizer runs a multistep optimization algorithm that is applied over a
configurable time horizon, at least four steps or 1 h ahead. The previously updated
models are used to predict future disturbances, states, and outputs. For practical
reasons, two types of limits—soft and hard—were introduced for comfort variables.
The optimizer then searches for a combination of actions that will ensure all
comfort variables are within soft limits, or at least do not violate hard limits. If a
hard limit is reached in any of the building zones, the optimizer just firmly defines
set points that correspond to the maximum (or minimum) heating or cooling in a
given zone.

4. New set points are transmitted back to the local BAS system. Although the opti-
mizer generates a 1-hour-ahead schedule, only the first step is distributed to the
plant controllers, which is in-line with the principle of receding horizon control.

The adaptation of model parameters and identification of alternative model struc-
tures helps to accommodate various HVAC system changes that can occur relatively
frequently over the solution life cycle. It is then ensured that all model structures
and model parameters represent key relationships between optimized set points and
estimated energy and comfort variables. This approach also reduces the need for
the engagement of a control or optimization expert during the solution setup and
maintenance.

2.3.4 Validation

The adaptive MPC controller was validated at several sites for an extended period of
time. Typically, it was able to reduce the HVAC operating costs related to purchases
of gas and electricity by 15-40%, which is in-line with savings achieved by MPC in
similar applications [34, 35]. The initial set of six pilot buildings was intentionally
selected in a way to ensure diversity of HVAC systems ranging from the relatively
simple (one boiler, chiller, and air handler, up to five zones) to the rather complex
(several boilers and chillers, at least five air handlers, at least 15-20 zones). However,
we realized that the levels of savings, and thus the commercial success, are influenced
by many other aspects:

e The performance of the baseline solution, i.e., the control strategy that is currently
in use, has a significant impact because in the case of poorly operated systems it
is easy to achieve savings, while in other cases the bar is higher.

e The level of instrumentation in some building is insufficient for the implementation
of the advanced control solution and the need to install new sensors or meters makes
the ROI less attractive.

e Legacy control systems may prevent the manipulation of some set points, e.g.,
chilled water temperature, which means the new concept cannot be utilized to its
full potential.
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Fig. 2.4 Daily energy consumptions in power and gas conditioned by average ambient temperature

e In the case of a cloud-based solution, the quality of control can be influenced by
such simple things as is the reliability of the Internet connection. Efficient local
backup must be ready for the case when this connection drops.

As a part of the validation process, it was necessary to quantitatively assess perfor-
mance improvements of the new solution in comparison with the original solutions.
Despite differences in specifics, these legacy strategies primarily differed in how
they manipulated important HVAC set points. Given that the operational patterns of
any building follow regular daily cycles, the most suitable validation scenario was to
switch between the two solutions on a day-by-day basis. Consequently, the results
were assessed over the respective 24 h intervals. But when two different control solu-
tions are running on different days, it is important to consider the different operating
conditions, which are primarily characterized by the occupancy patterns and weather
conditions. In some cases, it might be reasonable to omit the information about the
occupancy. For instance, in the case of an administrative building with stable occu-
pancy patterns during the working days when the individual control strategies are
validated just on these days. But in general, the occupancy is an important parame-
ter for the comfort control and should be used wherever it is possible to quantify
it. Regarding the weather conditions, the most important influencing factor for the
energy consumption is the ambient temperature. Figure 2.4 illustrates results of com-
parison of the original (baseline) and new control strategy, which were conditioned
by the ambient temperature only. Despite some variation, it illustrates the systematic
reduction in both power and gas consumptions achieved on our pilot sites.

2.4 Central Plant Optimization: Concepts and Prototype

In campuses such as universities and government facilities, large central plants deliver
cooling or heating to individual buildings. In large buildings as well, a central plant is
usually the primary source of cooling or heating, delivering thermal energy as chilled
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or hot water to the forced air HVAC system, or to radiators and other terminal units.
Improving the efficiency of the generation and distribution of thermal energy reduces
energy wastage at the source. A small percentage improvement can produce large
overall savings because of the aggregation of energy production and distribution.
There is potential for savings because central plants are currently operated to meet
all demands reliably and not necessarily for fuel economy or energy efficiency.
Plant operators run the equipment according to a preset, fixed strategy. However,
plant equipment efficiencies vary with load and external conditions such as ambient
temperature. In addition, central plants have multiple chillers, boilers, and power
generators, which may differ from each other in capacities and performance. The
ability to select equipment and operate it at optimized points to minimize the total
energy cost of the plant is not intuitive to plant operators and has the potential to offer
great benefits. Modeling the load dynamics offers the additional benefits of predictive
optimization, for not just instantaneous energy savings but over future time horizons
so that time-varying energy prices or weather-dependent equipment efficiencies can
be considered in operating the entire system.

Optimization of HVAC systems and chiller plants has been a topic of research
for many years. In [36], we find a comprehensive review of supervisory and optimal
control of HVAC systems. An example of a more recent model predictive control of
a chiller plant is in [37]. There are several other research implementations and some
commercial products. However, many of these tackle either one-off implementations
for research, rather than a general advanced optimization software product, or they
tackle optimizing only part of the plant. We describe in brief a prototype central
plant optimization system that has shown promise from the energy savings achieved
in several pilots. The optimization system was recently implemented at a DoD central
plant and this implementation is described next [38]. Our objective in this section is
not to present another technique for optimization and its benefits, but rather to present
the considerations involved in the practice of translating advanced control and opti-
mization solutions developed in a research lab to a profitable commercial offering.
In this context, see also [35], where the challenges in implementing model predictive
control in buildings are described. Despite a mature prototype, field implementa-
tion remains difficult in advanced control applications and we explore the process,
architecture, and standardization needed for easy diffusion in the marketplace.

2.4.1 Overview of Supervisory Optimization

The central plant optimization solution provides optimal schedules and operating
points for all equipment in the plant. It relies on equipment performance models,
forecasted load, a building load model, and energy price information. The equipment
and building models are set up based on historical data and updated as new data
becomes available. The optimization is based on minimizing energy costs and uses
an evolutionary algorithm. The solution concept is illustrated in Fig.2.5.
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The online information flow is conceptualized in Fig.2.6. A demand forecaster
predicts loads for the next 24 h period of optimization based on the current weather,
load history data, and occupancy criteria. The central plant model is configured from a
library containing models of chillers, boilers, cooling towers, and pumps. A dynamic
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load model represents the building response to changes in energy supplied. Based
on the inputs of upcoming demand loads, central plant performance, and building
response, the optimizer solves the schedules and operating commands for the major
equipment in the supply and distribution of chilled and hot water. Feedback from the
buildings provides corrections to the long-term forecast load that is used to adjust
the energy supplied.

The model library is an integral part of the optimization solution. Models are
developed using historical data and are periodically updated with newly arrived data.
The optimizer models are continuously updated and do not lose their efficacy when
the equipment deteriorates.

The central plant optimizer had been piloted previously and has shown promising
energy savings ranging from 9% to more than 40%. The energy savings depend on
the extent of automation, existing controls, and processes in the baseline operation.
The implementation described next is at a site where a cloud-based solution or remote
monitoring and support was not possible.

2.4.2 Prototype Implementation

The control implementation architecture for a prototype version of the real-time
supervisory optimizer implemented at a Department of Defense (DoD) facility (Fort
Bragg, NC) [38] is shown in Fig.2.7. The chiller plant serves about 80 buildings
and consists of four chillers (total of 6300 tons), a free cooling heat exchanger, a 2
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Fig. 2.8 Daily energy usage comparison

million gallon chilled water storage tank, and several primary and secondary pumps
and cooling towers. For the prototype version of the optimizer, the control interface
was through the Honeywell EBI building automation system.

The optimizer was brought online by following a systematic and thorough testing
and commissioning process. It was handed over to the facility staff after training,
but without remote access to the optimizer for observation or troubleshooting. The
optimizer software was connected at the chiller plant for about a year, but controlled
the plant only when enabled. The prototype included a mechanism for switching
between the existing fixed control rules and optimized control to gather data for
both systems. The data shows that the optimizer was enabled to operate the plant for
39days in several continuous periods. During the same period, the data shows 164
periods of original control days.

The original control days data was normalized for weather—we considered several
factors and used the best fit model after evaluating combinations of factors and
regression model algorithms. The final analysis comparing daily overall energy usage
between normalized baseline control and optimized control showed similar energy
usage, within one standard deviation in most cases (see Fig.2.8).

Comparing this overall result with an example of previous promising savings
(Figs.2.9 and 2.10) illustrates the inconsistency in the range of savings. Not only are
baselines different for different implementations, but also conditions during opera-
tion can be tricky to monitor: Was the optimizer system operating ideally with the
correct inputs? Were there other mitigating circumstances? We discuss the issue of
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Fig. 2.9 Daily electricity consumption from the previous pilot with alternate day testing
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Fig. 2.10 Average electric power from the previous pilot

data quality in the next section, and further expand on the considerations involved
in transferring advanced solutions from concept to commercialization later in this
chapter.

2.4.3 Role of Data Quality

The prototype was the first to be implemented at a site with no possibility of remote
observation of the system or ready access by the developers. The post-analysis
showed several discrepancies in the data used as optimizer inputs. These included
condenser, primary and secondary pump power, cooling tower power, and indoor
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and outdoor temperatures. Nonoptimal solutions were possibly provided to the plant
based on wrong data, although the safety limits and layers in the optimizer prevented
incorrect or unsafe operation of the plant. The safety layers also prevented knowledge
of non-optimized operation when the optimizer was “enabled”. On being apprised
of a huge power spike in a condenser pump, the site staff immediately said that was
probably why the chiller connected to it was never being switched on: “the optimizer
hated chiller #4.” The site operations staff are qualified to ensure that the plant oper-
ates correctly; however, it needed research labs staff to ensure the optimizer operates
with the correct data inputs. In conclusion, as noted above, we were unable to validate
the effectiveness of the optimization solution implemented, in large part, we believe,
because of data quality issues. The root cause of bad data might have been commu-
nication issues or bad sensors. A supervisory optimizer requires data with a quality,
resolution, and frequency that are not very common in current BASs. A reliable
data infrastructure and data fault detection and adaptation system are essential for
providing a supervisory advanced optimization solution. This experience highlights
the importance of implementation-related issues that algorithm developers are often
unaware of and that are often not resolved in time when research teams implement
their prototype solutions. The challenges in transferring technology to the market
are not restricted to data infrastructure only, but a combination of several factors that
may suppress or augment technological weaknesses. We further discuss the consid-
erations of transferring technology from R&D groups to commercial operation in a
later section.

2.5 Automated Demand Response: Smart Buildings Meet
Smart Grids

In many locations, building owners and operators have an opportunity to reduce their
electric energy cost by participating in demand response programs offered by electric
utilities or grid operators. These programs provide an economic reward for partially
reducing or time-shifting electric demand during peak periods or other times when
the electric grid is under stress. The rich sets of operating data available in intelligent
buildings are a key enabler to make the best use of these demand response programs.

2.5.1 Background

Until relatively recently, electric utilities and grid operators in the United States
generally had an abundance of generating capacity (aside from periods of equipment
outages or extreme weather conditions) and had few constraints in using that capacity
to satisfy electric demand. As the industry began to retire older less-efficient generat-
ing resources, they began to seek ways to make the grid more energy and cost efficient
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as well as more environmentally friendly. Studies found that in many cases, build-
ing owners and other electric customers’ demand profiles could be adjusted slightly
in order to assist with the balance between supply and demand on the electric grid.
Experience has shown that some electric customers are willing to occasionally reduce
their demand in return for some form of economic benefit, through demand response
programs offered by their electric utility provider. These demand-side reductions can
be either directly controllable by the electric utility (e.g., residential HVAC programs)
or indirectly controllable at the option of the customer (e.g., for commercial building
HVAC, lighting, etc.). Industrial customers have also been able to identify similar
demand response (DR) opportunities in their operations. These reductions in electric
demand (or “negawatts”) are utilized by the utility or grid operator to fill imbalances
between supply and demand, with the objective of ensuring grid reliability.

The U.S. Department of Energy (DOE) defines demand response as a tariff or
program established to motivate changes in electric use by end-use customers in
response to changes in the price of electricity over time, or to give incentive payments
designed to induce lower electricity use at times of high market prices or when grid
reliability is jeopardized [39]. The U.S. Federal Energy Regulatory Commission
(FERC) defines a demand response event as a period of time identified by the demand
response program sponsor when it is seeking reduced energy consumption and/or
load from customers participating in the program. Depending on the type of program
and event (economic or emergency), customers are expected to respond or decide
whether to respond to the call for reduced load and energy usage. The program
sponsor generally will notify the customer of the demand response event before the
event begins, and when the event ends [40].

2.5.2 Participation in Retail and Wholesale DR Programs

Retail DR programs offered by electric utilities are often associated with the cus-
tomer’s electric utility rate tariff. In areas where organized wholesale energy mar-
kets exist, the procurement of electricity is typically orchestrated by the grid opera-
tor’s wholesale market, which can include both supply-side and demand-side energy
providers (which can include building owners).

A recent U.S. Department of Energy technical report outlines the utilization of
various demand response resources in the planning and operation of the electric grid
[39]. DR opportunities for building owners can include both price-based DR and
incentive-based DR programs. Examples of price-based DR programs include the
following:

e Time-of-use (TOU): an electricity rate having different unit prices for different
blocks of time, typically defined across a 24 h day.

e Real-time pricing (RTP): an electricity rate in which the price fluctuates hourly
reflecting changes in the wholesale price of electricity. Customers are notified of
these prices on a day-ahead or hour-ahead basis.
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e Critical Peak Pricing (CPP): a hybrid TOU structure having a provision for replac-
ing the normal peak price with a much higher CPP event price under specified
trigger conditions (e.g., when grid reliability is under stress or wholesale prices
are very high).

Examples of incentive-based DR programs include the following:

e Demand Bidding/Buyback Program: a retail tariff with a DR option that enables
the customer to offer bids to curtail electric demand (typically driven by high
wholesale electricity prices).

e Emergency Demand Response Program: an option that provides utility bill credits
for load reductions during specified periods (e.g., when there is a shortfall in
electricity supply reserves).

e Interruptible/Curtailable Service: a retail electricity tariff with a DR option that
provides a rate discount or bill credit for reducing electric load during utility or
grid-level contingency periods.

e Ancillary Services Market Program: a program in which customers can bid load
curtailments into the wholesale electricity market. If their bids are accepted, cus-
tomers are paid the market price for committing to be on standby to reduce load. If
their load curtailments are needed, they are notified by the utility or grid operator,
and are typically paid the wholesale spot market energy price.

e Capacity Market Program: a program in which customers can offer load cur-
tailments to serve as additional grid system capacity, to augment conventional
generation resources.

Each of the above DR programs functions in a different way to contribute to grid
reliability. These actions are applied at different points along the time continuum of
utility and grid operations, from system planning (across months or weeks), down to
timescales of minutes and less. This set of coordinated services is carefully managed
by utility and grid operators to ensure reliable power delivery to electric customers.
Intelligent buildings can play an important part in this complex and highly interactive
system.

Recent rulings by utility regulators and policy changes at independent system
operators and regional transmission organizations are creating new opportunities for
building owners in wholesale electricity markets [41]. In the past, these grid balancing
services were provided only by conventional electric power generation sources.

Demand response services in the wholesale market are delivered by qualified
providers (or through qualified intermediaries) to the electric grid operator. Except
for very large electric customers, building owners will typically participate in these
markets through a qualified intermediary, either by contracting with their electric
utility for the appropriate electric tariff or by contracting with a qualified demand
response aggregator. In these arrangements, the electric utility or the DR aggregator
participates in the electric grid market on the behalf of the building owner. Intelligent
buildings are well positioned to participate in this process.
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2.5.3 Automated Demand Response and OpenADR

Early experience with DR programs revealed that manual communication methods
(i.e., telephone and fax notification of pending DR events) and manual control of
equipment (i.e., manually shutting off power to equipment) were less reliable or pre-
dictable than desired. For this reason, work began on ways to automate the demand
response. Over the past 20+ years, automated demand response (AutoDR) has pro-
gressed to an advanced state that now includes a broad range of HVAC DR control
strategies.

AutoDR and intelligent buildings’ participation in the smart grid vision requires
an open, interoperable, and secure automation and communication method to facil-
itate reliable and cost-effective communication of electricity price and electric grid
reliability signals. The Open Automated Demand Response (OpenADR) standard
was developed beginning in 2003 to provide this capability and enable automated
interactions between buildings and their electric utility and grid operator partners.
OpenADR is being successfully applied by numerous utilities and grid operators.

To extend and enhance the OpenADR standard, an international group of smart
grid and buildings stakeholders have formed a working group in the Power Systems
Management technical committee of the International Electrotechnical Commission
(IEC) [42]. This activity will result in the development of an international standard for
automated communications between intelligent buildings and the smart grid, which
can be applied worldwide.

2.5.4 AutoDR Control Methods for HVAC Applications

Building owners and facility managers can benefit by investigating utility and grid
operator DR programs to identify ways to take advantage of operating cost benefits
resulting from AutoDR. Assistance from utility customer service representatives is
helpful in determining the best courses of action. AutoDR control strategies are typ-
ically implemented in the electric customer’s building automation system, including
the necessary digital communications link to the electric utility or grid operator. These
strategies can be selected and configured as a collaborative effort of the building facil-
ity manager, operating staff, BAS provider, and outside consultants as appropriate.
The implementation of AutoDR control strategies using OpenADR communications
and the role of the BAS are shown in Fig.2.11.

The energy R&D community has devoted significant effort to identify and imple-
ment DR applications and control strategies for HVAC systems. Examples of proven
DR applications can be found in the published literature [8]. These applications
include DR control strategies which apply to most or all of the various types of
HVAC equipment. The timing of DR events often coincides with peak demand peri-
ods, which are typically driven by cooling-related energy use. DR events can also be
driven by peaks in heating-related energy use, depending on the locale.
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Fig. 2.11 AutoDR control
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Example DR applications for HVAC include control adjustments to [43]

Space temperature set points (e.g., variable air volume systems),
HVAC supply air temperature,

Chilled water temperature,

Duct static pressure,

Motor speed control (e.g., fans, pumps, etc.),

Demand limiting for major equipment (e.g., for chillers).
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These HVAC DR strategies can be scheduled to begin at the start of a DR event.
The strategies can be employed with price-based DR as well as incentive-based DR
programs. Appropriate configuration of the DR strategies can limit associated indoor
comfort impacts that could occur during and after the DR event. Other non-HVAC-
related DR opportunities also exist in most buildings. Examples include indoor light-
ing, miscellaneous equipment and appliances, etc.

Some of these DR strategies can also be set to occur prior to a DR event to time-
shift the building’s demand profile, thereby providing a demand reduction during the
period of the DR event. Example time-shifting strategies include pre-cooling of the
occupied space. With careful design and configuration, these time-shifting strategies
have shown good results.

2.5.5 Role of Intelligent Buildings

Initial efforts in developing DR control strategies generally relied on the rather limited
amount and quality of measured data that was available from typical BAS. As BAS
technology has advanced in recent years, more sophisticated DR control strategies
are now practical due to the greater amount of data that is made available in today’s
BAS.

The rich building HVAC operating data which is present in intelligent buildings
can be utilized to develop improved AutoDR control strategies. These strategies can
provide greater economic benefits to building owners and improved DR performance
desired by utility and grid operators. These improved AutoDR control strategies can
be tailored to make best use of the various DR programs which are available to each
specific building and locale. An intelligent building is also an important enabler for
emerging advancements in AutoDR. Examples include data-driven control strategy
development and improved building models for demand response [44—46].

Taking a holistic view, intelligent buildings can integrate their demand response
strategies with related energy systems in complementary ways to drive greater cost
and energy benefits. Examples include renewable energy, energy storage, microgrids,
transactive energy, energy efficiency initiatives, and onsite power generation.

In [7], four international implementations of automated demand response, all
relying on the OpenADR standard noted above, are discussed:

e China’s first automated demand response pilot project, implemented in the
Tianjin Economic Technological Development Area (TEDA). Additional projects
are underway as a result of this project.

e A microgrid for the U.S. Food and Drug Administration’s White Oak campus.
The microgrid can operate in both grid-connected and islanded modes. With its
onsite generation capacity the microgrid supplies more electricity to the grid than
it purchases from it.

e An ancillary services project at the Los Angeles Air Force Base, which relies on
electric vehicle batteries to provide frequency regulation to the grid. Fleet vehicles
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at the base have been replaced with electric vehicles and charging stations. 700 kW
of power will be available for the grid when the project is complete.

e The Thames Valley Vision Project in the U.K. As of June 2014, 20 buildings were
participating in the project and over 100 load-shed events had been conducted with
an average participation rate of 98%.

2.6 From Research to Practice—Considerations and
Challenges

2.6.1 Understanding the Context for Applied Research

Technology transfer from R&D to commercial products has several challenges. There
are gaps in translating the technology to practice, developing tools for smooth deploy-
ment, and mobilizing a trained team for installing, commissioning, and troubleshoot-
ing. Adding to that, advanced automated optimization and control principles create
black-box-like paradigms for the operation of a plant or building. These do not always
translate to operator familiarity and comfort with the system. Hence, user experience
principles must be baked into the commercial offering.

In academia and industrial research teams, the focus for advanced control
researchers is on proving a concept and in developing a working prototype. The
engineering problem to be solved is abstracted up to a mathematical or statisti-
cal problem. Research involves developing and testing computation-aided solutions
which are tested in simulations, which tests the technological feasibility and per-
formance, but not the other aspects of field implementation such as configuration
or end-user experience. Assumptions are made during research to contain the scope
and solve the core complex mathematical problem, without getting bogged down
by varied field control systems and equipment. This leads to several valuable the-
oretical advances and evolves the state of the art. However, the commercialization
plan is about making a profitable offering that solves a real-world problem. There
are many considerations in addition to the advanced solution which may determine
the technology’s viability and success in the marketplace.

The following questions are important when fielding an advanced optimization
and control product:

e What is the current state of a typical building or plant? For example, is it oper-
ated manually, and if automated, how often does the operator revert to manual
operation?

e How well is the building or plant instrumented? Is enough data being obtained at
the resolution and sampling time the advanced algorithm requires?

e Is the typical building automation and communication system robust? Will there
be periods of no communication or delayed communication?
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e What is the typical architecture of the control and automation system? Do we need
to bring information from different systems together, or pipe in several different
sensor or control inputs?

e What is the typical information about a plant or building needed to customize or
configure the advanced solution? How will this information be readily available
in a typical facility?

e Are the right people in place to be first adopters (wanting to solve a problem, save
energy, etc.) and dedicated to transitioning to a new system?

The answers to these may be more important than the advanced control solution
itself and have the potential to derail a promising solution from moving forward as
a commercial offering.

Unlike other domains such as aircraft systems and refineries, buildings, and their
control systems are very diverse. There are numerous ways an HVAC system may
be configured, and there are always exceptions to established practices in the field.
Buildings change over time where additions are built or modified and occupancy
changes, and in addition the end user has some control over the environment. These
often result in ad hoc control changes to facilitate the addition of new equipment or
changes in zone functions. Since these could be undocumented, it usually requires
the knowledge of a facility operator to unravel the HVAC infrastructure and control
system changes and to understand the full picture. This full picture is needed if a
supervisory level optimized control is to be implemented.

The end user experience cannot be over-emphasized and it is important for applied
researchers to understand the work environment. The workflow in large facilities is
very cost efficient. One or two operators may manage several plants (roving operators)
and are trained to know only what is needed to operate the plants and buildings
correctly; special displays are created so that the operators may focus on only the
most important information at that time. Control technicians program controllers and
have knowledge of the logic implemented in the controllers for different systems
and equipments. The building automation programmers connect all pieces together
including controllers, sensors, and meters. The operations staff are not motivated to
try new controls and optimization software, because operational reliability is their
number one goal. In many cases, control expertise or knowledge of the specific
system does not reside with facilities management of a building, but with control
and building automation services provided by automation companies with their own
technical staff.

2.6.2 Role of Architecture

Typically, feasibility is established when the advanced algorithm produces correct
or optimal results for test cases. The research engineers usually work with building
experts to develop a prototype that works in the field. However, this is also the phase
when the control and software architecture and user interfaces need to be designed



36 P. Stluka et al.

because the advanced solution must create the least disruption for the facility oper-
ators, even at the prototype stage, to be accepted, and this can be critical in the
introduction of new operational software. This does not mean that the prototype
must be the final product. However, the main structure and functional delineations
of the control decisions should have been defined, because of their critical role in
proliferating technological solutions smoothly. A typical architecture for supervisory
optimizers is shown in Figs.2.2 and 2.7. The advanced optimization at the supervi-
sory level provides top-level set points and on-off commands to major equipment.
Lower level feedback control loops such as those for pump flow and cooling water
temperature run on local controllers. The local controllers also encompass individual
equipment control from the manufacturer, such as chiller control.

Let us illustrate these remarks using the prototype chiller plant optimization sys-
tem described previously. A chiller plant with varying chiller sizes and types, and not
undersized, is generally a good candidate for optimization, because the loading and
operating set points for maximum efficiency of the plant as a whole are not intuitive
to the operator. However, the chiller plant is also complex and optimizing the entire
chiller plant including the pumps and fans makes delineation of the control hierarchy
difficult. The schematic of one of the example chiller plants is shown in Fig.2.12.

Commands such as chiller on/off switching or supply temperature set points may
be provided by a supervisory level optimizer. Pumps are part of the lower level
functionality in the chiller plant: they deliver the required flow to the chillers, the
cooling towers, and the building loads. Optimizing pump speeds and switching on/off
schedules intertwines the supervisory control with the lower level control. Although
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chillers are the main energy consuming equipment in the plant, the pumps and fan
motors in a large plant can add up to a high energy cost. If our objective is to optimize
the operation of all equipment, including the primary and secondary pumps and
cooling tower fans, which are operated by lower level closed-loop control, then the
clean delineation requires thought and careful design. For example, a chiller on/off
command involves a combination of primary pumps (shared among several chillers
that may be on or off) to be switched on or commanded to increase flow within several
constraints. The controller is programmed with preset rules for pump combinations
and speeds to satisfy the chiller flow requirements. In the case of secondary pumps,
the lower level controllers use a differential pressure set point across the pumps to
control their speeds.

The initial control architecture of the prototype optimizer with black-box models
generated a hybrid set of outputs: set points and on/off commands for the chillers
and the control actions for low-level equipment such as pumps and cooling tower
fans. This may work temporarily in the prototype test scenario, but may be accepted
with reluctance by the facility operators and managers. The more effective process
is to construct the architecture for the advanced optimizer to specify the set points
(within operating limits) for all lower level controllers, but this is not trivial in some
cases. Taking the case of the secondary pumps, specifying the differential pressure
set points to lower controllers involves modeling the flow loop and the pump curves
(see Fig.2.13). This is not a trivial task and to be able to generalize to a software
product software tools will need to be built for configuring such models; the tools
would bridge the gaps between the supervisory and local control, and the optimiza-
tion developer and the application engineer. Without such translation from advanced
solutions to field practice, the operational costs of advanced modeling and opti-
mization skills needed in implementation will be high, and productization cannot be
sustained.

Pumps
Condenser Evaporator
side side
Cooling Condenser ‘ Primary Secondary
towers loop Chillers loop loop Load
Pumps Pumps

Fig. 2.13 Example layout for flow modeling
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2.6.3 “Supply Chain” for Technology Transfer

First, let us look at what happens when an advanced control solution is sold and
implemented at typical large facilities (Fig.2.14). A typical implementation pro-
gresses from initial customer contact by a sales team to a site audit and putting
together the solution to meet the customer needs by a solution assembly team. This
team would typically assemble the full solution (that includes upgrades other than
the advanced control) for the customer by selecting from a set of equipment, control,
and automation solutions. Once approved by the customer, application engineers
would configure the advanced control solution for the site (setting up the generic
software for the site: number of chillers and their interconnections, specifications of
equipment, and so on). The solution would also be set up with all I/O points for the
specific plant to communicate with the building automation system or controllers
during installation and commissioning, and handed over to facility operators after
training.

Next, who should be in the “supply chain” of technical professionals who develop
the solution? The advanced control solution is only one part of several functions that
need to be designed for a cost-effective product that fulfills the objective, be it energy
savings, comfort, or staff productivity. Figure 2.15 shows the different functions and
skillsets that should be involved; this is not meant to convey that each team is separate,
or that there need to be separate individuals for each role, but that the essential role
of the skills and functions should be acknowledged and understood early, so that
the advanced solution may be architected for ease of deployment and maintenance.
The advanced control developer is the control theory and optimization expert who
researches and develops the computational algorithms. The building domain expert
has general knowledge of all aspects of a typical building: the equipment, the building
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Fig. 2.14 Organizational chain in advanced control application
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and plant controls, HVAC distribution, local control, and BAS. The control engineer
has practical knowledge and experience of control programming and implementation
with several low-level controller brands. He/she works with the advanced control
researcher and building domain expert to architect the control functional layers,
and provides the local control knowledge to standardize on them for use by the
advanced solution. The software team collaborates with the other teams to design the
right software architecture for the computation, storage, data access, and cycle times
required. These separate entities bring their expertise so that together the constraints
and the best practices from each may be incorporated in the final product.
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2.7 Conclusion

Our experience with implementation of mature prototypes, their deployment and
validation in real pilots, and their transfer to commercial teams, as well as others’
similar experiences, prompt a few thoughts and recommendations.

e Advanced control and optimization bring real benefits to building energy man-
agement and bring us much closer to reducing the building sector’s energy use
and emissions. It is vital that control and optimization experts also become the
champions in translating advanced concepts to widespread commercial use.

e The challenge to bring to market innovative energy-saving technologies is exac-
erbated by the low ROI compared to other investment options, as noted before.
Indeed, an unfavorable cost-to-benefit ratio continues to be one of the major lim-
itations for a wider adoption of advanced control and optimization applications
in buildings. The costs considered over the entire solution life cycle include pri-
marily installation costs and maintenance costs, which creates pressures on short
and easy configuration, discourages inclusion of additional hardware, and favors
keeping the effort needed for supervision and re-tuning to minimal levels.

e Energy projects shift from purely energy-savings-driven to automation-upgrade-
driven, depending on market conditions. It is important for practitioners to under-
stand the market driver, and develop the tools and mobilize the trained workforce
that makes a commercially viable product or service.

e The energy savings benefit provokes the chicken-and-egg game of demonstrating
savings in order to find the investment to mature the technology. A prototype
can only show the benefit if well deployed and accepted, which needs additional
investment. Therefore, control architecture and operator considerations are of top
importance, even at the prototype stage.

e Standard implementation tools must also be developed to quickly and reliably
configure the advanced software and connect it to the local control on site. These
includes general tools such as ontology-driven data modeling libraries [47] that
facilitate all data-intensive applications, as well as specific tools for pre-configuring
of software and plug-and-play type implementation. The new solution should not
require a skilled advanced control expert as is the norm in the industrial domain.
HVAC field engineers are heavily time constrained and that is why they prefer an
intuitive plug-and-play configuration, which ideally does not require any additional
sensors, actuators, or meters.

e In those situations where building operators use new tools as advisory systems,
their experience and acceptance should be improved by providing explanations
of major actions by the supervisory optimizer, such as “turning off chiller 4 and
turning on chiller 2 at higher load operates the plant at 4% higher efficiency.”

For complex solutions that require advanced knowledge and skillsets, considera-
tions of control and software architecture force the question of marketplace viability
early in the development process. Appropriate decisions at that stage can then guide
the developers in formulating and solving the most commercially viable problem,
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and not just pushing through a mathematically complex or convenient problem. This
also informs where additional development funding needs to be focused, for smooth
technology adoption and diffusion in the market.
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