Chapter 2
Continuum Methods (CM): Basic Continuum
Mechanics

2.1 Notation

Throughout this work, boldface symbols denote vectors or tensors. Furthermore, we
exclusively employ a Cartesian basis. For the inner product of two vectors (first-
order tensors), u and v, we have u - v = u;v; = uvy + urv> + uzvs in three
dimensions, where a Cartesian basis and Einstein index summation notation are
used. In this introduction, for clarity of presentation, we will ignore the difference
between second-order tensors and matrices. Accordingly, if we consider the second-
order tensor A = A, e; ® ey, then a first-order contraction (inner product) of two
second-order tensors A - B is defined by the matrix product [A][ B], with components
of A;j Bjx = Cj.Itis clear that the range of the inner index j must be the same for [A]
and [B]. For three dimensions, we have i, j = 1, 2, 3. The inner product of a tensor
(matrix) with a vector is defined as A - v = A;;v;. The second-order inner (scalar)
product of two tensors (matrices) is defined as A : B = A;;B;; = tr([A]T[BY).
Monograph Appendix 1 provides a basic mathematical review.

2.2 Kinematics of Deformations

In this chapter, we synopsize a more detailed discussion found in Zohdi and Wriggers
[1]. The term deformation refers to a change in the shape of a continuum between
a reference configuration and current configuration. In the reference configuration,
a representative particle of a continuum occupies a point P in space and has the
position vector (Fig.2.1)

X = Xe; + Xaer + Xzes, 2.1

where e, e, e5 is a Cartesian reference triad, and X, X,, X3 (with center O) can
be thought of as labels for a material point. Sometimes the coordinates or labels
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Fig. 2.1 Different descriptions of a deforming body. 2, is the reference configuration, and 2 is
the current configuration

(X1, X5, X3) are called the referential or material coordinates. In the current config-
uration, the particle originally located at point P (at time ¢ = 0) is located at point
P’ and can be also expressed in terms of another position vector x, with coordi-
nates (xi, X, x3). These are called the current coordinates. In this framework, the
displacement is u = x — X for a point originally at X and with final coordinates x.

When a continuum undergoes deformation (or flow), its points move along various
paths in space. This motion may be expressed as a function of X and ¢ as

x(X, 1) =uX, )+ X(@), (2.2)

which gives the present location of a point at time ¢, written in terms of the refer-
ential coordinates X, X,, X3. The previous position vector may be interpreted as
a mapping of the initial configuration onto the current configuration. In classical
approaches, it is assumed that such a mapping is one-to-one and continuous, with
continuous partial derivatives to whatever order is required. The description of mo-
tion or deformation expressed previously is known as the Lagrangian formulation.
Alternatively, if the independent variables are the coordinates x and time ¢, then
x(x1,x2, x3,1) = u(xy, x2, x3,1) + X(x1, x2, x3, t), and the formulation is denoted
as Eulerian (Fig. 2.1).1

1Frequently, analysts consider the referential configuration to be fixed in time; thus, in that case it is
not a function of time, X # X (¢). We shall consider X # X (¢) for the remainder of the monograph.
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2.2.1 Deformation of Line Elements

Partial differentiation of the displacement vector # = x — X, with respect to X,
produces the following displacement gradient:

Vyu=F —1, 2.3)

where
Ox Ox Oxi

F v 9% ol 0 ot | 2.4)
8X1 8X2 8X3
F is known as the material deformation gradient.

Now, consider the length of a differential element in the reference configuration
dX and dx in the current configuration, dx = Vyx - dX = F - dX. Taking the

difference in the squared magnitudes of these elements yields

dx -dx —dX -dX = (Vxx -dX) - (Vxx -dX) —dX -dX

—dX - (FT - F—1)-dX ¥ 24X -E-dX. @25)

Equation (2.5) defines the so-called Lagrangian strain tensor

LLFTF 1) = Vxu+ (V) + (V)| - Vyul.  (26)
Remark 1 Itshould be clear that dx can be reinterpreted as the result of a mapping F -
dX — dx or achange in configuration (reference to current). An important quantity

is the Jacobian of the deformation gradient, J d:efdetF , which relates differential
volumes in the reference configuration (d£2y) to differential volumetric domains in
the current configuration (d$2) via d§2 = J d$2y. The Jacobian of the deformation
gradient must remain positive, otherwise we obtain physically impossible “negative”
volumes. One way is compare the differential volume of mutually orthogonal triad of
differential vectors in the reference configuration d X O dx® 4x (forming the
edges of a cube), given by the triple product XV - (dX® x dX®) to the volume
of the mapping of the triad dx" = F.dXV,dx® = F.dX®,dx® = F-dX®,
given by dxV . (dx@® x dx®). Another way to prove this is by formulating a
conservation of mass over an arbitrary volume within the domain

/ podwoz/pdwz/ pJ dw,, 2.7

o

which immediately leads to the conclusion that p, = pJ, since w, is arbitrary.
For more details, we refer the reader to the texts of Malvern [2], Gurtin [3], Chan-
drasekharaiah and Debnath [4], and Zohdi and Wriggers [1].
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Remark 2 One may develop so-called Eulerian formulations, employing the current
configuration coordinates to generate Eulerian strain tensor measures (see Zohdi and
Wriggers [1]).

2.3 Equilibrium/Kinetics of Continua

The balance of linear momentum in the deformed (current) configuration is

d .
/ tda +/pbdw= —/pudw, (2.8)
dw w dt w
——’ —— ————
surface forces body forces inertial forces

where w C £2 is an arbitrary portion of the body (Fig. 2.1), with boundary dw, p is the
material density, b is the body force per unit mass, and # is the time derivative of the
displacement. The surface force densities, ¢, are commonly referred to as “tractions.”

2.3.1 Postulates on Volume and Surface Quantities

Now, consider a tetrahedron (commonly referred to as a Cauchy tetrahedron) in
equilibrium, as shown in Fig. 2.2, where a balance of forces yields

tWAAD L tEDAAD Lt EDAAD 4t EIAAG 4 pbAV = pii AV, (2.9)

where AA® is the surface area of the face of the tetrahedron with normal n
and AV is the tetrahedron volume. As the distance (h) between the tetrahedron

X3 t

Fig. 2.2 Left: Cauchy tetrahedron: a “sectioned point” and right: stress at a point
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base (located at (0, 0, 0)) and the surface center goes to zero (h — 0), we have
AAW 5 0 = % — 0. Geometrically, we have %:;’, = cos(x;, xn)défn,-, and
therefore ™ + tVcos(xy, x,) + t TP cos(x2, x,) + t T cos(x3, x,) = 0, where
(x;, x,,) indicates the angle between the x; and x, directions. It is clear that forces
on the surface areas could be decomposed into three linearly independent, mutually
orthogonal, components. It is convenient to introduce the concept of stress at a point,
representing the surface forces (tractions) there, pictorially represented by a cube
surrounding a point. The fundamental issue that must be resolved is the character-
ization of these surface forces. We can represent the traction on a surface by the

component representation:

iydef i1
tD=1on (2.10)
i3

where the second index represents the direction of the component and the first index
represents components of the normal to corresponding coordinate plane. We have
t™ = T . n, where

de 011 012 013
o= | 021 02023 |, (2.11)
031 032 033

or explicitly (¢ = —¢CD, t@ = 2 O = (=)

T
011 012 013 ni
t(”) = t(l)n1 +t(2)n2 —|—t(3)n3 = O'T ‘n = | 031 022 023 ny ¢, (212)
031 032 033 n3

where o is the so-called Cauchy stress tensor. Henceforth, we will drop the super-
. . e def
script notation of ™, where it is implicitly assumed that t=¢.

Remark In the absence of micromoment stresses, a balance of angular momen-
tum implies a symmetry of stress, o = o7, and thus, the difference in nota-
tions becomes immaterial. Explicitly, starting with an angular momentum balance,
under the assumptions that no infinitesimal “micromoments” or so-called couple-
stresses exist, then it can be shown that the stress tensor must be symrnetric,2 i.e.,
fo,x xtda+ [ x x pbdw =% [ x x pitdw; thatis, o’ = 0.

%It is somewhat easier to simply consider a differential element, such as in Fig.2.2, and to simply

sum moments about the center. Doing this, one immediately obtains 012 = 021, 023 = 033 and

013 = 031. Consequently, t = o -n = ol . n.
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2.3.2 Balance Law Formulations

Substitution of Eq.2.12 into Eq. 2.8 yields (w C £2)

d .
/ o-~nda+/pbdw=—/pudw. (2.13)
dw w dt w
—_——— — — —_———
surface forces body forces inertial forces

A relationship can be determined between the densities in the current and reference
configurations, [, pdw = [, pJdwy = [, poduwy. Therefore, the Jacobian can also
be interpreted as the ratio of material densities at a point. Since the volume is arbitrary,
we can assume that pJ = pg holds at every point in the body. Therefore, we may write

% (po) = % (pJ) = 0, when the system is mass conservative over time. This leads to
writing the last term in Eq.2.13 as & [ pidw = Lo d(g—tj)it dwo + [, piiJ dwy =
fw pii dw. From Gauss’s divergence theorem, and an implicit assumption that o is
differentiable, we have fw (Vy - o + pb — pii) dw = 0. If the volume is selected as

being arbitrary, then the integrand must be equal to zero at every point, yielding

V.o + pb = pii. (2.14)

2.4 The First Law of Thermodynamics/An Energy Balance

The interconversions of mechanical, thermal, and chemical energy in a system are
governed by the first law of thermodynamics, which states that the time rate of change
of the total energy, K + Z, is equal to the rate of input of energy W. Specifically, we
can relate the kinetic and potential energy states at two instances of time by

K@) +Z@)+ AW =K@ + At) +Z(t + At) (2.15)

or,as At — 0,
d .
E(/C+I)=W=7>+H+Q, (2.16)

where the mechanical power is P and the net heat supplied from sources and con-
duction is Q + H. Here, the kinetic energy of a subvolume of material contained in
§2, denoted w, is

1
o St i oo, 2.17)

w

the power (rate of work) of the external forces acting on w is given by
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def . .
P= pb-udw—i—/ o-n-uda, (2.18)
w ow

the heat flow into the volume by conduction is
def
Q:—/ q~nda:—/Vx~qdw, (2.19)
Ow w

q being the heat flux, the heat generated due to sources, such as chemical reactions,
is

HE [ pzdw, (2.20)

w

where z is the reaction source rate per unit mass, and the internal energy is
Idef
= / pwdw, (2.21)

where w being the internal energy per unit mass. Differentiating the kinetic energy
yields
dK d 1 d 1
T Cohido=| S —(pJi-w)d
dr  dr L R naw ,/wo ar 2P wdwo
d 1 d 1
_ 4 1 aa a1. .4
wo(dtpo)zu u WO+/wpdt2(u ) dw
:/Wﬁw, (2.22)

where we have assumed that the mass in the system is constant. We also have

I d

d d
— =— | pwdw = — p]wdw():/ —(po)wdwo—i—/pu')dw:/pu')dw.
dt dr J, dt Jo, wo At w w

=0

(2.23)

By using the divergence theorem, we obtain
/ 0'~n~i¢da:/Vx~(0'~1'4)dw=/(VX~0')~i¢dw+/0':intdw. (2.24)
Ow w w w
Combining the results, and enforcing a balance of linear momentum, leads to
/(pu')-l—it-(pii—VX~U—pb)—U:int+VX~q—pz) dw =
Jw

‘ (2.25)
/(pzb—a:V_xu+Vx~q—pz)dw:O.
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Since the volume w is arbitrary, the integrand must hold locally and we have

pw—0o Vit +Vy-q—pz=0. (2.26)
When dealing with multifield problems, this equation is used extensively.

2.5 Linearly Elastic Constitutive Equations

We now discuss relationships between the stress and the strain, so-called material
laws or constitutive relations for linearly elastic cases (infinitesimal deformations).

2.5.1 The Infinitesimal Strain Case

In infinitesimal deformation theory, the displacement gradient components are con-
sidered small enough that higher-order terms like (Vyu)” - Vxu and (V,u)T - V.u
can be neglected in the strain measure £ = %(qu + (Vxa)T + (Vxu)T - Vyu),

leading to E =~ € & %[qu + (Vxu)"]. If the displacement gradients are small

compared with unity, € coincides closely to E. If we assume aix ~ a%’ we may use
E or € interchangeably. Usually € is the symbol used for infinitesimal strains. Fur-
thermore, to avoid confusion, when using models employing the geometrically linear
infinitesimal strain assumption, we use the symbol of V with no X or x subscript.

Hence, the infinitesimal strains are defined by

e:%(Vu + (Va)"). (2.27)

2.5.2 Material Response

If we neglect thermal effects, Eq. 2.26 implies pw = o : V, & which, in the infinites-
imal strain linearly elastic case, is pw = o : €. From the chain rule of differentiation,

we have
. ow de N ow (2.28)
=p)— —=0.€E=>0=p—. .
P pae dt pae

The starting point to develop a constitutive theory is to assume a stored elastic energy

function exists, a function denoted W o pw, which depends only on the mechanical
deformation. The simplest function that fulfills o = p%—‘g is W = %e :IE : €
where IE is the fourth rank elasticity tensor. Such a function satisfies the intuitive
physical requirement that, for any small strain from an undeformed state, energy

must be stored in the material. Subsequently, a small strain material law can be
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derived from o = %—‘Z and W ~ ¢yp+ ¢ : €+ %e : IE : € + ... which implies
o~c +IE:e+....Weare free to set ¢y = 0 (it is arbitrary) in order to have zero
strain energy at zero strain, and furthermore, we assume that no stresses exist in the
reference state (¢; = 0). With these assumptions, we obtain the familiar relation

o=1I :e. (2.29)

This is a linear relation between stresses and strains. The existence of a strictly
positive stored energy function in the reference configuration implies that the linear
elasticity tensor must have positive eigenvalues at every point in the body. Typically,
different materials are classified according to the number of independent components
in IE. In theory, IE has 81 components, since it is a fourth-order tensor relating nine
components of stress to strain. However, the number of components can be reduced
to 36 since the stress and strain tensors are symmetric. This is observed from the
matrix representation® of IE:

Ei1 Ev22 Enizs Ene Evizs Enns

o1l 611

o Eniy Exnyn Exnss Exnin Exns Exnis

033 E3311 Essn Eszss Eszz Esas Essns (2.30)
012 E1211 En Ezz Eniz Es En 2612

023 Ex11 B2z Enszz Exin Eozps Exsns 263

031 E311 Ensn Ei3ss Eze Erzs Esis 26%1

—_——
TP “IE] ey

The existence of a scalar energy function forces IE to be symmetric since the
strains are symmetric; in other words, W = %e IE e = %(e (IE :e)7 = %eT :
IE" : €" = le: IE" : € which implies IE” = IE. Consequently, IE has only 21
independent components. The nonnegativity of W imposes the restriction that IE
remains positive definite. At this point, based on many factors that depend on the
material microstructure, it can be shown that the components of IE may be written
in terms of anywhere between 21 and 2 independent parameters. Accordingly, for
isotropic materials, we have two planes of symmetry and an infinite number of planes

of directional independence (two free components), yielding

MK+ un—
n——un+

,un—%,uOOO_

Ink—24000

ES | n—3uk—3uks+5p000 | (2.31)
0 0 0 pu00
0 0 0 0po
0 0 0 00pu,

3The symbol [-] is used to indicate the matrix notation equivalent to a tensor form, while {-} is used
to indicate the vector representation.
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In this case, we have

t 1 9 t
U’=E:E=3H?1+2p,€/$w= 561EZ€=EI€(§)2+MG/ZG,, (2.32)

where frre = ¢;; and € = € — %(tre)l is the deviatoric strain. The eigenvalues of an
isotropic elasticity tensor are (3x, 2, 24, (i, i, pt). Therefore, we must have k > 0
and p > 0 to retain positive definiteness of IE. All of the material components of
IE may be spatially variable, as in the case of composite particulate-functionalized
media.

2.5.3 Material Component Interpretation

There are a variety of ways to write isotropic constitutive laws, each time with a
physically meaningful pair of material values.

Splitting the Strain

It is sometimes important to split infinitesimal strains into two physically meaningful

parts
tre tre

€= Tl—i—(e— ?1). (2.33)

An expansion of the Jacobian of the deformation gradient yields J = det(1 +

Vxu) ~ 1 + trVxu + O(Vxu) = 1 + tre + . ... Therefore, with infinitesimal
strains, (1 +tre)dwy = dw and we can write trre = d“d_—wiw". Hence, treis associated

. . . . def
with the volumetric part of the deformation. Furthermore, since € =€ — ”Tél, the
so-called strain deviator describes distortion in the material.

Infinitesimal Strain Material Laws

The stress o can be split into two parts (dilatational and a deviatoric):

tro tro def ’

where we call the symbol p the hydrostatic pressure and o the stress deviator. With

(2.32), we write

tre , ,
p=-3k (T) and o' =2pe€. (2.35)
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This is one form of Hooke’s law. The resistance to change in the volume is measured
by . We note that (”T"l)’ = 0, which indicates that this part of the stress produces
no distortion.

Another fundamental form of Hooke’s law is

E (e4 2 _ren (2.36)
o= € € , .
1+v —2w
and the inverse form is
_ v, 1 237
€= o G—E(tra), (2.37)

where EY, the Young’s modulus, is the ratio of the uniaxial stress to the corresponding
strain component and the Poisson ratio, v, is the ratio of the transverse strains to the
uniaxial strain. To interpret the material values, consider an idealized uniaxial tension
test (pulled in the x-direction inducing a uniform stress state) where o, = o3 =
023 = 0, which implies €j, = €3 = €33 = 0. Also, we have 05, = 033 = 0. Under
these conditions, we have 0;; = E” ¢y (axial stiffness) and €5, = €33 = —veq; (the
ratio of transverse to axial strain).
Another commonly used set of stress—strain forms are the Lamé relations,

A o
o=\tre)l+2ue or e=————(tro)l + —, 2.38
(tre) i 2#(3/\+2u)( ) 0 (2.38)

where A is referred to a the Lame parameter. To interpret the material values, consider
a homogeneous pressure test (uniform stress) where o, = 013 = 023 = 0 and where
011 = 022 = 033. Under these conditions, we have

A+ 2 E? d E (2.39)
K= - =———— an =—) .
3" T30 -2 F=20+0)
and consequently
2(1
r_ M (2.40)
w31 —-2v)

We observe that £ — ocoimpliesv — 5 and & — Qimplies = v — —1. Therefore,
since both x and (4 must be positive and ﬁn1te this implies —1 < v < 1/2 and
0 < EY < oo. For example, some polymeric foams exhibit v < 0, steels v ~ 0.3,
and some forms of rubber have v — 1/2. We note that A\ can be positive or negative.
For more details, see Malvern [2], Gurtin [3], Chandrasekharaiah and Debnath [4].

Remark See Zohdi and Wriggers [1] for a variety of different finite-deformation
constitutive laws.
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