
Chapter 2
Quantum Fluctuations in Linear Systems

Here are some words which have no place in a formulation with
any pretension to physical precision: system, apparatus,
environment, microscopic, macroscopic, reversible, irreversible,
observable, information, measurement.

John Bell

Despite John Bell’s eloquent tirade against the arbitrary division of the universe
into a system surrounded by an environment, the experimental physicist, due to his
limited means of enquiry, is forced to subscribe to a well-defined notion of what
is considered the system under study. In the example relevant to this thesis, it is a
macroscopic mechanical oscillator. Everything beyond, is the environment. In this
sense, the measuring device—the meter—is a form of environment, the crucial dif-
ference being that the experimenter has the ability to prepare it in well-characterised
(quantum) states. In this thesis, the meter is an electromagnetic field that interacts
with the oscillator.

The purpose of this chapter is to provide a reasonably self-contained presen-
tation of a few basic results pertaining to a certain class of interactions—linear
interactions—between a system and its environment.When the environment in ques-
tion is a thermal bath at finite temperature, classical (thermal) fluctuations drive the
system; at zero temperature, quantum (vacuum) fluctuations remain. When the envi-
ronment is a meter, fluctuations from the meter excite the system, an effect called
measurement back-action; when the meter is prepared in a pure quantum state—
measurement back-action is due to quantum fluctuations in its degrees of freedom,
i.e. quantum back-action. Ultimately, for an ideal measurement chain—a system in
contact with a zero-temperature thermal environment measured by a meter limited
by quantum fluctuations—the output of the meter will feature an additional source of
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14 2 Quantum Fluctuations in Linear Systems

quantum fluctuations, called measurement imprecision, which, together with quan-
tum back-action, constraints the precision with which the system can be measured.
The rest of the chapter systematically unravels this tale.

2.1 Kinematics of Fluctuations in Quantum Mechanics

In the following we adopt the standard mathematical formalism of quantummechan-
ics [1, 2]: to every system (not necessarily the system) is associated a Hilbert space1;
the states of the systemare the positive, unit-trace operators. The relation between this
abstract construct and the outcomes of experiments is through a set of distinguished
operators called observables, defined as follows.

Definition 2.1 (Observable) The observables are the self-adjoint operators in the
Hilbert space of the system.

If the system is repeatedly prepared in a definite state, say ρ̂, and one of the observ-
ables, say X̂ , is measured per preparation, the outcomes will be random real numbers
drawn from the eigenspectrum of the observable (self-adjointedness guarantees that
the eigenspectrum is real [1, 2, 5]). This random variable is drawn according to a
probability distribution.2 The fluctuations of the random variable can be associated
with the operator,

δ X̂ := X̂ −
〈
X̂

〉
, where,

〈
X̂

〉
= Tr[X̂ ρ̂].

In a large variety of cases, the statistical dispersion in the random variable may be
quantified by the variance,

Var
[
X̂

]
:=

〈
δ X̂†δ X̂

〉
=

〈
δ X̂2

〉
. (2.1.1)

In light of the following fact, the variance is positive.

Lemma 2.1 (Operator positivity) For any operator Â, not necessarily self-adjoint,

it is true that
〈
Â† Â

〉
≥ 0; i.e. Â† Â is a positive operator.

Proof Consider that the state ρ̂ over which the expectation is taken, is represented
as,

1It turns out that, on technical grounds, the framework of Hilbert space is too restrictive to realize the
flexibility of Dirac’s formulation of quantum mechanics [3, 4]; here, we will however be satisfied
with using the Dirac formalism rather than justifying each step of the usage rigorously.
2A peculiarity of quantummechanics is that although the value taken by each observable, for a fixed
state, can be assumed to be drawn from a classical probability distribution (exhibited in Appendix
A), there is generally no joint probability distribution for the values of a set of operators [6].
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ρ̂ =
∑
i

pi |ψi 〉〈ψi |,

where, pi ≥ 0, and, 〈ψi |ψ j 〉 = δi j ; such a representation is always possible [2].
Evaluating the expectation value gives,

〈
Â† Â

〉
= Tr[ Â† Âρ̂] = Tr

[
Â† Â

∑
i

pi |ψi 〉〈ψi |
]

=
∑
i

pi 〈ψi | Â† Â|ψi 〉 =
∑
i

pi‖ Â|ψi 〉‖2,

which is always positive by the property of norms on Hilbert space. �

The mathematical structure of quantum mechanics dictates that the variances of
a pair of observables, say X̂ , Ŷ , satisfies the inequality (see Appendix A for a proof
and further discussion),

Var
[
X̂

]
Var

[
Ŷ

]
≥ 1

4

∣∣∣
〈{

δ X̂ , δŶ
}〉∣∣∣

2 + 1

4

∣∣∣
〈[

δ X̂ , δŶ
]〉∣∣∣

2 ≥ 1

4

∣∣∣
〈[

δ X̂ , δŶ
]〉∣∣∣

2
,

(2.1.2)

conventionally called the uncertainty principle. The first inequality (due to Robert-
son [7] and Schrödinger [8] for pure states) is saturated for pure states defined as
eigenstates of the operator αXδ X̂ + αY δŶ , with the constants αX,Y chosen to maxi-
mize the correlation term 〈{δ X̂ , δŶ }〉 [9]. In contrast, the second (looser) inequality
(due to Heisenberg [10], Kennard [11], and Weyl [12]), obtained by omitting the
correlation term, is saturated by the same eigenstates for any value of the constants
αX,Y .

The physical content of the uncertainty principle (Eq.2.1.2) is that the measure-
ment outcomes of the pair of observables X̂ , Ŷ , on identical and independent prepa-
rations of the system, have a fundamental statistical dispersion. It is thus a purely
kinematic statement devoid of any a priori relevance to the notion of “simultane-
ous”, or “sequential” measurements.3 It is best interpreted to mean that there exists
no state which is jointly dispersion-free for certain pairs of observables—a distinctly
quantum mechanical feature [6, 17].

Before describing an approach to treating outcomes of continuous measurements,
and in an act of foresight,we generalize the definition of the variance of an observable,
given in Eq. (2.1.1), to the case of a general operator. Following [18], the variance of
an operator Â, not necessarily self-adjoint, is defined by,

Var
[
Â
]

:= 1

2

〈{
δ Â†, δ Â

}〉
. (2.1.3)

When Â is self-adjoint, this reduces to the standard definition in Eq. (2.1.1); but when
it isn’t, Lemma 2.1 still ensures that,

3Attempts to formulate inequalities applicable to sequential measurements [13–16] give results
very different from Eq. (2.1.2).
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Var
[
Â
]

≥ 0.

Since any non-self-adjoint operator has a Cartesian decomposition in terms of
two self-adjoint operators, i.e. Â = X̂ + i Ŷ , for X̂ , Ŷ self-adjoint, the uncertainty
inequality in Eq. (2.1.2) satisfied by the Cartesian components implies a bound for
the variance of the corresponding non-self-adjoint operator. The following lemma
codifies the resulting inequality.

Lemma 2.2 Forany (not necessarily self-adjoint) operator Â, the following inequal-
ity holds [18],

Var[ Â] ≥ 1

2

∣∣∣
〈[
Â†, Â

]〉∣∣∣ . (2.1.4)

Proof Denoting the Cartesian decomposition, Â = X̂ + i Ŷ , direct computation
shows that the variance, defined by Eq. (2.1.3), takes the form,

Var
[
Â
]

= Var
[
X̂

]
+ Var

[
Ŷ

]
.

The sum on the right-hand side can be bounded by the arithmetic-geometric mean
inequality,4 and subsequently the Heisenberg form of the inequality in Eq. (2.1.2),
leading to,

Var
[
Â
]

≥ 2

√
Var

[
X̂

]
Var

[
X̂

]
≥

∣∣∣
〈[

δ X̂ , δŶ
]〉∣∣∣ =

∣∣∣∣
〈
1

2i

[
δ Â†, δ Â

]〉∣∣∣∣ .

�

2.1.1 Operational Description of Fluctuations in Time

In order to treat system observables varying in time, the Heisenberg picture is most
convenient: the system is in some time-independent state ρ̂, while its observables
undergo fluctuations due to the pervasive environment that the system is in contact
with. These fluctuations are reflected in the observables as deviations from theirmean
values, viz.

δ X̂(t) = X̂(t) − Tr
[
ρ̂ X̂(t)

]
.

The fluctuating part, δ X̂(t), represents a continuous random variable—stochastic
process—taking values in the set of observables.

4For positive real numbers x, y, it is true that x + y ≥ 2
√
xy; this follows from the identity, (

√
x −√

y)2 ≥ 0.
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In the following, we employ an operational description of the statistical properties
of the operator-valued stochastic process.5 In order to resolve the variance of the
process over the different time scales overwhich the fluctuations happen, we consider
the windowed Fourier transform,6

δ X̂ (T )[�] := 1√
T

∫ T/2

−T/2
δ X̂(t)ei�t dt, (2.1.5)

which is in general non-hermitian. The definition of the variance of a non-hermitian
operator in Eq. (2.1.3) then implies,

Var
[
δ X̂ (T )[�]

]
= 1

2

〈{
δ X̂ (T )[�]†, δ X̂ (T )[�]

}〉

= 1

T

∫ T/2

−T/2

1

2

〈{
δ X̂(t), δ X̂i (t

′)
}〉

ei�(t−t ′) dt dt ′

= 1

T

∫ T/2

−T/2

1

2

〈{
δ X̂(t − t ′), δ X̂(0)

}〉
ei�(t−t ′) dt dt ′

=
∫ T/2

−T/2

1

2

〈{
δ X̂(τ ), δ X̂(0)

}〉
ei�τ

(
1 − |τ |

T

)
dτ.

Note that here and henceforth we assume processes are weak-stationary, i.e. that
their first and second moments are time-translation invariant. In the limit T → ∞
(i.e. the limit of infinite resolution in frequency), this variance defines the function,

S̄X X [�] := lim
T→∞Var

[
δ X̂ (T )[�]

]
=

∫ ∞

−∞

〈
1

2

{
δ X̂(t), δ X̂(0)

}〉
ei�t dt, (2.1.6)

characterising the distribution of the variance of the process about each frequency.
The second equality, giving the value of the limit, is the analogue of the Wiener-
Khinchine theorem [25, 26].

5There exists two, progressively finer, levels of description of the evolution of a quantum system
in contact with an environment. The coarse description concerns itself with the time evolution of
observables, and some of its statistics. The finer description addresses the question of how the
quantum state itself changes. The former is subsumed by the latter in a variety of equivalent ways
[19–23].
6The normalisation warrants clarification: if the integrand were a classical Brownian process, its
root-mean-square diverges as the square root of the observation window, i.e. as T 1/2, which is
checked by the normalisation. For a wide class of classical stochastic processes, a theorem due to
Donsker [24] guarantees that the integral limits to a Brownian process (a “functional central limit
theorem”)—the T−1/2 normalisation is necessary. This result from classical probability theory
suffices to justify the normalisation.
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The function is reminiscent of the classical notion of a power spectral density.
Firstly, being a variance, S̄X X [�] ≥ 0, at all frequencies and for any operator-valued
process. Secondly, being a distribution (obtained by applying the Fourier inversion
theorem [25] to Eq. (2.1.6)),

Var
[
δ X̂(t)

]
=

〈
δ X̂(0)2

〉
=

∫ ∞

−∞
S̄X X [�] d�

2π
, (2.1.7)

which exhibits the complementary aspect that the integral of the power spectral
density is the variance of the process δ X̂(t). Equations (2.1.6) and (2.1.7) are fun-
damental properties of the symmetrised spectrum7 so defined, that render it useful
(irrespective of whether it is generically measured in an experiment [26–28]).

2.1.2 Spectral Densities and Uncertainty Relations

A formal hierarchy of spectral distributions generalise the above concept of the
symmetrized spectrum of an observable. For a general (i.e. not necessarily hermitian)
operator Â, define its Fourier transform,

Â[�] =
∫ +∞

−∞
Â(t)ei�t dt, (2.1.8)

and its inverse,

Â(t) =
∫ +∞

−∞
Â[�]e−i�t d�

2π
. (2.1.9)

We shall denote by, Â†[�], the Fourier transform of Â†(t); and by, Â[�]†, the her-
mitian conjugate of Â[�]. With this convention, Â†[�] = Â[−�]†. For an observ-
able, say X̂(t), it is further true that, X̂ [�]† = X̂ [−�], and so X̂†[�] = X̂ [�].

The unsymmetrized (cross-)spectrum of two operators Â, B̂ (not necessarily
equal) is defined as the Fourier transform of their unsymmetrized two-time cor-
relation function, i.e.,

SAB[�] :=
∫ +∞

−∞

〈
δ Â†(t)δ B̂(0)

〉
ei�t dt =

∫ +∞

−∞

〈
δ Â†[�]δ B̂[�′]

〉 d�′

2π
, (2.1.10)

which is in general a complex number at each Fourier frequency �; here, the sec-
ond equality follows from replacing the operators with their Fourier transforms (i.e.
Eq. (2.1.9)). When the operators involved are weak-stationary, i.e.,

〈
Â†(t)B̂(t ′)

〉
=

〈
Â†(t − t ′)B̂(0)

〉
,

7Short for “symmetrised power spectral density”, by abuse of terminology.
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their unsymmetrized spectrum is directly related to their two-point correlation in the
frequency domain; specifically,

SAB[�] · 2π δ[� + �′] =
〈
δ Â†[�]δ B̂[�′]

〉

i.e., SAB[�] · 2π δ[0] =
〈
δ Â[−�]†δ B̂[−�]

〉
.

The last form makes explicit the symmetry,

SAB[�]∗ = SBA[�]. (2.1.11)

The other algebraic property that is practically useful is bilinearity, which can be
expressed as follows: consider an operator which is a linear superposition of another
pair, i.e. Â[�] = α1[�]B̂1[�] + α2[�]B̂2[�], then,

SAA[�] =
{

α1[−�]SAB1 [�] + α2[−�]SAB2 [�]
α∗
1 [−�]SB1A[�] + α∗

2 [−�]SB2A[�]. (2.1.12)

These two properties allow for the practical computation of the spectra of operators
defined as linear superpositions of other operators. Concretely, if a set of operators
(arranged into a column vector) Â = [ Âi ]T are related to another set, B̂ = [B̂i ]T , as,

Âi [�] =
∑
k

αik[�]B̂k[�],

equivalently, Â[�] = α[�]B̂[�],

for some (matrix α of) coefficients αik , then,

SAi A j [�] =
∑
k,l

α∗
ik[−�]SBk Bl [�]α jl[−�]

equivalently, SAA[�] = α[−�]∗SBB[�]α[−�]T .

The second form expresses the first as a matrix equation, where SAA denotes the
matrix whose elements are SAi A j , i.e. it is the unsymmetrised covariance matrix of

Â in the frequency domain.
Thephysicalmotivation for the definitionof theunsymmetrized spectrumbecomes

obvious when considering the properties of the spectrum of a single operator, viz.,

SAA[�] · 2π δ[0] =
〈
δ Â[−�]†δ Â[−�]

〉
≥ 0; (2.1.13)

specifically, SAA is real, and positive. Mathematically, the positivity follows from
lemma 2.1; its physical content is that SAA can be interpreted as (being proportional
to) the transition probability of a process mediated by an interaction that couples the
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system to its environment via the operator Â[−�] [29–31]. In classic examples in
quantum optics [30, 31], the operator may be the destruction operator of a photon in
which case the spectrum is the output spectrum of a photodetector [32], or, it may be
the raising/lowering operator for an atomic level in which case the spectrum is the
absorption/emission spectrum of that level [33].

Pairs of spectra of operators, in analogy with the variances of pairs of observ-
ables, satisfy an inequality reminiscent of the (Robertson-Schrodinger) uncertainty
principle (Eq. (2.1.2)).

Proposition 2.1 (Spectral uncertainty relation I)The spectra of any pair of operator-
valued stochastic processes, Â(t), B̂(t), that are weak-stationary, satisfies the
inequality,

SAA[�]SBB[�] − |SAB[�]|2 ≥ 0. (2.1.14)

Proof A slick proof follows by a direct adaptation of the one used by Roberston to
originally establish the uncertainty relation in Eq. (2.1.2) (see Appendix A), as done
for example in [20]. For a pair of observables, a simpler method is as follows: define,
M̂λ(t) = Â(t) + λB̂(t), for some complex λ. From Eq. (2.1.13), it must be that,
SMλMλ

[�] ≥ 0 for all λ. Writing this out explicitly using the bilinearity (Eq. (2.1.12))
and symmetry (Eq. (2.1.11)):

SMλMλ
= SAA + |λ|2 SBB + 2Re λSAB ≥ 0.

This trivial inequality can be tightened by replacing SMλMλ
with minλ SMλMλ

. A
straightforward exercise shows that the minimum is achieved for,

λ = λmin := |SAB |
SBB

exp
(
i arg S∗

AB

)
,

for which the inequality reduces to the required result. �

Returning back to physics, it may happen that in some situations, distinguishing
between an emission and an absorption event may not be possible. To model the
outcomes of such cases, we introduce the symmetrised spectrum,

S̄AB[�] :=
∫ +∞

−∞

〈
1

2

{
δ Â†(t), δ B̂(0)

}〉
ei�t dt = 1

2
(SAB[�] + SB†A†[−�]) ,

which is a complex quantity in general. For the case of an observable, say X̂ , with
X̂† = X̂ , we have,

S̄X X [�] = 1

2
(SXX [�] + SXX [−�]), (2.1.15)

i.e. symmetrisation in ordering is equivalent to symmetrisation in frequency. Note
that this formally-motivated definition is equivalent to the physically-motivated one
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given inEq. (2.1.6), allowing the symmetrized spectra of observables to be interpreted
as the variance of the observable process.

The frequency symmetry,

S̄X X [�] = S̄X X [−�], (2.1.16)

suggests that the single-sided spectrum defined by,

S̄X [�] := 2 S̄X X [�], for � ≥ 0,

encodes the full information contained in the double-sided symmetrised spectrum
S̄X X [�] of an observable X̂ . In terms of the single-sided spectrum, the variance of
the process is,

Var
[
δ X̂(t)

]
=

∫ ∞

0
S̄X [�] d�

2π
.

The single-sided spectrum thus defined is apparently equivalent to the conventional
definition of the spectral density of a real-valued classical stochastic process [34].

Despite similarities to classical spectral densities at the level of definition, the
lack of commutativity of time-dependent observables amongst each other, and even
amongst the same observable at different times, leads to certain basic quantum
mechanical conditions on the symmetrized spectra. Firstly, any observable will fea-
ture a fundamental level of statistical dispersion, preventing it from saturating the
naive lower bound in S̄X X [�] ≥ 0; secondly, two (or more) observables will never be
jointly dispersion-free at all frequencies. These constraints, expressed respectively
in Propostitions 2.2 and 2.3 that follow, may be viewed as the irreducible content of
quantum mechanics expressed at the level of spectra.

Proposition 2.2 (Spectral minimum) Any observable X̂ of a quantum mechanical
system satisfies the inequality,

S̄X X [�] ≥ 1

2

∣∣∣∣
∫ ∞

−∞

〈[
δ X̂(t), δ X̂(0)

]〉
ei�t dt

∣∣∣∣ . (2.1.17)

Proof Using the definition of the spectral density Eq. (2.1.6), together with the uncer-
tainty relation Eq. (2.1.4) gives the crux of the inequality, viz.

S̄X X [�] = lim
T→∞Var

[
δ X̂ (T )[�]

]
≥ lim

T→∞
1

2

∣∣∣
〈[

δ X̂ (T )[�], δ X̂ (T )[�]†
]〉∣∣∣ .

Expressing the windowed Fourier transform in terms of the time domain operator,
and employing the weak-stationary property results in,
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S̄X X [�] ≥ 1

2

∣∣∣∣ limT→∞
1

T

∫ T/2

−T/2

〈[
δ X̂(t − t ′), δ X̂(0)

]〉
ei�(t−t ′) dt dt ′

∣∣∣∣

= 1

2

∣∣∣∣ limT→∞

∫ ∞

−∞

〈[
δ X̂(τ ), δ X̂(0)

]〉 (
1 − |τ |

T

)
ei�τ dτ

∣∣∣∣

= 1

2

∣∣∣∣
∫ ∞

−∞

〈[
δ X̂(τ ), δ X̂(0)

]〉
ei�τ dτ

∣∣∣∣ ;

the second equality is obtained from a change of variables, while the third follows
from evaluating the limit inside the integral. �

If X̂(t) were classical, its spectrum S̄X X could in principle exhibit no statistical
dispersion—when X is deterministic—in which case, S̄X X [�] = 0. However, as per
Propositition 2.2, such a dispersion-free situation is untenable for a quantummechan-
ical process, unless [δ X̂(t), δ X̂(0)] = 0. This motivates the following definition of
a continuous observable.8

Definition 2.2 (Continuous observable) An observable X̂(t) is said to be a contin-
uous observable iff.

[X̂(t), X̂(t ′)] = 0. (2.1.18)

They are also called “quantum non-demolition” observables [37, 38], to emphasize
the fact that generic observables do not satisfy this constraint, and therefore cannot
be measured without causing disturbance.

Given a pair of continuous observables—i.e. which individually feature no sta-
tistical dispersion—they may still exhibit a joint statistical dispersion; a feature
that is classically impossible. The following proposition encodes this idea and it
may be viewed as a generalization of the Robertson-Schrodinger inequality given in
Eq. (2.1.2) to the case of continuous observables.

Proposition 2.3 (Spectral uncertainty relation II) A pair of continuous observables
X̂ , Ŷ of a quantum mechanical system satisfying the (cross-)commutation relation,

[
X̂(t), Ŷ (t ′)

]
= i ĈXY (t − t ′), or,

[
X̂ [�], Ŷ [�′]

]
= i ĈXY [�] · 2π δ[� + �′]

satisfy the following inequality for their symmetrised spectra:

S̄X X [�]S̄YY [�] ≥ ∣∣S̄XY [�]∣∣2 + 1

4

∣∣∣
〈
ĈXY [�]

〉∣∣∣
2

(2.1.19)

8Note that the notion of a continuous observable, as introduced here, is very different from that
of a continuous variable used in the context of quantum information [35, 36]. The latter refers to
hermitian operators (i.e. observables) whose eigenspectrum is continuous. The former, as used here,
refers to time-dependent observables (with a continuous, or discrete, eigenspectrum) which can (in
principle) be continuously monitored in time.
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Proof The strategy is to specialise the uncertainty relation for unsymmetrized spec-
tra, given in Proposition 2.1, to the case of continuous observables. The uncertainty
relation gives,

SXX [�]SYY [�] − |SXY [�]|2 ≥ 0.

To translate it into symmetrized spectra, note the following identity,

SXY [�] =
∫ 〈

δ X̂(t)δŶ (0)
〉
ei�t dt

=
∫ 〈

1
2

{
δ X̂(t), δŶ (0)

}
+ 1

2

[
δ X̂(t), δŶ (0)

]〉
ei�t dt

= S̄XY [�] + i

2

〈
ĈXY [�]

〉
.

Inserting this expression for SXY into the inequality and simplifying gives the
result. �

Having developed the theoretical apparatus to deal with statistical properties of
operator-valued stochastic processes, the next two sections will apply them to the
case where a system is coupled to a thermal environment, and a meter, respectively.

2.2 Dynamics Due to a Thermal Environment

Consider a system, with a prescribed average energy, in equilibrium with an envi-
ronment. The state of the system—described by a single parameter, the temperature
T—is the one with the maximal entropy compatible with the average energy [2].
This unique state is the canonical thermal state,

ρ̂β = e−β Ĥ0

Z
, (2.2.1)

where β = (kBT )−1 is the inverse temperature, Ĥ0 is the free hamiltonian of the
system, and Z = Tr e−β Ĥ0 is the partition function that ensures the normalisation of
the state, i.e. Tr ρ̂β = 1. At zero temperature (β → ∞) the canonical thermal state
picks out the ground state of the hamiltonian, i.e., ρ̂β→∞ = |0〉〈0|.

In a thermal state, the observables of the system, {X̂i }, are weak-stationary; i.e.,
their mean values are constant, while their second moments are time-translation
invariant:

〈
X̂i (t)

〉
=

〈
X̂i (0)

〉
〈
X̂i (t)X̂ j (t

′)
〉
=

〈
X̂i (t − t ′)X̂ j (0)

〉
.

(2.2.2)
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These identities follow from the observation that the hamiltonian Ĥ0, and hence
the propagator Ût = exp(− i

�
Ĥ0t), commutes with the thermal state. Such states—

stationary states—feature weak-stationarity of observables. However, the thermal
states are distinguished among the stationary states by the following property, which
is a generalisation of the principle of detailed balance.

Lemma 2.3 (Kubo-Martin-Schwinger [39, 40]) The observables, {X̂i }, of a system
in a thermal state at inverse temperature β obey the identity,

〈
X̂i (t)X̂ j (0)

〉
=

〈
X̂ j (0)X̂i (t + i�β)

〉
(2.2.3)

or equivalently,
SXi X j [�] = eβ�� SX j Xi [−�]. (2.2.4)

Proof Ignoring questions of rigour (see [41] for a remedy), the proof follows through
a straightforward algebraic manipulation viz.,

〈
X̂i (t)X̂ j (0)

〉
= Tr

[
ρ̂β X̂i (t)X̂ j (0)

]

= Tr
[
e−β Ĥ0 · Û †

t X̂ i (0)Ût · eβ Ĥ0e−β Ĥ0 · X̂ j (0)
]
Z−1

= Tr
[
e−β Ĥ0 X̂ j (0) · (e−β Ĥ0Û †

t )X̂i (0)(Ût e
β Ĥ0)

]
Z−1

= Tr
[
ρ̂β X̂ j (0) · Û †

t+i�β X̂i (0)Ût+i�β

]

=
〈
X̂ j (0)X̂i (t + i�β)

〉
.

The frequency domain form, in Eq. (2.2.4), can be proven starting by taking the
Fourier transform of both sides and using the stationarity property, viz.,

SXi X j [�] :=
∫ 〈

X̂i (t)X̂ j (0)
〉
ei�t dt =

∫ 〈
X̂ j (0)X̂i (t + i�β)

〉
ei�t dt

=
∫ 〈

X̂ j (−t − i�β)X̂i (0)
〉
ei�t dt =

∫ 〈
X̂ j (t

′)X̂i (0)
〉
ei�(−t ′−i�β) dt ′

= eβ��

∫ 〈
X̂ j (t

′)X̂i (0)
〉
ei(−�)t ′ dt ′ = eβ��SX j Xi [−�].

�

On the one hand, the KMS identity (Eq. (2.2.3)) may be seen as controlling
the commutativity of observables in a thermal state: in the high temperature limit
(β → 0), it implies that all observables commute—evocative of classical behaviour.
On the other hand, its frequency domain form (Eq. (2.2.4)) may be interpreted as a
detailed balance principle: the ratio of the forward and reverse transition probabili-
ties, represented by the ratio of the unsymmetrised spectra, is given by the thermal
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exponent. Perhaps more profoundly, it can be shown that9 for a time-translation
invariant system, if all operators satisfy the KMS identity pairwise, then the system
is in the canonical thermal state ρ̂β . Thus the properties expressed in Eqs. (2.2.3) and
(2.2.2) (almost completely) characterize the kinematics of thermal equilibrium.

Having thus described the essential structure of a thermal state, in the following,
fluctuations due to a system being in such a state will be analysed. Essentially, this
requires a model that describes the interaction between the system and its thermal
environment, and then a procedure to calculate the dynamics of the system variables.
We suppose that the interaction is mediated by a linear coupling between the system
and the environment, modelled by an interaction hamiltonian,

Ĥint =
∑
i

X̂ i F̂i , (2.2.5)

that couples the observable X̂i to a generalized force F̂i which is a self-adjoint
environment operator. Once the interaction is fixed, multiple approaches exist to treat
the dynamics of the system [23, 30, 42]; we adopt the linear response formalism
[39, 43, 44], enshrined in the following celebrated result.

9An outline of a proof is as follows (see [41] for the setup required to justify some of the
steps). Assume then that there is some state ρ̂ for which all operators (not just observables) of
the system satisfy Eq. (2.2.3); i.e. 〈 Â(t)B̂(0)〉 = 〈B̂(0) Â(t + i�β)〉, for all operators Â, B̂. Time-
translation invariance means that only the case t = 0 need to be considered, i.e., 〈 Â(0)B̂(0)〉 =
〈B̂(0) Â(i�β)〉 ∀ Â, B̂. Dropping the time argument and writing this out with the unknown state ρ̂

explicitly,

Tr[ρ̂ Â B̂] = Tr[ρ̂ B̂e−β Ĥ0 Âeβ Ĥ0 ] ∀ Â, B̂.

This can be expressed in two different ways. Firstly, since it applies for any Â, it must also apply

for Â = eβ Ĥ0 ; in this case, Tr[ρ̂eβ Ĥ0 B̂] = Tr[eβ Ĥ0 ρ̂ B̂] ∀ B̂, implying that,

ρ̂eβ Ĥ0 = eβ Ĥ0 ρ̂.

Secondly, permuting within the trace gives the alternate form, Tr[B̂ρ̂ Â] = Tr[eβ Ĥ0 ρ̂ B̂e−β Ĥ0 Â] ∀
Â, B̂, implying that,

B̂ρ̂ = eβ Ĥ0 ρ̂ B̂e−β Ĥ0

i.e., B̂ρ̂eβ Ĥ0 = eβ Ĥ0 ρ̂ B̂ ∀ B̂.

Combining the results from the two forms gives,

B̂eβ Ĥ0 ρ̂ = eβ Ĥ0 ρ̂ B̂ ∀ B̂,

i.e. the operator eβ Ĥ0 ρ̂ commutes with every operator in the Hilbert space. This means that it must

be proportional to the identity operator, i.e. eβ Ĥ0 ρ̂ ∝ 1, or, ρ̂ ∝ e−β Ĥ0 . The normalization of the
state fixes the proportionality constant.
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Lemma 2.4 (Kubo) If a system is presumed to be maintained in a thermal state by
a linear coupling to the environment, i.e. by a hamiltonian of the form,

ĤF (t) = Ĥ0 +
∑
i

X̂ i F̂i (t), (2.2.6)

where F̂i is the generalised force corresponding to X̂i , then fluctuations in the system
observables are given by,

δ X̂ j (t) =
∫ ∞

−∞

∑
k

χ jk(t − t ′) δ F̂k(t
′) dt ′,

or, δ X̂ j [�] =
∑
k

χ jk[�] δ F̂k[�],
(2.2.7)

where, the “susceptibilities” χ jk are (here �(t) is the Heaviside step function),

χ jk(t) = − i

�
�(t)

〈
[X̂ j (t), X̂k(0)]

〉
. (2.2.8)

Proof Standard time-dependent perturbation theory as for example in [45]. �

Formally, the power of the Kubo formula in Eq. (2.2.8), is that it relates the
response of the system to an external influence in terms of expectation values of the
system operators taken on the equilibrium (thermal) state of the system. Practically,
the great advantage of the linear response formalism is that by relating the fluctuations
in the system’s observables to the fluctuations of a generalised force, it suggests an
avenue to probe the system: coherent responsemeasurements—harmonically driving
F̂k and observing its effect in X̂ j—give access to χ jk[�], which then predict the
incoherent behaviour of the system in the absence of an explicit stimulus. Within
the regime of its validity, the linear response formalism is pervasive in physics [26,
46–49].

For the set of observables that are assumed to directly couple to the environment—
those in the interaction hamiltonian in Eq. (2.2.5)—the spectral uncertainty relation
(Eq. (2.1.4)), and the Kubo formula, imply a couple of general properties.

2.2.1 Effect of Fluctuations from a Thermal Environment

Proposition 2.4 (Fundamental fluctuations) Observables of the system that directly
couple to the environment exhibit fluctuations, whose spectra S̄Xi Xi [�] have a mini-
mum positive value,

S̄Xi Xi [�] ≥ � |Im χi i [�]| . (2.2.9)
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Proof Proposition 2.2 already states that spectra of operator-valued stochastic
processes have a minimum value dictated by the expectation value of its commutator
(in any state), i.e.,

S̄Xi Xi [�] ≥ 1

2

∣∣∣∣
∫ ∞

−∞

〈[
δ X̂i (t), δ X̂i (0)

]〉
ei�t dt

∣∣∣∣ .

When the state is the thermal state, the Kubo formula Eq. (2.2.7) relates the expec-
tation value of the commutator to the susceptibility. This can be incorporated by
splitting the integral, and using the symmetries of the susceptibility, viz.,

S̄Xi Xi [�] ≥ 1

2

∣∣∣∣∣
∫ 0

−∞

〈[
δ X̂i (t), δ X̂i (0)

]〉
ei�t dt +

∫ ∞
0

〈[
δ X̂i (t), δ X̂i (0)

]〉
ei�t dt

∣∣∣∣∣

= 1

2

∣∣∣∣
∫ ∞
0

〈[
δ X̂i (−t), δ X̂i (0)

]〉
e−i�t dt +

∫ ∞
0

〈[
δ X̂i (t), δ X̂i (0)

]〉
ei�t dt

∣∣∣∣

= 1

2

∣∣∣∣
∫ ∞
0

〈[
δ X̂i (t), δ X̂(0)

]〉 (
ei�t − e−i�t

)
dt

∣∣∣∣

= �

∣∣∣∣
∫ ∞
0

χi i (t) sin(�t) dt

∣∣∣∣

The third equality follows from the odd property of the average of the commutator of
a weak-stationary operator, i.e. 〈[δ X̂i (−t), δ X̂i (0)]〉 = −〈[δ X̂i (t), δ X̂i (0)]〉, while
the fourth employs Eq. (2.2.8). Since the sine-transform is the imaginary part of the
Fourier transform, the right-hand side becomes � |Im χi i |. �

Proposition 2.4 signifies that once a system is coupled to a thermal environment
via a linear coupling through its observable X̂i , then that observable exhibits a funda-
mental fluctuation that depends on the details of the coupling (i.e. the susceptibility),
but not the temperature. Tentatively, and with foresight, the minimum value of the
spectrummay be identified as the spectrumof vacuumfluctuations of that observable.

Clearly the imaginary part of the susceptibility plays a prominent role in deter-
mining the fluctuations in system observables in a thermal state. From the expression
for the imaginary part of the susceptibility,

Im χi j [�] = − i

2

∫ (
χi j (t) − χi j (−t)

)
ei�t dt.

is is clear that it characterises the lack of invariance to time-reversal t → −t , and
thus captures the irreversible character of the system once it is coupled to the envi-
ronment. On the other hand, the coupling to the environment leads to fluctuations
in the system’s observables, characterised by the bound Eq. (2.2.9). It is therefore
natural to enquire whether a precise equality exists between the imaginary part of
the susceptibility and the spectrum of observables that codifies the shared origin of
fluctuations and dissipation.
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Proposition 2.5 (Fluctuation-Dissipation) For a system maintained in a thermal
state through its contact with an environment, the fluctuations in the observables
that couple to the environment are characterised by the relation,

S̄Xi Xi [�] = �(2nβ(�) + 1)Im χi i [�], (2.2.10)

where nβ(�) is the Bose occupation at frequency � and inverse temperature β,

nβ(�) := (eβ�� − 1)−1. (2.2.11)

Proof First we prove a slightly general result and then specify to the case at hand.
Starting from the left-hand side of Eq. (2.2.10) in the time domain:

Im χi j (t) = − i

2

(
χi j (t) − χi j (t)

∗) = − i

2

(
χi j (t) − χ j i (−t)

)
.

Using the Kubo formula (Eq. (2.2.7)), and employing time-translation invariance,
the susceptibilities can be expressed in terms of correlators (which are the inverse
Fourier transforms of the unsymmetrised spectra),

χi j (t) = − i

�
�(t)

(
SXi X j (t) − SX j Xi (−t)

)

χ j i (−t) = − i

�
�(−t)

(
SX j Xi (−t) − SXi X j (t)

)
,

which gives,

Im χi j (t) = −1

2�

(
SXi X j (t) − SX j Xi (−t)

)
.

Now using the KMS condition (Eq. (2.2.3)), the order of observables in the second
correlator canbe reversed, i.e. SX j Xi (−t) = SXi X j (t − i�β). Inserting this backgives,

Im χi j (t) = −1

2�

(
SXi X j (t) − SXi X j (t − i�β)

)
.

Fourier transforming each side and re-arranging results in

SXi X j [�] = 2�

1 − e−β��
Im χi j [�], (2.2.12)

which relates the unsymmetrised cross-spectra with the susceptibility. For the
required result, we consider the case X̂ j = X̂i , and the symmetrised spectral density,
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S̄Xi Xi [�] = 1

2

(
SXi Xi [�] + SXi Xi [−�])

= 1

2
(1 + e−β��)SXi Xi [�]

= �

(
eβ�� + 1

eβ�� − 1

)
Im χi i [�];

here, the first equality is the symmetric property of the spectral density (Eq. (2.1.15)),
the second follows from the detailed balance condition (Eq. (2.2.4)), and the third
from Eq. (2.2.12). Replacing the exponentials in terms of the Bose occupation
(Eq. (2.2.11)) gives the result. �

The fluctuation-dissipation theorem (Eq. (2.2.10)) relates the fluctuations in the
system to the system-environment coupling, and the environment state (determined
by the single parameter, temperature). The bound in Proposition 2.4 (Eq. (2.2.9)), on
the other hand, follows from the non-commutativity of the observable and not on the
properties of the environment, and is therefore a more general statement. Notably,
the zero-temperature limit (β → ∞, for which nβ[�] → 0) of Eq. (2.2.10) gives
Eq. (2.2.9), motivating the interpretation that the lower-bound in the latter is due to
intrinsic—vacuum—fluctuations in the system.

An important corollary of the fluctuation-dissipation theorem is that the spectrum
of fluctuations of the system observable can be referred to an effective spectrum of
the generalised force. In the case where only one observable, X̂ , is coupled to its
generalised force F̂ , the respective spectra are given by,

S̄X X [�] = �
(
2nβ(�) + 1

)
Im χ [�]

⇒ S̄FF [�] = |χ [�]|−2 S̄X X [�] = �
(
2nβ(�) + 1

)
Im χ [�]−1,

where χ [�] is the sole susceptibility involved.

2.3 Dynamics Due to a Meter

Quantum mechanically, a meter—a measuring device—is a specific form of envi-
ronment from the perspective of the system. During an act of measurement, the
system is coupled to a meter. The meter, being a quantum mechanical system itself,
has intrinsic fluctuations in its variables. Via the measurement interaction, this leads
to additional fluctuations in the system variables. Such fluctuations are called mea-
surement back-action. Unlike a thermal environment however, the meter needs to
be ideally prepared in some non-equilibrium state,10 meaning that the fluctuations

10This is because the meter is expected to output a classical record of the system observable being
measured; this can only be arranged for if the states of the meter corresponding to the various values
taken by the system observable are macroscopically distinguishable [50].
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imparted by it are not determined by the fluctuation-dissipation theorem. However,
bounds for the imparted fluctuations can be derived under the minimal assumption
of the system-meter coupling being linear and weak.

Very generally, a continuous linear measurement of the observable X̂ may be
described by an operator Ŷ corresponding to the output of a detector. Linearity means
that11 Ŷ (t) ∝ X̂(t). Since we assume that Ŷ (t) is the output of a detector—i.e. the
measurement record—it must certainly be a continuous observable, i.e.,

[
Ŷ (t), Ŷ (t ′)

]
= 0. (2.3.1)

However, in general, the system observable, X̂ , is not a continuous observable. For
Ŷ to commute with itself, while X̂ does not, it is necessary that the record be con-
taminated by some additional process X̂n(t), arising from the meter,12 so that the
combination,

Ŷ (t) = X̂(t) + X̂n(t) (2.3.2)

is a continuous observable. The two equations above operationally characterise the
class of so-called continuous linear measurements [20, 26].

2.3.1 Effect of Fluctuations from a Meter

Proposition 2.6 (Standard Quantum Limit) When a meter provides a continuous
linear record Ŷ (t), of the observable X̂(t) of a system, the spectrum of the output is,

S̄YY [�] ≥ 2 · min S̄X X [�] = 2� |Im χXX [�]| , (2.3.3)

when no correlations exist between the system and meter. In other words, the mea-
surement record contains at least twice the minimum noise in the observable being
measured.

Proof The spectrum of the output Ŷ (in Eq. (2.3.2)) is,

S̄YY [�] = S̄X X [�] + S̄Xn Xn [�] + 2Re S̄X Xn [�].

Assuming no correlations between the system and meter, the last term can be
neglected, and so,

11The most general linear relationship is of the form Ŷ (t) = ∫
f (t)X̂(t − t ′) dt ′, corresponding

to a filtered version of the observable. However, without loss of generality, the filtering may be
considered as happening on the classical measurement record, after the detector.
12On the other hand, if it can be arranged that the observable X̂ already satisfies [X̂(t), X̂(t ′)] = 0,
i.e. it is a continuous observable in the sense defined in Eq. (2.1.18), then there is in principle no
additional contamination.
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S̄YY [�] = S̄X X [�] + S̄Xn Xn [�].

Thebound set byvacuumfluctuations (Eq. (2.2.9)) implies a lower bound for the spec-
trum of the system observable S̄X X : i.e. S̄X X ≥ � |Im χXX |. The remaining task is
therefore to lower bound S̄Xn Xn . The continuous observability condition (Eq. (2.3.1))
implies that the commutators of X̂n and X̂ are related, viz.,

[X̂n(t), X̂n(t
′)] = −[X̂(t), X̂(t ′)].

Now applying the minimum noise bound, in Proposition 2.2, to X̂n gives,

S̄Xn Xn [�] ≥ 1

2

∣∣∣∣
∫ ∞

−∞

〈[
δ X̂n(t), δ X̂n(0)

]〉
ei�t dt

∣∣∣∣

= 1

2

∣∣∣∣
∫ ∞

−∞

〈[
δ X̂(t), δ X̂(0)

]〉
ei�t dt

∣∣∣∣
≥ � |Im χXX [�]| .

Here, the last inequality follows from arguments given in the proof of Eq. (2.2.9).
Ultimately,

S̄YY [�] ≥ 2 · � |Im χXX [�]| = 2 · min S̄X X [�].

�

Conceptually, the standardquantum limit (Eq. (2.3.3)) states that quantummechan-
ics extorts a penalty twice: once in the form of the vacuum fluctuations of the observ-
able (as in Eq. (2.2.9)), and once more, the same price, in the form of unavoidable
fluctuations in the linear measurement process. This factor of twomay also be under-
stood if the action of the meter is considered to be that of an abstract linear amplifier
[18, 51] whose role is to amplify the values taken by the system observable into a
classically recordable signal. This perspective sheds light on the relationship between
the standard quantum limit derived here for a general scenario, and the specific exam-
ple of the vacuum-equivalent noise that is added when simultaneously measuring the
canonically conjugate variables of a harmonic oscillator [52–56].

The standard quantum limit rests on the validity of the assumptions basic to its
existence being fulfilled in a given situation: (1) the system-meter coupling is linear,
(2) continuous, (3) stationary, and, (4) the system and meter states are uncorre-
lated. (Presumably, the adjective “standard” refers to this standard configuration.)
A violation of one or more of these assumptions can beat the bound in Eq. (2.3.3).
In the context of interferometric position measurement [57]—a prototypical exam-
ple of a continuous linear measurement—all these loop holes have been exploited
as a means to improve measurement sensitivity beyond the standard quantum limit.
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For example, quantum non-demolition techniques tomeasure position rely on a time-
dependent coupling between the system and meter [37, 38], violating the continuity
and/or stationarity assumptions. Injection of squeezed light into the interferometer
[58–60], or the use of squeezing generated within the interferometer [60, 61], relies
on harnessing system-meter correlations.
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