
2AModel Problem:1DElastostatics

2.1 Introduction: AModel Problem

Inmost problems ofmathematical physics the true solutions are nonsmooth; i.e., they
are not continuously differentiable. Thus, we cannot immediately apply a Galerkin
approach. For example in the equation of static mechanical equilibrium1

∇ · σ + f = 0, (2.1)

there is an implicit requirement that the stress, σ, is differentiable in the classical
sense. Virtually the same mathematical structure form holds for other partial dif-
ferential equations of mathematical physics describing diffusion, heat conduction,
etc. In many applications, differentiability is too strong a requirement, and in many
locations it does not hold (the solution “jumps”).Therefore, when solving such prob-
lems we have two options: (1) enforcement of solution jump conditions at all of these
locations (often they are not even known a priori) or (2) weak formulations (weaken-
ing the regularity requirements). Weak forms, which are designed to accommodate
irregular data and solutions, are usually preferred. Numerical techniques employing
weak forms, such as the finite element method, have been developed with the essen-
tial property that whenever a smooth classical solution exists, it is also a solution
to the weak form problem. Therefore, we lose nothing by reformulating a problem
in a more general way, by weakening the a priori smoothness requirements of the
solution.

In the following few chapters, we shall initially consider a one-dimensional
structure which occupies an open bounded domain in Ω ∈ IR, with boundary ∂Ω .
The boundary consists of Γu on which the displacements (u), or any other primal
variable (temperature in heat conduction applications, concentration in diffusion

1Here f are the body forces.
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Fig. 2.1 A one-dimensional
body
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applications, etc. (see Appendix B)), are prescribed and a part Γt on which tractions

(t
def= σn, n being the outward normal) are prescribed (t = t∗, Fig. 2.1). We now

focus on weak forms of a one-dimensional version of Eq.2.1

dσ

dx
+ f = 0, (σ = E

du

dx
), (2.2)

where E = E(x) is a spatially varying coefficient (Fig. 2.1). Thereafter, we will
discuss three-dimensional problems.

2.2 Weak Formulations in One Dimension

To derive a direct weak formulation for a body, we take Eq.2.2 (denoted the strong
form), formaproductwith an arbitrary smooth scalar-valued function ν, and integrate
over the body ∫

Ω

(
dσ

dx
+ f )ν dx =

∫
Ω

rν dx = 0, (2.3)

where r is the residual. We call ν a “test” function. If we were to add a condition
that we do this for all (

def= ∀) possible “test” functions then
∫

Ω

(
dσ

dx
+ f )ν dx =

∫
Ω

rν dx = 0 ∀ν, (2.4)

implies r(x) = 0. Therefore, if every possible test function were considered, then
r = dσ

dx + f = 0 on any finite region in (Ω). Consequently, the weak and strong
statements would be equivalent, provided the true solution is smooth enough to
have a strong solution. Clearly, r can never be nonzero over any finite region in the
body, because the test function will “find” them (Fig. 2.2). Using the product rule of
differentiation on σν yields

d

dx
(σν) = (

dσ

dx
)ν + σ

dν

dx
(2.5)

which leads to, ∀ν
∫

Ω

(
d

dx
(σν) − σ

dν

dx
) dx +

∫
Ω

f ν dx = 0, (2.6)
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Fig. 2.2 Test functions
actions on residuals
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where we choose the ν from an admissible set, to be discussed momentarily. This
leads to, ∀ν ∫

Ω

dν

dx
σ dx =

∫
Ω

f ν dx + σν|∂Ω, (2.7)

On Γt , the stress σ on this boundary is known, σ = t∗ (Fig. 2.1), and is unknown on
Γu , and thus, we decide to restrict our choices of ν’s to those that attain ν|Γu = 0.We
note the use of the symbol t∗ stems from the identification of stresses on the boundary
as “tractions.” Also, choosing a priori for the solution from those functions such that
u|Γu = u∗, where u∗ is the applied boundary displacement, on a displacement part
of the boundary, Γu , we have

Find u, u|Γu = u∗, such that ∀ν, ν|Γu = 0

∫
Ω

dν

dx
E

du

dx
dx

︸ ︷︷ ︸
def=B(u,ν)

=
∫

Ω

f ν dx + t∗ν|Γt︸ ︷︷ ︸
def=F(ν)

. (2.8)

This is called a weak form because it does not require the differentiability of σ. In
other words, the differentiability requirements have been weakened. It is clear that
we are able to consider problems with quite irregular solutions. We observe that if
we test the solution with all possible test functions of sufficient smoothness, then
the weak solution is equivalent to the strong solution. We emphasize that provided
the true solution is smooth enough, the weak and strong forms are equivalent, which
can be seen by the above constructive derivation. To explain the point more clearly,
we consider a simple example.
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2.3 An Example

Let us define a one-dimensional continuous function r ∈ C0(Ω), on a one-
dimensional domain, Ω = (0, L). Our claim is that

∫
Ω

rν dx = 0, (2.9)

∀ν ∈ C0(Ω), implies r = 0. This can be easily proven by contradiction. Suppose
r �= 0 at some point ζ ∈ Ω . Since r ∈ C0(Ω), there must exist a subdomain

(subinterval), ω ∈ Ω , defined through δ, ω
def= ζ ± δ such that r has the same sign as

at point ζ. Since ν is arbitrary, we may choose ν to be zero outside of this interval,
and with the same sign as r inside (Fig. 2.3). This would imply that

0 <

∫
Ω

rν dx =
∫

ω
rν dx = 0, (2.10)

which is a contradiction. Now select

r = dσ

dx
+ f ∈ C0(Ω) ⇒ d

dx

(
E

du

dx

)
+ f ∈ C0(Ω) ⇒ u ∈ C2(Ω). (2.11)

Therefore, for this model problem, the equivalence of weak and strong forms occurs
if u ∈ C2(Ω).

Fig. 2.3 A residual function
and a test function
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2.4 Some Restrictions

A key question is the selection of the sets of functions in the weak form. Somewhat
naively, the answer is simple; the integrals must remain finite. Therefore, the follow-
ing restrictions hold (∀ν),

∫
Ω

dν
dx σ dx < ∞,

∫
Ω

f ν dx < ∞,
∫
∂Ω

tν dx < ∞ and
govern the selection of the approximation spaces. In order tomake precise statements
one must have a method of “book keeping.” Such a system is to employ so-called
Hilbertian Sobolev spaces. We recall that a norm has three main characteristics for
any vectors u and ν such that ||u|| < ∞ and ||ν|| < ∞ are (1) ||u|| > 0, ||u|| = 0
if and only if u = 0 (“positivity”), (2) ||u + ν|| ≤ ||u|| + ||ν|| (triangle inequal-
ity), and (3) ||αu|| = |α|||u||, where α is a scalar constant (“scalability”). Certain
types of norms, so-called Hilbert space norms, are frequently used in mathematical
physics. Following standard notation, we denote H1(Ω) as the usual space of scalar
functions with generalized partial derivatives of order≤ 1 in L2(Ω); i.e., it is square
integrable. In other words, u ∈ H1(Ω) if

||u||2H1(Ω)

def=
∫

Ω

∂u

∂x

∂u

∂x
dx +

∫
Ω

uu dx < ∞. (2.12)

Using these definitions, a complete boundary value problemcanbewritten as follows.
The input data loading is assumed to be such that for body forces f ∈ L2(Ω) and
boundary traction σ = t∗ ∈ L2(Γt ), but less smooth data can be considered without
complications. In summary we assume that our solutions obey these restrictions,
leading to the following weak form

Find u ∈ H1(Ω), u|Γu = u∗, such that ∀ν ∈ H1(Ω), ν|Γu = 0

∫
Ω

dν

dx
E

du

dx
dx =

∫
Ω

f ν dx + t∗ν|Γt .

(2.13)

We note that if the data in (2.13) are smooth and if (2.13) possesses a solution u that
is sufficiently regular, then u is the solution of the classical problem in strong form

d
dx (E du

dx ) + f = 0, ∀x ∈ Ω,

u = u∗, ∀x ∈ Γu,

σ = E du
dx = t∗, ∀x ∈ Γt .

(2.14)
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2.5 Remarks on Nonlinear Problems

The treatment of nonlinear problems is outside the scope of this introductory mono-
graph. However, a few comments are in order. The literature of solving nonlinear
problems with the FEM is vast. This is a complex topic that is best illustrated with
an extremely simple one-dimensional example with material nonlinearities. Starting
with

d

dx

⎛
⎜⎜⎜⎝E(

du

dx︸︷︷︸
def= ε

)p

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
def=σ

+ f = 0 (2.15)

the weak form reads

∫ L

0

dν

dx
σ dx =

∫ L

0
f ν dx + t∗v|Γt . (2.16)

Using a Taylor series expansion of σ(ε(u)) about a trial solution u(k) yields (k will
be used as an iteration counter)

σ(u(k+1)) = E(ε(u(k+1)))p

≈ E
(
(ε(u(k)))p + p(ε(u(k)))p−1 ×

(
ε(u(k+1)) − ε(u(k))

)
+ O(||u(k+1) − u(k)||2)

)

(2.17)

and substituting this into the weak form yields

∫ L

0

dν

dx

(
Ep(ε(u(k)))p−1

)
︸ ︷︷ ︸

Etan

ε(u(k+1)) dx =
∫ L

0
f ν dx + t∗ν|Γt

−
∫ L

0

dν

dx
E

(
(ε(u(k)))p − p((ε(u(k)))p)

)
dx .

(2.18)

One then iterates k = 1, 2, ..., until ||u(k+1) − u(k)|| ≤ T O L . Convergence of such
a Newton-type formulation is of concern. We refer the reader to the seminal book of
Oden [1], which developed and pioneered nonlinear formulations and convergence
analysis. For example, consider a general abstract nonlinear equation of the form

Π(u) = 0, (2.19)
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and the expansion

Π(u(k+1)) = Π(u(k)) + ∇uΠ(u(k)) · (u(k+1) − u(k)) + O(||u(k+1) − u(k)||2) ≈ 0.
(2.20)

The Newton update can be written in the following form

u(k+1) = u(k) −
(
ΠT AN (u(k))

)−1 · Π(u(k)), (2.21)

where ΠT AN (u)
def= ∇uΠ(u) is the so-called tangent operator. One immediately

sees a potential difficulty, due to the possibility of a zero, or near zero, tangent when
employing a Newton’s method to a system that may have a nonmonotonic response,
for example those involving material laws with softening. Specialized techniques
can be developed for such problems, and we refer the reader to the state of the art
found in Wriggers [2].
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