
Chapter 2
ContinuumMethods (CM): Basic Continuum
Mechanics

2.1 Notation

Throughout this work, boldface symbols denote vectors or tensors. Furthermore, we
exclusively employ a Cartesian basis. For the inner product of two vectors (first-
order tensors), u and v, we have u · v = uivi = u1v1 + u2v2 + u3v3 in three
dimensions, where a Cartesian basis and Einstein index summation notation are
used. In this introduction, for clarity of presentation, we will ignore the difference
between second-order tensors and matrices.Accordingly, if we consider the second-
order tensor A = Aik ei ⊗ ek , then a first-order contraction (inner product) of two
second-order tensors A·B is defined by thematrix product [A][B], with components
of Ai j B jk = Cik . It is clear that the range of the inner index j must be the same for [A]
and [B]. For three dimensions, we have i, j = 1, 2, 3. The inner product of a tensor
(matrix) with a vector is defined as A · v = Ai j v j . The second-order inner (scalar)
product of two tensors (matrices) is defined as A : B = Ai j Bi j = tr([A]T [B]).
Monograph Appendix 1 provides a basic mathematical review.

2.2 Kinematics of Deformations

In this chapter, we synopsize amore detailed discussion found in Zohdi andWriggers
[1]. The term deformation refers to a change in the shape of a continuum between
a reference configuration and current configuration. In the reference configuration,
a representative particle of a continuum occupies a point P in space and has the
position vector (Fig. 2.1)

X = X1e1 + X2e2 + X3e3, (2.1)

where e1, e2, e3 is a Cartesian reference triad, and X1, X2, X3 (with center O) can
be thought of as labels for a material point. Sometimes the coordinates or labels
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Fig. 2.1 Different descriptions of a deforming body. Ωo is the reference configuration, and Ω is
the current configuration

(X1, X2, X3) are called the referential or material coordinates. In the current config-
uration, the particle originally located at point P (at time t = 0) is located at point
P ′ and can be also expressed in terms of another position vector x, with coordi-
nates (x1, x2, x3). These are called the current coordinates. In this framework, the
displacement is u = x − X for a point originally at X and with final coordinates x.

When a continuumundergoes deformation (or flow), its pointsmove along various
paths in space. This motion may be expressed as a function of X and t as

x(X, t) = u(X, t) + X(t), (2.2)

which gives the present location of a point at time t , written in terms of the refer-
ential coordinates X1, X2, X3. The previous position vector may be interpreted as
a mapping of the initial configuration onto the current configuration. In classical
approaches, it is assumed that such a mapping is one-to-one and continuous, with
continuous partial derivatives to whatever order is required. The description of mo-
tion or deformation expressed previously is known as the Lagrangian formulation.
Alternatively, if the independent variables are the coordinates x and time t , then
x(x1, x2, x3, t) = u(x1, x2, x3, t) + X(x1, x2, x3, t), and the formulation is denoted
as Eulerian (Fig. 2.1).1

1Frequently, analysts consider the referential configuration to be fixed in time; thus, in that case it is
not a function of time, X �= X(t). We shall consider X �= X(t) for the remainder of the monograph.
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2.2.1 Deformation of Line Elements

Partial differentiation of the displacement vector u = x − X , with respect to X ,
produces the following displacement gradient:

∇Xu = F − 1, (2.3)

where

F
def= ∇X x

def= ∂x
∂X

=
⎡
⎢⎣

∂x1
∂X1

∂x1
∂X2

∂x1
∂X3

∂x2
∂X1

∂x2
∂X2

∂x2
∂X3

∂x3
∂X1

∂x3
∂X2

∂x3
∂X3

⎤
⎥⎦ . (2.4)

F is known as the material deformation gradient.
Now, consider the length of a differential element in the reference configuration

dX and dx in the current configuration, dx = ∇X x · dX = F · dX . Taking the
difference in the squared magnitudes of these elements yields

dx · dx − dX · dX = (∇X x · dX) · (∇X x · dX) − dX · dX
= dX · (FT · F − 1) · dX def= 2 dX · E · dX . (2.5)

Equation (2.5) defines the so-called Lagrangian strain tensor

E
def= 1

2 (F
T · F − 1) = 1

2 [∇Xu + (∇Xu)T + (∇Xu)T · ∇Xu]. (2.6)

Remark 1 It should be clear that dx can be reinterpreted as the result of amapping F ·
dX → dx or a change in configuration (reference to current). An important quantity

is the Jacobian of the deformation gradient, J
def= detF, which relates differential

volumes in the reference configuration (dΩ0) to differential volumetric domains in
the current configuration (dΩ) via dΩ = J dΩ0. The Jacobian of the deformation
gradient must remain positive, otherwise we obtain physically impossible “negative”
volumes. One way is compare the differential volume of mutually orthogonal triad of
differential vectors in the reference configuration dX (1), dX (2), dX (3) (forming the
edges of a cube), given by the triple product dX (1) · (dX (2) × dX (3)) to the volume
of the mapping of the triad dx(1) = F ·dX (1), dx(2) = F ·dX (2), dx(3) = F ·dX (3),
given by dx(1) · (dx(2) × dx(3)). Another way to prove this is by formulating a
conservation of mass over an arbitrary volume within the domain

∫
ωo

ρo dωo =
∫

ω

ρ dω =
∫

ωo

ρJ dωo, (2.7)

which immediately leads to the conclusion that ρo = ρJ , since ωo is arbitrary.
For more details, we refer the reader to the texts of Malvern [2], Gurtin [3], Chan-
drasekharaiah and Debnath [4], and Zohdi and Wriggers [1].
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Remark 2 One may develop so-called Eulerian formulations, employing the current
configuration coordinates to generate Eulerian strain tensor measures (see Zohdi and
Wriggers [1]).

2.3 Equilibrium/Kinetics of Continua

The balance of linear momentum in the deformed (current) configuration is
∫

∂ω

t da
︸ ︷︷ ︸
surface forces

+
∫

ω

ρb dω

︸ ︷︷ ︸
body forces

= d

dt

∫
ω

ρu̇ dω

︸ ︷︷ ︸
inertial forces

, (2.8)

whereω ⊂ Ω is an arbitrary portion of the body (Fig. 2.1), with boundary ∂ω, ρ is the
material density, b is the body force per unit mass, and u̇ is the time derivative of the
displacement. The surface force densities, t , are commonly referred to as “tractions.”

2.3.1 Postulates on Volume and Surface Quantities

Now, consider a tetrahedron (commonly referred to as a Cauchy tetrahedron) in
equilibrium, as shown in Fig. 2.2, where a balance of forces yields

t(n)ΔA(n) + t(−1)ΔA(1) + t(−2)ΔA(2) + t(−3)ΔA(3) + ρbΔV = ρüΔV, (2.9)

where ΔA(n) is the surface area of the face of the tetrahedron with normal n
and ΔV is the tetrahedron volume. As the distance (h) between the tetrahedron
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Fig. 2.2 Left: Cauchy tetrahedron: a “sectioned point” and right: stress at a point
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base (located at (0, 0, 0)) and the surface center goes to zero (h → 0), we have

ΔA(n) → 0 ⇒ ΔV
ΔA(n) → 0. Geometrically, we have ΔA(i)

ΔA(n) = cos(xi , xn)
def=ni , and

therefore t(n) + t(−1)cos(x1, xn) + t(−2)cos(x2, xn) + t(−3)cos(x3, xn) = 0, where
(xi , xn) indicates the angle between the xi and xn directions. It is clear that forces
on the surface areas could be decomposed into three linearly independent, mutually
orthogonal, components. It is convenient to introduce the concept of stress at a point,
representing the surface forces (tractions) there, pictorially represented by a cube
surrounding a point. The fundamental issue that must be resolved is the character-
ization of these surface forces. We can represent the traction on a surface by the
component representation:

t(i)
def=

⎧⎨
⎩

σi1

σi2

σi3

⎫⎬
⎭ , (2.10)

where the second index represents the direction of the component and the first index
represents components of the normal to corresponding coordinate plane. We have
t(n) = σT · n, where

σ
def=

⎡
⎣

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

⎤
⎦ , (2.11)

or explicitly (t(1) = −t(−1), t(2) = −t(−2), t(3) = −t(−3))

t(n) = t(1)n1 + t(2)n2 + t(3)n3 = σT · n =
⎡
⎣

σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

⎤
⎦
T ⎧⎨

⎩
n1
n2
n3

⎫⎬
⎭ , (2.12)

where σ is the so-called Cauchy stress tensor. Henceforth, we will drop the super-

script notation of t(n), where it is implicitly assumed that t
def= t(n).

Remark In the absence of micromoment stresses, a balance of angular momen-
tum implies a symmetry of stress, σ = σT , and thus, the difference in nota-
tions becomes immaterial. Explicitly, starting with an angular momentum balance,
under the assumptions that no infinitesimal “micromoments” or so-called couple-
stresses exist, then it can be shown that the stress tensor must be symmetric,2 i.e.,∫
∂ω x × t da + ∫

ω x × ρb dω = d
dt

∫
ω x × ρu̇ dω; that is, σT = σ.

2It is somewhat easier to simply consider a differential element, such as in Fig. 2.2, and to simply
sum moments about the center. Doing this, one immediately obtains σ12 = σ21,σ23 = σ32 and
σ13 = σ31. Consequently, t = σ · n = σT · n.
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2.3.2 Balance Law Formulations

Substitution of Eq.2.12 into Eq.2.8 yields (ω ⊂ Ω)

∫
∂ω

σ · n da
︸ ︷︷ ︸
surface forces

+
∫

ω

ρb dω

︸ ︷︷ ︸
body forces

= d

dt

∫
ω

ρu̇ dω

︸ ︷︷ ︸
inertial forces

. (2.13)

A relationship can be determined between the densities in the current and reference
configurations,

∫
ω ρdω = ∫

ω0
ρJdω0 = ∫

ω0
ρ0dω0. Therefore, the Jacobian can also

be interpreted as the ratio ofmaterial densities at a point. Since the volume is arbitrary,
we can assume that ρJ = ρ0 holds at every point in the body. Therefore, wemaywrite
d
dt (ρ0) = d

dt (ρJ ) = 0, when the system is mass conservative over time. This leads to

writing the last term in Eq.2.13 as d
dt

∫
ω ρu̇ dω = ∫

ω0

d(ρJ )

dt u̇ dω0 + ∫
ω0

ρüJ dω0 =∫
ω ρü dω. From Gauss’s divergence theorem, and an implicit assumption that σ is
differentiable, we have

∫
ω (∇x · σ + ρb − ρü) dω = 0. If the volume is selected as

being arbitrary, then the integrand must be equal to zero at every point, yielding

∇x · σ + ρb = ρü. (2.14)

2.4 The First Law of Thermodynamics/An Energy Balance

The interconversions of mechanical, thermal, and chemical energy in a system are
governed by the first law of thermodynamics, which states that the time rate of change
of the total energy, K+ I, is equal to the rate of input of energy Ẇ . Specifically, we
can relate the kinetic and potential energy states at two instances of time by

K(t) + I(t) + ΔW = K(t + Δt) + I(t + Δt) (2.15)

or, as Δt → 0,

d

dt
(K + I) = Ẇ = P + H + Q, (2.16)

where the mechanical power is P and the net heat supplied from sources and con-
duction is Q + H. Here, the kinetic energy of a subvolume of material contained in
Ω , denoted ω, is

Kdef=
∫

ω

1

2
ρu̇ · u̇ dω, (2.17)

the power (rate of work) of the external forces acting on ω is given by



2.4 The First Law of Thermodynamics/An Energy Balance 15

Pdef=
∫

ω

ρb · u̇ dω +
∫

∂ω

σ · n · u̇ da, (2.18)

the heat flow into the volume by conduction is

Qdef= −
∫

∂ω

q · n da = −
∫

ω

∇x · q dω, (2.19)

q being the heat flux, the heat generated due to sources, such as chemical reactions,
is

Hdef=
∫

ω

ρz dω, (2.20)

where z is the reaction source rate per unit mass, and the internal energy is

Idef=
∫

ω

ρw dω, (2.21)

where w being the internal energy per unit mass. Differentiating the kinetic energy
yields

dK
dt

= d

dt

∫
ω

1

2
ρu̇ · u̇ dω =

∫
ω0

d

dt

1

2
(ρJ u̇ · u̇) dω0

=
∫

ω0

(
d

dt
ρ0)

1

2
u̇ · u̇ dω0 +

∫
ω

ρ
d

dt

1

2
(u̇ · u̇) dω

=
∫

ω
ρu̇ · ü dω, (2.22)

where we have assumed that the mass in the system is constant. We also have

dI
dt

= d

dt

∫
ω

ρw dω = d

dt

∫
ω0

ρJw dω0 =
∫

ω0

d

dt
(ρ0)

︸ ︷︷ ︸
=0

w dω0 +
∫

ω
ρẇ dω =

∫
ω

ρẇ dω.

(2.23)

By using the divergence theorem, we obtain
∫

∂ω
σ · n · u̇ da =

∫
ω

∇x · (σ · u̇) dω =
∫

ω
(∇x · σ) · u̇ dω +

∫
ω

σ : ∇x u̇ dω. (2.24)

Combining the results, and enforcing a balance of linear momentum, leads to

∫
ω

(ρẇ + u̇ · (ρü − ∇x · σ − ρb) − σ : ∇x u̇ + ∇x · q − ρz) dω =
∫

ω
(ρẇ − σ : ∇x u̇ + ∇x · q − ρz) dω = 0.

(2.25)
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Since the volume ω is arbitrary, the integrand must hold locally and we have

ρẇ − σ : ∇x u̇ + ∇x · q − ρz = 0. (2.26)

When dealing with multifield problems, this equation is used extensively.

2.5 Linearly Elastic Constitutive Equations

We now discuss relationships between the stress and the strain, so-called material
laws or constitutive relations for linearly elastic cases (infinitesimal deformations).

2.5.1 The Infinitesimal Strain Case

In infinitesimal deformation theory, the displacement gradient components are con-
sidered small enough that higher-order terms like (∇Xu)T · ∇Xu and (∇xu)T · ∇xu
can be neglected in the strain measure E = 1

2 (∇Xu + (∇Xu)T + (∇Xu)T · ∇Xu),

leading to E ≈ ε
def= 1

2 [∇Xu + (∇Xu)T ]. If the displacement gradients are small
compared with unity, ε coincides closely to E. If we assume ∂

∂X ≈ ∂
∂x , we may use

E or ε interchangeably. Usually ε is the symbol used for infinitesimal strains. Fur-
thermore, to avoid confusion, when usingmodels employing the geometrically linear
infinitesimal strain assumption, we use the symbol of ∇ with no X or x subscript.
Hence, the infinitesimal strains are defined by

ε=1

2
(∇u + (∇u)T ). (2.27)

2.5.2 Material Response

If we neglect thermal effects, Eq.2.26 implies ρẇ = σ : ∇x u̇ which, in the infinites-
imal strain linearly elastic case, is ρẇ = σ : ε̇. From the chain rule of differentiation,
we have

ρẇ = ρ
∂w

∂ε
: dε

dt
= σ : ε̇ ⇒ σ = ρ

∂w

∂ε
. (2.28)

The starting point to develop a constitutive theory is to assume a stored elastic energy

function exists, a function denotedW
def= ρw, which depends only on the mechanical

deformation. The simplest function that fulfills σ = ρ∂w
∂ε

is W = 1
2ε : IE : ε,

where IE is the fourth rank elasticity tensor. Such a function satisfies the intuitive
physical requirement that, for any small strain from an undeformed state, energy
must be stored in the material. Subsequently, a small strain material law can be
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derived from σ = ∂W
∂ε

and W ≈ c0 + c1 : ε + 1
2ε : IE : ε + . . . which implies

σ ≈ c1 + IE : ε + . . .. We are free to set c0 = 0 (it is arbitrary) in order to have zero
strain energy at zero strain, and furthermore, we assume that no stresses exist in the
reference state (c1 = 0). With these assumptions, we obtain the familiar relation

σ = IE : ε. (2.29)

This is a linear relation between stresses and strains. The existence of a strictly
positive stored energy function in the reference configuration implies that the linear
elasticity tensor must have positive eigenvalues at every point in the body. Typically,
different materials are classified according to the number of independent components
in IE. In theory, IE has 81 components, since it is a fourth-order tensor relating nine
components of stress to strain. However, the number of components can be reduced
to 36 since the stress and strain tensors are symmetric. This is observed from the
matrix representation3 of IE:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ11

σ22

σ33

σ12

σ23

σ31

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

︸ ︷︷ ︸
def={σ}

=

⎡
⎢⎢⎢⎢⎢⎢⎣

E1111 E1122 E1133 E1112 E1123 E1113

E2211 E2222 E2233 E2212 E2223 E2213

E3311 E3322 E3333 E3312 E3323 E3313

E1211 E1222 E1233 E1212 E1223 E1213

E2311 E2322 E2333 E2312 E2323 E2313

E1311 E1322 E1333 E1312 E1323 E1313

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
def= [IE]

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε11
ε22
ε33
2ε12
2ε23
2ε31

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

︸ ︷︷ ︸
def={ε}

. (2.30)

The existence of a scalar energy function forces IE to be symmetric since the
strains are symmetric; in other words, W = 1

2ε : IE : ε = 1
2 (ε : IE : ε)T = 1

2ε
T :

IET : εT = 1
2ε : IET : ε which implies IET = IE. Consequently, IE has only 21

independent components. The nonnegativity of W imposes the restriction that IE
remains positive definite. At this point, based on many factors that depend on the
material microstructure, it can be shown that the components of IE may be written
in terms of anywhere between 21 and 2 independent parameters. Accordingly, for
isotropicmaterials, we have two planes of symmetry and an infinite number of planes
of directional independence (two free components), yielding

IE
def=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

κ + 4
3μ κ − 2

3μ κ − 2
3μ 0 0 0

κ − 2
3μ κ + 4

3μ κ − 2
3μ 0 0 0

κ − 2
3μ κ − 2

3μ κ + 4
3μ 0 0 0

0 0 0 μ 0 0
0 0 0 0 μ 0
0 0 0 0 0 μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (2.31)

3The symbol [·] is used to indicate the matrix notation equivalent to a tensor form, while {·} is used
to indicate the vector representation.
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In this case, we have

σ = IE : ε = 3κ
trε

3
1 + 2με′ ⇒ W = 1

2
ε : IE : ε = 9

2
κ(

trε

3
)2 + με′ : ε′, (2.32)

where trε = εi i and ε′ = ε− 1
3 (trε)1 is the deviatoric strain. The eigenvalues of an

isotropic elasticity tensor are (3κ, 2μ, 2μ,μ,μ,μ). Therefore, we must have κ > 0
and μ > 0 to retain positive definiteness of IE. All of the material components of
IE may be spatially variable, as in the case of composite particulate-functionalized
media.

2.5.3 Material Component Interpretation

There are a variety of ways to write isotropic constitutive laws, each time with a
physically meaningful pair of material values.

Splitting the Strain

It is sometimes important to split infinitesimal strains into two physically meaningful
parts

ε = trε

3
1 + (ε − trε

3
1). (2.33)

An expansion of the Jacobian of the deformation gradient yields J = det (1 +
∇Xu) ≈ 1 + tr∇Xu + O(∇Xu) = 1 + trε + . . .. Therefore, with infinitesimal
strains, (1+ trε)dω0 = dω and we can write trε = dω−dω0

dω0
. Hence, trε is associated

with the volumetric part of the deformation. Furthermore, since ε′def=ε − trε
3 1, the

so-called strain deviator describes distortion in the material.

Infinitesimal Strain Material Laws

The stress σ can be split into two parts (dilatational and a deviatoric):

σ = trσ

3
1 + (σ − trσ

3
1) def= −p1 + σ′, (2.34)

where we call the symbol p the hydrostatic pressure and σ′ the stress deviator. With
(2.32), we write

p = −3κ

(
trε

3

)
and σ′ = 2μ ε′. (2.35)
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This is one form of Hooke’s law. The resistance to change in the volume is measured
by κ. We note that ( trσ3 1)′ = 0, which indicates that this part of the stress produces
no distortion.

Another fundamental form of Hooke’s law is

σ = Ey

1 + ν

(
ε + ν

1 − 2ν
(trε)1

)
, (2.36)

and the inverse form is

ε = 1 + ν

Ey
σ − ν

Ey
(trσ)1, (2.37)

where Ey , theYoung’smodulus, is the ratio of the uniaxial stress to the corresponding
strain component and the Poisson ratio, ν, is the ratio of the transverse strains to the
uniaxial strain. To interpret thematerial values, consider an idealized uniaxial tension
test (pulled in the x1-direction inducing a uniform stress state) where σ12 = σ13 =
σ23 = 0, which implies ε12 = ε13 = ε23 = 0. Also, we have σ22 = σ33 = 0. Under
these conditions, we have σ11 = Eyε11 (axial stiffness) and ε22 = ε33 = −νε11 (the
ratio of transverse to axial strain).

Another commonly used set of stress–strain forms are the Lamé relations,

σ = λ(trε)1 + 2με or ε = − λ

2μ(3λ + 2μ)
(trσ)1 + σ

2μ
, (2.38)

whereλ is referred to a the Lame parameter. To interpret thematerial values, consider
a homogeneous pressure test (uniform stress) where σ12 = σ13 = σ23 = 0 and where
σ11 = σ22 = σ33. Under these conditions, we have

κ = λ + 2

3
μ = Ey

3(1 − 2ν)
and μ = Ey

2(1 + ν)
, (2.39)

and consequently

κ

μ
= 2(1 + ν)

3(1 − 2ν)
. (2.40)

Weobserve that κ
μ

→ ∞ implies ν → 1
2 , and

κ
μ

→ 0 implies⇒ ν → −1. Therefore,
since both κ and μ must be positive and finite, this implies −1 < ν < 1/2 and
0 < Ey < ∞. For example, some polymeric foams exhibit ν < 0, steels ν ≈ 0.3,
and some forms of rubber have ν → 1/2. We note that λ can be positive or negative.
For more details, see Malvern [2], Gurtin [3], Chandrasekharaiah and Debnath [4].

Remark See Zohdi and Wriggers [1] for a variety of different finite-deformation
constitutive laws.
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