
Optimum Wells Placement in Oil Fields Using
Cellular Genetic Algorithms and Space Efficient

Chromosomes

Alexandre Ashade L. Cunha(B), Giulia Duncan, Alan Bontempo, and Marco
Aurélio C. Pacheco

ICA, PUC-RJ, Rua Marquês de São Vicente, 225, Gávea - Rio de Janeiro, Gávea, RJ,
Brazil

{giuliaduncan,alanbontempo}@gmail.com, alexandre@ashade.com.br

Abstract. The present work introduces a new approach to the optimum
wells placement problem in oil fields using evolutionary computation. In
particular, our contribution is twofold: we propose an efficient algorithm
for initialisation of highly constrained optimisation problems based on
Monte-Carlo sampling and we propose a new optimisation technique that
uses this population sampling scheme, a space-efficient chromosome and
the application of cellular genetic algorithms to promote a large popu-
lation diversity. Usually, authors define a domain representation having
oil wells placed at any arbitrary position of the chromosome. On the
other hand, the proposed representation enforces a unique relative wells
position for each combination of wells. Therefore, the suggested scheme
diminishes the problem size, thus making the optimisation more efficient.
Moreover, by also employing a cellular genetic algorithm, we guarantee
an improved population diversity along the algorithm execution. The
experiments with the UNISIM-I reservoir indicate an enhancement of 6
to 10 times of the final NPV when comparing the proposed representation
and the traditional one. Besides, the cellular genetic algorithm with the
suggested chromosome performs better than the classical genetic algo-
rithm by a factor of 1.5. The proposed models are valuable not only for
the oil and gas industry but also to every integer optimisation problem
that employs evolutionary algorithms.

1 Introduction

The problem of optimising wells placement in oil fields is essential for oil compa-
nies. Many engineering and geological variables affect the reservoir and produce
complicated constraints. Accordingly, decision making is not a simple task and
finding solutions to minimise cost and maximise profits is an essential and chal-
lenging problem. In this context, optimisations are an automated process to seek
solutions for oil well locations, trajectories and types, providing safe reservoir
exploration plans.

c© Springer International Publishing AG 2018
Y. Bi et al. (eds.), Intelligent Systems and Applications,
Studies in Computational Intelligence 751,
https://doi.org/10.1007/978-3-319-69266-1_2

16 A. A. L. Cunha et al.

The present text handles nonconventional wells, which are arbitrary wells
regarding slope, shape and type [1]. There are numerous works on this matter
[1–9], most of them using commercial reservoir simulators in conjunction with
proved optimisation heuristics to determine a suitable wells placement alterna-
tive.

Articles [1–4] use classical genetic algorithms with chromosomes that include
the location of each well and their type. Both locations and types are integer
genes constrained to simple domain boundaries, without any direct relationship.
Furthermore, these cited works also use activation bits to denote whether a well
is present in the decoded solution, thus allowing a variable number of wells.

There are some possible disadvantages to these models. For instance, the
search-space size increases exponentially whenever the maximum number of wells
in the chromosome increases. As a result, the number of simulated scenarios
required to achieve a proper solution grows too large. Since simulation of oil
fields is a computationally intensive task, any optimisation algorithm that would
require too many simulations to reach the optimum is impractical.

Another disadvantage of the above models is the redundancy of their chro-
mosome representation: many distinct chromosome instances decode to the same
concrete implementation. In particular, any permutation of the wells within
a given chromosome produces the same physical solution. Consequently, the
genetic algorithm tends to fragment its population, since many different solu-
tions have the same fitness, which, in turn, slows down the convergence rate.

An additional limitation of standard genetic algorithms is the lack of control
of their population diversity. As the algorithm iterates, highly adapted individ-
uals rapidly replace less adapted ones, resulting in undesirable convergence to
local minima. The literature has proposed many variations of the classical genetic
algorithm. In particular, the cellular genetic algorithm is an adaptation of stan-
dard genetic algorithm that enforces diversity by defining geographic locations of
the individuals and applying recombination exclusively between neighbours [10].

Lastly, the standard genetic algorithm models in the literature do a naive
population initialisation: they randomly sample individuals until the required
number of feasible individuals is found. While this scheme works for simple
optimisation problems, it is not efficient for the kind of black-box nonlinear
constraints present in the optimisation of oil fields. Therefore, we also propose a
new way to find a random feasible initial population using Monte-Carlo sampling.

The following sections describe a new model to solve the optimal wells place-
ment problem using evolutionary heuristics and geophysics simulations. Our
model derives from the work of [3] and enforces a unique domain representa-
tion for each physical implementation. Therefore, the proposed model has less
redundancy when compared to those in the literature, and it should result in
less fragmented populations with better evolution curves. Moreover, we apply a
proved cellular genetic algorithm (CGA) with online diversity control, and com-
pare it to the standard genetic algorithms. Additionally, the proposed model
adapts the Genocop III technique to make it meaningful with CGA and integer
genes. Finally, we also describe how to use Monte-Carlo sampling to efficiently
find a feasible initial population to start the evolution process.

Optimum Wells Placement in Oil Fields . . . 17

2 Problem Description

This text addresses the problem of optimising reservoir exploration alternatives
by deciding its wells locations, trajectories, and types to maximise the NPV (net
present value) of the oil field.

The NPV is calculated using the per well oil production and costs, acquired
from a commercial reservoir simulator [11]. The commercial simulator needs a
3-dimensional discrete geological representation of the petroleum reservoir, pro-
vided beforehand. An example of freely available reservoir model is the UNISIM-I
[12] provided by UNICAMP, a state university from Brazil.

Considering that the petroleum reservoir model is a discrete grid of cells, then
the wells trajectories assume a finite set of values, represented by the coordinates
of the grid blocks. Hence, we represent them using a single line segment, and
only the endpoints of the well are required.

Regarding well types, the adopted simulation model sets the available choices.
The black oil model [13–15] allows two types of wells: water injector and oil
producer. The first type represents a well that injects water into the reservoir,
whereas the latter type accounts for a well that extracts oil from the reservoir.
On the other hand, the compositional model [16–18] is a more complex scheme
that allows additional well types, including the water alternating gas (WAG)
type and the cyclic well type. Since the compositional model uses more well
types, the search-space is usually bigger and, consequently, the optimisation of
wells alternatives become more demanding.

Additionally, the optimiser should also be able to define the optimal number
of wells in a field, considering the possibility of pre-existing wells. Usually, this
is accomplished by setting a maximum number of wells in the oil field and by
including auxiliary binary variables that define which wells are active. Then, only
active wells are considered a part of the concrete implementation. This approach
increases the problem domain by a factor of 2N , where N is the maximum
number of wells in the oil field. This work depicts an alternate chromosome
representation that reduces this factor from 2N to N .

Finally, it is useful to be able to optimise the wells placement under uncer-
tainty. In particular, the industry is interested in finding a wells placement alter-
native that is robust to poorly-known parameters. These parameters are typi-
cally related to geological or geophysical properties of the oil field, which are
modelled by statistical distributions. Since some of the problem parameters are
random variables, the resulting NPV is a random variable. Consequently, we try
to maximise the expected value of the NPV. This work also shows how to use
the proposed optimisation algorithm to approach this kind of problem.

3 Methodology

The purpose of this section is to present the mathematical formulation of the
optimisation problem and the proposed solution model.

At first, we express the optimisation as a black-box nonlinear integer
programming problem. Thus all decision variables are integer numbers, and

18 A. A. L. Cunha et al.

all mathematical functions are analytically unknown, but numerically com-
putable. In particular, the numerical computation of the fitness function is time-
consuming, deterministic and robust. Conversely, the numerical calculation of
all constraints is relatively easy.

Next, this section presents two algorithms to solve it: a conventional genetic
algorithm (GA) and a cellular genetic algorithm (CGA). The CGA as applied
to the optimal wells placement problem is an innovation, and we also propose
novelties to the classical CGA present in the current literature. These novelties
include a black-box constraint handling scheme for CGA based on the Genocop
III [19] heuristic, an efficient initial population sampler based on the Metropolis-
Hastings algorithm [20,21] that guarantees that all sampled individuals are fea-
sible, and a space-efficient chromosome representation, which reduces the search
space size by removing redundancy. We also propose a recombination operator
and a mutation operator for this new representation. Finally, we proposed an
adaptation of the model to handle uncertainties in the definition of the reservoir
geophysical parameters.

3.1 Mathematical Formulation

The standard representation uses six integer variables to represent the discrete
coordinates of two blocks in the well ends locations, one binary integer to indicate
that a specific well exists (the activation bit) and another integer to define the
well type.

Let ī, j̄, k̄, i, j, k denote, respectively, the (i, j, k) coordinates of the initial
block and the (i, j, k) coordinates of the final block of the well. Let a denote the
activation bit and τ denote the well type. If N is the maximum allowed wells
count, then the decision vector x is:

x =
(
a1, a2, . . . , aN ,

ī1, j̄1, k̄1, i1, j1, k1, τ1,

ī2, j̄2, k̄2, i2, j2, k2, τ2, . . . ,

īN , j̄N , k̄N , iN , jN , kN , τN

)
(1)

where the numeric subscripts indicate the index of the well. For simplicity, we
write wk = (̄ik, j̄k, k̄k, ik, jk, kk, τk) and then the Eq. (1) reads:

x =
(
a1, a2, . . . , aN ,w1,w2,wN

)
. (2)

The objective function is defined over all values of x. The relative order of
the wells in Eq. (1) is not relevant, that is, the NPV depends only on the values
of the wells position, its types, and activation bits. Therefore, if, for example,
x′ = (a2, a1, . . . , aN ,w2,w1, . . . ,wN) and f is the objective function, then f(x) =
f(x′). More generally, the NPV is invariant to any permutation of the wells.
Hence, there is a large number of points in the problem domain with the same
evaluation, which might lead to many different optimal solutions that actually
represent the same physical solution. Moreover, since it is interesting to apply

Optimum Wells Placement in Oil Fields . . . 19

genetic algorithms, the redundancy in the problem domain makes the search
space unnecessarily large, so the algorithm tends to converge much slower to a
relevant solution.

To solve this issue, the present work proposes a new strategy for representing
the decision vector x, where the order of the vectors w1,w2, ...,wN is unique.
Therefore, for a given set of distinct wells, there is only one representation of x
having

w1 ≤ w2 ≤ . . . ≤ wN . (3)

We specify the relation “≤” for any pair of wells in the algorithm 1.
The algorithm 1 works by sequentially comparing the coordinates of the

vectors w1 and w2 until they differ or all the coordinates are compared. The
proposed model starts by comparing the initial i coordinate, namely ī, and if ī1 <
ī2 then w1 < w2. Clearly, if ī1 > ī2, then w2 < w1, Finally, if the coordinates are
equal, then it repeats the comparison on the next coordinate. Hence, for instance,
the wells w1 = (1, 0, 2, 2, 2, 2, injector) and w2 = (1, 0, 3, 2, 2, 2, injector) satisfy
w1 ≤ w2. The presented model defines injector < producer.

Another proposal to reduce even more the search space is to replace the per-
well activation bits by a single integer variable that represents the number of
active wells. Therefore, by rearranging the chromosome such that the active wells
appear before the inactive ones, the new chromosome has only N distinct possi-
bilities, as opposed to the former 2N possibilities of the chromosome presented
in Eq. (1), where is the maximum wells count. Then, our final space-efficient
chromosome reads:

x =
(
η,w1,w2, . . . ,wN

)
(4)

where w1 to wη are active wells.
The objective function is the NPV of the platform. The presented model

assumes there is only one platform, and it has all the active wells. There are some
models in the literature for calculating the NPV. The model from [1] uses discrete
time-steps from the simulator outputs, which reports the total production of oil
or gas and the total injection of water for each well and each period. After that,
the authors of [1] calculate the well profits per produced or injected volumes
and multiply them by the outputs of the simulator to determine the total profit
of each time-step. Ultimately, the NPV is the sum of all discounted time-step
profits. This model, however, considers only vertical or horizontal wells, which is
an oversimplification of the problem in question. Furthermore, we need to take
into account other costs associated with the wells, as the abandonment costs,
the costs depending on the wells length, the flowline costs, drilling complexity
costs, and others.

The proposed model is based on the work of [3], which models the NPV as
the sum of the NPV of all wells minus the platform cost. The platform cost is
the total expense of building a platform on the reservoir and it is a constant
specified beforehand. Conversely, the NPV of the well is dependent upon the

20 A. A. L. Cunha et al.

decision variable x and considers many aspects. The Eq. (5) depicts this model.

NPV =
N∑

k=1

NPVw(k) − CP (5)

In the Eq. (5), NPV and NPVw(k) are, respectively, the platform NPV and
the NPV of the kth well. Additionally, CP is the total platform cost. The NPV
of the well is the difference between the total present value of the income and
the well costs:

Algorithm 1 Boolean function ≤ (w1,w2).
1: procedure ≤ (w1,w2)
2: � wk = (̄ik, j̄k, k̄k, ik, jk, kk, τk)
3: if ī1 < ī2 then
4: return true
5: else if ī1 > ī2 then
6: return false
7: if j̄1 < j̄2 then
8: return true
9: else if j̄1 > j̄2 then

10: return false

11:
...

12: if k1 < k2 then
13: return true
14: else if k1 > k2 then
15: return false
16: if τ1 ≤ τ2 then
17: return true
18: else
19: return false

NPVw(k) = (1 − I) ·
T∑

t=1

R(k, t) − Co(k, t)
(1 + D)yt

− Cw(k), (6)

where t is the discrete time, T is the number of time-steps, R(k, t) is the revenue
between times t − 1 and t, Co(k, t) is the operational cost of the well between
times t − 1 and t, D is the annual discount rate and yt is the number of years
measured from the start of the reservoir operation to time t. Furthermore, I is
the tax rate, and Cw(k) is the cost of the kth well.

The revenue between times t − 1 and t is:

R(k, t) = Op(k, t) · Po(t) + Gp(k, t) · Pg(t) (7)

where Op(t), Po(t), Gp(t), and Pg(t) are, respectively, the oil production, the oil
price, the gas production and the gas price between times t − 1 and t. The pro-
ductions are a simulation output, whereas the prices are pre-specified quantities.

Optimum Wells Placement in Oil Fields . . . 21

The operational costs include the fixed costs of the well, the maintenance
expenses in the time-step, the variable expenses in the time-step, the royalties,
and the costs associated with the amount of fluid production or injection. The
Eq. (8) shows the general equation.

Co(k, t) =
[
CM · (yt − yt−1)

]

+ Cvf + Ry · R(k, t)

+
(

Op(k, t) · Opc + Gp(k, t) · Gpc+

Wp(k, t) · Wpc + Gi(k, t) · Gic+

Wi(k, t) · Wic

)
(8)

In the Eq. (8), CM is the maintenance cost per year, Cvf is a constant cost,
and Ry is the royalties percentage. Moreover, Opc is the oil production cost per
volume of oil, Gpc is the gas production cost per volume of gas, Wp(k, t) is the
water production of the kth well between times t−1 and t, and Wpc is the water
production cost per volume of water. Finally, Gi(k, t) is the gas injected between
times t − 1 and t, Gic is the gas injection cost per unit of gas volume, Wi(k, t)
is the amount of water injected into the kth well between times t − 1 and t, and
Wic is the water injection cost per unit of water volume.

The well development cost, Cw(k), is a complicated non-linear function of
the well length, the well position, the well inclination, and the well type. This
function includes the drilling costs, the distance between the kth well and the
platform, and the cost of shutting down the kth well. For simplicity, we choose
to omit this function herein.

To guarantee the physical meaning of the solution x, we should define suitable
restrictions involving the wells length, the wells pairwise distances and the total
well count. The positive integer constant N specifies the maximum number of
wells the platform could handle. Since this solution uses activation bits, ak, to
indicate whether the kth well exists or not, the decision variable x always have
N wells and the solution may have any number of wells from 0 to N .

For operational reasons, the length of each well should not exceed a maximum
constant length, L. This problem models the wells as line segments whose ends
are the centre points of the wells start and end blocks. Therefore, the well length
l(k) is simply the Euclidean distance between the line segments ends and, for
each well k, 1 ≤ k ≤ N , we have:

l(k) ≤ L (9)

Similarly, there is a minimum wells distance, that is, it is not possible to
place two wells closer than a minimum distance dmin. Hence, for each pair of
wells k1 and k2, k1 �= k2, we enforce the restriction:

d(wk1 ,wk2) ≥ dmin. (10)

22 A. A. L. Cunha et al.

Since the problem models the wells as line segments (Fig. 1), the distance
between two wells, d(wk1 ,wk2), is the minimum distance between the two line
segments that geometrically represent the wells wk1 and wk2 . In [22], the author
explains this problem in detail.

In conclusion, we seek the solution x, as defined in the Eq. (4), that max-
imises the NPV in Eq. (5), subject to the nonlinear restrictions (9) and (10).
The following section describes the algorithm this paper employs for solving this
problem efficiently on a digital computer.

Start Block
Start Point

Well Segment
End Block

End Point

Fig. 1. Representation of well in a grid

3.2 Solution to the Optimisation Problem

This work uses evolutionary algorithms to solve the optimisation problem of
the Sect. 3.1. In particular, we use a classical genetic algorithm and a more
modern approach, the cellular genetic algorithm [23,24]. The classical GA utilises
a chromosome representation that does not enforce the wells order and has one
activation bit for each well. On the other hand, the proposed CGA model uses
the space-efficient representation as mentioned earlier, which reduces the search
space by ensuring a certain wells order and by using a single gene to represent
the number of active wells, as opposed to activation bits.

The current work employs the chromosome of the Eq. (2). The fitness func-
tion is the NPV of the platform, as the Eq. (5) exhibits.

Both the cellular and classical genetic algorithms require mutation
and recombination operators. Since there are two possible chromosome

Optimum Wells Placement in Oil Fields . . . 23

representations, the optimisation model needs to develop these operators accord-
ing to each representation.

Mutation Operators
Mutation operates on a single individual, possibly generating a new (mutated)
individual. Our model employs two types of mutation: the activation mutation
and the uniform mutation. The former operates on the activation bits, thereby
not changing the relative order of the wells in the chromosome. The latter influ-
ences the position and type genes. Hence, it is possible that a solution satisfying
the order criterion Eq. (3) do not keep satisfying it after mutation.

The activation mutation is a simple random bit mutation. For each activation
bit, we sample a random number between 0 and 1 using a uniform distribution,
and if this random number is less than or equal to a mutation probability, the
activation bit is flipped. This mutation type is only meaningful if the represen-
tation uses activation bits.

Algorithm 2 Activation mutation.
1: procedure Act Mutate(x, p)
2: � x = (a1, . . . , aN ,w1, . . . ,wN).
3: � p is the gene mutation probability.
4: xnew ← x
5: for k ← 1 . . . N do
6: r ←Random(0,1)
7: if r ≤ p then
8: Flip ak of xnew

9: return xnew

Contrary to the activation mutation, the uniform mutation needs to distinct
between the two chromosome representations. For the orderless chromosome
representation, the algorithm 3 depicts the process.

The algorithm 3 first selects the gene to mutate. This gene can be a position
or a type gene. After that, it samples a random integer in the range of possible
values of the selected gene. Finally, it returns a copy of the original individual
with the new mutated gene. This algorithm, however, does not enforce the rela-
tive order of the wells of the individual, as in the equation Eq. (3). Therefore, it
takes a small modification to render this algorithm useful for the order-sensitive
representation.

The algorithm 4 shows how to guarantee that the mutated individual satisfies
the criterion (3) provided the original individual satisfy it. First, it tries to mutate
using the algorithm 3. If the mutation result does not meet the order, then it

24 A. A. L. Cunha et al.

attempts to mutate again. By doing so, it guarantees that all ordered individuals
have approximately equal probability of generation.

Recombination
Recombination operates on two inputs and generates two more individuals.
There are two types of recombination employed in the present work: the single
point crossover and the arithmetical crossover. The algorithms 5 and 6 describe
these two methods.

The function Round(v) rounds each element of the vector v to its nearest
integer. The authors of [3] explain the single point crossover and the arithmetic
crossover in detail. These operators are valid only for the representation that
does not emphasise the relative order of the wells in the chromosome.

Algorithm 3 Uniform mutation.
1: procedure Unif Mutate(x)
2: � x = (a1, . . . , aN ,w1, . . . ,wN).
3: k ←RandomInt(1, N)
4: i ←RandomInt(1, 7)
5: xnew ← x
6: min ← minimum of the ith gene of the kth well.
7: max ← maximum of the ith gene of the kth well.
8: r ←Random(min, max)� new gene value.
9: Replace the ith gene of the kth well of xnew by r.

10: return xnew

Algorithm 4 Uniform mutation (order-aware representation).
1: procedure Unif Mutate Order(x)
2: repeat
3: xnew ←Unif Mutate(x)
4: until xnew satisfies the Eq. (3)
5: return xnew

Algorithm 5 Single Point Crossover
1: procedure Single Cross(x1,x2)
2: Randomly choose an index i, 1 ≤ i ≤ 8N
3: left(x1) ← genes of x1 having index ≤ i.
4: left(x2) ← genes of x2 having index ≤ i.
5: right(x1) ← genes of x1 having index > i.
6: right(x2) ← genes of x2 having index > i.
7: x′

new ← left(x1) concatenated with right(x2).

8: x
′′
new ← right(x1) concatenated with left(x2).

9: return (x′
new,x

′′
new)

Optimum Wells Placement in Oil Fields . . . 25

Algorithm 6 Arithmetic Crossover
1: procedure Arith Cross(x1,x2)
2: α ← Random(0, 1)
3: x′

new ← Round(αx1 + (1 − α)x2)

4: x
′′
new ← Round((1 − α)x1 + αx2)

5: return (x′
new,x

′′
new)

Algorithm 7 Arithmetical Crossover for order-aware representation.
1: procedure Arith Cross Order(x1,x2)
2: repeat
3: (x′

new,x
′′
new) ←Arith Cross(x1,x2)

4: until x′
new and x

′′
new satisfy the Eq. (3)

5: return (x′
new,x

′′
new)

For the case of the order-aware representation, we modify the arithmetical
crossover similarly to the adaptation of the uniform mutation. We apply the
crossover until a pair of individuals that satisfy Eq. (3) is found. The algorithm
7 displays this procedure.

Population Initialisation
Initialising the population is the process of creating random individuals for the
first generation of the evolutionary algorithm. Since the Genocop III technique
requires a fully feasible initial population, we need to find a way to sample indi-
viduals from the feasible set of solutions. In other words, the sampling method
should be able to choose individuals from the set of all feasible individuals uni-
formly.

A naive solution would be to uniformly sample individuals until the required
number of feasible individuals is found. Therefore, if a sampled individual does
not satisfy one of the constraints, then it is discarded, and the process continues
to sample new individuals. Algorithm 8 depicts this method.

The main drawback of algorithm 8 becomes clear whenever the feasible search
space is small when compared to the whole search space. In this case, the prob-
ability of uniformly choosing a chromosome that satisfies all the constraints is
small; thus it might take too long to find a valid initial population. Therefore,
this article proposes to sample individuals based on a distribution function that
has small probability in infeasible subsets of the search space and has a higher
(and almost uniform) probability within feasible subsets of the search space.

The chosen algorithm to draw samples from a pre-specified custom distri-
bution is the Metropolis-Hastings method [20,21]. This algorithm requires the
definition of the target density function Π(x) and a conditional density function
Q(x|x′) (so-called the candidate’s proposal or kernel). Given a current sampled
individual xt, a new sample is drawn from the conditional Q density, and it is
kept if it has likelihood greater than the current sample likelihood. Algorithm 9
explains in detail the Metropolis-Hastings scheme.

26 A. A. L. Cunha et al.

Algorithm 8 Naive Sampling
1: procedure Naive Sampling(pop size)
2: pop size counter ← 0
3: repeat
4: sample new individual x
5: if x is feasible then
6: pop size counter ← pop size counter + 1

7: until pop size counter = pop size

Algorithm 9 Metropolis Hastings Sampling
1: procedure Metropolis Hastings Sampling(pop size)
2: pop size counter ← 0
3: t ← 0
4: x0 ← sample from Π(x)
5: repeat
6: draw sample Y from Q(x|xt)
7: a1 ← Π(x)/Π(xt)

8: a2 ← Q(xt|x)/Q(x|xt)

9: a ← a1 · a2

10: if a ≥ 1 then
11: xt+1 ← Y
12: else

13: xt+1 ←
{
Y with probability a

xt with probability 1 − a

14: t ← t + 1
15: if xt+1 is feasible then
16: pop size counter ← pop size counter + 1

17: until pop size counter = pop size

We use the algorithm 9 to sequentially draw samples from the distribution
Π(x) until the required number of feasible individuals is found, similarly to
the case of the random sampling mentioned earlier. However, since our method
designs the distribution Π(x) so that it has higher probabilities within feasible
subsets of the search space, this proposed scheme tends to be faster and more
reliable than the naive solution. The next few paragraphs explain in detail how
to design the function Π(x) based on the maximum well length constraint of
Eq. (9) and the minimum pairwise wells distance constraint of Eq. (10).

Hence, we write the density function Π(x) as a product of two density func-
tions, namely Πd(x) and Πl(x):

Π(x) = Πd(x) · Πl(x) (11)

The density Πd does not value individuals that have pairs of wells too close
to each other. More clearly, if the minimum allowed pairwise wells distance is
dmin, then:

Optimum Wells Placement in Oil Fields . . . 27

Πd(x) =
∏

(r,s)

Πdw(wr,ws)

Πdw(wr,ws) =

{
A tanh

(
ζ(λ − 1)

)
+ 1 λ ≤ 5

νe5−λ λ > 5
(12)

where

ν = 1.9
ζ = 10.0

A =
ν − 1

tanh(4ζ)

λ =
d(wr,ws)

dmin
(13)

Thus, as the wells distance of a particular pair of wells of the individual x
approaches 0, the value of Πd(x) decreases, as expected. The same happens if the
distance between a pair of wells approaches infinity because the function Πd(x)
should be integrable. If all pairs of wells of the individual x satisfy 1 ≤ λ ≤ 5,
the value of Πd(x) is high and almost constant, as expected (see Fig. 2).

The next function is Πl(x), which should be high for chromosomes whose
wells are large, but smaller than the maximum well size. The proposed func-
tion is:

Πl(x) =
N∏

r=1

Πlw(wr)

Πlw(wr) =

⎧
⎪⎪⎨

⎪⎪⎩

[

1 +
(

l(r)
L − 1

)2
]−1

l(r) ≤ L

exp −ζ
(

l(r)
L − 1

)
l(r) > L

(14)

where l(r) is the length of the well wr and L is the maximum allowed length of
a well.

As the length of the well increases towards the maximum allowable size L,
the likelihood approaches the maximum value 1. Furthermore, as the well length
increases above its maximum allowed value, the value of Πl(x) vanishes, which
guarantees both the low probability of having large sized wells and the integra-
bility of Πl(x). The Fig. 3 shows how Πlw behaves.

In this work, we compared the naive approach to the proposed Metropolis-
Hastings generator. The Sect. 4 specifies the results in detail.

The Evolutionary Algorithms
The article [3] explains the classical genetic algorithm (GA). It uses the Genocop
III (Genetic Algorithm for Numerical Optimization of Constrained Problems III)
technique [19] to handle black-box constraints. Additionally, for generating an

28 A. A. L. Cunha et al.

Fig. 2. Likelihood function of the wells distance

Algorithm 10 Description of the CGA algorithm.
1: procedure Evolve CGA(gen)
2: repeat
3: pop ← random feasible population
4: for each individual ind in pop do
5: parent1 ← random neighbor of ind
6: parent2 ← random neighbor of ind
7: child ← Recombinate(parent1, parent2)
8: indnew ← Mutate(child)
9: Evaluate(indnew)

10: if indnew evaluation ¿ ind evaluation then
11: Replace ind by indnew

12: until gen ≥ genmax

13: return Best Solution

initial population, the algorithm randomly creates chromosomes until it finds a
sufficient number of feasible individuals.

On the other hand, the cellular genetic algorithm (CGA) is a variation of the
standard GA that enforces a unique geographic location for every individual. As
a result, the selection operation takes the individuals locations into account, so
the algorithm restricts the recombination to neighbour individuals. Moreover,
the substitution operates only on individuals with the same geographic location,
so a solution is replaced by a new one only if the new individual is better and has
the same geographic position. The authors of [23] make a comparison between
classical genetic algorithms and cellular genetic algorithms. Additionally, [10]
explains in detail how CGA works. The Fig. 4 and the algorithm 10 illustrates
the CGA workflow.

For handling black-box constraints, we propose in the next few paragraphs
a variation of Genocop III suitable for the concept of geographic locations the
CGA uses.

Optimum Wells Placement in Oil Fields . . . 29

The Genocop III works by maintaining two separate populations: a search
population and a reference population. The reference population is generated at
the start of the optimisation during the initial population sampling, and it should
not contain infeasible individuals. Conversely, the search population consists of
individuals used by the optimisation. Whenever an invalid individual appears,
it goes through a repair process that converts it into a feasible one.

Repairing infeasible individuals consists of selecting one of the reference indi-
viduals and applying arithmetic crossover between the infeasible and the refer-
ence individuals until a new feasible individual is known. Equivalently, the indi-
viduals can be interpreted as points so that r is the reference point and s is
the search point. Thereby, the process creates a segment between s and r and
chooses a random point z where z = as + (1 − a)r and a is a random number
between 0 and 1. If z is infeasible, then the process is repeated until a valid z is
known. After that, z replaces the infeasible point s (see Fig. 5).

Fig. 3. Likelihood function of the well length

The CGA, unlike the traditional GA, arranges each individual to a deter-
mined geographic location. The purpose of the geographic locations is to main-
tain a healthy population diversity during the evolution process. Therefore, using
a random reference individual to repair the infeasible individuals would com-
pletely disregard the locations of the individuals, since the reference individual
of the Genocop III technique does not emphasise position. Hence, we propose to
discard the reference population and to employ as the reference the last known
feasible individual in the same location. This scheme maintains the property
that each individual is influenced only by its nearby neighbours.

3.3 Algorithm Adaptation to Problems with Uncertainties

To model well placement problems having uncertainties in the geophysical para-
meters, we use the concept of geological scenarios. Geological scenarios are ver-
sions of the geological model constructed from samples of the geophysical para-
meters distribution.

30 A. A. L. Cunha et al.

Typical geophysical parameters are modelled as random variables, usually
uniformly distributed from a possible range of values. These variables include
the reservoir porosity and the reservoir permeability. The geological scenarios
are constructed from samples of the porosity and permeability samples, and
each scenario is a concrete reservoir model ready to simulate.

Fig. 4. Sketch of the CGA algorithm

Therefore, the uncertainty in a specific parameter is modelled as a set of
geological scenarios. Since each scenario has its specific net present value and its
specific probability of occurrence, the all-scenario net present value is defined as
the expected value of the NPV calculated as:

E[NPV] =
N∑

i=1

pi · NPVs
i , (15)

where NPVs
i is the NPV of the geological scenario i and pi is its probability of

occurrence. The value pi is provided beforehand.
Consequently, the fitness evaluation now consists of not only one, but many

simulations, because we need many geological scenarios to represent the reser-
voir. Additionally, the number of NPV computations is also multiplied by the
number of geological scenarios, since we need to calculate a NPV for each scenario
and the compute Eq. (15). After these modifications, the algorithms proposed
in Sect. 3.2 are still valid and their result is now an optimal wells placement
alternative that is robust to geological uncertainties.

4 Experiments and Results

This section splits the experiments into two parts: the initialisation part and
the optimisation part. The initialisation experiments concern on comparing the

Optimum Wells Placement in Oil Fields . . . 31

performance of the naive and the enhanced initialisation algorithms described
in Sect. 3.2, whereas the optimisations compare the effect of the optimisation
models on the final solution.

Fig. 5. Sketch of the Genocop III heuristic

4.1 Population Initialisation Experiments

To compare the performance of the Metropolis-Hastings method to the perfor-
mance of the naive method, we generated 1000 individuals using both algorithms
and counted how many of them were feasible. The model used was the UNISIM-I
[25], from UNICAMP. We varied the minimum wells distance from 100 to 500
meters and the maximum wells length from 500 to 2000 meters, and we set the
number of wells of each individual to 20.

Table 1. Count of feasible individuals found after 1000 samples using the naive and the
proposed algorithms for a given maximum allowed well length and minimum allowed
pairwise wells distance

Max. length (m) Min. distance (m) Naive method Proposed method

500 100 1 77

2000 100 108 649

500 500 13 381

2000 500 46 302

32 A. A. L. Cunha et al.

Table 1 shows the results of the experiment. As the minimum wells distance
increases (second column), is becomes harder to find an alternative that respects
the minimum wells distance for every pair of wells (there are 190 pairs of wells).
However, the Metropolis-Hastings approach still can find a significant number
of feasible alternatives, whereas the naive approach cannot.

Moreover, the same pattern is observable when the maximum well length
(first column) is constrained to small values. For example, after 1000 samples,
the naive approach found one feasible individual for a maximum well length of
500 m (row 1), while the Metropolis-Hastings approach found 77.

We conclude that the proposed technique is more efficient to find the initial
population when it requires that all individuals be feasible. From now on, all the
following experiments use the proposed technique.

4.2 Optimisation Experiments

The experiments were divided into three classes: classical GA with orderless rep-
resentation, classical GA with order-aware representation and CGA with order-
aware representation. Since the orderless chromosome implies a bigger search
space due to increased redundancy, it is expected better results with the order-
aware chromosome.

The experiments aimed to maximise the NPV of exploring the UNISIM syn-
thetic reservoir model [25]. This model has two flavours: the black-oil version,
which simulates in the IMEX simulator [11], and the compositional model ver-
sion, which simulates in the GEM simulator. The typical simulation time ranges
from 2 to 10 min. Therefore, possible optimisations cannot have much more than
a thousand fitness function evaluations, or it would take too long to complete.

This work placed the experiments in the OCTOPUS 2 reservoir management
platform [2], by developing a new optimisation plug-in. This way, we were able to
focus solely on the scientific aspects of the experiments, namely the evolutionary
algorithms and the optimisation results.

Both the classical GA and the CGA used binary tournament selection, where
the winning probability is proportional to the fitness value. Further, the algo-
rithms utilised the appropriate arithmetic crossover for the chromosome and,
more specifically, the classical GA with orderless representation also adopted
the single point crossover. Finally, both algorithms employed a “replace if bet-
ter” substitution principle, where the new individuals replace the older ones only
if they have a better fitness.

Additionally, the CGA algorithm employed an adaptive grid scheme to main-
tain a healthy population diversity. This paper uses the technique of [10] to con-
trol the entropy of the population. Whenever the entropy is decaying too fast,
it changes the grid to a more narrow shape, thus making it harder to propagate
the best individuals. Conversely, whenever the entropy is decaying too slowly
(or decaying at all), it reshaped the grid to make it more square, thus allowing
a faster convergence rate. Hence, it avoided convergence to local maxima and
maximised the chances of finding the global maximum of the problem.

Optimum Wells Placement in Oil Fields . . . 33

Table 2 summarises the parameters used in each experiment. In particular,
the CGA needs the threshold ε, which controls the grid shape switching proce-
dure. As we show, we tried to make the experiments as even as possible, so we
believe the comparisons among their results are fair.

Table 2. Summary of the optimization parameters

Classical GA Cellular GA

Population size 24 48

Generations 50 25

Mutation rate 10%–70% 10%–70%

Mutation Uniform and activation Uniform and activation

Recombination Single Pt. and arithmetic Arithmetic

Threshold ε – 0.05

Max. wells (N) 20 20

Wells radii 0.0762 m 0.0762 m

In addition to the optimisation parameters, a typical economic scenario is
shared for all experiments. Specifying herein all the constants of the Eqs. (5)–(7)
would be impractical, so Table Table 3 exhibits only a few of them.

The Figs. 6, 7 and 8 illustrate the results, respectively, of the classical GA with
orderless and ordered chromosomes and the CGA with ordered chromosome.
All experiments executed 10 times, and the plots display the averaged NPV.
Moreover, all three experiments had about 800 evaluations of the fitness function,
and thus they took about the same total time to complete. Since the CGA

Table 3. Economic scenario parameters

Quantity Unit Value

Platform cost (Cp) billion US$ 1.48

Oil price (Po) US$/m3 250.00

Gas price (Pg) US$/m3 0.05

Oil prod. cost (Opc) US$/m3 40.00

Water prod. cost (Wpc) US$/m3 2.00

Water inj. cost (Wic) US$/m3 2.00

Gas inj. cost (Gic) US$/m3 0.002

Gas prod. cost (Gpc) US$/m3 0.002

Tax rate (I) % 34.00

Discount rate (D) % 9.00

34 A. A. L. Cunha et al.

Fig. 6. Average of 10 runs of the CGA algorithm using the order-aware representation

method used an entropy based control of diversity, the entropy is a secondary
axis in the plot in Fig. 6.

On average, the proposed representation using order-aware chromosomes
reaches an optimum with roughly 6 to 10 times bigger NPV. In particular, the
CGA version performs better than the GA with order-aware chromosome by a
factor of 2, which was concluded by comparing the curves “best” of Figs. 6 and
8. Also, its is possible to note that the average individual of the CGA with the
ordered representation reaches an 1 billion NPV in generation 3, whereas the
best solution of the classical GA with orderless representation does not find this
value at all. Hence, we tend to think that the chromosome representation that

Fig. 7. Average of 10 runs of the GA algorithm using the orderless representation

Optimum Wells Placement in Oil Fields . . . 35

enforces the relative wells order is more efficient than the traditional orderless
representation.

Fig. 8. Average of 10 runs of the GA algorithm using the order-aware representation

Table 4 compares the final results of the three optimisation models. The “rel-
ative” results use the formula [NPV(end)−NPV(1)]/|NPV(1)|, where NPV(end) is the
final NPV and NPV(1) is the initial NPV. As it can be checked from the row
“Best NPV”, the cellular GA gives the higher final result, with over 3 billion
US$ for the best individual and the average population fitness. On the other
hand, traditional GA with orderless representation yields the worst result of the
three models. Additionally, it can be observed that the relative improvements are
also bigger whenever we employed the proposed order-aware chromosome. Hence,
these findings reflect the consequences of integer optimisation with smaller search
spaces.

When comparing conventional to cellular GA with the proposed representa-
tion, we concluded that the CGA is better than the standard GA, for the CGA
finds more adapted individuals on an average of 10 experiments. This fact is
observable by comparing the “average” curves of Figs. 6 and 8. In theory, this
behaviour relates to the controlled diversity nature of the CGA. In our experi-
ment, the population entropy is controlled during the evolution, thereby avoiding
local maxima, which is a weakness of the classical GA.

Finally, we compared the performance of the proposed method and the con-
ventional GA for a typical optimisation under uncertainty scenario. Our exper-
iment used the UNISIM-I oil field with 5 different geological scenarios, with
probabilities of occurrence equal to 10%, 10%, 20%, 20%, and 50%. Therefore,
there were 2 low probability scenarios, 2 medium probability scenarios, and a
high probability one. The expected NPV was calculated using Eq. (15).

36 A. A. L. Cunha et al.

Table 4. Comparison among the three models after 10 runs. The rows “relative” show
the relative improvement of the algorithm

GA (orderless) GA (ordered) CGA (ordered)

Best NPV(US$) 0.45786 × 109 1.7747 × 109 3.2341 × 109

Relative best 377% 462% 15%

Average NPV 0.39411 × 109 1.7137 × 109 3.1861 × 109

Relative average 280% 879% 760%

Table 5. Comparison among the three models after 10 runs for the multi-scenario
optimisation. The rows “relative” show the relative improvement of the algorithm

GA (orderless) GA (ordered) CGA (ordered)

Best NPV(US$) 0.33572 × 109 1.28813 × 109 1.48871 × 109

Relative best 402% 382% 69%

Average NPV 0.39411 × 109 1.7137 × 109 3.1861 × 109

Relative average 280% 488% 255%

The Table 5 shows that the CGA with order-aware chromosome finds the
solution with highest expected NPV. Since the multi-scenario experiment has
some poor geological scenarios, the maximum expected NPV is smaller than the
NPV on Table 4. We conclude that the proposed CGA + order-aware model is
the best option for optimising the wells placement problem, even in the presence
of uncertainties.

5 Conclusions

This work presented two new approaches for the wells placement and type opti-
misation problem using evolutionary algorithms. These are the CGA algorithm
with an adapted version of the Genocop III algorithm and the space-efficient
order-aware chromosome model. We also presented a new efficient way to find a
random feasible initial population based on Monte-Carlo sampling.

The Sect. 2 depicted the fundamental problem approached, explaining its
discrete nature, the need for a reservoir simulator and the adopted idea of max-
imising the net present value of the reservoir under analysis. Then, the Sect. 3
proposed the order-aware representation, in contrast to the classical chromo-
some utilised for representing the wells alternatives. Next, the text describes
the conventional and cellular genetic algorithms, emphasising the CGA is a new
approach to this kind of optimisation problem. Finally, the Sect. 4 presented the
experiments in two parts.

The first part compared the new population initialisation model to the tra-
ditional naive initialisation. The proposed Monte-Carlo based initialisation per-

Optimum Wells Placement in Oil Fields . . . 37

formed better than the traditional naive approach, especially for highly con-
strained optimisations. Therefore, we conclude that it should be used to find a
feasible initial population on the experiments to follow.

Then, we presented three optimisation experiments: classical GA with the
traditional representation and with the proposed order-aware representation and
the CGA with the proposed order-aware representation. The findings showed
that the order-aware chromosome is better, for the experiments that used it con-
verged to higher NPV. We believe that this better behaviour is due to reduced
search space since the proposed order-aware chromosome reduces the redundancy
of individuals because there is only one possible representation of each decoded
physical implementation. Moreover, we also observed that the CGA performed
better than the traditional GA, for the average population and the best individ-
ual of the CGA evolved to a higher NPV. We credit it to the population diversity
control that is a natural part of the CGA algorithm, and that is absent from the
classical GA. Hence, the CGA features a smaller probability of hanging in local
maxima of the fitness function than the standard GA.

The presented model is widely applicable beyond the area of oil field opti-
misation. In particular, the concept of an order-aware chromosome that is space
efficient is relevant for any integer optimisation problem using evolutionary algo-
rithms. Additionally, being able to efficiently find random feasible initial popu-
lations on highly constrained optimisation problems is always a challenge in the
field of evolutionary algorithms, and our model based on Metropolis-Hastings
sampling worked fairly well. Finally, it is important to notice that any improve-
ment in the area of oil field optimisation increases the economic viability of
reservoirs and is of particular concern to top oil companies in the world. There-
fore, we consider this work highly relevant for the oil & gas industry.

References

1. Yeten, B., Durlofsky, L.J., Aziz, K., et al.: Optimization of nonconventional well
type, location and trajectory. In: SPE Annual Technical Conference and Exhibi-
tion. Society of Petroleum Engineers (2002)

2. Lima, R., Abreu, A.C., Pacheco, M.A., et al.: Optimization of reservoir develop-
ment plan using the system octopus. In: OTC Brasil. Offshore Technology Confer-
ence (2015)

3. Emerick, A.A., Silva, E., Messer, B., Almeida, L.F., Szwarcman, D., Pacheco,
M.A.C., Vellasco, M.M.B.R., et al.: Well placement optimization using a genetic
algorithm with nonlinear constraints. In: SPE Reservoir Simulation Symposium.
Society of Petroleum Engineers (2009)

4. Morales, A.N., Gibbs, T.H., Nasrabadi, H., Zhu, D., et al.: Using genetic
algorithm to optimize well placement in gas condensate reservoirs. In: SPE
EUROPEC/EAGE Annual Conference and Exhibition. Society of Petroleum Engi-
neers (2010)

5. Bittencourt, A.C., Horne, R.N., et al.: Reservoir development and design optimiza-
tion. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum
Engineers (1997)

38 A. A. L. Cunha et al.

6. Nasrabadi, H., Morales, A., Zhu, D., Well placement optimization: a survey with
special focus on application for gas/gas-condensate reservoirs. J. Nat. Gas Sci. Eng.
5, 6–16 (2012)

7. Jesmani, M., Bellout, M.C., Hanea, R., Foss, B.: Well placement optimization
subject to realistic field development constraints. Comput. Geosci. 20(6), 1185–
1209 (2016)

8. Siavashi, M., Tehrani, M.R., Nakhaee, A.: Efficient particle swarm optimization
of well placement to enhance oil recovery using a novel streamline-based objective
function. J. Energy Resour. Technol. 138(5), 052903 (2016)

9. Al Dossary, M.A., Nasrabadi, H.: Well placement optimization using imperialist
competitive algorithm. J. Pet. Sci. Eng. 147, 237–248 (2016)

10. Bernabe Dorronsoro, E.A.: Cellular Genetic Algorithms. Springer (2008)
11. Three-Phase, black-oil reservoir simulator, CMG (Computer Modeling

Group Ltd.) (2015). https://www.cmgl.ca/uploads/files/pdf/SOFTWARE/
2015ProductSheets/IMEX Technical Specs 15-IM-04.pdf

12. Gaspar, A.T., Avansi, G.D., dos Santos, A.A., von Hohendorff Filho, J.C., Schiozer,
D.J.: Unisim-id: Benchmark studies for oil field development and production strat-
egy selection. Int. J. Model. Simul. Pet. Ind. 9(1) (2015)

13. Trangenstein, J.A., Bell, J.B.: Mathematical structure of the black-oil model for
petroleum reservoir simulation. SIAM J. Appl. Math. 49(3), 749–783 (1989)

14. Rankin, R., Riviere, B.: A high order method for solving the black-oil problem in
porous media. Adv. Water Res. 78, 126–144 (2015)

15. Kozlova, A., Li, Z., Natvig, J.R., Watanabe, S., Zhou, Y., Bratvedt, K., Lee, S.H.,
et al.: A real-field multiscale black-oil reservoir simulator. SPE J. (2016)

16. Thiele, M.R., Batycky, R.P., Blunt, M.J., et al.: A streamline-based 3d field-scale
compositional reservoir simulator. In: SPE Annual Technical Conference and Exhi-
bition. Society of Petroleum Engineers (1997)

17. Coats, K.H., et al.: An equation of state compositional model. Soc. Pet. Eng. J.
20(05), 363–376 (1980)

18. Qiao, C., Khorsandi, S., Johns, R.T., et al.: A general purpose reservoir simula-
tion framework for multiphase multicomponent reactive fluids. In: SPE Reservoir
Simulation Conference. Society of Petroleum Engineers (2017)

19. Michalewicz, Z., Nazhiyath, G.: Genocop iii: a co-evolutionary algorithm for numer-
ical optimization problems with nonlinear constraints. In: 1995, IEEE International
Conference on Evolutionary Computation, vol. 2, pp. 647–651. IEEE (1995)

20. Griffin, J.E., Walker, S.G.: On adaptive metropolis–hastings methods. Stat. Com-
put. 23(1), 123–134 (2013). http://dx.doi.org/10.1007/s11222-011-9296-2

21. Yildirim, I.: Bayesian inference: metropolis-hastings sampling. Department of
Brain and Cognitive Sciences, Univ. of Rochester, Rochester, NY (2012)

22. Eberly, D.: Robust computation of distance between line segments. Geometric
Tools, LLC, Technical report (2015)

23. Gong, Y.-J., Chen, W.-N., Zhan, Z.-H., Zhang, J., Li, Y., Zhang, Q., Li, J.-J.:
Distributed evolutionary algorithms and their models: a survey of the state-of-the-
art. Appl. Soft Comput. 34, 286–300 (2015)

24. Zhao, Y., Chen, L., Xie, G., Zhao, J., Ding, J.: Gpu implementation of a cellular
genetic algorithm for scheduling dependent tasks of physical system simulation
programs. J. Comb. Optim. 1–25 (2016)

25. Avansi, G.D., Schiozer, D.J.: Unisim-i: Synthetic model for reservoir development
and management applications. Int. J. Model. Simul. Pet. Ind. 9(1) (2015)

https://www.cmgl.ca/uploads/files/pdf/SOFTWARE/2015ProductSheets/IMEX_Technical_Specs_15-IM-04.pdf
https://www.cmgl.ca/uploads/files/pdf/SOFTWARE/2015ProductSheets/IMEX_Technical_Specs_15-IM-04.pdf
http://dx.doi.org/10.1007/s11222-011-9296-2

http://www.springer.com/978-3-319-69265-4

	Optimum Wells Placement in Oil Fields Using Cellular Genetic Algorithms and Space Efficient Chromosomes
	1 Introduction
	2 Problem Description
	3 Methodology
	3.1 Mathematical Formulation
	3.2 Solution to the Optimisation Problem
	3.3 Algorithm Adaptation to Problems with Uncertainties

	4 Experiments and Results
	4.1 Population Initialisation Experiments
	4.2 Optimisation Experiments

	5 Conclusions
	References

