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Abstract. This paper is about the numerical solution of multiobjective
optimization problems in continuous spaces. The problem is to define a
search direction and a dynamical adaptation scheme for sets of vectors
that serve as approximation sets. Two algorithmic concepts are com-
pared: These are stochastic optimization algorithms based on coopera-
tive particle swarms, and a deterministic optimization algorithm based
on set-oriented gradients of the hypervolume indicator. Both concepts are
instantiated as algorithms, which are deliberately kept simple in order
to not obfuscate their discussion. It is shown that these algorithms are
capable of approximating Pareto fronts iteratively. The numerical stud-
ies of the paper are restricted to relatively simple and low dimensional
problems. For these problems a visualization of the convergence dynam-
ics was implemented that shows how the approximation set converges to
a diverse cover of the Pareto front and efficient set. The demonstration of
the algorithms is implemented in Java Script and can therefore run from
a website in any conventional browser. Besides using it to reproduce the
findings of the paper, it is also suitable as an educational tool in order
to demonstrate the idea of set-based convergence in Pareto optimization
using stochastic and deterministic search.

Keywords: Hypervolume indicator -+ Pareto front - Set-oriented
gradient - Particle swarm optimization - Multiobjective optimization -
Algorithm animation

1 Introduction

Multi-objective optimization (MOO) is a class of optimization problems where
multiple objective functions are optimized simultaneously. MOO problems are
common in numerous fields including engineering, science, industry, drug dis-
covery, finance, and logistics. Given this broad range of application areas, there
is a big need for fast and reliable MOO algorithms.
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In typical MOO problems, the objectives are conflicting. Thus, an optimal
solution for one objective is not optimal for the others. Hence, with conflicting
objectives, there is no single optimal solution for the problem. Instead, there is
typically a whole set of solutions in the decision space that are non-dominated
with respect to the Pareto dominance relation. We call this set the efficient set.
The image of the efficient set obtained by the objective functions is the Pareto
front. In continuous spaces they can be viewed as a trade-off curve (in 2-D) or a
trade-off (hyper)surface (in higher dimensions).

The Pareto front of a function with m objectives is typically a manifold of at
most m — 1 dimensions and it is not required to be connected. When approxi-
mating a Pareto front (and efficient set) by means of a finite approximation set it
is a common strategy to search for sets that maximize the size of the dominated
(hyper) space which is measured by the hypervolume indicator. In this paper
two different strategies for finding hypervolume-maximal sets will be discussed.

For this we will introduce new algorithms for multi-objective optimization,
namely a multi-objective cooperative particle swarm optimization MOCOPS
algorithm and a multi-objective gradient based optimization MOGO algorithm
(a modified version of a previously discussed set-based gradient strategy). Then
we will provide a numerical analysis of the dynamics of these algorithms on
bicriteria test problems.

The specific contribution of this research is three-fold. We will analyze the
performance of the new algorithmic concepts by using the hypervolume indica-
tor as a quality measure. Secondly this research will focus on an analysis and
comparison of the algorithms based on their dynamical visualization (anima-
tion). Finally, we will provide a tool that the interested reader can use to further
explore the proposed algorithmic concept in an interactive and easy to use web-
application.

The structure of the paper as follows: In Sect.2 we will first introduce the
definitions and notation that are to be used in the remainder of the paper. More-
over we will provide a formal definition of the problem and review related work.
In Sect. 3 the different multi-objective optimization algorithms are presented. In
the Sect.4 the dynamics of the algorithms on test problems will be compared.
We sum up the main findings in Sect.5 and provide some directions that will
be interesting for future work. Instead of extensive statistical plots of repeated
runs, we will provide the user with an easy to use javascript program which can
be used in a web-browser to reproduce our results and gives the opportunity
for self-study of the new algorithms. A description of this visualization tool in
Appendices A will conclude the paper.

2 Background

2.1 Definitions and Notation

The space of candidate solutions is called the decision space. The space of objec-
tive function values with the decision space as domain is called the objective
space.
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For optimization, it is desirable to have an unambiguous way of determining
whether an arbitrary vector is considered better than another. For this rea-
son, you can define the relations weakly-Pareto-dominance and strictly-Pareto-
dominance between two vectors x,y € R™. Weakly-Pareto-dominance is a rela-
tion between two vectors where one vector is considered better or equal than
another. We will assume that our objective is minimization. Vector x weakly
Pareto-dominates vector y, if and only if Eq. (1) holds.

Vie{1,..m} Xi <Yi (1)

A vector x is considered to strictly Pareto-dominate a vector y if and only if

Vieqt,..m} Xi SYi A Jicq1,...m) Xi <Yi

The strict Pareto-dominance is a strict order where strict dominance of x
over y is denoted with x < y.

Let S C R? and f : S — R™. In optimization problems S represents the deci-
sion space, and f the objective functions. The Pareto front of the minimization
problem is the non-dominated subset of the image of S under f. Formally, we
define the Pareto front Ypp in Eq. 2:

Ypr = {f(%) | x € SAdxes f(x) < f(x)} (2)

The inverse image of the Pareto set with respect to f is called the efficient set.

The hypervolume indicator (HI) is a widely used measure for multi-objective
optimization indicating how well the population approximates the Pareto
Front [10]. More precisely, it is defined as the Lebesgue measure of the domi-
nated subspace by a population of m- dimensional vectors in the objective space
limited by a reference point (to keep it finite), in symbols:

HI(P) =X | | 7]

Here, \,, denotes the Lebesgue measure in m dimensions, e.g. A1 is the length,
Ao is the area, A3 is the volume, and so forth. The reference point is chosen
such that it is dominated by all relevant objective vectors. The choice of the
reference point should be large enough for it to be dominated by all points that
are generated in the optimization.

In this work, we will often consider the contribution of a single point to the
dominated hypervolume indicator. The hypervolume contribution of a vector in
the objective space (objective vector) in a multiset of such vectors (population)
is defined as the hypervolume of the total population of objective vectors, minus
the hypervolume of the population without that objective vector. Objective vec-
tors which are dominated by some vector in the population have a hypervolume
contribution of 0. The concepts of (Pareto) dominance, hypervolume and hyper-
volume contribution are clarified for two dimensions in Fig. 1.
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Fig. 1. This is an example of a population in the objective space. Objective vectors
in the population are displayed as slightly bigger (as compared to dominated points),
black, and filled circles in case they are not dominated by another objective vector in
the population. Objective vectors in the population are displayed in dots when they are
part of the dominated set. The set of points that is dominated by at least one point in
the population is colored light gray. The hypervolume contribution of objective vector
a is colored dark gray.

In the literature on multiobjective optimization algorithms, different terms
with similar meanings are used depending on the field of research. Below is a
short summary of interchangeable terms. With Table1, an attempt has been
made to match each field with each of their terms, however when reasoning in
general about the algorithms, the terms used might be mixed together. However,
we decided to use the terms population, particles, and objective functions to
denote the essential entities in the discussed algorithms.

Table 1. Terminology in set-oriented optimization. The terms in bold font will be used
throughout this paper.

EA PSO Gradient optimization

fitness (function) | fitness (function) | objective function

individual particle (search) point, (candidate) solution

population swarm approximation set, ud-vector (cf. [6])
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Notation Description

S C R? Decision space

1 Set of objective vectors, subset of R™

m Dimension of the objective space

d Dimension of the decision space

x €S Representation of a particle in the decision space

y €eR™ Representation of a particle in the objective space

f:S—R™ Vector of objective functions

m Population size

aesS Particle

P:SFxS—>R Fitness contribution of an individual to a population

HV :I" - R Hypervolume indicator of a solution w.r.t. a population of size u

AHV : I" x I — R|Hypervolume contribution of a single solution in a population

i ~u({a,b,c}) Denotes a uniform random discrete sample b € {a, b, ¢}

x ~ u([0,1]) Denotes a uniform random continuous sample z € [0, 1]

z ~ N(0,I) Denotes a sample from the multivariate i.i.d. normal distribution
with mean value 0 and variance 1.

2.2 Problem Definition

For optimization, minimization is assumed for all objectives throughout this
work.
f(x) — min

The aspiration of the optimization algorithms in this paper is maximization of
the hypervolume indicator over the set of all populations of size u. That will be
the measurement used for benchmarking:

HV(P) — max, P € S#

For this the convergence dynamics of two different types of algorithms will be
compared - swarm-based optimization and gradient-based optimization.

2.3 Related Work

The idea to maximize the hypervolume indicator using population based search
was initiated first in the context of evolutionary multi-criterion optimization
algorithms. For instance, the S-Metric Selection-EMOA (SMS-EMOA) is a pop-
ular algorithm in this field [5]. Here the term ‘S-Metric’ is an alternative name
for the hypervolume indicator. In particular for small numbers of objective func-
tions (m = 2,3) this algorithm performs very well in comparison with other
EAs, although recent research has shown that it does not always converge to the
globally Pareto optimal front (which is also the case for most other EMOAsS).
Swarm based hypervolume optimization has been suggested before by
Mosthaghim et al. [13] in an algorithm oriented at the ‘follow a leader’ par-
adigm in classical particle swarm algorithm. In our paper we will completely
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abandon this and present a cooperative search paradigm where each particle
can contribute in equal proportions to the success of a population.

Especially in the ‘fine tuning’ phase of the set-based optimization on differen-
tiable problems it is not very promising to use stochastic search algorithms with
isotropic mutation operators. This is because the local tangent cone in which
dominating solutions of a point can be found in the efficient space gets increas-
ingly acute and the opening angles converge to zero. This is why sampling steps
must be exactly in descent directions in order to get closer to the Pareto front.
This is where gradient-based search presents itself as an interesting alternative
to stochastic search.

Research about gradient optimization algorithms in MOO using the hyper-
volume indicator has been performed before [6]. In the research, computation
complexity of the algorithms is reported for a varying numbers of dimensions.
It was shown by Emmerich et al. [6] that essentially the hypervolume contribu-
tion gradients are the sub-gradient components of the entire population vector.
While [6] focuses on the computation of the Hypervolume gradient and its gen-
eral properties, its search dynamics were investigated on a couple of low dimen-
sional problems in [6]. Here a simple set-based gradient and set-based Newton
method was compared on bi-criterion problems. In our paper we will study an
improved version of this algorithm that introduces a non-zero gradient for dom-
inated points.

3 Optimization Algorithms

In this study we consider iterative (sequential) algorithms for Pareto optimiza-
tion. They generate a series of populations Py, P, ..., that (probabilistically)
converge to the Pareto front. Such processes will be visualized and studied using
a web-based interface.

On the website http://moda.liacs.nl/pareto-demo.html the two algorithms
under investigation are implemented in java script, an interpreter language
which features client side execution. The featured algorithms are a cooperative
swarm based algorithm and a hypervolume gradient method.

As opposed to single objective optimization, in multiobjective optimization
instead of a starting point a starting population needs to be provided for iter-
ative optimization algorithms. Alternatively, we may initialize the population
uniformly randomly within the search space or on points of a regular grid.

3.1 Multi-objective Particle Swarm Optimization Algorithm

In the interpretation we use in this paper a particle swarm optimization (PSO)
algorithm is a randomized search heuristics where a swarm of particles moves
gradually towards an optimal solution driven by randomized modification oper-
ators and interaction between the particles.

In conventional PSO algorithms, the swarm is driven by a leader, who is the
currently best individual in a population, and by local memories of particles on
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their so-far best positions. In single-objective optimization such processes will
typically converge to local, or sometimes even to global optima. In multiobjective
optimization such an approach could be easily used to find a single point on
the Pareto front, but is not well suited to distribute points across the Pareto
front, because the particles all strive to resemble the leader which is counter-
productive when searching for a diverse set of solutions. To a certain extent this
can be compensated by assigning local leaders, but this makes the algorithm
quite complicated and adds parameters to the algorithm (i.e., number of leaders).

The use of traditional PSO for multi-objective optimization problems has
been addressed already in the literature, both in the context of general mul-
tiobjective optimization [4], and for finding Pareto fronts that maximize the
hypervolume indicator [13]. Both approaches let to algorithms that can produce
good approximations to Pareto fronts.

In this paper, however, we consider another approach that we will term coop-
erative particle swarm. This algorithm will have the following properties that
distinguishes it from previous swarm-based approaches:

— Leader-free: The particles in the population cooperate in covering the Pareto
front, instead of competing with each other. There is no leader in the swarm;
each particle strives to contribute to the global performance of the swarm.

— Indicator-based: The algorithms seeks to maximize an unary performance
indicator. Here the hypervolume indicator is used, but also other unary indi-
cators could be considered (e.g., reference point free hypervolume [8]).

The new approach is deliberately kept very simple. This is for two reasons:
Firstly we want to demonstrate that only a few essential components are needed
to steer a swarm towards a Pareto front. Secondly, simplicity will make the
algorithms easier accessible to a rigorous theoretical analysis. It will also be
easier to compare it on a conceptual level to the later discussed set-gradient
based algorithm.

We will term the approach Multiobjective Optimization by Cooperative
Particle Swarms (MOCOPS).

The pseudo-code for the proposed MOCOPS algorithm is given in Algo-
rithm 1. It starts with randomly initializing a set of particles. Then, in each
iteration of the algorithm, a particle is randomly selected and a small random
variation of this particle is generated by adding a vector of normally distributed
random numbers.

If the fitness contribution of the mutated particle relative to the population
is better than for the original position then the particle will move to the new
position: Firstly, it will be tested which one of the two positions leads to a
better hypervolume indicator of the population. Secondly, if both positions are
equally good (which will typically occur for dominated solutions), the point
that has a better value in the aggregated linear objective function with equal
weights is considered. Note that if one solution is dominated by the other solution
it will also be considered better in the latter comparison (because of positive
equal weighting). Therefore, eventually all solutions will strive towards the non-
dominated front and then their hypervolume contribution will be considered.
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The cycle continues with picking a random particle again. The MOCOPS
algorithm is displayed in pseudocode in Algorithm 1. Care must be taken to
ensure Xpey € S (e.g. by rejecting infeasible vectors).

Algorithm 1. Multiobjective Optimization by Cooperative Swarms
(MOCOPS)
Input initial population Py
while termination criterion is not reached do
t—t+1
s~u({1,2,...,n—1,n})
Xoiq = x*
P P\ {x)}
{Try to improve position of particle x(*)}
z ~ N(0,I)
Xnew = Xold + 0+ 2
if HV(P U {Xnpew}) > HV(P U {Xnew}) then
P, — PU{Xnew}
else if HV(P U {xpew}) < HV(P U {X01a}) then
P, — PU{x04}
else if fl (Xnew) + f2 (xnew) < fl (Xold) + f2(xold) then
Pt — PU {Xnew}
else
P, — PU{x04}
end if
end while
Return P,

One iteration of the bicriteria MOCOPS algorithm can be performed with
a time complexity in O(ulog p) and its complexity is related to the problem of
computing the hypervolume contribution of a point which is discussed in [9)].
However, by implementing the algorithm as an online algorithm, that is using
incremental update steps, we can compute a single iteration with time complexity
in O(log 1) (amortized over the number of iterations) [12]. Fast - linear time -
hypervolume update schemes are also known for three objective functions [11].
The computational complexity is expected to grow exponentially in the number
of objective functions [3], that is why the scheme does probably not lend itself
very well for many-objective optimization.

3.2 Adaptive Mutation

A weakness of the algorithm design of Algorithm 1 is that the particles are always
perturbed with the same distribution and average step-size. When a particle is
far away from the optimum a relative big step size will be beneficial. When the
solution is already very close to an optimal position then fine-tuning is required,
and thus smaller steps.
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To account for this we introduce a simple scheme for the adaptation of the
standard deviation. In earlier research it has been found that adapting the
mutation rate in a stochastic descend method a rate of % is a good heuristic
choice [1,2]. This has been called the 1/5'" success rule. In our approach we
multiply o or divide it by a scalar in order to keep the success rate of trial moves
approximately % Heuristically this scalar has been determined as +v/1.04.

In earlier research it has been argued that self-adaptive step-size control does
not work in the context of multiobjective optimization, because the boundary
between the region where a point improves (Pareto dominates the original point)
and the region where a point does not improve becomes cusp-like. However,
in the context of hypervolume maximization the boundary between these two
spaces is, in most relevant cases, differentiable. This means that in the limit of
an infinitely small step-size always a success rate of 1/2 can be achieved, unless
the point is exactly on its optimal position on the Pareto front. This is because
the improvement region and non-improvement regions are locally separated by
a m — 1 dimensional hyperplane, and the probability to generate a trial point on
either one side of the plane is the same.

3.3 Multi-objective Gradient Based Optimization Algorithm

The MOGO algorithm is a deterministic algorithm where each search point is
simultaneously directed by a search point dependent subgradient of the total
hypervolume gradient. For example, the search point x(*) could be directly
directed by the gradient of f. This will however lead to the convergence to
a local optimum. However, it is expected that using the gradient this way will
lead to little diversification. Therefore, instead we will be use a search direction
that is derived from the gradient of the entire population, which was derived in
[7] and discussed in more detail in [6]. This strategy leads to convergence as well
as to diversification (see for instance [14]).

In [6] it was shown that following the set-gradient of the hypervolume indi-
cator is equivalent to simultaneously moving the particles of a population in a
direction of steepest descent of their hypervolume contributions to the popula-
tion. This direction we will denote with VAHV (x, P) for some particle x € P.

The MOGO algorithm we will propose next will basically follow the lines of
the gradient flow algorithm in [14], but some important modification will be made
in order to eliminate problems with losing dominated solutions and ‘creepyness’ —
a term used in [14] to describe problems caused by large differences in the length
of local gradient components.

We use the same definition of VAHV (x, P) as in [6] and, for the sake of
brevity, restrict our discussion on the bicriteria case.
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Let f : RY — R? denote the vector valued objective function. The Jacobian
Matrix of f at x is shown below!.

O (.. Oy
W)=\ 0RO ®)

aT;l(X) Tm(x)

The values in a Jacobian indicate how the objective function values respond
on a change of the input. The hypervolume contribution derivative vector for
the mapping R2 — RY is defined below:

DAHV
VHV(y) = | 5 3% (4)
Y2

Its computation can be done by computing the lengths of the line segment in the
attainment surface (or ‘staircase’) that are adjacent to f(x). For a derivation,
see [6].
Multiplication of the matrix and vector yields a gradient of the AHV.
VAHV(x,P) = (J¢(x)T - VHV(£(x))) . (5)
In [14] an algorithm was studied that follows the flow of this gradient. It was
found to suffer from a strong discrepancy in the length of the subgradients for
different points which let to problems in convergence. In this study we coun-
teract this problem by using instead of VHV (y) the normalized subgradient
VHV (y)/IIVHV (y)]]:

(6)

VNAHV (x) := (Jf(X)T VHV(f(X))T) .

VAV ()]

This way the gradient direction does not change, but the difference in length of
sub-gradients is compensated for. Yet, the length of the total gradients decreases
in the proximity of hypervolume maximal solutions, which is desirable and makes
an additional step-size adaptation mechanism no longer needed.

Moreover, in order to not ‘lose’ points that are Pareto dominated within the
population — they have zero gradients — we propose to move them in the following
direction, which is guaranteed to point into the dominance cone in case of locally
non-dominated solutions

v <;f1 _ ;f2> (x) = 7% (Vfl(x) Jrva(x))' (7)

Instead of %, it is also possible to use a small positive step-size o. This will be
done here and which also stresses the analogy to the step-size used in the swarm

based search.

! In this paper we restrict ourselves to bicriteria optimization but the introduced
principles are applicable also in higher dimensions.
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The MOGO algorithm follows directly from these preliminaries. It starts
with initializing a randomly distributed population. For every search point the
descent vector is computed and added to the current solution. The algorithm
terminates if stagnation sets in because all descent directions are zero vectors.
The MOGO algorithm is displayed in Algorithm 2.

Algorithm 2. Multiobjective Gradient-based Optimization (MOGO)
Initialize randomly distributed population
Py =(xWM, ... xM)
repeat

c—20
forie{1,...,u} do
if |[VAHV (xV)|| # 0 then
q—x9 4o VyAHV (xV)
else if V(—f1 — f2)(x) # 0 then
q—xV +0V(-fi - f2)(x)
else

q— x(®
end if
x® q
c—c+1
end for
until c = p

The computational time complexity of the MOGO algorithm is determined
by the time complexity for computing the full hypervolume gradient, the com-
ponents of which are used as descent directions. It was shown in [6] to be in
O(du + plog ) (provided the number of objective functions is lower than 4).

4 FEvaluation

4.1 Test Problems

Problem 1. The objective functions for problem 1 are depicted below. The

reference point used for the hypervolume indicator will be the maximal point
(1.25,1.25) (Fig. 2).

fi(x) = (21)” + (22 - 0.5) (8)

f2(x) = (1 = 1)* + (22 - 0.5)° 9)

Problem 2. The objective functions for problem 2 are depicted below. The
reference point used for the hypervolume indicator will be the maximal point

(1,1) (Fig. 3).
f1(x)

fa(x)

((21)* + 1)(x2)? (10)

1—
1= ((22)* + 1)(21)? (11)
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decision space objective space
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Fig. 2. The decision space and objective space of test problem 1 are shown using a
uniformly distributed population of 250000 particles. The area covered with dark gray
particles denote the efficient and Pareto set among the population. The area covered
with light gray particles resembles the subset which is dominated by the Pareto set of
the population. The efficient set is horizontal.

decision space

objective space

v2]

X

Fig. 3. The decision space and objective space of test problem 2 are shown using a
uniformly distributed population of 250000 particles. The area covered with dark gray
particles denote the efficient and Pareto set among the population. The area covered
with light gray particles resembles the subset which is dominated by the Pareto set of
the population. The efficient set is curved.
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4.2 Experiments Setup

In this paper the number of reported experiments is kept relatively small. Instead
of focussing on statistics we invite the reader to experiment with the implemen-
tation which is made available on the website http://moda.liacs.nl/pareto-demo.

With g = 100 we are going to compare the different algorithms based on
the hypervolume indicator with varying amount of iterations. The amount of
iterations that will be used is 10, 100 and 1000. Each of these results will be
sampled from 100 tests. The 10, 100 and 1000 iterations tests will be performed
on both test problems. The MOCOPS will be benchmarked with and without
adaptive mutation. The MOCOPS algorithms will have their mutation rate
initialized with 0.2. The step size of the MOGO is initialized with 0.0008.

Also we will have a look at the dynamics of the algorithms in a visual way.
We will compare the converged populations of the different algorithms.

4.3 Description of Results

The results of the benchmark on problem 1 and 2 can respectively be found in
Tables 2 and 3. MOCOPS is the MOCOPS algorithm without adaptive muta-
tions and MOCOPS A is the MOCOPS algorithm with adaptive mutation.

In Figs. 4 and 5 the converged populations of respectively the MOCOPS and
MOGO algorithm are shown of test problem 2. It seems the algorithms converge
with a slightly different alignment. Both alignments are diverse and approximate
the real Pareto set well.

4.4 Discussion of Results

Looking at the benchmarks, it seems the performance of the algorithms is more or
less the same. The MOGO seems to perform slightly better than the MOCOPS

Table 2. Test problem 1

Algorithm 10 100 1000
MOCOPS 1.3602 | 1.3713 | 1.3879
MOCOPS adaptive | 1.3609 | 1.3696 | 1.385
MOGO 1.3632 | 1.3812 | 1.3909

Table 3. Test problem 2

Algorithm 10 100 1000

MOCOPS 1.3604 | 1.3709 | 1.3879
MOCOPS adaptive | 1.3606 | 1.37 | 1.3851
MOGO 1.3639 | 1.3807 | 1.3909
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decision space

y2

objective space

x1

y1

Fig. 4. A screenshot of the converged population with the MOCOPS algorithm on

test problem 2.

X2

decision space

y2

objective space

x1

VA

Fig. 5. A screenshot of the converged population with the MOGO algorithm on test
problem 2.

variants. The visualization seems to offer more convenient information. Experi-
menting with the algorithms show that nearly the whole population quickly finds
a spot on the Pareto front with the MOGO algorithm. In the MOCOPS algo-
rithm some particles tend to lag behind. Since the MOGO algorithm updates
the whole population simultaneously, it is much faster with larger populations.
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5 Conclusion

It turns out both the algorithms perform well on the test problems in the sense
that they are capable to deliver precise approximations of the Pareto front.

However, the MOGO algorithm outperforms the MOCOPS algorithm. This
especially holds with a big population. The MOGO tends to get a nearly perfect
diversification. Notably, using the adaptations (gradient length normalization,
using the direction as in (7) for dominated points) that were introduced in this
paper the MOGO algorithms does not exhibit the problems that were observed
for earlier hypervolume-gradient descent schemes. At the same time, it needs to
be remarked here that the MOCOPS approach is more robust and does not
require differentiability. It is also more promising, when multimodal problems
should be considered, though further adaptation would certainly be required for
a competitive performance in the multimodal case as compared to other state-
of-the-art strategies developed for this problem domain.

For future research it will be interesting to see how the MOCOPS will per-
form when the adaptive mutation is performed individually instead of globally.
The analysis in this paper was on very simple optimization problems and at most
can serve as a proof of concept study. Experiments with more challenging test
problems and comparisons to state-of-the-art methods will be required before
the strategies proposed in this paper can be recommended for practical usage.
Based on the first results, we think both approaches to be interesting approaches
for further assessment and development.

A Appendices

A.1 Manual of the Application

The application and code is available online [15]. Using the application is
straightforward and does not need any installation or configuration. The appli-
cation can be started with any modern browser. The application is shown in
Fig. 6.

1. This is the sidebar with the interaction parameters.

(a) Pressing the Printable button sets the background color to white. Pressing
the Regular button will set the color scheme regular again.

(b) In the problem section you can choose a test problem.

(¢) In the initialization section you can select the population size. You can
initialize the population with the set population size by pressing one of the
buttons. Pressing the Initialize randomly button will position the particles
at random in the decision space. Pressing the Initialize uniformly button
will try to position the particles uniformly in the decision space.

(d) In the algorithm section you can choose the optimization algorithm by
pressing Particle swarm optimization or Gradient based optimization.
Deselecting the FEnable dominated set will enable the use of the whole
population. Pressing Adaptive mutation makes the MOCOPS algorithm
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use the 1/5'" success rule. The mutation rate for the MOCOPS algo-
rithm can be adjusted by using the slider. The step size of the MOGO
can be adjusted similarly with the other slider.

(e) In the optimization section you can select how many milliseconds delay
every iteration should have using the slider. A bigger delay can make the
dynamics of the algorithm clearer. The button Start will start the selected
algorithm. Pressing the button Stop will stop the algorithm again. The
Benchmark button will run some benchmarks and outputs the statistics in

An dynamic visualization of

1,2 1,2
MO sgoritms i) = 12+ (g - ) falen ) = (- D2+ (- 3)
(_Punisble ) Regur : :
Problem
© Problem 1 © Problem 2
T decision space objective space
population size: 25 x2 y2
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Initialize Initialize *
randor ““mly .
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. - -
©Pa . .
optimizau. . ..,
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Gradient based .
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7| Enable dominated set
step size: 0.0008 . . "
0 S : .. .
Optimization L]
.
delay: 2ms
U x1 Al
[Showwall
Start Benchmark

Wileo Verhoef

Fig. 6. A screenshot of the interactive multi-objective optimization application.
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Fig. 7. A screenshot during convergence of the population with the MOGO algorithm
on test problem 1.
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the browser console. In most browsers the console is accessible by pressing
F12.

(f) The application automatically adapts to the window size. Full screen
mode is available with F11.

2. The objective functions of the chosen test problem are shown here.

3. This part of the screen shows the decision space. Points of the efficient set
of the population are displayed in red squared dots. The particles which are
dominated by the particles in the efficient set are displayed as green dots.

4. This part of the screen shows the objective space. Points of the Pareto set
of the population are displayed in red squared dots. The particles which are
dominated by the Pareto set are shown as green dots.

Initialization decision space
etz 5% XD T T =
0

initalize || initalize
randomly | uniformiy

Algorithm

Partcle swarm
optimization
¥ Enable dominated set
¥l Adaptive mutation
‘mutation size: 13614 _
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optimization

¥ Enable dominated set
step size: 0.00051

0

Optimization

delay: 16ms
J

! Show trail
Sat_) Bonchmark )

x1 y{

Fig. 8. A screenshot during convergence of the population with the MOGO algorithm
on test problem 2.
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Fig.9. A screenshot with path tracing during the convergence of a population with
the MOCOPS algorithm on test problem 1.
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decision space objective space
x2 y2

x1 yi

Fig. 10. A screenshot with path tracing during the convergence of a population with
the MOCOPS algorithm on test problem 1 at a late stage.

Finally, we exhibit some example screenshots:

— Figure 7 shows a large population that is in the process of converging towards
the Pareto front starting from a uniformly distributed sample. The MOGO
algorithm is applied on Problem 1. Green, small points are dominated and
red squared dots are non-dominated with respect to the other points in the
population.

— Figure 8 shows a large population that is in the process of converging towards
the Pareto front starting from a uniformly distributed sample. The MOGO
algorithm is applied on Problem 2.

— Figure 9 shows a small population of particles moved by the MOCOPS algo-
rithm on Problem 1. Also, the traces of the recent moves of the particles are
visualized. Note, that points on the efficient set move sideways in order to find
their optimal position with respect to diversity (hypervolume contribution).

— Figure 10 shows the same population as shown in Fig. 9 at a later stage of the
convergence process.
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