
Chapter 2
Ab-Initio Calculations

Abstract Due to the difficulties found in the direct solution of the Schrödinger
equation, different simplified approaches were proposed and are nowadays widely
used. Among them, those most usually employed are the Hartree–Fock and the
Density Functional Theory,whichwe revisit in the present chapter. The formermakes
use of nonstandard numerical approximations in order to calculate the wavefunction
while circumventing the curse of dimensionality, whereas the latter involves the
electronic density that is nowdefined in three dimensions but requires deeper analyses
to retain themost relevant features present in thewavefunction description in a coarse
3D model.

Keywords Hartree-Fock · Hohenberg and Kohn Theorems · Density Functional
Theory

2.1 The Hartree–Fock Description

2.1.1 The Orbital Model

The set of all the solutions to the one-electron Schrödinger equation reads as

Ĥ φi = Êi φi , (2.1)

where Ĥ represents the one-electron Hamiltonian hermitian operator. The eigen-
functionsφi , known as spatial orbitals, related to the eigenvalues Êi (energies), define
a complete basis of the 3D space, such that any 3D function can be written as

f (r) =
∞∑

j=1

c j φ j (r), (2.2)
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30 2 Ab-Initio Calculations

where r denotes the space coordinates, after eliminating the spin coordinate in expres-
sion (1.129), i.e., r = (x, y, z).

If we define the spin-orbitals ϕ j (x) as

ϕ j (x) = φ j (r) · α(s), (2.3)

or
ϕ j (x) = φ j (r) · β(s), (2.4)

then the solution Ψ (x1, x2) of the two-electrons Schrödinger equation could be
approximated as follows: fixing the value of one of the coordinates, e.g., x2, and
using the rationale just described, it results that

Ψ (x1; x2) =
∞∑

j=1

c j (x2) ϕ j (x1), (2.5)

and considering

c j (x2) =
∞∑

k=1

d j
k ϕk(x2), (2.6)

it ultimately results that

Ψ (x1, x2) =
∞∑

j=1

∞∑

k=1

c jk ϕ j (x1) · ϕk(x2), (2.7)

where c jk = d j
k .

This expression can be generalized to the many-electrons distribution function.

2.1.2 Accounting for the Pauli Exclusion Principle

In order to ensure verification of the Pauli exclusion principle, we define the deter-
minants

Φk(x1, · · · , xNe) =

∣∣∣∣∣∣∣

ϕmk
1
(x1) · · · ϕmk

1
(xNe)

...
. . .

...

ϕmk
Ne

(x1) · · · ϕmk
Ne

(xNe)

∣∣∣∣∣∣∣
, (2.8)

where k refers to a particular choice of the Ne indexes mk
1, · · · ,mk

Ne
.

Thus, the multi-electronic wavefunction can be approximated as

Ψ (x1, · · · , xNe) =
∞∑

k=1

Dk Φk(x1, · · · , xNe). (2.9)
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A permutation in the label of two electrons implies the exchange of two columns
of the different determinants involved in Eq. (2.9), and then a change of the sign in
agreement with Pauli exclusion principle.

2.1.3 The Variational Principle

In order to compute the wavefunction approximate given by Eq. (2.9), wemust prove
the existence of a variational principle whose minimization will result in the desired
wavefunction.

The eigenproblem related to the multi-electronic system reads as

H Ψ = E Ψ, (2.10)

which results in the eigenfunctions Ψi verifying the orthonormality condition

∫
Ψi Ψ j dr = δi j , (2.11)

where dr = dr1 · dr2 · · · drNe . It is important to note that since the Hamiltonian
is independent of the spin, the resulting eigenfunctions only depend on the space
coordinates.

Although Ψi are and remain unknown, their formal properties ensure that they
form a complete basis for the expression of any function. Thus, if we write

Ψ ′ =
∞∑

j=1

Bj Ψ j , (2.12)

where Bj are arbitrary coefficients, then the associated energy (according to
(Eq.1.83)), results in

E ′ =
∫

Ψ ′H Ψ ′dr
∫

Ψ ′Ψ ′dr
, (2.13)

where the denominator accounts for the non-normality of Ψ ′.
Introducing the approximation (2.12) into the expression (2.13) and taking into

account Eq. (2.11), it results that

E ′ =

∞∑

j=1

|Bj |2E j

∞∑

j=1

|Bj |2
, (2.14)
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which subtracting the lowest energy E1 (ground state), yields

(E ′ − E1) = 1
∞∑

j=1

|Bj |2

∞∑

j=1

|Bj |2 (E j − E1) ≥ 0, (2.15)

implying that
E ′ ≥ E1, (2.16)

which means that whatever function of Ne electronic coordinates one chooses, the
mean value of the Hamiltonian operator is always greater than the lowest true energy
of the associated Schrödinger equation, giving the procedure for finding numeri-
cal solutions. It suffices to minimize the Hamiltonian operator applied to the test
wavefunction approximate as described in the next section.

2.1.4 A Direct Solution Procedure

If the expression of Ψ ′ is written as a linear combination of a finite number M of
determinants, i.e.,

Ψ ′(x1, . . . , xNe) =
M∑

j=1

Dj Φ j (x1, . . . , xNe), (2.17)

then the associated energy results in

E ′ =

M∑

j=1

M∑

k=1

Dj Dk

∫
Φ jH Φkdr

M∑

j=1

M∑

k=1

Dj Dk

∫
Φ jΦkdr

. (2.18)

Introducing the notation {
Hjk = ∫

Φ jH Φk dr
Sjk = ∫

Φ jΦk dr
, (2.19)

Equation (2.18) reads as

⎛

⎝
M∑

j=1

M∑

k=1

Dj DkSjk

⎞

⎠ E ′ =
M∑

j=1

M∑

k=1

Dj DkHjk, (2.20)
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whose minimization leads to

(
M∑

k=1

DkSjk

)
E =

M∑

k=1

DkHjk, ∀ j, (2.21)

which can be written in the matrix form
⎛

⎜⎝
H11 . . . H1M
...

. . .
...

HM1 . . . HMM

⎞

⎟⎠

⎛

⎜⎝
D1
...

DM

⎞

⎟⎠ = E

⎛

⎜⎝
S11 . . . S1M
...

. . .
...

SM . . . SMM

⎞

⎟⎠

⎛

⎜⎝
D1
...

DM

⎞

⎟⎠ , (2.22)

or
H D = E S D. (2.23)

The main difficulties in this numerical approach are as follows:

• How many determinants M should be considered in the expansion (2.12)?
• How to quantify the solution quality?
• What are themost appropriate spin-orbitalsϕi (x) for performing the development?
• What are the best determinants to consider, that is, the best choices of indices mk

i ,∀k?
• Despite the fact that coefficients Hjk and Sjk are known, in principle, because
everything is known about the integrals, they still remain formidable technical
problems, being integrals of 3Ne spatial variables. The integrals can be separated
as a sum of products of integrals defined in the 3D spaces. However, the separated
form of integrals Hjk requires the integration in 6D spaces, because of the electron-
electron potential that appears in the Hamiltonian.

2.1.5 The Hartree–Fock Approach

As the general expansion (2.17) is computationally too expensive, one could try to
capture themain features of the solution by assuming that this sum reduces to a single
term. Of course, if one uses

Ψ ′(x1, . . . , xNe) = D Φ(x1, . . . , xNe), (2.24)

there would be no chance of defining an acceptable solution, except by consider-
ing that the determinant Φ(x1, . . . , xNe) is defined from a set of separate unknown
orbitals that should be computed from the minimization that the variational principle
imposes. Thus, theHartree–Fock approach considers theHartree–Fockwavefunction
ΦHF (x1, . . . , xNe) defined from
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ΦHF (x1, . . . , xNe) =

∣∣∣∣∣∣∣

χm1(x1) . . . χm1(xNe)
...

. . .
...

χmNe
(x1) . . . χmNe

(xNe)

∣∣∣∣∣∣∣
, (2.25)

in which, as just indicated, orbitals χi are approximated from m spin-orbitals (pre-
viously introduced) according to

χi (x) =
m∑

r=1

Cri ϕr (x). (2.26)

Coefficients Cri are computed by using the variational formulation associated
with the energy

E

[
ΦHF

]
=

∫
Φ

HF
H ΦHFdr

∫
Φ

HF
ΦHFdr

, (2.27)

where E

[
ΦHF

]
indicates that the energy is a functional of the Hartree–Fock wave-

function, which could also be written as E[χi ]. The interested reader can refer to [1]
for additional details on the calculation procedure.

2.1.6 Post-Hartree–Fock Methods

Note that Eq. (2.26) involves Ne · m unknowncomplex coefficients. Thus, the compu-
tational complexity scales in Ne · m, that is, linearly with the dimension of the space
(number of electrons Ne) or with the number m of functions used in the approxima-
tion of the orbitals χi . This scalability is characteristic of separated representations
[2].

The main limitation of the Hartree–Fock method lies in the single-determinant
expansion used in the approximation of the wavefunction solution of the multi-
electronic Schrödinger equation. If the main features present in this solution cannot
be expressed from a single-determinant expansion, the Hartree–Fock solution could
be inaccurate.

To circumvent this crude approximation, different multi-determinant approaches
have been proposed. Interested readers can refer to [3], as well as to the different
chapters of the handbook on computational chemistry [4]. The simplest alternative
consists in writing the solution as a linear combination of some Slater determinants,
built by combining m orbitals, with m > Ne. These orbitals are assumed as being
known (e.g., the orbitals related to the hydrogen atom) and the weights are searched
to minimize the electronic energy. When the molecular orbitals are built from the
Hartree–Fock solution (by employing the ground state and some excited eigenfunc-
tions), the technique is known as the Configuration Interaction method (CI).
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Amore sophisticated technique consists in writing this multi-determinant approx-
imation of the solution by using a number of molecular orbitalsm (withm > Ne) that
are assumed to be unknown. Thus, the minimization of the electronic energy leads to
simultaneous computation of themolecular orbitals and the associated coefficients of
this multi-determinant expansion. Obviously, each one of these unknown molecular
orbitals is expressed in an appropriate functional basis (e.g., Gaussian functions, ...).
This strategy is known as a Multi-Configuration Self-Consistent Field (MCSCF).

All of the just-mentioned strategies (and others like the coupled cluster or the
Moller–Plesset perturbation methods) belong to the family of wavefunction-based
methods. They can only be used to solve quantum systems composed of a moderate
number of electrons, because the number of terms involved in the determinants scales
with the factorial of the number of electrons, i.e., with Ne! (the factorial of Ne).

2.2 Density Functional Theory

Solid physics deals with multi-electron systems implying billions of particles, not
just dozens as in molecular theories. This means that methods based on electron
density are much more widely used. The constant efforts to develop such methods
have been rewarded by a series of amazing theorems showing that it is possible to
obtain the exact electron density without using the wavefunction.

Density functional theory–DFT–is based on two major results, the so-called
Hohenberg and Kohn theorems.

2.2.1 The First Hohenberg and Kohn Theorem

The first Hohenberg and Kohn theorem states that the electronic density uniquely
determines the external potential, the one created by the nuclei.

We start by defining the electronic density in the context of the single-determinant
approach (which implies operating with space-spin coordinates)

ρ(r) = Ne

∫
Φ(x, x2, . . . , xNe)Φ(x, x2, . . . , xNe) dr2 . . . drNe , (2.28)

or

ρ(r) = Ne

∫
|Ψ (x, x2, . . . , xNe)|2 dr2 . . . drNe . (2.29)

We assume the following Hamiltonian partition:

H = T + V + G , (2.30)
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where T represents the kinetic energy operator, V the external potential operator
(the one created by the nuclei) and G the inter-electron repulsions potential.

In order to prove that the electronic density uniquely determines the external
potential, we assume that two different external potentials correspond to the same
electronic density. This fact implies different Hamiltonians that only differ due to
the difference in the external potentials because the kinetic energy part and the one
corresponding to the inter-electron interactions are the same as soon as the number of
electrons is the same.Wedenote the twodifferent external potentials byV andV ′, and
their corresponding Hamiltonians by H and H ′, respectively. As the Hamiltonian
determines the wavefunction, these will be denoted by Ψ and Ψ ′.

Now, the variational principle introduced in Sect. 2.1.3 states

{∫
Ψ ′H Ψ ′ dr1 · · · drNe > E∫
ΨH ′Ψ dr1 · · · drNe > E ′ , (2.31)

with {
E = ∫

ΨH Ψ dr1 · · · drNe

E ′ = ∫
Ψ ′H ′Ψ ′ dr1 · · · drNe

. (2.32)

Thus, considering the first expression in Eq. (2.31), it results that

E <

∫
Ψ ′H Ψ ′ dr1 · · · drNe =

∫
Ψ ′H ′Ψ ′ dr1 · · · drNe +

∫
Ψ ′(H − H ′)Ψ ′ dr1 · · · drNe =

E ′ +
∫

Ψ ′(V − V ′)Ψ ′ dr1 · · · drNe = E ′ +
∫

(v(r) − v′(r))ρ(r) dr, (2.33)

where v(r) refers to the one-electron potential (see Sect. 1.9).
Now, applying the same rationale to the second expression in Eq. (2.31), we obtain

E ′ <

∫
ΨH ′Ψ dr1 · · · drNe =

∫
ΨH Ψ dr1 · · · drNe +

∫
Ψ (H ′ − H )Ψ dr1 · · · drNe =

E +
∫

Ψ (V ′ − V )Ψ dr1 · · · drNe =

E +
∫

(v′(r) − v(r))ρ(r) dr = E −
∫

(v(r) − v′(r))ρ(r) dr. (2.34)
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By adding Eqs. (2.33) and (2.34), it results that

E ′ + E < E ′ + E, (2.35)

from which we conclude that V ′ = V and H ′ = H . Since the wavefunction
depends on the Hamiltonian, we can affirm that the wavefunction is uniquely deter-
mined by the electron density, and consequently Ψ ′ = Ψ .

2.2.2 The Second Hohenberg and Kohn Theorem

Now, in order to determine the electronic density, the second Hohenberg and Kohn
theorem establishes a variational principle whose minimization results in the desired
electronic distribution.

From a given electronic density ρ ′(r), we can write

E ′ =
∫

Ψ ′H Ψ ′dr1 · · · drNe = W [ρ ′(r)]. (2.36)

The variational principle introduced in Sect. 2.1.3 implies that

E ′ = W [ρ ′(r)] ≥ E =
∫

ΨH Ψ dr1 · · · drNe = W [ρ(r)], (2.37)

withH Ψ = EΨ , which establishes the desired result

⎧
⎨

⎩

W [ρ ′(r)] ≥ W [ρ(r)]
∫

ρ ′(r)dr = Ne

. (2.38)

2.2.3 The Hohn–Sham Equations

In the density functional theory, two conceptual difficulties remain:

• How to quantify the electron’s kinetic energy solely with the knowledge of their
distributions in space?

• What is the role of antisymmetry (Pauli exclusion principle) requirements in the
electron density function?

We start by approximating the unknown function, the trial density, within a single-
determinant approach

ρ(r) = Ne

∫
Φ(x, x2, . . . , xNe)Φ(x, x2, . . . , xNe) dr2 . . . drNe , (2.39)
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where the determinant Φ involves the unknown orthonormal spin-orbitals χi (xi ),
an approximation that is in agreement with the Pauli exclusion principle and that
verifies the Ne-representability

∫
ρ(r)dr = Ne. (2.40)

The total energyW [ρ(r)] can be decomposed into three contributions, one related
to the kinetic energy T [ρ(r)], one that considers the external potential (electron-
nuclei interactions) V [ρ(r)] and finally one representing the electron-electron inter-
actions J [ρ(r)], with the last two contributions reading as

V [ρ(r)] =
∫

v(r)ρ(r)dr, (2.41)

and

J [ρ(r)] =
∫

ρ(r1)
1

||r1 − r2||ρ(r2)dr1dr2. (2.42)

For the kinetic energy, we assume an initial contribution T̂ by assuming non-
interacting electrons

T̂ [ρ(r)] =
Ne∑

i=1

∫
χi

(
1

2
∇2

)
χi dri , (2.43)

where χi are the orbitals considered in the expression of the determinant Φ.
The remaining contribution to the kinetic energy and the non-Coulomb effects

are grouped in the exchange-correlation-residual-kinetic energy EXCKE[ρ(r)]. The
main difficulty concerns the expression of the exchange-correlation-kinetic-residual
energy that is not known. In general, this term is obtained through a combina-
tion of heuristic arguments, because more accurate techniques exploiting the self-
consistency are too expensive to be used.

Now, the solution procedure consists of the following steps

• Associate a variation in the density with linearly independent variations in χi and
χ i ;

• Generate the form of the variations of each functional involving χi and χi : T̂ , V ,
J and EXCK E ;

• Add a Lagrange multiplier to enforce the Ne-representability;
• Enforce optimality conditions of the variational principle.

The interested reader can refer to [1] for additional details on the calculation
procedure.
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2.3 Concluding Remarks on the Quantum Scale

After this brief analysis of the quantum scale, we reach the following conclusions:

• Schrödinger formalism represents the finest contemporary level of description. In
the formalism introduced here, there is no mention in the Hamiltonian of spin-
dependent magnetic interactions. These effects, as well as the relativistic ones,
taken into account in Dirac’s equation, are neglected. The consideration of very
heavy nuclei requires the introduction of such relativistic effects.

• The wavefunction involved in the Schrödinger equation is spatially continuous,
and its evolution is governed by a PDE.

• The Schrödinger equation is defined in a multidimensional space leading to the
curse of dimensionality issues. It has been solved exactly for systems containing
a reduced number of electrons.

• The ab-initio approximations, density functional and Hartree–Fock theories just
summarized seem sometimes to be crude, but they are the only valuable route for
addressing multi-electronic systems.

• The solution of the Schrödinger equation could provide an excellent description
of the world at the nanometric scale, as well as accurate interatomic potentials to
be used in molecular dynamics simulations.

• There are some quantum systems in which the solution explores the whole multi-
dimensional configuration space, and thus remain almost intractable despite all
the possible advances in the computational performances.
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