
Model-Based Development of a Multi-algorithm
Harvest Planning System

Luis Diogo Couto1, Peter W.V. Tran-Jørgensen1(B),
and Gareth T.C. Edwards2

1 Department of Engineering, Aarhus University, Aarhus, Denmark
pvj@eng.au.dk

2 Agro Inteligence ApS, Aarhus, Denmark

Abstract. Planning systems for harvest operations need to employ com-
plex algorithms to calculate various aspects of the harvest plan such as
the order in which to harvest field rows or when and where to unload
harvesters. In traditional modelling and simulation approaches, it is not
easy to vary the algorithm as a simulation parameter. This either lim-
its the solution space for a system or it forces significant duplication to
set up various models with the necessary algorithms. In this paper, we
present the Model-Based Development of a planning system that lever-
ages the strategy pattern to enable efficient variation of the optimisation
algorithms at various stages of the planning process. We illustrate the
system by applying it to a real field and discuss issues such as coping
with large fields and how to carry out a real harvest operation according
to the plan.

1 Introduction

There are various steps to calculating optimised solutions for harvest operations.
These steps include partitioning of the field and calculating optimised coverage
plans for harvesters and route plans for other vehicles. One approach to the
problem involves the use of various optimisation algorithms that produce cover-
age plans for the harvesters [1,2]. However, planning of harvester routes is just
one part of the harvest operation planning. Path planning for grain wagons (or
similar) that service the harvesters must often also be developed. Algorithms
exist for optimising service plans [3] but they are independent from those of har-
vesters. This independence makes it difficult to explore in detail how the various
types of algorithms interact and combine to produce a complete solution for the
harvest operation.

As an example, little research has previously been conducted into how har-
vesting and loading algorithms can affect operational execution times of har-
vest operations. Examples of planning tools for operations often employ a single
algorithm; such as in-field unloading [4] or single point unloading [5]. Farmers
will generally choose a plan with which they are familiar without considering
alternatives.

c© Springer International Publishing AG 2018
M.S. Obaidat et al. (eds.), Simulation and Modeling Methodologies, Technologies
and Applications, Advances in Intelligent Systems and Computing 676,
https://doi.org/10.1007/978-3-319-69832-8_2



20 L.D. Couto et al.

In this paper, we seek to explore how different optimisation algorithms can
be combined. We will explore this using a formal1 model in combination with the
strategy pattern from software engineering. The strategy pattern is used in the
model to encode different optimisation algorithms. A novel aspect here is that
the strategies representing the different kinds of algorithms (harvest routing
and grain wagon path planning) co-exist and collaborate to produce the final
solution.

From an operational research perspective, the harvest operation is an exam-
ple of an output material flow (OMF) operation where material is removed from
the field and transported to another location [6]. The machinery utilised within
the OMF operation can be divided into two groups; Primary Units (PUs) which
perform the main task i.e. harvesting the crop, and Service Units (SUs) which
service the PUs by receiving harvested material and transporting it away. The
capacity of the PU is many times smaller than the expected yield of the field,
and therefore a PU unloads either to a nearby SU or directly to an out of field
storage point.

The planning of the tasks of the PUs and SUs are often considered sepa-
rately [7], with coverage plans being developed for PUs [1,2] and path plans
being developed for grain wagons [3]. However, the tasks are spatially and tem-
porally dependant on one another, so in order for efficient plans to be produced
the plans must be developed concurrently [8].

To assist with the planning of in-field operations, fields can be decomposed
into a number of tracks or rows. Many methods have been proposed for the
decomposition of fields [4,9–11]. Fields are typically divided into headlands which
encircle the field and can be used for turning, and working rows which transect
the main area of the field. By confining all field traffic to drive along these
predefined rows, the trafficked area of the field can be limited which has been
shown to produce benefits on increased yield and better soil structure [12].

In the above mentioned approaches, the planning for the various kinds of
vehicles is performed independently, as is the decomposition of the field. In
our work, we consider all vehicles simultaneously when planning, although field
decomposition is still done separately.

A different approach to optimisation was carried out in a EU project called
DESTECS. In this project design space exploration is performed by sweep-
ing parameters of models of cyber-physical systems [13]. Among other things,
the DESTECS project proposes methodological guidelines for modelling fault-
tolerant cyber-physical systems, which also involve the use of the strategy pat-
tern to model faulty behaviour as well guarding against it [14]. This is sim-
ilar to the presented approach, in that the strategy pattern is used in the
DESTECS project to explore different behaviours of a system. However, while
the DESTECS project used the strategy pattern to make a system more fault-
tolerant, in this work the strategy pattern is used to help find optimised solutions
to use in a harvest operation.

1 Formal in this context means that the model is developed in a notation that is given
semantics in a formal logic.



Multi-algorithm Harvest Planning 21

The strategy pattern is a design pattern [15] with two key features. First, the
strategy pattern allows selection of different algorithms to be done at execution
time and; secondly, it defines a family of interchangeable algorithms. Essentially,
this allows the same functionality to be executed in different ways. Broadly
speaking, the strategy pattern consists of a contract that defines the functions
of a strategy in terms of their inputs and outputs including the properties that
these functions may have. Given this contract, a specific strategy must provide
an implementation of the functions that obeys the input and output properties
of the contract, but which is free to use whatever algorithms are desired.

The remainder of this paper is structured as follows: in Sect. 2 we present
the architecture of the formal model of the harvest operation based on the strat-
egy pattern. The technologies that have been used to implement the model are
described in Sect. 3. Next, the execution of the model is demonstrated in Sect. 4.
Following that, in Sect. 5, we report the results of applying the model to a case
study of a real field. The results are then discussed in Sect. 6. Afterwards, in
Sect. 7, we describe how analysis of data reported by harvesters and grain wag-
ons can be used to continuously optimise a plan over the course of a harvest.
Finally, we conclude the paper in Sect. 8.

2 Model Architecture

2.1 Model Overview

The model was developed according to the structure shown in Fig. 1. The Exe-
cution Engine is responsible for coordinating the simulation and is connected to
both the State and the three Strategy classes. The State contains the physical enti-
ties involved in the harvest operation. The harvesters are the PUs of the operation.
Coverage plans and coordinated service points are developed for the harvesters by
the employed strategies. The grain wagons are the SUs of the harvest operation
and are used to convey material from the harvesters to the out-of-field storage.
The service points coordinate when and where the grain wagons must meet the
harvesters in order for material to be passed between the two.

Fig. 1. Model structure realised as a UML class diagram. Originally published in [16].



22 L.D. Couto et al.

Both the harvesters and the grain wagons are modelled by their physical para-
meters such as their working/non-working speed, storage capacity and material
offload rate. These parameters are specified in the initialisation of the model.
The storage point is the out-of-field storage where all material from the field
must be transported to in order for the harvest operation to be completed. This
too is modelled by its capacity.

The strategy classes define how certain aspects of the harvest operation are
executed. In Fig. 1 these strategies are represented by the Route Strategy, Decon-
flict Strategy and Load Strategy classes.

Route Strategy. A route strategy is responsible for constructing the routes
for harvesters. The routes direct the harvester from its location to a point where
it will next require a service. A similar approach to the planning of routes for
harvesters was also utilised in [4]. In this way the routes for multiple harvesters
can be constructed in a consecutive manner.

As already stated, the construction of routes for the harvester and grain
wagon are dependent on one another, therefore the route strategy must call
functions from the loading strategy to ensure that the harvester is able to be
serviced at the end of the route. The route strategies are allowed to produce
more than one possible route for the harvester, these are later distinguished by
the load strategy as appropriate.

Two route strategies have been implemented within the model: Predefined
Route strategy and Greedy Route strategy.

The Predefined Route strategy enables the model to execute coverage plans
that have been developed externally, provided they are represented as a sequence
of rows to harvest. This strategy receives the assignment of a sequence of rows
to a harvester as an input. A route is constructed which navigates the harvester
along the sequence of rows, inserting service points where they are needed.

The Greedy Route strategy employs a search algorithm on the field to create
a route for the harvester which will end with the harvester being as full as
possible and in a position where it can be serviced. An extra constraint is also
implemented within the strategy that every row must be harvested in its entirety
and that all headland rows must be harvested before work rows.

Deconflict Strategy. A deconflict strategy is responsible for determining if
a vehicle can move along its route, or calculating new routes if this is not
possible. In the Simple Deconflict strategy a vehicle to reroute is chosen non-
deterministically.

A deconflict strategy is responsible for the infield coordination of the vehicles.
It is possible that conflicts can arise when a vehicle may block the path of another
vehicle. In this case the deconflict strategy is employed to determine what course
of action (such as planning a new route, or waiting for the obstruction to pass)
is to be taken.

The Simple Deconflict strategy ensures that two vehicles cannot travel
towards each other either along the same row or along two adjacent rows.



Multi-algorithm Harvest Planning 23

Load Strategy. A load strategy is responsible for assisting the route strategy
to find a location where the harvester can be serviced and for constructing a
route for the grain wagon from its current position to the service point and then
to the out of field storage.

This is done through three functions of the load strategy that are called
by the route strategy: isDoneExtendingRoute(), isRouteServiceable(), and
finaliseRoute().

isDoneExtendingRoute() checks if it is possible to extend a harvester’s
route. A common reason why it would not be possible to extend a harvester’s
route is if there are no more remaining rows in the field to be harvested, or if
the harvester is full.

finaliseRoute() modifies a harvester’s route to ensure the final position of
the harvester is valid. For example if harvesting the full length of the final row
of a harvester’s route will cause the harvester to exceed its capacity, the route
is modified so that a service point is required at some point along the length of
the final row.

isRouteServiceable() checks that a grain wagon is able to converge on the
service point that is required by the harvester’s route, for example that there
is a previously harvested row adjacent to the service point in which the grain
wagon can move.

Four different versions of the load strategy have been developed in the model.
These cover the four basic ways in which harvesters are unloaded during grain
harvests.

The Single Point Unload version requires the harvester to transport material
directly to the out of field storage point without using a grain wagon. It is
important that the harvester must avoid the event of becoming full without a
navigable path to the out of field storage. This strategy limits the amount of
traffic in the field, which could offer benefits when reducing soil compaction.

The Headland Unload version limits the grain wagon to only travelling in
the headland areas of the field. The harvester must avoid becoming full in the
middle of the field as a grain wagon would not be able to meet it, therefore
service points must be coordinated before the harvester becomes full while it is
turning in the headland area.

The Infield Static Unload version allows the grain wagons to drive in the work-
ing areas of the field in order to meet the harvester. Service points are planned for
the last possible moment to ensure that the harvester is full when it unloads.

The Infield Moving Unload version is similar to the Infield Static Unload
strategy, however the harvester and the grain wagon are both moving when the
load is being passed. As the machines remain in motion it is imperative that the
grain wagon is travelling in the same direction as the harvester when they meet
at the service point.

The Route, Load and Deconflict strategies are represented in Fig. 1 by their
contracts. The various concrete versions of each strategy must conform to these
contracts. Figure 2 shows how the various load strategies are realised based on the
ILoadStrategy class that defines the contract. Whenever the model is executed,
a concrete strategy of each kind must be provided to the Execution Engine.



24 L.D. Couto et al.

Fig. 2. Load strategy hierarchy realised as a UML class diagram.

Not all versions of a strategy can be used in all situations. In order to cope
with this, a notion of strategy feasibility has been introduced. The strategy feasi-
bility check is implemented as a function in each of the strategies and invoked at
the beginning of model execution in order to check if the field meets the require-
ments of the strategy configuration. The advantage of this approach is that the
feasibility of each version of a strategy is encapsulated in that version itself, so
the remaining parts of the model need not be aware of its specific details.

The concrete versions of strategies can be used to model different optimi-
sation algorithms and therefore vary in implementation detail as well as the
restrictions they impose on the harvest operation.

3 Model Implementation

The model drives the development of a harvest planning system, which is devel-
oped using the Vienna Development Method (VDM) and implemented using
code generation. VDM is one of the longest-established formal methods for the
development of computer-based systems. This method focuses on the develop-
ment and analysis of a system model expressed in a formal language.

The strategy pattern is based on object-oriented (OO) features [17], as
enabled by the VDM++ formal modelling language [18]. VDM++ is the OO
dialect of VDM. Broadly speaking, a VDM++ model consists of a series of defi-
nitions for types, functions, operations, etc. The OO features of VDM++ allow
for structuring the model into classes and provide standard OO mechanisms such
as inheritance.

In addition to allowing for an effective implementation of the strategy pat-
tern, the OO features of VDM++ have other useful benefits, including the ability
to add new versions of a strategy that reuse parts of an existing strategy and
change only those parts that must be different. Additionally, object-orientation



Multi-algorithm Harvest Planning 25

facilitates modularity and encapsulation which, while not essential to develop
the model, make it easier to do so.

There are several reasons for choosing a formal language such as VDM++
over an OO implementation language such as Java or C++. The use of VDM++
promotes a high-level approach that abstracts away details that are of little
importance to harvesting operations. The formal semantics underpinning the
VDM language allow us to have confidence in the results and that there are no
errors in the language and tool that can “contaminate” the result. Additionally,
VDM has features that enable us to describe the properties of the model and its
functions, and these properties are constantly checked during model execution.
For example, in the model the capacity is expressed as a floating point number,
which must always be positive and smaller than 1. VDM invariants allow us
to attach such a property to the capacity variable in order to ensure that the
model never violates this. While that is a simple example, VDM allows us to
express any arbitrary property that can be described in terms of first-order logic.
Many of the benefits of using VDM cannot be achieved using implementation
languages, which operate at a lower level of abstraction. In particular imple-
mentation languages must take things such as the underlying hardware platform
into account. Use of VDM allows us to focus solely on the development of the
strategies, which is our primary concern.

4 Model Execution

In order to execute the model, it is first necessary to configure the harvest
operation by loading both the field and the resources, i.e. the State, and also one
of each class of strategy to guide the Execution Engine during the simulation.
Once this is done, the model is executed and whenever the Execution Engine
reaches a point where it needs to make a decision that depends on a strategy, it
will consult whatever strategy it has loaded and the output of the strategy will
be used to further progress execution of the model. As an example, in Fig. 3, the
Execution Engine needs to know which vehicles are movable at a given point in
time. One particular version of the strategy may allow the harvesters to move
because they can offload in the work rows. Another version may not allow the
harvesters to move because they can only offload in the headlands and they
cannot fully harvest the next work row.2 In this way, different versions of a
strategy lead to different outcomes in the model.

One of the key features of the model is the ability to explore strategy combina-
tions and how their interactions affect the performance of the harvest operation.
One way to do this is by fixing two kinds of strategies and varying the remainder
(for example, load strategies) thus investigating how a particular aspect of opti-
misation affects the overall harvest operation. Conversely, if external restrictions
dictate the use of a particular strategy, then the other strategies may be manip-
ulated to find the best solution within the restrictions. For a small number of
2 In both of these examples, the route strategy consults the load strategy as part of

its calculation of movable vehicles.



26 L.D. Couto et al.

Fig. 3. Strategy dispatching realised as a UML sequence diagram. Originally published
in [16].

strategies, testing the different scenarios of interest can be done with manually
written tests. However, when the number of scenarios to be tested is large then
an automated combinatorial testing feature for VDM can be used to concisely
specify the various combinations and automatically generate and execute the
corresponding tests [19].

4.1 Simulation Visualisation

As part of model execution, a log of all the important events in the harvest
operation is produced. Logged events include vehicle movement, harvesting of a
row, passing load between harvesters and grain wagons, etc. Once execution is
completed, this log can be inspected in order to get a full understanding of the



Multi-algorithm Harvest Planning 27

harvest operation outcome. This log can also be seen as a harvest plan since it
contains detailed instructions of when and where the different vehicles must go.

In order to better understand what occurred during the simulation, the log
can also be analysed. However, as manual inspection of the log is difficult, a
proof-of-concept visualization tool was developed to analyse the log and replay
the simulation as shown in Fig. 4. The figure shows a representation of the field
partitioned into work rows and headlands. The black square represents the har-
vester, the circle represents the grain wagon and the square at the bottom rep-
resents the storage point. As the log is processed, the visualiser displays an
animation of the vehicles moving along the field.

Fig. 4. Simulation visualisation. Originally published in [16].

5 Results

This section demonstrates the approach by reporting results of executing vari-
ous simulations with the model in order to explore the interactions between all
possible combinations of the strategies described in Sect. 2.1. Every execution
was performed with the same resources and on the same field. The focus is not



28 L.D. Couto et al.

on changing the parameters of the simulation such as number of harvesters or
harvester capacity but in changing the strategy versions used in each simulation.

The simulations were carried out on a representation of a real field located in
the vicinity of the Research Center at Foulum, Denmark (56◦29′N, 9◦35′E). The
yield of the field is simulated and is lower for headland rows than for working
rows, as is typical in real fields (due to excess soil damage, lower nutrients, etc.).
The yield is further constrained such that a complete lap of the field can be
made without exceeding the harvester capacity, and no single working row can
exceed the capacity of the harvester. The field, partitioned into rows, is shown
in Fig. 5.

Fig. 5. Agro Park field. Originally published in [16].

The results of the simulations are summarised in Table 1. Each row in the
table represents a particular simulation, indexed by the Sim. (Simulation) col-
umn. The Route and Load columns identify the combination of strategies used in
each particular simulation (the same deconflict strategy – Simple Deconflict – is
used for all simulations). The Op. Time (Operational Time) column reports the



Multi-algorithm Harvest Planning 29

duration of the harvest operation in seconds and serves as an indication of how
well a combination of strategies performs. Finally the Exec. Time (Execution
Time) column reports the actual, physical time in seconds it takes to execute
the simulation.

The simulation was executed using a Java 7 code generated version of the
model on a Fujitsu LIFEBOOK U772 laptop with a 1.7 GHz Intel Core i5 proces-
sor and 8 GB of memory running a Windows 7 Professional Edition operating
system.

Table 1. Results summary. Originally published in [16].

Sim Route Load Op. time [s] Exec. time [s]

1 Greedy Headlands 425.558 12.619

2 Predefined Headlands 497.38 13.417

3 Greedy In field static 420.694 12.319

4 Predefined In field static 463.484 13.912

5 Greedy In field moving 410.298 7.056

6 Predefined In field moving 446.854 7.25

7 Greedy Single point 679.498 26.977

8 Predefined Single point 623.347 4.421

6 Discussion

Table 1 shows that for the field subject to analysis, for most of the unloading
strategies, the Greedy Route strategy produces a better solution, than the Pre-
defined Route strategy as indicated by the operational time. This is due to the
harvester’s route used as an input for the Predefined Route strategy being devel-
oped as a coverage plan that ignores the coordination of the grain wagons. As
the Greedy Route strategy was able to enquire the constraints of the unloading
strategy while developing the harvester’s route, the final solution is more inte-
grated and allows for more efficient operations. This indicates that it may be
advantageous to use optimisation approaches that consider both harvesters and
grain wagons when developing routes.

The Infield Moving Unloading strategy offers the best operational times for
both of the routing strategies. This unloading strategy is likely to offer the best
solution as it allows the harvester to be completely full when it offloads and does
not require the harvester to stop. It is also worth noting that the model allows
this hypothesis to be further confirmed by adding additional route strategies and
checking the resulting operational times.

In terms of actual execution times, most combinations yield similar results for
Greedy and Predefined strategies. The exception is for the Single Point Unload
strategy, where the Greedy version has a significantly higher execution time. This
is mostly due to the fact that many more routes have to be computed for this



30 L.D. Couto et al.

particular combination, which makes it significantly slower than its Predefined
Route counterpart.

The field used for these simulations is small, especially in terms of the num-
bers of rows and headland laps. Indeed, when the model was under initial devel-
opment, small fields were preferred as they allowed for quick execution of model
simulation, which enabled fast iterations of model development. However, as the
model stabilised and we began to apply the system for the harvest planning of
larger fields, we experienced significant performance issues.

For larger fields (ten rows or more), the performance of the system was
unacceptably slow. The primary culprit for the poor performance was the data
representation of the field and the algorithms used to implement common oper-
ations on the field (such as shortest path calculation). One of the reasons for
these inefficient implementations was the use of VDM itself. As a formal mod-
elling language, VDM and its associated tools are more concerned with semantic
fidelity and validity of analyses than with simulation performance.

To address this issue, the field representation in the model was replaced with
a handwritten Java implementation. The Overture VDM-Java bridge [20] was
used to connect this implementation to the model, and a new mechanism called
the delegate was introduced to ensure seamless realisation and integration of the
final system. The introduction of the Java component led to performance gains
of 3000% [21] that effectively addressed the performance issues of the previous
version of the model and helped us achieve acceptable system performance for
much larger fields.

7 Live Planning

The harvest planning system as described so far uses offline planning techniques
to analyse harvest operations. Essentially, this means that planning is only done
once, and that the system takes no measures against unforeseen scenarios that
may necessitate re-planning over the course of the harvest operation. Live plan-
ning techniques, on the other hand, continuously analyse data reported by the
vehicles (positions, bin levels etc.) and try to optimise the harvest plan by assign-
ing more efficient routes to the vehicles. A live version of the system can therefore
be seen as a tool that serves to guide the operators of the vehicles throughout
the harvest operation.

A live system is currently under development, and we expect to use it in a
realistic harvest setting in the near future. The live system will run on a server
that receives live data from the vehicles and uses this data to further improve
the harvest plan. Once new routes have been calculated, these will be assigned to
the vehicles, which connect to the server via light-weight clients. A light-weight
client is responsible for communicating live data to the server and provide the
operator of the vehicle with information about the route that the vehicle is
currently assigned. The structure of the live system is visualised in Fig. 6.



Multi-algorithm Harvest Planning 31

Fig. 6. The structure of the live system realised as a UML class diagram.

As a first step, the live planning system computes initial routes for each
vehicle, which is similar to what the offline planning system already does. Based
on the initial routes, the vehicles start to harvest the field, and as the harvest
progresses, the vehicles report live data to the server. If the data reported by
the vehicles indicates a need for re-planning, then the live system responds by
calculating and assigning new routes to the vehicles. This step is repeated until
the harvest operation has completed.

Several situations may occur which necessitate re-planning. For example, a
harvester may report a bin level that is smaller than what is expected by the
system. In that case the system may decide to extend the harvester’s route to
compensate for the smaller bin level. However, changing the harvester’s route
may necessitate re-calculations of unload points, hence also affecting the routes
of other vehicles. As another example, a vehicle may encounter an unexpected
obstacle in the field that prevents it from following the route it has been assigned.
Similar to the previous example, such situations necessitate re-planning which
may affect the other vehicles that participate in the harvest operation.

The harvest planning system is only a viable solution if using the system
leads to better harvest results. To show this, the results obtained using the live
system will be compared to those obtained using traditional harvest approaches,
i.e. before the harvest planning system was used. When the live system has
been used in a realistic harvest setting it will be possible to obtain quantitative
evidence that shows if the system achieves better results. Demonstration of this
is crucial in order to convince farmers to start using the system.

8 Conclusions and Future Work

In this paper, we have presented the model-based development of a harvest
planning system. We have shown how the strategy pattern enables the appli-
cation of different optimisation algorithms to different phases of the harvest
planning system. Further, we have shown how such algorithms can be easily var-
ied across multiple simulations, enabling a swift and comprehensive exploration
of the design space.

We have shown an example application of our system to develop plans for
a small real field in Denmark. As the size of the fields increases, the perfor-
mance of the model was greatly degraded. This was dealt with by replacing a



32 L.D. Couto et al.

portion of the model with a handwritten Java component that provides efficient
implementations of the more computationally-intensive operations in the model.

The next step in our work is to validate the plans produced by the system
by applying them to a real harvest and verifying if the results are better than
those obtained with traditional harvest planning approaches. Towards that end,
work has begun on a live planning system that will assist vehicle operators in
following a harvest plan. This system will also take advantage of live data to
adapt and improve the plan on-the-fly.

Acknowledgements. A previous version of this paper was presented at the SIMUL-
TECH 2016 conference [16]. The work described in this paper was partially carried
out in the context of the Danish High Technology Foundation research project Off-line
and on-line logistics planning of harvesting processes. We would like to thank all our
colleagues on the project for their valuable contributions and feedback, particularly
Peter Gorm Larsen, Claus Grøn Sørensen, Dionysis Bochtis and Morten Bilde. We also
thank Kun Zhou for his assistance with the harvest visualisation.

References

1. Spekken, M., de Bruin, S.: Optimized routing on agricultural fields by minimizing
maneuvering and servicing time. Precis. Agric. 14, 224–244 (2013)

2. Edwards, G., Christiansen, M.P., Bochtis, D.D., Sørensen, C.G.: A test platform
for planned field operations using LEGO mindstorms NXT. Robotics 2, 203–216
(2013)

3. Jensen, M.A.F., Bochtis, D.D., Sørensen, C.G., Blas, M.R., Lykkegaard, K.L.: In-
field and inter-field path planning for agricultural transport units. Comput. Indus.
Eng. 63, 1054–1061 (2012)

4. Oksanen, T., Visala, A.: Coverage path planning algorithms for agricultural field
machines. J. Field Robot. 26, 651–668 (2009)

5. Edwards, G., Jensen, M.A.F., Bochtis, D.D.: Coverage planning for capacitated
field operations under spatial variability. Int. J. Sustain. Agric. Manag. Inf. 1,
120–129 (2015)

6. Bochtis, D.D., Sørensen, C.G.: The vehicle routing problem in field logistics part
I. Biosyst. Eng. 104, 447–457 (2009)

7. Jensen, M.A.F.: Operations planning for agricultural machinery under capacity
constraints. Ph.D. thesis, Aarhus University (2014)

8. Scheuren, S., Stiene, S., Hartanto, R., Hertzberg, J., Reinecke, M.: Spatio-
temporally constrained planning for cooperative vehicles in a harvesting scenario.
KI-Künstliche Intelligenz 27, 341–346 (2013)

9. Jin, J., Tang, L.: Optimal coverage path planning for arable farming on 2d surfaces.
Trans. ASABE 53, 283 (2010)

10. Zandonadi, R.S.: Computational tools for improving route planning in agricultural
field operations. Ph.D. thesis, University of Kentucky (2012)

11. Hameed, I., Bochtis, D.D., Sørensen, C.G., Jensen, A.L., Larsen, R.: Optimized
driving direction based on a three-dimensional field representation. Comput. Elec-
tron. Agric. 91, 145–153 (2013)

12. Tullberg, J.: Tillage, traffic and sustainability – a challenge for ISTRO. Soil Tillage
Res. 111, 26–32 (2010)



Multi-algorithm Harvest Planning 33

13. Fitzgerald, J., Larsen, P.G., Verhoef, M. (eds.): Collaborative Design for Embedded
Systems – Co-modelling and Co-simulation. Springer, Heidelberg (2014)

14. Broenink, J.F., Fitzgerald, J., Gamble, C., Ingram, C., Mader, A., Marincic, J.,
Ni, Y., Pierce, K., Zhang, X.: Methodological guidelines 3. Technical report, The
DESTECS Project (INFSO-ICT-248134) (2012)

15. Gamma, E., Helm, R., Johnson, R., Vlissides, R.: Design Patterns. Elements
of Reusable Object-Oriented Software. Addison-Wesley Publishing Company,
Reading (1995)

16. Couto, L.D., Tran-Jørgensen, P.W.V., Edwards, G.T.C.: Combining harvesting
operation optimisations using strategy-based simulation. In: Proceedings of the 6th
International Conference on Simulation and Modeling Methodologies, Technologies
and Applications - Volume 1: SIMULTECH, pp. 25–32 (2016)

17. Meyer, B.: Object-Oriented Software Construction. Prentice-Hall International,
Upper Saddle River (1988)

18. Fitzgerald, J., Larsen, P.G., Mukherjee, P., Plat, N., Verhoef, M.: Validated Designs
for Object-Oriented Systems. Springer, New York (2005)

19. Larsen, P.G., Lausdahl, K., Battle, N.: Combinatorial testing for VDM. In: Pro-
ceedings of the 2010 8th IEEE International Conference on Software Engineering
and Formal Methods, SEFM 2010, Washington, DC, USA, pp. 278–285. IEEE
Computer Society (2010). ISBN 978-0-7695-4153-2

20. Nielsen, C.B., Lausdahl, K., Larsen, P.G.: Combining VDM with executable code.
In: Derrick, J., Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S.,
Riccobene, E. (eds.) Abstract State Machines, Alloy, B, VDM, and Z. Lecture
Notes in Computer Science, vol. 7316, pp. 266–279. Springer, Heidelberg (2012)

21. Couto, L.D., Tran-Jørgensen, P.W.V.: Integrating real system components in
model-based development. Submitted to the 33rd ACM/SIGAPP Symposium on
Applied Computing (SAC 2018)



http://www.springer.com/978-3-319-69831-1


	Model-Based Development of a Multi-algorithm Harvest Planning System
	1 Introduction
	2 Model Architecture
	2.1 Model Overview

	3 Model Implementation
	4 Model Execution
	4.1 Simulation Visualisation

	5 Results
	6 Discussion
	7 Live Planning
	8 Conclusions and Future Work
	References


