
Chapter 2
Particle Detectors

Abstract The subject of the second chapter is the interaction of particles with matter.
The first section discusses the mechanism by which various types of particles interact
with different media. Particular emphasis is given to the concept of energy loss and
range in matter. The second section focuses on the experimental techniques for
particle identification. The third section is dedicated to the functioning of particle
detectors.

2.1 Passage of Particles Through Matter

The kinematics of a particle moving through matter is affected by the interaction
with the medium, which can be traced back to one or multiple incoherent colli-
sions with the scattering centres, or to coherent effects that involve the medium as
a whole. When the interaction is elastic, the particle transfers to the medium part
of its energy or momentum at each collision. This is the case of the energy loss by
electron collision, multiple scattering, Compton scattering. Inelastic reactions absorb
or transmute the particle into something else, and can also give rise to new forms
of radiation or leave behind excited states. This is for example the case of photon
conversion, bremsstrahlung, neutron capture, charged-current neutrino interactions.
Depending on the particle type, on its energy, and on the properties of the medium,
one mechanism usually dominates over the others.

Energy Loss by Collision

Moderately relativistic charged particles lose energy mostly by the interaction with
the electromagnetic field of atoms (electron collision). In the 10−1 � βγ � 103

regime, the rate of energy loss per unit of traversed length, d E/dx , depends almost
exclusively on the particle velocity β and on the properties of the medium. The
formula describing the average rate of energy loss, or linear stopping power, is
called Bethe formula and is given by:
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with:

NA, α Avogadro number (6.02 × 1023 mol−1) and fine structure constant (α ≈
1/137)

ρ, A, Z mass density (g cm−3), atomic weight (g mol−1), and atomic number of
the material

z, β, γ electric charge in units of e, velocity, and gamma-factor of the incident
particle

Wmax maximum energy transfer in a binary collision (see Problem 1.26 for its
derivation)

I mean excitation potential of the material, given by the approximate formula
I ≈ 16 · Z0.9 eV.

δ, C density and shell corrections factors, see Problem 2.2. For their parametri-
sation, the reader is addressed to more advanced textbooks on the topic.

The units of d E/dx deserve a few more words. It is quite common to express the
energy loss as a mass stopping power, i.e. in units of MeV g−1 cm2 rather than
in MeV cm−1. This is motivated by the fact that the energy loss by collision is
proportional to the density of scattering centers, i.e. Z NA ρ/A. Since Z/A is quite
uniform across different materials, the energy loss per unit of surphace density is
less dependent on the medium.

As shown by Eq. (2.1), for a fixed medium the energy loss by collision depends
only on the particle velocity β and on its charge z. The functional form features a
fast rise as β approaches 0 due to the β−2 factor, it approaches a global minimum at
around β ≈ 0.94 ÷ 0.97, or γ between about 3 and 4, and then rises logarithmically
with γ . Particle sitting on the minimum and on the plateau of their d E/dx curve are
characterised by a rather uniform and close-to-minal energy loss, and for this reason
they are said to be minimum ionising particles (MIP). Using the approximation
me/M � 1 in Eq. (1.141) for the maximum energy transfer, and neglecting both
shell and density corrections, which are however relevant for large γ , we can arrive
an approximate formula:
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Considering that for most of the elements and their compounds Z/A ≈ 0.5 g−1 mol,
and given that the term within square brackets is slowly varying with γ between 10
and 15, when dealing with particles of sufficiently large initial energy, one can often
use an average value:
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≈ 1.5 ÷ 2.0
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β2
MeV/cm. (2.3)

Figure 2.1 shows the function at the right-hand side of Eq. (2.2) for Z/A =
0.5 g−1 mol and for two extreme values of the ionisation potential I . The num-
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Fig. 2.1 The approximate Bethe formula of Eq. (2.2) as a function of the γ factor of the incident
particle and for two extreme values of the mean excitation potential I . The global minimum at
around γ = 3 ÷ 4 and the logarithmic growth are evident from the curves. For values of γ above
the argmin of the function, the mass stopping power is in the ballpark of 2 MeV g−1 cm2

ber of electrons extracted from their orbitals per unit length by the interaction with
a MIP can be crudely estimated from Eq. (2.3) to be

d Ne

dx
≈ 1

I

d E

dx
. (2.4)

For example, for a typical ionisation potential I = 20 eV and a water-like mass
density, a unit-charge MIP produces about 105 electrons/cm.

For electrons and positrons moving inside matter, a formula similar to Eq. (2.1)
holds. A few modifications have to be introduced, however, to account for the smaller
mass and for the identity of the incident electron with the electrons that it ionizes, see
e.g. Sect. 2.4 of Ref. [1] or Sect. 33.4 of Ref. [2]. In particular, one needs to replace
Wmax by me c2(γ − 2)/2 and 2 me c2 by me c2 in the argument of the logarithm, and
add a number of extra β-dependent terms inside the square brackets of Eq. (2.1),
giving:
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Numerically, it turns out that the stopping power for heavy ions and electrons and
positrons with the same velocity β are rather similar, indeed they are consistent with
each other to within about 15% up to γ factors of about 100, after which energy loss
by radiation prevails anyway. The relative difference between Eqs. (2.1) and (2.8)
for a few illustrative values of γ is reported in Table 2.1.
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Table 2.1 Relative difference between the energy loss by collision d E/dx for ions and electrons
at the same velocity and for a value of the mean excitation potential I = 20 (800) eV. The density
correction δ is neglected

γ β
d Eion/dx−d Ee/dx

d Eion/dx

1.01 0.140 11.3% (17.1%)

1.1 0.417 10.7% (16.3%)

2 0.866 8.48% (12.5%)

4 0.968 8.10% (11.4%)

10 0.995 9.06% (12.2%)

100 0.999 12.3% (17.5%)

The ionisation charge and the residual atomic excitation produced by the passage
of a charged particle can be detected through various methods and thus yield a mea-
surement of the particle position or energy. For example, this is the working principle
of gaseous detectors like proportional chambers, drift and streamer tubes, RPC, liq-
uid noble-gas detectors, etc. Semiconductor materials are also largely employed in
experiments. When a charged particle moves inside a semiconductor, a number of
electron-hole pairs are produced by the electrons being excited from the valence to
the conductive band. One strength of these materials relies on their small band gap
energy, a few eV infact, yielding a large number of signal carriers. Through appro-
priate doping and polarisation of the semiconductor, these electron-hole pairs can
drift across the medium without significant recombination, to be finally collected for
signal generation.

Other materials have the property of converting a fraction of the energy lost by
a moving charged particle in the form of molecular or electronic excitation of long-
lived states, that subsequently decay by emitting photons of characteristic wavelength
(fluorescence). Because of such property, these materials are called scintillators, and
the emitted radiation is called scintillation light. A key property of the scintillation
mechanism is that the medium is transparent to its own light over distances large
enough that the photons can be efficiently collected. The total light output per unit
length is approximately proportional to the stopping power, a property which can also
allow one to measure the total particle energy for fully absorbed particles. Scintillators
can be classified into two families: organic, for which the scintillation mechanism
relies on the fluorescence of organic molecules (e.g. plastic, organic crystals), and
inorganic, for which the fluorescence originates from the band structure of the crystal
(possibly activated by the introduction of suitable inpurities), or from electron-ion or
ion-ion recombination. A broader overview on the field can be found in e.g. Chap. 7
of Ref. [1].

Table 2.2 shows the mean energy loss necessary to produce one signal carrier,
which can be either a ion-electron pair, an electron-hole pair, or a scintillation photon,
depending on the excitation mechanism. As shown in the table, the largest signal
yields are provided by semiconductors, followed by the best scintillators and by
ionisation in noble gases. Some of the most popular scintillators materials in HEP
are actually characterised by relatively low light yield.
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Table 2.2 Mean energy loss necessary to produce one signal carrier, listed in increasing order. For
scintillators, the mean energy is defined as the inverse of the light yield (LY) in [γ /MeV], a quantity
that is commonly used to quantify the brightness of the scintillator. The values are taken from
Ref. [1, 2] and, since they usually depend on the ambiental conditions, they should be considered
more as an order-of-magnitude estimate. For more precise values, the reader is addressed to the
technical literature

Material Excitation Mean excitation energy ε [eV]
Ge (77 K) Electron-hole 3.0

Si Electron-hole 3.6

Cs I (Tl) Scintill. γ 12

Na I (Tl) Scintill. γ 22

Xe Electron-ion 22

Isobutane Ionisation 23

Ar Electron-ion 26

CO2 Ionisation 33

LISO (Ce) Scintill. γ 35

He Electron-ion 41

Plastic Scintill. γ 100

BGO Scintill. γ 300

PbWO Scintill. γ 5000

Multiple Scattering

Multiple scattering (MS) through small angles refers to the ensemble of incoher-
ent elastic collisions against the nuclear fields that charged particles undergo when
crossing a piece of material. Their collective effect it to randomise the direction of
the incoming particle with no significant energy loss. More informations on the sub-
ject can be found in Ref. [2]. The probability of multiple scattering through small
angles is large because of the sin−4 θ/2 dependence of the Rutherford cross section
(see Problem 1.58). However, there is also some finite probability that the scattering
occurs at large angles, with subsequent emission of a knocked-out electron, or δ-ray
(see Problem 1.62 for how to estimate such a probability). The quantity that char-
acterises multiple scattering through small angles is the mean square angle per unit
length Θ2

s , which in the standard theory is given by:

Θ2
s =

(
Es

βc|p|
)2 1

X0
, with Es =

√
4π

α
me c2 = 21 MeV. (2.6)

Notice that the quantity Es is the same that enters the definition of the Molier radius
for the lateral width of an electromagnetic shower, see Problem 2.34. The effect
of MS inside a medium of length L and radiation length X0 is to randomise the
position and direction of a charged particle at the exit of the medium. Considering
their projections onto a plane, the displacement y and angle θy are described by the
joint p.d.f:

http://dx.doi.org/10.1007/978-3-319-70494-4_1
http://dx.doi.org/10.1007/978-3-319-70494-4_1
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From Eq. (2.7), one can easily compute the standard deviation of θy and y, and their
correlation:
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A more accurate treatment of MS modifies the first of Eq. (2.8) to the well-known
formula:

√
〈θ2

y 〉 = z
0.0136 GeV
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1 + 0.038 ln

(
L

X0

)]
, (2.10)

See Ref. [2] for further informations.

Energy Loss by Bremstrahlung

For energies above a material-dependent threshold known as critical energy (Ec),
energy loss by radiation in the electromagnetic field of the atoms (bremsstrahlung)
prevails. An approximate parametrisation for the critical energy for electrons and
positrons is provided by the formula

Ec = 800 MeV

(Z + 1.2)
. (2.11)

In the bremsstrahlung-dominated regime, the energy loss per unit length is approxi-
mately proportional to the energy itself:

− d E

dx
= E

X0
, (2.12)

where X0, called radiation length, is approximately independent of E . In units of
mass per unit area, the radiation length is provided by the approximate expression:

X0 = (me c2)2 A

4 Z (Z + 1) NA α3(� c)2
[
ln(183Z−1/3) − f (Z)

]

≈ 716 A g cm−2

Z(Z + 1) ln(287
√

Z)
≈ 180

A

Z2
g cm−2, (2.13)
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Table 2.3 Radiation lengths for some materials that can be commonly found in particle physics
experiments, listed by decreasing order or X0 [cm]. From Ref. [1]

Material X0 [g/cm2] X0 [cm]
Air 36 300 × 102

Scintill. 44 42

H2O 36 36

Si 21.9 9.4

NaI 9.5 2.6

Fe 13.8 1.8

BGO 8.0 1.1

Pb 6.4 0.56

where A is the mass number in units of g mol−1. More informations on f (Z) can be
found in dedicated textbook, see e.g. Ref. [1]. Notice that both the nucleus and the
atomic electrons contribute to this O(α3) process: the former through a charge Z e
(hence the term ∼Z2), the latter through Z incoherent scatterings of strength e (hence
the term∼Z ). The last of Eq. (2.13) is a further approximation that helps remembering
the order-of-magnitude of X0 and its dependence on the atomic and mass number.
The radiation length for a few representative materials commonly found in particle
physics experiments are reported in Table 2.3. The energy loss by radiation is the
dominant mechanism of energy degradation for ultra-relativistic charged particles.
Notice that the radiation length X0 is proportional to the mass squared of the charged
ion (me in Eq. (2.13)). The next-to-lightest charged particle is the muon with a mass
nearly 200 times larger than me. The threshold at which energy loss by radiation
starts to be comparable to energy loss by collision is therefore much higher.

Energy Loss by Coherent Radiation: Cherenkov and Transition Radiation

If β > 1/n(ω), n(ω) being the refraction index of the medium at the frequency ω, the
particle emits energy in the form of Cherenkov radiation of wavelength λ = 2π c/ω.
The energy loss per unit length is given by:

− d E

dx
= z2 α �

c

∫
dω ω sin2 θc(ω), (2.14)

where θc is the angle of the shock-wave direction with respect to the particle direction,
which satisfies the relation:

cos θc = 1

β n
. (2.15)

Although the Cherenkov spectrum is continuous, photodetectors have a limited range
of sensitivity which depends of the quantum efficiency of the photocathode. In order
to estimate the number of photons to which the detector will be sensitive, we can
integrate Eq. (2.13) over the relevant spectrum to yield:
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d Nγ

dx dλ
= 2π α z2

λ2
sin2 θc(λ) ⇒ d Nγ

dx
≈ 2παz2 〈sin2 θc〉 λ2 − λ1

λ1λ2
(2.16)

Nγ

L
≈ 1.15 × 103

(λ̂/400 nm)
z2 〈sin2 θc〉 Δλ

λ̂
,

(2.17)

where λ̂ = √
λ1λ2 and the mean value of sin2 θc is used, which is appropriate if n

is slowing varying. For example, with a photodetector sensitive in the range 300 to
500 nm, this gives Nγ � 500 photons/cm for a particle with z = 1, to be compared
with the about 105 electrons/cm electrons released by a MIP from collision loss, see
Eq. (2.7). When coupled to a photodetector, the geometric and quantum efficiency
of the photocathode further reduce the photo-electrons (p.e.) output. Equation 2.16
for z = 1 can be written as:

Np.e. = L N0 〈sin2 θc〉 (2.18)

where N0 is the so-called Cherenkov detector quality factor, which is of order
100 cm−1 for realistic photodetectors sensitive in the visible-UV range: practical
counters in experiments feature values of the quality factor ranging between 30 and
180 cm−1 [2].

Detectors based on the detection of Cherenkov radiation can be used for measuring
the total energy of the crossing particle as well as for particle identification. In the first
case, one exploits the proportionality between the collected light yield and the range
of the particle, which is approximately proportional to the initial particle energy,
see Problem 2.3. For the second purpose, one should distinguish between threshold
detectors, which trigger the passage of a particle with velocity above the Cherenkov
threshold, and imaging detectors, which are instead designed to exploit the angle of
emission of individual Cherenkov photons. For highly energetic particles with β ≈ 1,
the employment of threshold Cherenkov detectors for particle identification becomes
problematic since the index of refraction needs to approach one. To this purpose,
radiators with very low density, like He, C O2, or silica aerogel, are commonly used.
Indeed, the refraction index for a homogeneous medium depends on the density
according to the relation:

n = 1 + 2π f (0,k)

|k|2 N , (2.19)

where N is the density of scattering centres, f (0,k) is the forward scattering ampli-
tude and k is the wave-number vector. For example, a simple model based on a
collection of damped electronic oscillators with resonant frequency ωk and damping
constant νk would give [3]:

n(ω) = 1 + 2π re c2 N
∑

k

fk

ω2
k − ω2 − iνkω

. (2.20)
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Table 2.4 Refraction index and γ threshold for various radiators commonly used in Cherenkov
detectors. The values refer to wavelengths in the visible domain

Material n − 1 γ

He (NTP) 3.3 × 10−5 123

Air (NTP) 2.7 × 10−4 43

CO2 (NTP) 4.3 × 10−4 34

C5 H12 (NTP) 1.7 × 10−3 17.2

Silica aerogel 0.007 ÷ 0.13 2.1 ÷ 8.5

H2O 0.33 1.52

Glass 0.46 ÷ 0.75 1.22 ÷ 1.37

See Tables 2.4 and 6.1 of Ref. [2] for the index of refraction of some popular radiators.
In the β → 1 regime, though, the light output becomes small as for Eq. (2.16). For
example, if a threshold Cherenkov is used for particle identification in a beam of fixed
momentum p, the refraction index can be set to the inverse velocity of the slowest
particle, say β2, and then:

〈sin2 θc〉 = 1 − β2
2

β2
1

= 1 − m2
1/|p|2 − 1 + m2

2/|p|2
β2

1

= m2
2 − m2

1

|p|2 + m2
1

, (2.21)

which decreases like the square of the beam momentum.
When a relativistic charged particle crosses the boundary between vacuum and a

medium, a coherent radiation is emitted in the forward region θ ∼ 1/γ . The total
energy radiated depends linearly on the γ factor of the particle according to the
formula:

I = α z2 γ
� ωp

3
=

(
0.07 z2

√
ρ

g cm−3

Z

A
eV

)
γ, (2.22)

where ωp = √
4π ne/m e is the plasma frequency of the medium [3]. Although

the energy emitted per each crossing is rather small, the total yield for particles
with large γ , like GeV-electrons can be enhanced by interleaving several layers of
medium, as it is usually done in the so-called transition radiation detectors (TRD).
The latter find applications as tracking devices with built-in particle-identification
capability. In terms of emitted photons, the spectrum is concentrated in the region
0.1 γ < ω/ωp < γ , so that more energetic particles give rise to a harder spectrum.
More informations on the subject can be found in Ref. [2].

Interaction of Photons with Matter

Photons interact with matter by three mechanisms: photoelectric effect, Rayleigh
and Compton scattering, and pair-production. Depending on the material and on the
photon energy, one mechanism at the time usually dominates over the others. The
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photoelectric effect consists in the absorption of the photon by an atom, with the
subsequent expulsion of an electron of energy

Ee = hν − Be, (2.23)

where hν is the photon energy and Be is the electron binding energy. Conversely,
photon scattering against the atomic electrons does not destroy the photon, but mod-
ifies its energy and direction, see e.g. Problem 1.25. The scattering can either leave
the atom in the ground state (coherent, or Rayleigh scattering) or kick-out the elec-
tron (incoherent, or Compton scattering), thus leaving the atom in an excited state.
Pair-production is the conversion of a photon into e+e− in the electromagnetic field
of the atom, see e.g. Problem 1.48 for the kinematics of this reaction.

At low energy, photoelectric effect prevails. As the atomic electrons are bound
in discrete states, the photoelectric cross section as a function of the photon energy
features a number of thresholds corresponding to the opening of new atomic level. For
energies above the innermost level, the so-called K -shell, the cross section steeply
falls with energy like ∼E7/2. The K -shell threshold for high-Z elements can be
crudely estimated by using the energy levels formula for the hydrogen atom:

E(n) = − 1

2 n2
α2 Z2 me c2. (2.24)

From this approximations, one expects EK ≈ 10 keV for metals like iron (measured
value 7.1 keV), and EK ≈ 100 keV for lead (measured value 88 keV). At lower
energies, the L and M atomic levels give rise to as many new thresholds. Depending
on the photon energy, the cross section changes with the atomic number of the
medium. For MeV photons, it is roughly proportional to Zβ , with β = 4 ÷ 5. The
cross section at the K -threshold is of the order of 103 barn in lead and about 106 barn
in iron. See Ref. [9] for a compendium of measured values.

Above the K -threshold, the photoelectric and Compton scattering cross sections
become of comparable size. The latter changes mildly with energy for photon energies
up to the pair-production threshold, after which pair-production becomes dominant.
For k ≡ E/me � 2, the total cross sections is approximately given by the Klein–
Nishina formula for Z incoherent scattering centers [9]:

σComp = Z σKN ≈ Z

(
8π

3
r2

e

)
1 + 2 k + 1.2 k2

(1 + 2 k)2
(2.25)

with 8π/3r2
e = 0.665 barn. The low-energy limit of Eq. (2.25) gives the Thomas

cross section for Z free electrons, while the k-dependent term reduces the cross
section for increasing photon energies. In the Compton scattering, a fraction of the
photon energy is transferred to the outgoing electron. The differential cross section
in the recoil energy of th electron T can be obtained from the Klein–Nishina formula,
giving

http://dx.doi.org/10.1007/978-3-319-70494-4_1
http://dx.doi.org/10.1007/978-3-319-70494-4_1
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dσComp

dT
= 3 σTh

8 me c2 k2

[
2 +

(
T
E

)2

k2
(
1 − T

E

)2 +
T
E

1 − T
E

(
T

E
− 2

k

)]
(2.26)

with 0 ≤ T ≤ 2 k

1 − 2 k
E,

see also Problem 1.25. Due to the second term within square brackets in Eq. (2.26),
the differential cross section rises steeply with T up to the kinetic bound, giving rise
to a characteristic peak in the electron spectrum known as Compton peak.

When the photon energy exceeds the e+e− threshold, pair-production in the
nuclear and electronic fields dominates. For energies below about 10 MeV, the inter-
action cross section varies logarithmically with the photon energy, and then becomes
almost independent of energy. Using Tsai’s formula [4], we get

dσpair

dx
= A

X0 NA

[
1 − 4

3
x (1 − x)

]
⇒ σpair = 7

9

A

X0 NA
≈ 7.2 Z2 mbarn,

(2.27)

where x is the photon energy fraction transferred to the electron/positron, and we
have used the last formula in Eq. (2.13) to approximate X0. Notice that the appearance
of macroscopic properties of the medium in the cross section, like the mass number
and the Avogadro number, are fictitious, since they exactly cancel the same quantities
inside X0. The latter is conveniently introduced to show that the interaction length
for e+e− production is indeed related to the radiation length by λpair = (9/7) X0.
See Ref. [2] for more details.

Neutrons

The interaction between neutrons and matter depends strongly on the neutron energy.
For energies in excess of about 100 MeV, neutrons initiate a hadronic cascade, with
the production of primary hadrons (e.g. pions) sharing a fair fraction of the initial
neutron energy. Fast neutrons, i.e. from a few hundreds of keV to a few tens of MeV,
slowly thermalise by elastic scattering in high-Z materials, or faster in hydrogenised
materials, see Problem 1.24. Inelastic scattering, like A(n, n′)B, A(n, 2n′)B, can
also occur in the presence of nuclear resonances. Epithermal neutrons, i.e. from
about 0.1 eV to about 100 keV, and thermal neutrons, i.e. around 25 meV, undergo
preferentially nuclear reactions, like radiative neutron capture A(n, γ )B, nuclear
spallation A(n, p)B, A(n, α)B, and nuclear fission.

Problems

Bando n. 13153/2009

Problem 2.1 Give a qualitative description of how the energy loss by ionisation of
a charged particle of mass m depends on the particle momentum.

http://dx.doi.org/10.1007/978-3-319-70494-4_1
http://dx.doi.org/10.1007/978-3-319-70494-4_1
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Solution

The energy loss by ionisation d E/dx of a particle of mass m and charge z e is
described by the Bethe formula of Eq. (2.1). To good approximation, it is a function
of the particle velocity and charge only, namely:

−d E

dx
= z2 f (β) = z2 f ′ (|p|) (2.28)

see also Problem 2.4. At a given value of m, the function f ′(|p|) features the following
qualitative behaviour:

f ′(|p|) ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a |p|−2 ln |p| |p| � (m/me) I

b |p|−2 + c |p| � m

c |p| ≈ 3m ÷ 4m

c + d ln |p| |p| 
 m

(2.29)

In words: it first decreases as |p|−2 ln |p| at small momenta, until the momentum
reaches a few times the mass value. At this point, it plateaus and increases only
logarithmically with |p|, see Fig. 2.2.

Bando n. 5N/R3/TEC/2005

Problem 2.2 Motivate the presence of the density and shell correction terms to the
Bethe formula.

Discussion

The Bethe formula describes the energy loss of a charged particle due to the elastic
collisions with the atomic electrons. In this respect, it assumes that the electrons
are at rest compared to the moving particle, which is nearly unaffected by each

Fig. 2.2 The Bethe formula
d E/dx in arbitrary units
(a.u.) as a function of |p|,
compared to its piecewise
approximation in four
momentum ranges
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individual binary collision. A non-relativistic version of the Bethe-Bloch equation
can be indeed obtained by considering the total momentum transfer that an infinitely
massive moving charge has on a free electron initially at rest and located at an
impact parameter b with respect to the direction of flight. The net effect is obtained
by considering an ensemble of such electrons up to a maximum value of b such that
the momentum transfer is above the mean ionisation energy necessary to strip the
electron from its orbital. See e.g. Sect. 2.2 of Ref. [1].

Solution

The Bethe formula turns out to be accurate in the high- and low-velocity regimes only
if the density δ and shell C corrections are added, as shown in Eq. (2.1). The former
accounts for the polarisation of the medium by the electric field of the incident
particle, which decreases the effective volume available for electron collision. As
such, it tends to reduce the energy loss, and is more relevant at high-energy, see e.g.
Ref. [2] for a parametrisation of δ. Conversely, if the particle velocity is comparable
with the electron velocity, which is of order α, then the assumption that the electrons
are at rest breaks down and a correction C(I, β) has to be included.

Suggested Readings

The reader is addressed to Sect. 2.2 of Ref. [1] and Chap. 33 of Ref. [2] for further
details on this topic.

Problem 2.3 Derive an approximate expression for the range R of a charged particle
of mass m and initial energy E that loses energy by collision with the atomic electrons.
How does R depends on the initial kinetic energy in the ultra-relativistic limit E 
 m
and in the classical limit?

Solution

The energy loss by collision is given by the Bethe formula of Eq. (2.1). The range
of a particle is the average distance it travels before losing all of its kinetic energy
and thus come to a stop. In the continuous slowing-down approximation (CSDA), it
can be obtained by integrating the inverse linear stopping power over the full range
of kinetic energy, i.e.:

R(E) =
∫ m

E
d E

1

d E/dx
. (2.30)

The analytical integration of the Bethe formula is an hard task to due to the logarithmic
term. However, as we have seen in the introduction Sect. 2.1, for sufficiently large
initial energy, one can neglect the dependence of this term on the velocity β and use
an approximate version of the type:

d E

dx
= −C z2

β2
, (2.31)
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with C ≈ 1.7 MeV
[
ρ/(g cm−3)

]
cm−1, see Eq. (2.3). Using Eq. (2.31) in place of

the full Bethe formula, the range is given by:

R(E) =
∫ E

m
d E

β2

Cz2
= 1

Cz2

∫ E

m
d E

(
1 − m2

E2

)
=

= 1

C z2

[
(E − m) + m2

(
1

E
− 1

m

)]
= 1

C z2

(E − m)2

E
= m

C z2

(γ − 1)2

γ
.

(2.32)

Hence, we find that R/m is a function of γ = E/m:

R

m
= 1

C z2

(γ − 1)2

γ
= 1

C z2

(√
1 + (βγ )2 − 1

)2

√
1 + (βγ )2

. (2.33)

The second of Eq. (2.33) can be directly compared to Fig. 2.3, which shows the range
of a heavy ion in different materials as obtained from a full integration of Eq. (2.1),
as a function of βγ (from Ref. [2]). A good numerical agreement is found with the
approximate formula of Eq. (2.33) up to βγ � 1. For smaller values of β, Eq. (2.33)
underestimates the true range by a fair amount. This is a consequence of having
neglected the logarithmic term in the stopping power.

Fig. 2.3 Range of heavy
charged particles in liquid
(bubble chamber) hydrogen,
helium gas, carbon, iron, and
lead. From Ref. [2]
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According to Eq. (2.32), the range for an ultra-relativistic particle is proportional
to its energy:

Rγ
1 ≈ m γ

C z2
= E

C z2
. (2.34)

This result comes out intuitive if one considers that a particle with γ 
 1 moves at
the speed of light; the energy loss is approximately constant until the velocity drops
below c. At this point, the stopping power steepens due to the β−2 dependence and
the residual energy gets degraded in a short path, so that R ∼ E/(d E/dx |MIP) ∼ E .
For a non-relativistic particle, the range is instead a quadratic function of the kinetic
energy T :

RNR ≈ (E − m)2

C z2 m
= T 2

C z2 m
. (2.35)

However, one should remember that for β � 0.5, the approximation of Eq. (2.31) is
not valid anymore and the resulting range is underestimated. For example, for an α

particle emitted in the decay of 210Po with T = 5.3 MeV, the range in air predicted
by Eq. (2.35) is about 5.32/(2 ·10−3 ·22 ·4×103) ≈ 1 cm, whereas the CSDA range
from a full integration of the Bethe function gives about 5 cm [5].

Suggested Readings

A good starting point to learn more about the concept of range is Chap. 2 of Ref. [1].

Problem 2.4 Determine the relation between the stopping power d E/dx for two
particles of masses m1 and m2, electric charges z1 e and z2 e, and same momentum
|p|, moving through the same medium. What is the relation between the range R1

and R2 of the two particles under the same conditions?

Solution

The energy loss by collision is given by the Bethe formula of Eq. (2.1), which, as a
function of the particle momentum, can be written as:

d Ei

dx
(|p|) = z2

i f

( |p|
mi

)
, (2.36)

so that:

d E2

dx
(|p|) = z2

2 f

( |p|
m2

)
= z2

2

z2
1

z2
1 f

(
m1

m2

|p|
m1

)

= z2
2

z2
1

d E1

dx

(
m1

m2
|p|

)
. (2.37)
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Owing to such scaling law, the stopping power d E(|p|)/dx as a function of |p| for
different particle types are all related by a uniform scaling of the orizontal axis equal
the mass ratio, and by a scaling on the vertical axis by the ratio of the squared charges.

Let’s now consider the range as defined in Problem 2.3. For a given kinetic
energy T , the range is given by:

Ri (T ) =
∫ 0

T
d E

1

d Ei/dx
=

∫ 0

T
d E

1

z2
i f

(
E
mi

) , (2.38)

so that:

R2(T ) =
∫ 0

T
d E

1

z2
2 f

(
E

m2

) = z2
1

z2
2

∫ 0

T
d E

1

z2
1 f

(
m1
m2

E
m1

) = z2
1

z2
2

m2

m1

∫ 0

m1
m2

T
d E ′ 1

z2
1 f

(
E ′
m1

)

= z2
1

z2
2

m2

m1
R1

(
m1

m2
T

)
. (2.39)

Discussion

The simultaneous measurement of the stopping power d E/dx and of the particle
momentum, or of its kinetic energy, or of its velocity, provides a tool to identify the
particle type thanks to the scaling law of Eq. (2.37). The canonical example of a
detector that allows for a simultaneous measurement of these quantities is the time
projection chamber (TPC).

Suggested Readings

For an overview on the TPC, the reader is encouraged to consult the PDG review
on detectors for accelerators [2]. See also Ref. [1] for the scaling law of stopping
powers and ranges.

Problem 2.5 The range R of a particle is the distance over which the particle loses
all of its kinetic energy. For a heavy ion, the energy loss per unit length of traversed
material can be approximated by the formula

d E

dx
= −C z2

β2
, (2.40)

where C ≈ 1.7 MeV cm−1, z is the ion charge in units of e, and β is the particle
velocity.

• What kind of interaction between the ion and the material is responsible for this
energy loss?

• Explain how the mass of a charged particle can be determined from the simulta-
neous measurement of d E/dx and of the momentum |p|.
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• Estimate the range R in water of a proton with T = 60 MeV.

Solution

As discussed in Sect. 2.1, heavy ions moving in matter lose energy due to elastic
collision with the atomic electrons.

Since d E/dx ∼ z2 f (β) and |p| = mβγ , the simultaneous measurement of the
two quantities allows to measure m for different ansatz on z. A comparison of the
mass values thus obtained with the spectrum of known particles allows one to identify
the particle type.

In order to estimate the range of a proton in water, we can use Eq. (2.35) obtained
from the limit γ → 1 in Eq. (2.32). We can obtain the same result starting from
Eq. (2.40) and using the fact that T = |p|2/2m for a classical particle:

R(T ) =
∫ 0

T
d E

1

d E/dx
=

∫ T

0
d E

β2

z2 C
=

∫ T

0
dT ′ 2 T ′

m p c2 z2 C
= 1

m p c2

T 2

z2 C
=

= (60)2 MeV2

103 MeV · 12 · 1.7 MeV cm−1
= 2.1 cm, (2.41)

to be compared with a CSDA value of 3.1 cm from a full integration of the Bethe
formula [5].

Bando n. 13153/2009

Problem 2.6 Discuss the characteristics of the Bragg peak and its main applications.

Solution

The energy loss of a charged ion in matter is described by the Bethe formula (2.1). Due
to the dominant 1/β2 behaviour at velocities below about 0.9, the energy deposition
per unit length becomes increasingly more intense as the particle velocity decreases.
By tuning the initial particle energy T to attain a certain range R, the Bethe formula
predicts that most of T will be infact dissipated near the end of the trajectory.

Since E = E(β), the Bethe formula can be solved as an ordinary differential
equation (ODE) in β, giving a solution d E(x)/dx . The latter features a peak at
x ≈ R, the so-called Bragg peak. Indeed, by using the approximation (2.3) and
assuming the ion to be non-relativistic, the ODE can be easily solved analytically,
yielding:

d

dx

(
1

2
m β2

)
= − z2 C

β2
, m β

dβ

dx
= − z2 C

β2
, β3 dβ = − z2 C

m
dx,

β4 − β4
0 = −4 z2 C

m
x, β2(x) = β2

0

√
1 − 4 z2 C

m β4
0

x = β2
0

√
1 − x

R
, (2.42)
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Fig. 2.4 Sketch of a typical
Bragg curve for protons or
heavy ions moving in a
dense medium

x

−d
E

/d
x

where we have used Eq. (2.35) to define the range R of the particle. From Eq. (2.42)
we therefore get:

d E

dx
(x) = − z2 C

β2
0

1√
1 − x/R

. (2.43)

The energy ΔE deposited in the interval [λR, R] can be easily computed from
Eq. (2.43) to give:

ΔE(λ) =
∫ R

λR
dx

∣∣∣∣d E

dx

∣∣∣∣ = T
√

1 − λ. (2.44)

The value of λ such that a fraction α of the initial energy is lost in the interval [λR, R]
is therefore given by λ = 1 − α2. For example, 50% of the kinetic energy T is lost
in the last quarter of the particle path, and 25% in the trailing 6% of the path. A
caveat: Eq. (2.43) has been obtained under the assumption that d E/dx ∼ β−2. This
is a poor approximation for βγ � 1, and the resulting stopping power gets largely
overestimated. Furthermore, when βγ � 0.1, the shell corrections are relevant,
reducing significantly the stopping power, and the Bethe formula ultimately breaks
down. Overall, the Bragg curve is much less peaked than predicted by Eq. (2.43),
and infact the maximum occurs before the full range is attained, see Fig. 2.4.

The Bragg peak finds one major application in medical physics as a tool for curing
solid tumors: the intense energy deposition in the neighbourhood of the beam range
allows to burn selected tissue depths with reduced damage to the upstream tissue.

Bando n. 13705/2010

Problem 2.7 A 2 cm-thick plastic scintillator is coupled to a photomultiplier with
gain G = 106 and detection threshold Qth = 1 pC, such that all the scintillation
light can be assumed to be detected. A beam of particles of energy 10 GeV impinges
perpendicularly to the scintillator:
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• Estimate the charge collected at the anode, if the beam is made of muons.
• If the beam is made of neutrons, estimate the minimum scattering angle on protons

such that the neutron can be detected.

Discussion

Scintillators have been briefly discussed in Sect. 2.1. A scintillator is always coupled
with a photomultiplier that transforms the scintillating photons in photoelectrons
(p.e.). Because of the geometry of the medium and of the QM-nature of the photo-
electric effect, a photomultiplier is only sensitive to a fraction εC of the total light
output, of which only a fraction εQ is actually converted into p.e. By themselves,
such p.e. do not usually represent an amount of charge large enough to generate a
significant signal, i.e. above the electronic noise. For this reason, the primary p.e.
undergo a multiplicative enhancement between the photocathode and the anode. This
can be for example achieved by accelerating them with intense electric fields, so that
they can initiate a chain reaction that brings to the fan exponential charge multi-
plication. The enhancement factor, i.e. the total output charge per initial p.e., is the
called gain (G) of the photomultiplier. The enhanced charge is finally read-out at
the anode by a chain of amplifiers which transforms it into voltage or currents. A
key point in all this procedure is that the proportionality between the initial number
of p.e. and the final signal amplitude is preserved. After coupling the amplification
stage to the read-out electronics, characterised by an electronic noise Ne, the relative
energy resolution from a scintillator that produces nγ Poisson-distributed photons
for a particle of energy E , can be parametrised as [2]:

σ(E)

E
=

√
fN

nγ εQ εC
+

(
Ne

Q nγ εQ εC

)2

, (2.45)

where fN is the called excess noise factor and arised from the amplification process.
The role of the gain factor in reducing the signal uncertainty is made clear by
Eq. (2.45).

Solution

A 10 GeV muon loses energy mostly by collision with the atomic electrons as dis-
cussed in Sect. 2.1. In particular, it behaves as a MIP, and its mean energy loss per
unit length is provided by Eq. (2.3). For a plastic scintillator, the mass density is
approximately ρ ≈ 1 g cm−3. With this value, the energy loss is given by:

−d E

dx
≈ 2.0 MeV g−1 cm2 · 1 g cm−3 = 2 MeV cm−1. (2.46)

While crossing a thickness d = 2 cm, the total energy lost by the muon is ΔE =
|d E/dx | · d ≈ 4 MeV. The mean excitation energy for a plastic scintillator can be
found in Table 2.2. Assuming ε = 100 eV, εC = 1, and εQ = 1, we expect to collect
an average charge at the anode of about:
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Q = G · ΔE

ε
· e = 106 · 4 MeV

100 eV
· 1.6 × 10−19 C = 6.4 nC, (2.47)

i.e. more than three orders of magnitude larger than the threshold charge Qth.
If the beam is made of neutrons, their detection proceeds through the measurement

of the recoil energy of protons and other nuclei that interact with the beam particles.
The threshold energy such that a recoil proton gives rise to a detectable signal is
determined by the condition:

G · Tth

ε
· e = Qth, ⇒ Tth = 10−12 C · 102 eV

106 · 1.6 × 10−19 C
= 0.62 keV, (2.48)

which is small compared to the proton mass and to the beam momentum. It is easy
to show that for very small recoil energy, momentum has to be exchanged perpen-
dicularly. Indeed, if we indicated the four-momenta of the initial (final) neutron and
proton by p and k (p′ and k ′), and the angle that the recoiling proton forms with the
beam momentum as θp, then:

p′ = p + k − k ′,

m2
n = m2

n + 2m2
p − 2En m p − 2(En E ′

p − |pn||p′
p| cos θp) − 2E ′

p m p,

cos θp = E ′
p (En + m p) − m p (En + m p)

|pn||p′
p|

= Tp (En + m p)

|pn||p′
p|

≈

≈
√

Tp

2m p

[
En + m p

|pn|
]

, if |p′
p| � m p. (2.49)

Since T � m p for our case, and given that the factor within square brackets is of
order one, the resulting angle turns out to be pretty much π/2, and conservation of
momentum implies that the momentum received by the extra neutron is also is also a
vector perpendicular to the beam direction. Since Tth � En , the neutron momentum
magnitude after the scattering is almost unchanged, and the scattering angle of the
neutron is therefore given by:

θn ≈ |p′
p|

|pn| =
√

2m pTth

|pn| =
√

2 · 0.938 · 0.62 × 10−6

10
= 1.1 × 10−4 rad. (2.50)

Bando n. 1N/R3/SUB/2005

Problem 2.8 A MIP generates, on average, n electron-ion pairs per cm in a gaseous
detector at standard pressure. What is the typical value of n, if the gas consists in a
argon-isobuthan mixture 60%–40%? Which additional factors acting on the statistics
of the produced electrons determine the standard deviation of the signal?
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Solution

On average, a MIP releases an amount of energy per unit length described by Eq. (2.3).
If the gas is made of argon and isobutane, which have a small ionisation potential
I ≈ 12 eV, see e.g. Table 6.1 of Ref. [1] or Ref. [5], the Bethe formula predicts
an energy loss per mass surphace of about 2.5 MeV g−1 cm2, see also Fig. 2.1. The
density of the gas at STP conditions can be calculated from the law od ideal gases:

ρ = A

R T/P
= (0.6 · 18 + 0.4 · 58) g mol−1

8.314 J mol−1 K−1 · 298 K/105 Pa
= 34 g mol−1

2.5 × 104 cm3 mol−1 =
= 1.4 × 10−3 g cm−3. (2.51)

The mean excitation energy for the two molecules can be read from Table. 2.2. Taking
a weighted average of the two components, we get:

n = |d E/dx |
(0.6 · 26 + 0.4 · 23) eV

= 2.5 MeV g−1 cm2 · 1.4 × 10−3 g cm−3

24.8 eV
= 140 cm−1.

(2.52)

In a gaseous ionisation detector, the primary electrons need to be accelerated by
an intense electric fields until they trigger the formation of an avalanche. Indeed, an
amount of primary ionisation electrons like in Eq. (2.52) is not sufficient to produce a
detectable signal. Since the charge-multiplication process is intrinsically random, it
introduces an additional fluctuation in the number of signal carriers. If an electron-ion
pair recombines before the formation of the avalanche, or if it gets trapped by the gas
molecules to give rise to an ion, it gets lost for later multiplication. Suitable amounts
of electronegative gases, like freon, can limit this effect. The gain (see Problem 2.7),
and hence the final statistics of signal carriers, depends on the choice of the gas.
Noble gases are usually chosen because of their large gain factors. Another typical
problem with gaseous detectors is the formation of avalanches in random points of
the chamber created by energetic photons emitted by the accelerated electrons. This
undesired effect limits the operation rate and resolution of the detector. These effects
can be limited by adding appropriate amounts of organic quenchers, like isobutane.
Finally, one should remember that the resolution of a gaseous ionisation detector that
absorbs all of the particle kinetic energy scales better than 1/

√
n by the so-called

Fano factor, which for typical gases is in the range 0.05 ÷ 0.20, see e.g. Table 6.2 of
Ref. [7].

Suggested Readings

An introduction to the physics of electronic avalanches in gas can be found in Refs. [1,
7]. For a more comprehensive review of gaseous detectors, the reader is addressed
to Ref. [8].

Bando n. 5N/R3/TEC/2005
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Problem 2.9 How many electrons does a charged particle produce on average when
crossing 100 µm of silicon?

Solution

Let us assume that the charged particle have z = 1 and that they behave like a MIP.
The energy loss per unit length is given by the Bethe formula of Eq. (2.2). For a MIP,
the dependence of d E/dx on the particle energy is mainly through the logarithmic
term ∼ ln γ . Assuming the particle to be in the neighborhood of the global minimum,
i.e. γ ≈ 4, we can explicitly compute the right-hand side of Eq. (2.2) for a pure silicon
medium, giving:

−d E

dx
= (

0.307 MeV mol−1 cm2) · 2.33 g cm3 · 14

28.1 g mol−1

[
ln

2 · 0.511 MeV · 42

16 · 140.9 eV
− 1

]
=

= 3.7 MeV cm−1, (2.53)

which agrees well with the more accurate prediction of 3.9 MeV cm−1 [5]. The
number of electron-hole pairs produced by the passage of such a particle across a
thickness d = 100 µm of silicon is therefore given by:

neh = |d E/dx | · d

ε
= 3.7 MeV cm−1 · 10−2 cm

3.6 eV
≈ 104, (2.54)

where we have used the mean excitation energy for silicon as in Table 2.2.

Bando n. 1N/R3/SUB/2005

Problem 2.10 A relativistic electron loses energy by both ionisation and by radiation
when moving inside matter.

• How does the energy loss by ionisation and by radiation depend on the material?
• How do they depend on the electron energy?
• The critical energy is defined as the energy at which the two energy losses are

equal: which between a muon and an electron has the smallest critical energy?

Solution

The energy loss of relativistic electrons and positrons is discussed in Sect. 2.1. For
energies below the critical energy Ec, energy loss by collision with the atomic
electrons prevails. The material enters mostly through its electron density ne =
NA ρ Z/A and the average ionisation potential I . The stopping power is propor-
tional to ne and depends logarithmically on I . A residual dependence on the atomic
number Z comes from the shell and density effects, see e.g. Ref. [2]. For electrons
with energy in excess of a few MeV, the rate of energy loss by collision is almost
independent of the electron energy, while it goes like T −1 at smaller energies.
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Fig. 2.5 Electron and muon critical energy for the chemical elements. From Ref. [2]

Energy loss by radiation prevails above the critical energy. The material enters
through the atomic density n = NA ρ A and through the atomic number Z . In particu-
lar, it is proportional to the combination Z2ρ/A, as shown by Eq. (2.13). Furthermore,
it is proportional to the energy itself, see Eq. (2.12).

Since the energy loss by radiation is inversely proportional to m2, where m is the
mass of the incident particle, see Eq. (2.13), while the energy loss by ionisation is
independent of m for sufficiently high energies, it follows that the critical energy
must be approximately go as ∼m2, since it is roughly given by the position of
the intersection point between two curves in the (d E/dx, E) plane, one of which is
roughly constant (energy loss by collision), while the other (energy loss by radiation)
is a straight line of slope proportional to m−2. According to this picture, the critical
energy for muons, Eμc, is expected to be about 4×104 times larger than for electrons.
An exact scaling does not hold however, and the critical energy Eμc is a factor of
about 3 smaller than the naive scaling Eμc ≈ (mμ/me)

2 Ec, see e.g. Fig. 2.5 taken
from Ref. [2].

Bando n. 13153/2009

Problem 2.11 An electron moving in a material loses energy by a variety of mech-
anisms. Define the critical energy and explain how it depends on the atomic number
Z of the material.

Solution

Energy loss by collision and radiation are discussed in Sect. 2.1. The critical energy
Ec is defined as the energy at which the two rates of energy loss become identical.
An approximate formula for Ec is given by

Ec = 800 MeV

(Z + 1.2)
, (2.55)
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see e.g. Ref. [1, 2]. Hence, the critical energy decreases with Z . In particular, it goes
like Z−1 for Z 
 1. This can be understood by the following argument: the critical
energy is roughly given by the position of the intersection point between two curves
in the (d E/dx, E) plane, of which one is flat versus energy and goes like ∼Z (energy
loss by collision), while the other has a positive slope and goes approximately like
∼Z2 at large values of Z (energy loss by radiation), hence the intersection point
should scale as ∼Z−1.

Bando n. 5N/R3/TEC/2005

Problem 2.12 Provide an approximate formula for the radiation length X0 in terms
of the atomic and mass numbers of the material.

Solution

An approximate version of X0 has been derived in Eq. (2.13):

X0 ≈ 716 A

Z (Z + 1) ln(287
√

Z)
g cm−2, (2.56)

where A is the mass number in units of g mol−1 and Z is the atomic number. Hence,
the radiation length scales as ∼A Z−2, for sufficiently large values of Z .

Bando n. 18211/2016

Problem 2.13 How much energy does an electron with initial energy of 1 GeV lose
by crossing a material with thickness equal to one radiation length?

Solution

An energy of 1 GeV is above the critical energy Ec of Eq. (2.11), see Fig. 2.5, therefore
the electron loses energy mostly by radiation. The rate of energy loss per unit length
is therefore given by

d E

dx
= − E

X0
, (2.57)

where X0 is the radiation length measured. The electron energy as a function of the
traversed length is then obtained by integrating Eq. (2.57) to give:

E(x) = E0 e−x/X0 ⇒ E(X0) = E0

e
= 0.368 E0. (2.58)
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The energy lost in the medium is therefore ΔE = (1 − 1/e) E0 = 0.632 E0.

Bando n. 13153/2009

Problem 2.14 Determine the law by which a beam of electrons of intensity I0 gets
attenuated while crossing a layer of material of thickness d.

Solution

Electrons lose energy mostly by radiation at high energy, and then by elastic collison
with atomic electrons at lower energies. If the beam is monochromatic and the thick-
ness d exceeds the electron range in the material, the beam particles will traverse
the full thickness and emerge with an energy distribution centred around a smaller
value. Elastic scattering can instead deflect the electron from its original trajectory
and remove it from the beam. Let’s assume that the reaction which removes electrons
from the beam is characterised by a cross section σ and let’s denote the density of
scattering centres by n. By definition, the probability of interaction per unit length is
given by the interaction length of Eq. (1.291), namely λ = 1/(nσ). If the beam has
an intensity I (x) at a depth x , the intensity at a distance x + dx is given by:

I (x + dx) = I (x) − I (x)
dx

λ
,

d I

I
= −dx

λ
⇒ I (x) = I0 e−x/λ (2.59)

The intensity varies exponentially with the traversed length.

Bando n. 1N/R3/SUB/2005, Bando n. 13153/2009

Problem 2.15 In which energy interval does Compton scattering dominate in the
interaction of photons with matter? What kind of interaction prevails at lower and
higher energies? How does it depend on the absorber?

Solution

The interaction of photons with matter is discussed in Sect. 2.1. At low energy, the
photoelectric effect (photon absorption with electron emission) is the main interaction
mechanism. Compton scattering (incoherent photon-electron scattering) becomes
significant for energies above the K -threshold and below a few times 2 me, after which
pair-production dominates. The transition between the photoelectric and Compton-
dominated regime depends on the medium (see below). For carbon (lead), the two
become of similar size at energies of about 10 (500) KeV, see e.g. Ref. [2].

The absorber type enters mostly through the atomic number Z . The photoelectric
cross section for energies in the MeV region is goes as ∼Zβ with β = 4 ÷ 5. The
Compton cross section is instead proportional to the number of electrons per atomi,
hence it goes as ∼Z . The cross section for pair-production is inversely proportional
to the radiation length X0, hence it is roughly proportional to ∼Z2 for large atomic
numbers.

http://dx.doi.org/10.1007/978-3-319-70494-4_1
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Suggested Readings

Photon interaction in matter is discussed in a large number of textbooks. For a primer,
the reader is addressed to Sect. 2.7 of Ref. [1] and to the PDG review [2]. A large
amount of tabulated data can be found in Ref. [6, 9].

Bando n. 5N/R3/TEC/2005

Problem 2.16 How does the photoelectric cross section vary as a function of the
photon energy? How does it depend on the atomic number Z?

Solution

The interaction of photons with matter is discussed in Sect. 2.1. At low energy,
the photoelectric effect (photon absorption with electron emission) prevails. The
photoelectric cross section as a function of the photon energy features a number of
edges corresponding to the opening of new atomic levels. For energies above the
innermost level (K -shell), the cross section steeply falls with energy as ∼E−7/2 and
it grows with the atomic number as ∼Zβ with β = 4 ÷ 5.

Suggested Readings

See Problem 2.15 and references therein.

Bando n. 18211/2016

Problem 2.17 Determine which process dominates in the photon-matter interaction
for the following reactions:

1. 1 MeV photons on Al;
2. 100 keV photons on H2;
3. 100 keV photons on Fe;
4. 10 MeV photons on C;
5. 10 MeV photons on Pb;

Solution

To solve this exercise, we can refer to Fig. 2.6, taken from Ref. [2], to read the cross
section values for carbon and lead, and then use these values, together with the
known Z -dependence of the cross sections, in order to extrapolate to other materials.
To validate the extrapolation, we can use the values tabulated in Ref. [6].

1. A 1 MeV photon is just below the pair-production threshold. Aluminium has
atomic number Z = 13. The energy at which Compton and pair-production
become similar is about 500 keV in lead and about 10 keV in carbon. Aluminimum
must be in-between, therefore Compton scattering has to be by far dominant
at such an energy. Indeed, from Ref. [6] we find σComp ≈ 3 barn and σp.e. ≈
10−3 barn.
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Fig. 2.6 Photon total cross sections as a function of energy in carbon and lead, showing the
contributions of different processes. Taken from Ref. [2]

2. A 100 keV photon on hydrogen cannot undergo pair-production. Since Compton
scattering dominates the photon-matter interaction at this energy for carbon, it
will be a fortiori dominant in hydrogen, since the photoelectric cross section
decreases as a function of Z much faster compared to the Compton cross section.
Indeed, from Ref. [6] we find σComp ≈ 0.5 barn and σp.e. ≈ 10−6 barn.

3. A 100 keV photon on iron cannot undergo pair-production. From Fig. 33.15 of
Ref. [2], the photoelectric (Compton) cross section in lead at that energy is around
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103 barn (10 barn), so that, by assuming a ∼Z5 (∼Z ) scaling, we should expect
roughly the same cross sections. Indeed, from Ref. [6] we find σComp ≈ 12 barn
and σp.e. ≈ 20 barn.

4. A 10 MeV photon can undergo pair-production, but Compton scattering is sizable
at that energy. Referring to Fig. 33.15 of Ref. [2], one sees that Compton cross
section on carbon is larger than pair-production, although the two are still compa-
rable. Indeed from Ref. [6] we find σComp ≈ 0.3 barn and σpair ≈ 0.8×10−1 barn.

5. As before, one should expect the pair-production and Compton cross sections
to be of the same order. This time, it’s the former to be larger because of the
∼Z2 scaling compared to just a ∼Z scaling of Compton scattering. Indeed from
Ref. [6] we find σComp ≈ 4 barn and σpair ≈ 12 barn.

Bando n. 18211/2016

Problem 2.18 A muon with energy of 400 GeV penetrates vertically into the sea.
By which process can it be detected? Estimate the depth at which the muon arrives
before decaying.

Solution

A muon of energy E = 400 GeV moving in water (n = 1.33) emits Cherenkov
radiation at a rate of about 200 γ /cm in the wavelength range [300, 500] nm, see
Eq. (2.16).

The critical energy for electrons in water is about 80 MeV, see e.g. Ref. [5]. From
the ∼m2 scaling of the critical energy with the particle mass, the critical energy
for muons is expected to be in excess of 3 TeV, hence far above the initial muon
energy of 400 GeV. However, as discussed in Problem 2.10, the naive scaling is only
approximate, and the critical energy for muons is about 1 TeV [5], hence still larger
than the initial muon energy. From Fig. 33.24 of Ref. [2] we see that the critical energy
for oxygen is about 900 GeV, so the same conclusions hold. The dominant energy
loss mechanism is therefore by electron collision as described by the Bethe formula
of Eq. (2.1). Since γ = E/m = 3.8×103 
 1, we can use the approximate formula
of Eq. (2.34) to predict the range R in water (ρ = 1 g cm−3) to be R ≈ E/C , where C
is a constant that sets the plateau level of the Bethe formula. The stopping power for a
MIP muon in water is about 2.0 MeV g−1 cm2 [5]. However, at very large energies, the
logarithmic term is non-negligible. Using the value I = 80 eV [5], the latter ranges
from≈26 atγ = 3.8×103 down to≈12 atγ = 4 (MIP). Taking an intermediate value
of 20, the constant term can be approximated as 2.0 × 20/12 ≈ 3.3 MeV g−1 cm2.
Therefore:

R ≈ 400 GeV

3.3 MeV g−1 cm2 · 1 g cm−3
= 1.2 km. (2.60)

This result is in good agreement with the more accurate estimate of 1.216 km from
Table II-28 of Ref [10]. However, the muon is an unstable particle with life-time
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τ = 2.2 × 10−6 s. The range calculation of Eq. (2.60) will hold only if the muon
does not decay before coming to a stop. This is indeed the case with high probability.
Although the muon momentum progressively changes as the muon penetrates deeper
into the sea, time dilatation makes such that the muon decay probability over a
fixed length in the Earth frame is significant only for small velocities. At a velocity
β = 0.94, or γ ≈ 3, the muon is at the minimum of the stopping power curve, and
the residual energy is dissipated after traversing a length of about

106 MeV

2.0 MeV g−1 cm2 · 1 g cm−3

(3 − 1)2

3
= 70 cm � R. (2.61)

Were the muon to conserve γ = 3, its mean path before decaying would be βcτγ ≈
2 km, so much larger than the residual path before stopping completely.

Discussion

The exploitation of large sea volumes as Cherenkov radiators allows one to study
cosmic radiation of very high energy. For example, the IceCube neutrino observatory
at the South Pole, is sensitive to the CC interaction of very-high energy neutrinos,
which can be detected through their emission of Cherenkov light by an array of
PMT’s located deep into the ice.

Problem 2.19 An underground experiment located at a depth d = 1 km from the top
of the mountain measures the momentum of cosmic muons arriving vertically from
above. Estimate the muon energy at the top of the mountain if the muon momentum
at the detector is |p| = 1.0 TeV.

Solution

Energetic muons lose energy by electron collision and by various forms of electro-
magnetic radiation, including e+e− pair production, bremsstrahlung, and photonu-
clear interaction. The overall stopping power can be parametrised as

−d E

dx
= a(E) + b(E) E, (2.62)

where a and b are slowly varying functions of energy for E � 1 TeV. Assuming
constant values for a and b, Eq. (2.62) can be solved exactly to yield the solution
E0 = E0(E, x), namely:

{
− d E

dx = a + b E

E(0) = E0

− d E

a + b E
= dx, ln

(
1 + E/Eμc

1 + E0/Eμc

)
= −b x . E0 = eb x (

E + Eμc
) − Eμc,

(2.63)
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where, by definition, Eμc ≡ a/b is the energy at which energy loss by ionisation
equals the energy loss by radiation. Using the values a = 2.7 MeV g−1 cm2 and
b = 3.9 × 10−6 g−1 cm2 from Table 29.2 of Ref. [2], and by assuming the standard
rock density ρ = 2.65 g cm−3, we get Eμc = 0.69 TeV and:

E0 = (
exp

[
3.9 × 10−6 g−1 cm2 · 2.65 g cm−3 · 105 cm

] · 1.69 − 0.69
)

TeV =
= 4.0 TeV. (2.64)

Suggested Readings

For more details on cosmic muons and their interaction with matter, the reader is
addressed to Sect. 29.4 and Sect. 33.6 of Ref. [2].

Problem 2.20 The vertical flux of cosmic muons with Eμ > 1 GeV at the sea
level is about 70 m−2 s−1 sr−1, and the muon spectrum goes approximately as E−2.7

μ .
Owing to the continuous slowing down and subsequent decay, the muon spectrum
underground reduces with depth untill a depth of about 10 km w.e. (1 km w.e. =
105 g cm−2) is attained. At this point, the spectrum settles to a constant value. Explain
this behaviour and provide a rought estimate of the muon flux deep underground.

Solution

At a depth d larger than a few km w.e., only muons with energies of order of Eμc or
larger can make their way through the underground soil, see Problem 2.19. In this
energy regime, however, the range scales logarithmically with the muon energy at
the sea level E0:

R(E0) ≈ b−1 ln

(
1 + E0

Eμc

)
, (2.65)

where a and b are the constants introduced in Problem 2.19. Equation (2.65) implies
an exponential suppression of the flux at large depths. At some point, the muon flux
becomes so weak that another source of underground muons takes over, namely muon
production from charged-current interaction of muon neutrinos with the rock. The
latter is almost independent on the depth. For example, let’s consider the infinitesimal
flux of neutrinos with energy in the range [Eν, Eν +d Eν]: they will contribute to the
measured muon flux of energy Eμ ≥ Eth, where Eth is the detector threshold energy,
only if the muon interacts with the rock within a distance r = R − Eth/(d Eμ/dx)

from the underground level d (we make the approximation Eμ ≈ Eν). The probability
for such interaction is r/λ � 1, where λ is the interaction length and depends on
the neutrino energy, see Eq. (1.291). For Emin = 1 GeV, the offset R − r is about
200 m. The neutrino spectrum can be assumed to be similar to the muon spectrum,
since for every muon, a νμ of similar energy is produced, see Problem 1.19. The
neutrino-induced flux can be thus estimated to be:

http://dx.doi.org/10.1007/978-3-319-70494-4_1
http://dx.doi.org/10.1007/978-3-319-70494-4_1
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Φdeep
μ ≈

∫ Emax

Emin

d Eν

dΦ0
ν

d Eν

(
R(Eν) − 200 m

λ(Eν)

)
(2.66)

The maximum energy Emax can be assumed to be of order of Eμc, since for larger
energies the range becomes only mildly dependent on the muon energy, see Eq. (2.65),
and thus it will contribute by one power less to the muon flux. Although the muon
spectrum at Eμ � 10 GeV decreases slower than E−2.7

μ , for an order-of-magnitude
estimate we can assume for simplicity:

dΦ0
ν

d Eν

= (α − 1)(1 GeV)α−1Φ0 E−α
ν , (2.67)

with Φ0 = 70 m−2 s−1 sr−1 and α = 2.7. By using d Eμ/dx = 1.9 MeV g−1 cm2 [5]
and the cross section of Eq (1.354) for the neutrino-nucleon scattering (with Q ≈ 1),
and neglecting for simplicity the offset of 200 m, we have:

Φ
deep
μ ∼

∫ Eμc

1 GeV
d Eν

dΦ0
ν

d Eν

(
Eν

1.9 MeV g−1 cm2 · ρ

)(
ρ · NA

A
· 1.6 × 10−38 cm2 Eν

GeV

)
=

= Φ0 · 0.23 × 10−12
(

α − 1

3 − α

) (1 GeV)α−1
(

E3−α
μc − (1 GeV)3−α

)
GeV2 ≈

≈ 10−9 m−2 s−1 sr−1. (2.68)

The result depends only mildly on the choice of Emax. This order-of-magnitude
estimate is in a decent agreement with the measured spectrum, see e.g. Fig. 2.7 taken
from Ref. [2].

Fig. 2.7 Vertical muon
intensity versus depth. From
Ref. [2]

001011

011 2 5

http://dx.doi.org/10.1007/978-3-319-70494-4_1
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Suggested Readings

More details on cosmic ray fluxes, including a review of theoretical calculation, can
be found in Ref. [11]. The reader is addressed to Sect. 29.4 of Ref. [2] for more details
on the muon flux underground.

2.2 Particle Identification

Particle identification (PID) is a common problem in particle physics experiments,
which are often equipped with a redundance of detectors as to be able to identify
the particle type besides measuring their kinematics. As a general rule, the pres-
ence of backgrounds and imperfections in the detector makes PID a statistical test
rather than a deterministic decision: the probability of correctly identifying a given
particle (efficiency) has always to be weighted against the probability of wrongly
identifying a background event (fake-rate). Depending on the particle type and on
its energy, a variety of methods can be deployed in experiments. A non-exhaustive
list of techniques for PID includes:

• Measurement of the range. Each particle loses energy by interaction with matter
at a different rate, so that the measured range can be used to differentiate between
different particle types. For example, a 10 GeV muon loses energy by collision
at a MIP rate of about 11 MeV cm−1, while an electron of the same energy loses
energy by radiation at a rate of about 550 MeV cm−1, i.e. about 50 times faster.
Hadronic particles interact strongly with the nuclei, with typical interaction lengths
of tens of centimetres for condensed materials. Therefore, the capability of muons
to penetrate massive detectors exceeds by far larger that of other particles.

• Measurement of the stopping power. Even if the particle range is not fully con-
tained within the active volume of a detector, the simultaneous measurement of
the stopping power d E/dx and of the particle energy, or momentum, provides a
handle to distinguish between different particles. The stopping power can be mea-
sured from the energy deposited within the detector. Time Projection Chambers,
proportional chambers, nuclear emulsions, solid-state detectors are examples of
detectors which can measure the energy loss across the particle trajectory.

• Cherenkov-light detection. Relativistic particles can emit Cherenkov lights when
moving inside a refractive medium. The angle of emission and the number of
emitted photons depend on the particle velocity β as for Eq. (2.15) and Eq. (2.21).
A simultaneous measurement of the particle momentum and of the Cherenkov
light can be thus used to determine the particle mass.

• Transition-light detection. For high-energy particles, Cherenkov detectors as par-
ticle identifiers become inefficient, see Eq. (2.21). An alternative to using the
β-dependence of Cherenkov detectors is provided by the use of transition radia-
tion detectors, which are sensitive to the light emitted by charged particles while
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crossing the separation surface between vacuum and a dielectric material. Since
the intensity of the emitted radiation is proportional to the γ -factor of the particle
as for Eq. (2.22), particles of a given momentum, but very different mass, like pions
and electrons, can be efficiently separated by measuring their transition light.

• Measurement of the time-of-flight. A simultaneous measurement of the particle
momentum and of the TOF over known distances, allows to determine the particle
mass. For unstable particles that decay in reconstructable vertices, the TOF can
be measured from the distance traveled by the particle before decaying. Once
combined with momentum information, this allows to infere the particle life-time
(see Problem 1.32), and hence the particle type.

• Kinematics. In scattering experiments where the kinematics of the initial and final
state can be measured, four-momentum conservation can be used to infere the
mass of the particles involved in the scattering, see e.g. Problem 1.27, 1.28, and
1.62. For unstable particles, the kinematics of the decay products can be used to
reconstruct the decay process, from which the mass of the mother particle can be
inferred, see e.g. Problems 1.16, 1.20, 1.23, and 1.37.

Problems

Bando n. 13153/2009

Problem 2.21 Mention two methods of identification for charged particles, indicat-
ing the range of applicability and their complementarity.

Solution

At small velocities, the simultaneous measurement of the particle momentum |p|
and of its time-of-flight over a known distance, or of the stopping power d E/dx , or
of the Cherenkov light emission, represent canonical techniques for PID. However,
at higher energies, all these methods become inefficient due to the saturation of the
particle velocity to β → 1, so that the TOF over a baseline distance L saturates to
L/c for all particles, the stopping power (by collision) becomes only logarithmically
sensitive to the particle velocity, while for Cherenkov detectors this is due to the fact
that the sensitivity to mass differences is suppressed by |p|−2, see Problem 2.25.

At larger energies, one can instead exploit the emission of transition radiation,
whose intensity is proportional to the γ -factor of the particle. High-energy electrons
can be discriminated from other charged particles thanks to their larger emission
of bremstrahlung radiation. In high-energy experiments, a combination of tracking
and energy measurements in segmented calorimeters is sometimes used for PID:
a calorimeter consisting of an electromagnetic (ECAL) and an hadronic (HCAL)
section with independent read-out offers the possibility to separate electrons, which
are stopped in ECAL, from hadrons, which interact in both. The attempt to reconstruct
and identify each and every particle in a HEP event is called particle flow and was
pioneered at LEP [12].

http://dx.doi.org/10.1007/978-3-319-70494-4_1
http://dx.doi.org/10.1007/978-3-319-70494-4_1
http://dx.doi.org/10.1007/978-3-319-70494-4_1
http://dx.doi.org/10.1007/978-3-319-70494-4_1
http://dx.doi.org/10.1007/978-3-319-70494-4_1
http://dx.doi.org/10.1007/978-3-319-70494-4_1
http://dx.doi.org/10.1007/978-3-319-70494-4_1
http://dx.doi.org/10.1007/978-3-319-70494-4_1
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Suggested Readings

The PDG review of particle detectors at colliders provides a comprehensive and
up-to-date overview of detectors for PID. Introductory textbooks like Ref. [13] are
also indicated for a first overview on the subject. Besides the already quoted ALEPH
publication [12], the reader is encouraged to read about PID within the particle flow
algorithm as implemented in the CMS event reconstruction [14].

Bando n. 13153/2009

Problem 2.22 Discuss a few techniques for neutron detection as a function of the
neutron energy.

Solution

Neutrons with energies in excess of a few GeV are best measured by hadronic
calorimeters, i.e. devices that degrade the initial hadron energy by initiating a
hadronic cascade and measure the visible energy deposited by the cascade parti-
cles, which is usually proportional to the incoming neutron energy, see Problem 2.35
for more details.

The detection of fast neutrons relies on the detection of the recoil proton in (n, p)

scatterings. This is best achieved by using plastic or liquid organic scintillators, whose
molecules contain hydrogen. Given the different fluorescent response of organic
compounds to particles of different ionisation power, these materials can also offer
n/γ discrimination by pulse-shape analysis.

For thermal neutrons, one usually relies on the nuclear reactions (n, γ ) and (n, α),
which can be e.g. detected by using liquid, glass, or inorganic scintillators, like
Li I (Eu), or gaseous ionisation detectors, like 3He, B F3. The active material is con-
veniently loaded with suitable nuclei like 3He, 6Li, and 10B, which have large cross
sections for the reactions:

3He (n, p) t, 6Li (n, t) 4He, 10B (n, α) 7Li(∗), (2.69)

respectively. The kinetic energy of the emitted particles (protons, tritium, α-particles,
Li ions) peakes at values determined by the Q-value of the reactions, thus allowing
to separate the neutron signals from other backgrounds, most notably by photon
interactions.

Suggested Readings

Chapter 7.7 of Ref. [1] describes the pulse-shape technique with scintillators and
provides an introduction to various experimental techniques for neutron detection.

Bando n. 1N/R3/SUB/2005
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Problem 2.23 In order to separate K + and π+ in a momentum window between
700 MeV and 4 GeV, one can use two threshold Cherenkov detectors operated in
series. Neglecting possible inefficiencies of the detectors near the threshold, deter-
mine which values of the refraction index can be chosen, and propose a suitable
radiator.

Discussion

Although not mentioned explicitly, Cherenkov detectors are often integrated with
spectrometers or other detectors that can measure the momentum of the particle. For
example, Cherenkov detectors can be employed to select particles of a given type
from a composite beam of given momentum.

Solution

The momentum acceptance of the experiment provides four threshold velocities and
as many refraction indexes, namely:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n < 1.0006 no π emit

n > 1.0195 all π emit

n < 1.0076 no K emit

n > 1.22 all K emit

(2.70)

With two counters at hand, one could set counter A at a value of nA = 1.0195, so
that no signal there would imply that the particle is a kaon (K -tag), and counter B
at a value nB = 1.0076, so that a signal in that counter would imply that the particle
is not a kaon (π -tag). With this scheme one has three possibilities, summarised in
Table 2.5. The third row (all counters with no-signal) represents a useful event only
if the experiment is equipped with an independent trigger (e.g. a scintillator located
along the beam direction). However, there remains an ambiguity for the case where
only counter A records a signal. If one further assumes that the particle momentum
can be measured, then the ambiguity is lifted. Indeed, if one considers pions and
kaons with velocities in the range [1/nA, 1/nB], the corresponding momenta span
two non-intersecting ranges:

1

nA
< β <

1

nB
⇒ |p| ∈

{
[0.70, 1.12] GeV π

[2.49, 4.0] GeV K
(2.71)

so that a simultaneous measurement of the particle momentum and of the Cherenkov
counters can discriminate between the two particles. Figure 2.8 shows the critical
index 1/β for the two particle types as a function of |p|. The dashed lines indicate
the indexes chosen for counters A and B, while the vertical arrows mark the upper
and lower momenta at which pions fail to generate a signal in B and kaons generate a
signal in A, respectively. Concerning the choice of radiator medium, we can refer to
Table 2.4 to identify possible candidates. In particular, we see that a value of n −1 ≈
2×10−2 can be obtained for example by using aerogels, while n −1 ≈ 7×10−3 can
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Table 2.5 Possible outcomes of a single-particle event using two threshold Cherenkov detectors
in series with NA > nB

A B Particle

1 1 π

1 0 π or K

0 0 K

0 1 Not possible

Fig. 2.8 The critical index
1/β for the two particle
types as a function of |p|.
The dashed lines indicate the
indexes chosen for counters
A and B, while the vertical
arrows mark the upper and
lower momenta at which
pions fail to generate a signal
in B and kaons generate a
signal in A, respectively

be obtained by using e.g. pentane (C5H12) or perfluoropentane (C5F12) of appropriate
temperature and pressure.

Bando n. 13153/2009

Problem 2.24 Explain how the Cherenkov threshold depends on the refraction index
of the medium. Three particles of different mass but same momentum |p| cross a
system of two Cherenkov detectors arranged in series. How can the three particles
be identified?

Solution

The Cherenkov threshold is the velocity β that equals the group velocity of light in
the medium, i.e. β = 1/n, where n is the refraction index. By definition, vacuum
has n = 1, and n > 1 for any other medium, see Table 2.4 for a few representative
materials.

Given two threshold Cherenkov detectors A and B operated in series, the identifi-
cation of three particles of different mass but same momentum |p|, such that the three
particles have velocities β1 < β2 < β3, can be achieved by setting the refraction
index of the two counters at nA = 1/β1 and nB = 1/β2, so that:

• particle (1) is below threshold in both counters (β1 ≤ 1/nA, 1/nB), thus producing
no signal in any of the two counters.
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• particle (2) is above threshold in counter A (β2 > 1/nA), but below threshold in
counter B (β2 ≤ 1/nB), thus producing a signal in only one counter;

• particle (3) is above threshold (β3 > 1/nA, 1/nB) in both detectors, thus producing
a signal in both counters;

An analysis of the signal output in the two counters can thus reveal which of the
three particles has crossed the detector. This configuration also maximises the light
yield when the particle is above threshold.

Problem 2.25 A Cherenkov imaging detector measures the angle θ of Cherenkov
photons with a resolution σθ = 2 mrad. What is the largest beam momentum |p|
such that kaons and pions can be discriminated to better than 3σ by the angular
measurement only, if the Cherenkov radiator consists of fused silica (n = 1.474) or
fluorocarbon gas (n = 1.0017)?

Solution

Let the Cherenkov angle be denoted by θ . A separation to better than 3σ amounts
to require Δθ/σθ ≥ 3. By approximating finite differences by their differentials, we
get:

Δθ

σθ

≈ dθ

σθ

= 1

σθ sin θ
d cos θ = β

σθ

√
β2 n2 − 1

d

(
1

β

)
= β2 dm2

2 σθ

√
β2 n2 − 1 |p|2

≈ |m2
K − m2

π |
2σθ

√
n2 − 1|p|2 . (2.72)

Hence, the largest momentum for which the statistical separation is in excess of
Nσ = 3σ is provided by:

|p| <
|m2

K − m2
π |[

Nσ · 2σθ

√
n2 − 1

] 1
2

=
⎧⎨
⎩

0.474 GeV√
3·2·2×10−3·√1.4742−1

= 4.2 GeV silica

0.474 GeV√
3·2·2×10−3·√1.00172−1

= 18 GeV fluorocarbon

(2.73)

Suggested Readings

This problem is inspired by Sect. 34.5 of Ref. [2]. The reader is addressed to this
reference for more information on the subject.
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Problem 2.26 Tellurium dioxide (Te O2) crystals (n = 2.4, ρ = 6 g cm−3) have
been used to search for the putative neutrinoless double-beta decay 130

52 Te →130
54 Xe

in bolometric calorimeters. The experimental signature is provided by an energy
deposit around 2.53 MeV. A major background to this process is represented by
α-decays of radioactive contaminants. Show that the simultaneous measurement of
Cherenkov photons and calorimetric energy would allow to separate α particles from
signal events. Estimate the mean number of Cherenkov photons with wavelengths
in the range [350, 600] nm produced by a signal event in a few centimetres long
crystals.

Discussion

Differently from an ordinary double-β decay (2νββ), where a nucleus A
Z X decays to

A
Z+2Y + 2ν + 2e−, a neutrinoless double-β decay (0νββ) does not produce neutrinos
in the final state. The Q-value of the reaction, see Problem 1.39, is entirely taken by
the two electrons: their energy sum is therefore a line around Q smeared by the detec-
tor resolution. This also implies that the electron energies are fully anticorrelated.
The theoretical energy distributions for this decay can be found in Ref. [15]. Alpha
particles of a few MeV energy, typical of radioactive decays, behave like background
events by releasing their energy in the calorimeter.

Solution

In order to prove that the electrons radiate Cherenkov light while the α particles do
not, it suffices to verify that the threshold velocity β = 1/n = 0.717 in Te O2 is
above the velocity of α’s, but below the velocity of at least one of the electrons.
Assuming Tα = 2.53 MeV, one has

βα ≈
√

2Tα

mα

=
√

2 · 2.53 MeV

3.73 GeV
= 0.037 < β, (2.74)

while for a 0νββ decay:

max βe >

√
1 −

(
me

Q/2 + me

)2

=
√

1 −
(

0.511 MeV

1.77 MeV

)2

= 0.958 > β. (2.75)

To good approximation, the total range and the number of Cherenkov photons are
independent of the energy sharing between the two electrons, thanks to the anti-
correlation between the two energies. Indeed, for γ 
 1, the range is a linear function
of energy as for Eq. (2.32). In the case of interest, though, the average kinetic energy
is comparable to me, so the linearity is lost. However, a numerical investigation shows
that the total range is constant to within 15% over the allowed electron spectrum,
and is larger when the energy sharing is more asymmetric. Furthermore, Eq. (2.32)
is expected to underestimates the true range for small values of γ , and one should
rather use the full calculation. To circumvent the lack of tabulated data and the
mild dependence on the kinematics, we consider a particular decay configuration,

http://dx.doi.org/10.1007/978-3-319-70494-4_1
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namely T1 = 1.0 MeV and T2 = Q − T1 ≈ 1.5 MeV. We then approximate the
stopping power by averaging the tabulated values for two similar materials: Na I,
which contains Iodine, a Tellurium neighbour in the periodic table, and Ti O2, which
is also a metal dioxide. At T = 1 MeV, Ref. [16] gives:

R1(Na I) = 0.69 g cm−2, R1(Ti O2) = 0.55 g cm−2, (2.76)

Taking the mean, we get R1 ≈ 0.64 g cm−2, or 0.10 cm. There are no values tabulated
for T = 1.5 MeV, but we can use the scaling predicted by Eq. (2.32), giving a ratio
R2/R1 = 1.69. Hence, R2 ≈ 0.175 cm. The light output in the wavelength window
[350, 600] nm can be estimated by using Eq. (2.16) with 〈sin2 θ〉 ≈ 1−1/n2, giving:

Nγ ≈ (0.10 + 0.175) cm
1.15 × 103 cm−1

√
600 · 350/400

(
1 − 1

2.42

)
600 − 350√

600 · 350

= 46 + 79 = 125, (2.77)

which agrees with the more accurate expectation of Ref. [17], which averages the
range over the proper energy spectrum.

Suggested Readings

The idea of exploiting Cherenkov radiation in bolometric detectors has been first
proposed in Ref. [17], from which the problem is largely inspired.

Problem 2.27 A threshold Cherenkov detector is used to separate muons from pions
in a beam with momentum |p| = 150 MeV. What values of the refraction index n
can be used?

Solution

The condition for which muons emit Cherenkov light, while pions do not, is given
by:

1/βμ < n < 1/βπ ⇔
√(

mμ

|p|
)2

+ 1 < n <

√(
mπ

|p|
)2

+ 1,

giving the result: 1.22 < n < 1.37.

Bando n. 1N/R3/SUB/2005

Problem 2.28 An experiment needs to distinguish pions from kaons of momentum
|p| = 2 GeV by measuring the time flight on a L = 2 m baseline. The instrumentation
has a time resolution σt = 0.2 ns. Can each particle be identified? With which
precision can the pion fraction be determined?
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Solution

The time-of-flight (TOF) for pions and kaons in the beam is given by:

t = L

βc
= L

c

√
1 + m2

|p|2 = 2 m

3 × 108 m s−2

⎧⎨
⎩
√

1 − (
0.139

2

)2 = 6.68 ns π√
1 − (

0.494
2

)2 = 6.87 ns K
(2.78)

Since Δt = 0.19 ns ≈ σt , particle-by-particle identification is affected by a large
statistical uncertainty, i.e. the Type-II error is large for any given efficiency to identify
the correct particle type. For example, if we decided to tag a particle as a K if the
TOF is in excess of 6.87 − 1σt = 6.67 ns, the selection efficiency would be 84%,
for a fake-rate of about 50%. Even though an event-by-event classification is not
very accurate, the pion (or kaon) fraction of the beam can be estimated with large
accuracy for a sufficiently large number of measurements. Assuming N independent
and gaussian distributed measurements X = {Xi }, the maximum-likelihood (ML)
estimator of the pion fraction ε̄π is given by the solution of the equation:

0 = ∂L(X, επ )

∂επ

∣∣∣∣
ε̂π

,

with L =
N∏

i=1

f (Xi , επ ) =
N∏

i=1

[επ N (Xi | tπ , σt ) + (1 − επ)N (Xi | tK , σt )]

(2.79)

The classical theory of estimators predicts that the asymptotic variance of the ML
estimator is given by

Var
[
ε̂π

] = 1

N I (ε̂π )
, with I (ε̂π ) = E

[
−∂2 ln f (x, επ )

∂2επ

]
, (2.80)

see Sect. 4.1. The information can be computed numerically using a simple program
for different values of επ , see Appendix 2.3. The result is a number of O(1): for
example, for επ = 0.1 (0.3) one gets I = 1.03 (0.80). Hence, the standard deviation
on the pion fraction will be given by:

σε̂π
≈ 1√

N
. (2.81)

Problem 2.29 In 1987, the water Cherenkov detector Kamiokande-II in the Kamioka
mine (Japan), detected a neutrino burst that was attributed to a supernova event
occurred at a distance d = 5.5 × 104 kpc from the Earth. The energy and arrival
time at the detector could be measured for those (anti)neutrinos that interacted via
the charged-current (CC) scattering ν̄ p → n e+, or by the electron-scattering (ES)

http://dx.doi.org/10.1007/978-3-319-70494-4_4


2.2 Particle Identification 147

Fig. 2.9 Scatter plot of
energy and time for the
twelve supernova candidate
events recorded by
Kamionkande in 1987 (from
Ref. [18])

reaction νe e− → νe e−, within the fiducial volume of the detector. During a time
interval Δt = 12 s, a total of 12 events were registered. The time vs energy diagram
of the signal events is reported in the Fig. 2.9.

• The Kamiokande experiment could not distinguish electrons from positrons by
using the sole Cherenkov light. How was it then possible to separate νe from ν̄e?

• Explain how the antineutrino energy Eν̄ could be measured from the positron
energy Ee+ .

• Determine a lower bound to the νe lifetime.
• Using the data reported in the plot, estimate an upper bound to the electron neutrino

mass mνe .

Discussion

As of 1987, the Kamiokande-II experiment consisted of a cylindric water tank con-
taining over 2000 t of water instrumented with uniformly distributed PMT’s covering
about 20% of the total surface. The PMT’s were sensitive to the Cherenkov light in the
range 300÷500 nm. At these wavelengths, the light attenuation length exceeds 50 m,
thus allowing an efficient light collection all across the fiducial volume. The event
trigger, production vertex, direction, and energy of the particles were reconstructed
by using the charge and time stamp of all PMT with a signal above the noise. The
single-PMT time resolution was 13 ns, while the relative energy resolution was esti-
mated from simulation to be about 20%. An electron neutrino with energy of about
10 MeV interacts mostly through ES on the atomic electrons. The CC interaction
with the transmutation 16

6 O → 16
7 F is instead suppressed by the large mass difference

B(16
6 O) − B(16

7 F) ≈ 16 MeV. Conversely, an electron antinutrino interacts mostly
through the CC reaction ν̄ p → n e+, provided Eν̄ � 2 MeV. The main background
to ∼10 MeV electrons and positrons is represented by cosmic muons, β-decays of
unstable isotopes polluting the water, and by γ /n radiation from the cavern walls.

Solution

The separation between electrons and positrons is possible on a statistical basis.
Indeed, the CC scattering for antineutrino energies Eν̄ ≈ 10 MeV is isotropic in the
laboratory frame. This can be proved as follows. First, one notices that the velocity of
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the centre-of-mass frame is β = Eν̄/(Eν̄ + m p) ≈ 10−2, so that the centre-of-mass
is almost at rest in the laboratory frame. In the latter, the dynamics is governed by
the exchange of a virtual W boson, as described by the Fermi Lagrangian:

LF = GF√
2

cos θC
[
n̄γμ(1 − αγ5)p

] [
ν̄γ μ(1 − γ5)e

]
. (2.82)

The amplitude squared can be obtained with the usual Casimir’s tricks. By taking
α = −1, it becomes proportional to (pe+ pp)(pν̄ pn) ≈ Ee+ Eν̄ m p mn , if the neu-
tron recoil is neglected compared to the nucleon mass. In this case, Ee+ is also a
constant, hence the ampitude squared itself is constant. From Problem 1.53 and the
considerations above, we can see that the cross section is roughly isotropic in the
laboratory frame. This is not the case for the ES, since the centre-of-mass velocity is
now β = Eν̄/(Eν̄ + me) ≈ 1. which gives rise to a very forward-peaked differential
cross section in the laboratory frame, see Problem 1.15.

For the antineutrino scattering, energy conservation implies

Eν̄ + m p = Ee+ + mn ⇒ Eν̄ ≈ Ee+ + (mn − m p)︸ ︷︷ ︸
1.3 MeV

. (2.83)

The neutrino lifetime, τν , has to be large enough so that the neutrinos can make
it to Earth, i.e.:

τν � d

c γν

= 5.5 × 104 pc

c (Eν/mν)
= 5.5 × 104 · 3.3 c · y

c (Eν/mν)
= 1.8 × 105

(
mν

Eν

)
y, (2.84)

where we have used the relation 1 pc ≈ 3.3 c · y.
If the neutrino burst starts at the time t = 0, the arrival time at the detector is:

t = d

βν c
= d

c

1√
1 − (mν/Eν)

2
≈ d

c

[
1 + 1

2

(
mν

Eν

)2
]

. (2.85)

Two neutrinos of energies E1 and E2, emitted at the same time t = 0, will arrive at
destination with a time separation:

t1 − t2 = d

2c
m2

ν

(
1

E2
1

− 1

E2
2

)
. (2.86)

From the recorded data, we observe the presence of a few neutrino events separated
by about 10 s from the the first burst events, which is larger than the expected duration
of a supernova burst (a few seconds), is an indication that neutrinos have a mass, since
otherwise they would have arrived all in one shot. The presence of two populations
of events, one located within the first second, and the other around t = 2 s, which
are not distributed according to Eq. (2.85), indicates, though, that the pattern of

http://dx.doi.org/10.1007/978-3-319-70494-4_1
http://dx.doi.org/10.1007/978-3-319-70494-4_1
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neutrino emission from the supernova has some non-trivial time dependence, i.e.
one cannot assume a perfectly synchronous burst. Yet, some of the neutrinos must
have been created simultaneously, and with some broad spectrum of energies, so that
any difference in arrival time has to be attributed to the non-zero neutrino mass. A
conservative upper limit on mν can thus be obtained by considering, those events that
feature the largest energy difference |ΔE | among the first and last arrived events,
respectively. From the plot, we take e.g.: (E1, t1) = (35 MeV, 1.5 s) and (E2, t2) =
(10 MeV, 12.5 s). Inverting Eq. (2.86), we have:

mν �
√

2c (t1 − t2)

d

E1 E2√
E2

2 − E2
1

≈ 20 eV. (2.87)

Suggested Readings

This problem is inspired by the Kamiokande publication of Ref. [18].

Bando n. 18211/2016

Problem 2.30 A νμ beam with an energy of 30 GeV enters a detector containing
liquid Ar. A fraction of the events features a few metres long track starting from the
interaction point, while, for a smaller fraction of the events, all tracks are contained
within a small volume. Explain this behaviour.

Solution

As already discussed in Problem 1.64, neutrinos can undergo interactions with both
the nuclei and and the atomic electrons, the latter having a cross section suppressed
by a factor of me/m N . In both cases, the neutrinos can interact via either the charged
current, νμ X → μ− Y , or the neutral current interaction, νμ X → νμ X ′. The EWK
theory predicts the ratio between neutral and charged current cross section in terms
of the Weinberg angle θW to be:

(
σNC

σCC

)
ν

= 1

2
− sin2 θW + 20

27
sin4 θW ≈ 0.31, (2.88)

see e.g. Ref. [19]. When a neutrino of energy Eν = 30 GeV interacts via CC, it
produces a muon of similar energy, which being a MIP, is highly penetrating in
the Ar medium and can be therefore identified as a long track. Conversely, in the
occurrence of a NC interaction, the only detectable signal is provided by the recoil
of the struck nucleus. Since DIS prevails in this energy regime, the interaction is
inelastic and results in a number of hadronic particles which, being much heavier
than the muon and less energetic, have smaller range, thus appearing as a set of short
tracks emerging from the interaction point.

http://dx.doi.org/10.1007/978-3-319-70494-4_1
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Suggested Readings

The reader is addressed to Chap. 12 of Ref. [19] for more information on neutrino
interactions in matter.

Problem 2.31 A charged particle is moving inside a uniform magnetic field of inten-
sity B = 1.0 T. The radius of curvature of the track is R = 7.25 m with negligible
error. The kinetic energy of the particle is measured to be T = (2.00 ± 0.03) GeV.
Determine which type of particle is most probably being measured.

Solution

The charge sign is fixed by the direction of curvature. The particle momentum |p| is
instead given by the formula:

|p| = 0.3 |z| (B/T) (R/m) GeV = 2.20 |z| GeV, (2.89)

where z is the particle charge in units of the proton charge e, see Problem 3.3. The
particle mass m is therefore given by:

m2 = (T + m)2 − |p|2, m = |p|2 − T 2

2T
= (2.20 · z)2 − (2.00)2

2 · 2.00
GeV.

(2.90)

The uncertainty on m can be obtained by propagating the uncertainty on T :

Δm =
∣∣∣∣∂m

∂T

∣∣∣∣ΔT = 1 + |p|2/T 2

2
ΔT = 1 + (2.20 · z/2.00)2

2
· 0.03 GeV. (2.91)

Stable, non-exotic particles have integer charges. We can therefore try different ansatz
values of |z| and compare the result with the known spectrum of particles. For |z| = 1,
Eq. (2.90) gives m = (210 ± 30) MeV, which does not match any known particle
within the experimental uncertainty. For |z| = 2, one has m = (3.84 ± 0.09) GeV,
which is compatible with the mass of the α particle mα = 3.73 GeV at the 1σ level.

Bando n. 13153/2009

Problem 2.32 Describe which methods could be used to measure lifetimes of order
109 years, 10−12 s, and 10−22 s.

Solution

Lifetimes of order 109 years are typical of radioactive decays. Such lifetimes can be
measured by counting the number of decays in a sample and in a given time interval
Δt . Let NC be the number of countings after background-subtraction. Under the
assumption τ 
 Δt , the lifetime can be measured from the relation:

http://dx.doi.org/10.1007/978-3-319-70494-4_3
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τ = V ρ NA

A

Δt

NC
, (2.92)

where V is the volume of the sample being observed.
Lifetimes of order 10−12 s are characteristics of weakly decaying particles, like

D and B mesons, or τ leptons. Since c = 3×102 µm/ps, the decay vertexes of such
particles are of order 300 µm, when the particles are produced at relativistic ener-
gies. Silicon detectors, with intrinsic spatial resolutions of a few tens of microns or
better, see Problem 2.43, are ideal candidates to build vertex detectors with sufficient
resolution to resolve such decays.

Lifetimes of 10−22 s are characteristics of strongly decaying particles, like the
ρ and ω mesons, or the Δ baryon. The distance of flight is far too small to be
measurable by any position-measuring device. Such lifetimes are therefore indirectly
estimated from the decay width Γ of Eqs. (1.186), as measured from the invariant
mass distributions of the decay products, or from the production cross section.

2.3 Functioning of Particle Detectors

Particle detectors record the passage of particles. Depending on the detector type
and on the form of radiation it is sensitive to, detectors can be used to measure the
position and time of arrival of a given particle at the detector location, the energy
and direction of the incoming particle, and sometimes even identify the type of
particle. Detectors are usually composed of an active volume, which interacts with
the particle, and a readout component, hosting the electronics required to generate an
electric signal, provide signal amplification to improve the signal-over-noise ratio,
and finally shape the signal according to some logic suitable for later processing
in the experiment or for persistent data storage. In modern experiments, detectors
are commonly operated by computers, which supervise their correct functioning
and take care of data acquisition. The field of particle detection is vast and finds
application that range from pure research to industry. No attemp is made here to give
a comprehensive overview on this subject. The selected problems want to discuss
the main technologies and introduce general concepts, like resolution, efficiency,
dead time.

Problems

Bando n. 1N/R3/SUB/2005

Problem 2.33 In an electromagnetic calorimeter, the stochastic contribution to the
resolution is 0.07/

√
E . Can we conclude that the energy resolution for an electron

of energy E = 50 GeV is 1%?

http://dx.doi.org/10.1007/978-3-319-70494-4_1
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Discussion

Electromagnetic calorimeters are detectors that measure the kinetic energy of charged
particles by exploiting one or more interaction mechanisms between charged particles
and matter, including fluorescence, Cherenkov light emission, and ionisation. In
general, only a fraction of the total initial energy is converted into a visible signal: the
proportionality between the measured signal and the total energy allows to measure
the latter, after a proper calibration is performed. Electromagnetic calorimeters can
be broadly classified into two categories: homogeneous and sampling, depending on
whether the active medium is composed of the same material, or interleaved with
layers of inactive absorbers which degrade the energy of the incoming particle. The
total energy resolution depends on the choice of active material, which determines
the statistics of signal carriers per unit of deposited energy (e.g. the statistics of
scintillation photons), on the signal generation and electronics (efficiency of the
photodetector, electronic noise), and on other geometrical properties of the detector
(e.g. uniformity, dependence of the response with the particle impact point, etc.).
In most applications, the relative energy resolution can be parametrised in terms of
these three contributions as:

σ(E)

E
= a√

E
⊕ b

E
⊕ c, (2.93)

where the symbol ⊕ indicates sum in quadrature. The three contributions are called
stochastic, noise, and constant term, respectively. As a general rule, homogeneous
calorimeters shine for their small stochastic term of order 1% in units of 1/

√
E/GeV,

while for sampling calorimeters the stochastic term is in the range 5 ÷ 20%, in the
same units. The importance of the noise term a depends on the signal collection
type: scintillation and Cherenkov calorimeters coupled to high-gain PMT suffers
the least from the electronic noise, while the noise is usually larger for calorimeters
that collect the signal in the form of charge (e.g. semiconductive, gas sampling, and
noble-gas calorimeters), since a preamplifier is the first element in the readout chain.
For this contribution to be subleading in the GeV range, the parameter b needs to be
kept at the 100 MeV level per channel. For use in high-energy experiments, where
particles with energies of hundreds of GeV need to be measured, the constant term
ends up to be the limiting factor to the ultimate energy resolution. As an example, the
electromagnetic calorimeters employed by the CMS and ATLAS experiments at the
LHC are built with different technologies, but achieve similar physics performances,
overall. The CMS detector makes use of a homogeneous scintillation calorimeter
based on PbWO4 crystals. A test beam on a small prototype yielded a stochastic
term of 3.3%/

√
E/GeV, a noise term of 0.19/(E/GeV), and a local constant term of

0.27%. When averaged over the full detector acceptance, the goal constant term needs
to be kept below 0.5%, which is challenging since the whole detector is composed
of about hundred thousand crystals that need to be inter-calibrated. This problem
is somehow relieved by the ATLAS setup, which uses instead a sampling liquid-Ar
calorimeter, at the price of increasing the stochastic term. A test beam on a prototype
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yielded a stochastic term of 10%/
√

E/GeV, a noise term of 0.25/(E/GeV), and a
local constant term of 0.3%.

Solution

As discussed above, the energy resolution of an electromagnetic calorimeter depends
on the energy as in Eq. (2.93). For an electron with E = 50 GeV and a calorimeter
with a = 7%, the stochastic term is 7%/

√
50 ≈ 1%. The latter has to be added in

quadrature to the constant and noise term to obtain the total relative energy resolution.
We can estimate an upper limit to the noise and constant terms such that they do not
contribute individually to the total relative resolution by more than a certain fraction
f , that we can conventionally set to e.g. f = 0.1. With this choice:

σ(E)/E − 1%

1%
< 0.1 ⇒

⎧⎨
⎩

1
2

(
b/50 GeV

1%

)2
� 0.1, b � 220 MeV

1
2

(
c

1%

)2 � 0.1, c � 0.5%
(2.94)

We can therefore conclude that the energy resolution for an electron of energy E =
50 GeV is about 1% provided that the noise and constant term are below about
200 MeV and 0.5%, respectively.

Suggested Readings

A succint but complete review of calorimetry in particle physics can be found in
Ref. [20]. More informations on the state-of-the-art in calorimetry can be found in
the PDG review [2] and references therein.

Bando n. 1N/R3/SUB/2005

Problem 2.34 A relativistic electron releases energy in a block of BGO, generating
a signal of about 106 p.e./GeV, while the signal generated in a block of lead glass of
the same size is only 103 p.e./GeV. How can such a difference be explained?

Discussion

Both BGO and lead glass feature a radiation length X0 of about 1 cm and a critical
energy of about 10 MeV [5]. An electron of few GeV energy loses energy mostly
by radiation. The emitted bremsstrahlung photons undergo pair-production, with
subsequent photon emission. The resulting electromagnetic shower is characterised
by an energy profile

d E

dt
= E0 b

(b t)a−1e−b t

Γ (a)
, (2.95)

where t = x/X0 and a and b are constants that depend on the material. Simplifying
the shower development as a series of 1 → 2 branches (e± → e±γ and γ → e+e−)
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with equal energy sharing and separated by a distance X0, so that the energy per
constituent at a depth t is E/2t , it follows that the total track length L(t) from
electrons, positrons, and photons, after traversing t radiation lengths is given by

L(t) = 2t X0. (2.96)

The maximum number of radiation lengths tmax is determined by the condition that the
electron/positron energy falls below the critical energy Ec, i.e. tmax = ln(E/Ec)/ ln 2,
and

L = 2
ln E/Ec

ln 2 X0 =
(

X0

Ec

)
E . (2.97)

A more refined treatment of shower development, will still predict the total track
length L to be proportional to the initial energy. Along their path, electrons and
positrons excite the fluorescent levels of the crystal, characterised by an average
excitation energy ε, so that the total photon output Nγ is still proportional to the
initial energy E .

Solution

BGO, an acronym for (Bi2 O3)2(Ge O2)3, is a scintillating crystal. The mean
excitation energy per photon is reported in Table 2.2 and is about 300 eV/γ , or
3 × 106 γ /GeV, which is in the ballpark of the value reported by the problem (the
ultimate p.e. statistics depends on the PMT collection and quantum efficiency). Lead
glass (Pb O) is an amorphous material and does not scintillate. It has a large refraction
index (n ≈ 1.8) and is transparent to visible wavelengths, which makes it a good
Cherenkov radiator. Assuming a quality factor N0 of about 90 cm−1, see Eq. (2.21),
and a total charged track length as in Eq. (2.97), an upper limit to the number of p.e.
per GeV can be estimated as:

Np.e.

E
= Np.e.

L

L

E
≈ 90 cm−1 〈sin2 θc〉 · (2/3)

X0

Ec
=

= 90 cm−1 · 0.69 · (2/3)
1.3 cm

10 MeV
= 5 × 103/GeV, (2.98)

where the factor of 2/3 accounts for the fact that only electrons and positrons pro-
duce Cherenkov light. This estimate does not account for the fact that the simple
shower model is not well representative of the energy distribution within the shower:
the bremsstrahlung cross section dσ/dν for emitting one photon with frequency ν

is approximately proportional to ν−1, see e.g. Eq. (2.68) of Ref. [1], so that the sec-
ondary e+e− pairs from γ conversion are preferably soft, with implications on the
total Cherenkov light yield. A more accurate estimation would yield a smaller value
Np.e./E ≈ 103/GeV [20].

The difference between the two materials can be therefore ascribed to the different
mechanism by which photoelectrons are produced in the two materials.
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Suggested Readings

The reader is addressed to Ref. [20] for a primer on calorimetry for particle physics.

Bando n. 13153/2009

Problem 2.35 Measuring the energy of hadronic particles through calorimetric
methods is a fundamental ingredient in HEP experiments. When a hadron produces
a shower, on average 30% of the initial energy is transformed into “invisible” energy.
Indicate which mechanisms are responsible for the production of invisible energy
and discuss at least one method to recover it.

Discussion

The physics of hadronic cascades is by far more involved compared to the develop-
ment of electromagnetic showers due to the richness of interactions that hadronic
particles undergo when crossing matter. The interaction of a high-energy hadron
with a typical calorimetric material, like iron, lead, or copper, involves the produc-
tion of energetic secondary hadrons through strong interactions with typical inter-
action lengths of about 35 A1/3 g cm−2, followed by the degradation of their energy
by nuclear reactions that produce nuclear excitation, evaporation, spallation, fission,
etc., resulting in particles with characteristic nuclear energy (100 keV÷a few MeV).
The low energy spectrum of the hadronic cascade is dominated by neutrons, photons,
electrons and positrons, the latter produced by the interaction of photons with matter.
Photons are produced by two main mechanisms: from π0 → γ γ and from nuclear
de-excitations and (n, γ ) reactions. The latter can come delayed up to 1 µs with
respect to the primary interaction, and overall account for about 30% of the total
cascade energy. Since the number of high-energy interactions that produce pions
increases with energy, the fraction of energy drained away in the form of π0 → γ γ

photons increases with energy. The hadronic shower in usually initiated inside the
so-called radiator, whereas the energy measurement is performed in the active mate-
rial that samples the cascade. Both the hadronic and electromagnetic component of
the cascade contribute to the energy measurement in the active material, although
with different efficiencies. Let ηe (ηh) be the efficiency of detecting the energy con-
tained in the electromagnetic (hadronic) component. The total energy measured by
the interaction of a high-energy hadron with initial energy E is therefore given by:

Eh
vis = [ηe Fπ0(E) + ηh Fh(E)] E = ηe

[
1 +

(
1 − ηh

ηe

)
Fh(E)

]
E, (2.99)

where Fh = 1 − Fe is the hadronic energy fraction, which depends on the initial
hadron energy [20]. The ratio between the response to an hadron h and to an elec-
tromagnetic particle, like an electron, is therefore:

Eh
vis

Ee
vis

≡
( e

π

)−1 = 1 +
(

1 − ηh

ηe

)
Fh(E). (2.100)
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Since ηh �= ηe in general, and because of the dependence of Fh with energy,
Eq. (2.100) implies that

• the energy response of a hadronic calorimeter is in general non-linear;
• the energy resolution is worse than for an electromagnetic calorimeter due to the

stochastic fluctuations on Fh ;
• the energy response is not gaussian.

For example, in a homogeneous calorimeter, e/π ≈ 1.4 as a result of the lower
efficiency of detecting the hadronic component. This problem can be greatly miti-
gated by tuning the ratio ηh/ηe to unity, i.e. by compensating the calorimeter for the
intrinsically different response to the hadronic component.

Solution

The origin of invisible energy in hadronic cascades can be tracked down to the
production of delayed photons, soft neutrons that undergo nuclear reactions giving
low-range particles, and to the production of nuclear binding energy, which is again
drained away in the form of low-range nuclear decays. Although such energy is not
measurable, it is possible to compensate for it in a statistical sense by decreasing the
sensitivity of the detector to the electromagnetic component. For example, in a sam-
pling calorimeter made of high-Z material like brass, uranium, or lead, interleaved
with a plastic organic scintillator, the response to the electromagnetic cascade gets
reduced proportionally to the sampling fraction, i.e. the fraction of active material.
The latter can be tuned by varying the thickness of the scintillator layers. On the con-
trary, the response of the scintillator to fast neutrons is only marginally affected, since
a recoil proton with T ∼ 1 MeV has a range of a few tens of microns, see Eq. (2.35),
hence it will always interact in the active material regardless of its thickness. By
tuning the e/π ratio to unity, the energy resolution can be grearly enhanced.

Suggested Readings

The review article [20] gives a concise but clear discussion of the phenomenology
of hadron cascades, with quantitative description of compensation in real detectors.

Bando n. 18211/2016

Problem 2.36 Which processes among pair-production, Compton scattering, and
photoelectric effect, are non-negligible in the interaction of γ emitted by a 60Co
source with a Ge detector? Which process has necessarily to happen in order to
measure the total photon energy?

Discussion

Thanks to the large Z value and the small excitation energy, see Table 2.2, Ge detec-
tors place among the most precise detectors for γ spectroscopy below a few MeV.
When dealing with γ radiation, an important property of the detector is the photo-
peak efficiency, i.e. the efficiency of detecting a photon which is entirely absorbed
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by photoelectric effect. For Ge detectors and photons of order 1 MeV energy, the
photo-peak efficiency is � 1%, see e.g. Fig. 10.20 of Ref. [1].

Solution

In its β-decay chain, the 60Co isotope produces two monochromatic photon lines
of energy 1.17 and 1.33 MeV, hence just above the pair-production threshold Eth =
2me ≈ 1.02 MeV. The K -shell for Ge is located at 11 keV [9], hence the photoelectric
effect is expected to be small for the 60Co photons, while Compton scattering should
be the dominant interaction mechanism. Indeed, from Ref. [6], we find σp.e. ≈ 5 ×
10−2 barn, σComp ≈ 6 barn, and σpair ≈ 10−2 barn for Eγ = 1.25 MeV. If the photon
undergoes Compton scattering, only the energy deposited by the recoil electron can
be measured by the detector. The interaction length for photons in Ge is given by:

λComp = (n σComp)
−1 =

(
5.3 g cm−3 · 6 × 1023 mol−1

72 g mol−1 · 6 barn

)−1

≈ 4 cm,

(2.101)

so there is a finite probability that the photon undergoes one Compton scattering only
before leaving the active volume, if the latter is a a few mm thick, like in practical
Ge detectors. The maximum electron recoil energy is given by Eq. (1.139), namely:

Tmax = Eγ

2 k

1 + 2 k
= 0.96, 1.1 MeV, (2.102)

where k = Eγ /me. For example, the range in Ge for an electron of kinetic energy
1.1 MeV is about 1.2 mm [5], hence there is a non-negligible chance that the recoil
electron escapes the active volume. The same holds for the photoelectrons, which
have energies Eγ − B ≈ 1.16 and 1.32 MeV, and ranges below 2 mm.

The only reactions that guarantee a full energy measurement are therefore the
photoelectric effect (probability ≈1%), with full electron confinement, and pair-
production (probability ≈ 0.2%). In the latter case, the emitted e± have an energy of
about (Eγ − 2me)/2 ≈ 75 and 150 keV and ranges of about 25 and 85 µm, respec-
tively, and are therefore very likely to be fully contained in the active volume. After
annihilation with an atomic electron, the 2me rest energy of the e+e− pair restores the
full energy measurement if the two photons from positronium annihilation interact
with the active material (the interaction length for 0.5 MeV photons is about 2.4 cm).

Bando n. 18211/2016

Problem 2.37 Estimate the contribution to the energy resolution (FWHM) due to
the stochastic fluctuations in silicon calorimeters generated by photons of energy
2 keV, 6 keV, and 15 keV.

http://dx.doi.org/10.1007/978-3-319-70494-4_1


158 2 Particle Detectors

Discussion

If the measured energy E is distributed according to a Gaussian law with mean μ = 0
and standard deviation σ , the FWHM resolution is defined as the interval such that
the p.d.f equals half of its value at the mean position μ, i.e.:

N (x±; μ, σ) = 1

2
N (0; μ, σ) ⇒ x± = ±√

2 ln 2 σ ≈ ±1.177 σ

σFWHM = (x+ − x−) = 2.35 σ (2.103)

When dealing with energy resolution with particle detectors, an important concept
is the so-called Fano factor (F). If a particle produces on average N = E/ε signal
carriers through independent random interactions characterised by probability p, the
stochastic fluctuation in this number is

√
N from Poisson statistics, and the relative

energy resolution is 1/
√

N . However, if the detector cannot but absorb all of the
particle energy by converting it into detectable signal carriers, the multiplicity of the
latter is ideally fixed to N and there would be no stochastic fluctuations at all. This
is seldom the case, since there is in general a partioning of the energy transferred
by the particle to the active material into more channels, some of which may not
produce signal carriers. Indeed, in some circumstances it is observed that the relative
energy variance is smaller than the Poisson expectation by an empirical factor F ,
with F < 1, i.e.:

σ

E
=

√
F ε

E
(2.104)

Semiconductors that absorb the full particle energy into eh-pairs, feature a Fano
factor of about 0.12. The Fano factor for ionisation detectors has been discussed in
Problem 2.8. More informations can be found in Chap. 4 of Ref. [7].

Solution

At energies below 15 keV, the photoelectric effect dominates the interaction of pho-
tons with silicon, see e.g. Ref. [6]. We can therefore assume that the photon interacts
with one atom by emitting an electron of a few keV energy. The photo-produced elec-
tron loses energy by collision loss and creates additional electon-hole pairs along its
track. At E = 2 keV, the photoelectron will most likely originate from a K -shell
emission. Since the K -edge in silicon is at 1839 eV [9], the resulting photo-electron
will be rather soft as for Eq. (2.23). However, the ionised atom is in an excited state,
which will bring to the emission of either K -α and K -β photons, which undergo
photoelectric effect from L-shells with the emission of secondary photoelectrons,
or to the emission of short-range Auger electrons [5]. In any case, the secondary
particles will release energy in the active medium, so that one can still assume that
the whole photon energy is absorbed with little energy partitioning. This reduces
the standard deviation of the number of electron-hole pairs Neh from the Poisson
expectation of 1/

√
Neh to

√
F/Neh , with F ≈ 0.12 for silicon. The mean excitation
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energy is ε = 3.6 eV, see Table 2.2. We can therefore estimate the FWHM of the
measured signal to be:

σFWHM = 2.35

√
Fε

E
= 2.35

√
0.12 · 3.6 eV

E
=

⎧⎪⎨
⎪⎩

3.4% E = 2 keV

2.0% E = 6 keV

1.3% E = 15 keV

(2.105)

Suggested Readings

Reference [21] discusses in more detail the use of silicon detectors for γ spectroscopy,
with examples of measured spectra from nuclear candles. A broader discussion on
the phenomenology of photoelectric absorption in matter can be found in Ref. [7].

Bando n. 1N/R3/SUB/2005

Problem 2.38 A piece of Na I (Tl) scintillator, read-out by a phototube, is used to
measure the 137Cs line: estimate the energy resolution by listing the contributing
factors.

Solution

The energy resolution for a coupled scintillator-phototube detector is described by
Eq. (2.45). The 137Cs isotope produces a monochromatic X-ray emission with energy
E = 661 keV. The main contribution to the energy resolution comes from the sta-
tistics of photoelectrons, which depends on the mean number of photons nγ = E/ε,
where ε is the mean excitation energy, see Table 2.2, and on the overall efficiency of
the photocathode. The electronic noise plays also an important role. An other contri-
bution may come from the dependence of the response with the photon impact point
and from an imperfect shower containment. Assuming εQ εC = 0.2 for a typical
PMT, see e.g. Table 34.2 of Ref. [2], and negligible noise from the electronics and
amplification statistics ( fN = 1, G 
 1), the relative energy resolution (FWHM)
can be estimated to be:

σFWHM

E
= 2.35

√
ε

E · εQεC
= 2.35

√
22 eV

661 keV · 0.2
= 3.0%, (2.106)

see Problem 2.37. No Fano factor has been accounted for in Eq. (2.106), since there
is no evidence for its presence in scintillators.

Bando n. 5N/R3/TEC/2005

Problem 2.39 Estimate the energy resolution at 140 keV of a photo-detector
equipped with Na I (Tl) crystals.
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Solution

We can refer to Problem 2.38 for determining the energy resolution of a similar setup.
Assuming εQ εC = 0.2 for a typical PMT and negligible noise from the electronics
and amplification statistics, the relative energy resolution (FWHM) can be estimated
to be:

σFWHM

E
= 2.35

√
ε

E · εQ εC
= 2.35

√
22 eV

140 keV · 0.2
= 6.6%, (2.107)

where ε = 22 eV is the mean excitation energy for Na I (Tl), see Table 2.2. See
Problem 2.37 for the definition of FWHM.

Bando n. 18211/2016

Problem 2.40 A scintillator emits 104 γ /MeV. Calculate the resolution (FWHM)
for a 4 MeV particle assuming a total light collection efficiency εC εQ=1.

Solution

The energy resolution of the detector is described by Eq. (2.45). Assuming εQ εC = 1
and negligible noise from the electronics and amplification statistics, the relative
energy resolution (FWHM) can be estimated to be:

σFWHM

E
= 2.35

√
ε

E
= 2.35

√
10−4 MeV

4 MeV
= 1.2%. (2.108)

See Problem 2.37 for the definition of FWHM.

Bando n. 13153/2009

Problem 2.41 Calculate the energy resolution for photons of energy E measured
by a solid state detector with ionisation energy ε, leakage current Id, and integration
time of the associated electronics equal to TS.

Solution

If the photon energy is intirely absorbed by the detector, the mean signal charge Q
collected at the electrodes of the p-n junction and its standard deviation are given
respectively by:

Q = E

ε
e, σQ =

√
F E

ε
e, (2.109)
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where F ≈ 0.12 is the Fano factor in silicon. In the integration time TS taken by the
electronics to shape the signal, the leakage current contributes to the noise via an
equivalent squared-charge:

Q2
n = 2 e Id TS, (2.110)

see e.g. Sect. 34.8 of Ref. [2]. Since the noise from the leakage current and the
statistical fluctuation in the number of signal carriers are uncorrelated, the relative
energy resolution is given by the sum in quadrature:

σE

E
=

√
σ 2

Q + Q2
n

Q
=

√
ε

E

√
F +

(
2 Id TS

e

)
ε

E
(2.111)

Suggested Readings

For a concise overview of low-noise front-end electronics for particle detectors, the
reader is addressed to Sect. 34.8 of Ref. [2].

Bando n. 1N/R3/SUB/2005

Problem 2.42 The drift velocity of electrons in some gas mixture is v = 5 cm/µs.
What does it imply for a multiwire chamber with wire spacing s = 2 mm, and what
for a drfit chamber read-out by a TDC with 500 MHz clock?

Discussion

Multiwire chambers have been briefly discussed in Problem 2.52. Drift tubes (DT)
are gaseous ionisation detectors that measure the time taken by the primary ionisation
electrons to drift from their point of formation up to the anode. For ions moving in
a gas, the drift velocity v is roughly proportional to the electric field intensity:

v = μ E, (2.112)

where μ is called mobility and depends on the pressure P and temperature T of the
gas, while it is almost independent of the electric field. Electrons can instead reach
much higher velocities compared to ions, and the mobility μ depends on E in such
a way that a saturation of the velocity at values of order 50 µm/ns is reached for
E ∼ 1 kV/cm at STP. By making the electric field as uniform as possible in the drift
region, Eq. 2.112 implies a proportionality between the distance from the anode of
the primary ionisation position and the drift time. The latter is defined as the time
interval between a fast trigger, that provides the start time to the clock, and the time
of formation of the electric signal at the anode. Drift tubes are built according to this
concept. Typical position resolutions achievable with DT are 100 µm over few drift
lengths d of a few cm. The position resolution is determined by the sum in quadrature
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Fig. 2.10 Typical position
resolutions in a drift chamber
as a function of the drift
length d. The total resolution
is broken up into three main
contributions: statistics of
the primary ionisation, noise
from the electronics, and
charge diffusion
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of three dominant contributions: the statistics of primary ionisation (relevant at small
d), the electronic noise (independent from d), and electron diffusion (proportional
to

√
d). Figure 2.10 provides a qualitative description of the position resolution as a

function of the drift length d.

Solution

A MWPC with wire spacing s = 2 mm, has a spatial resolution along the coordinate
y orthogonal to the wires:

σ MW
y = s√

12
= 2 mm√

12
≈ 580 µm. (2.113)

The factor
√

12 accounts for the fact that the particles arrive at the detector uniformly
distributed across y. The time resolution is therefore given by

σ MW
t = σ MW

y /2

v
= 580 µm/2

5 cm/µs
≈ 5.8 ns (2.114)

In Eq. (2.114), the factor of 1/2 at the numerators comes from the fact that a primary
ionisation generated outside of the ±s/2 range from a given wire will be detected by
one of the two neighbouring wires. For a DT readout by a time-to-digital converter
(TDC), the TDC clock period f −1 sets a minimum time resolution

σ DT
t = f −1

√
12

= 2 ns√
12

= 0.58 ns. (2.115)

Again, one has to divide by
√

12 since the actual arrival time at the anode is uniformly
distributed across the time interval f −1 between subsequent clocks. The position
uncertainty induced by the TDC clock is therefore given by:

σ DT
y, clock = σ DT

t · v = 0.58 ns · 5 cm/µs ≈ 29 µm. (2.116)
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This term contributes to the electronic noise shown in Fig. 2.10. The overall position
resolution depends however on other factors, as discussed above. Typical position
resolutions of a conventional DT is about 100 µm, which is anyway smaller than the
one from a typical MWPC.

Suggested Readings

For a comprehensive review of DT, the reader is addressed to Ref. [22].

Bando n. 1N/R3/SUB/2005

Problem 2.43 A depleted microstrip silicon detector has a strip pitch of 50 µm and
operates without charge division. What is its spatial resolution?

Discussion

A silicon microstrip is a solid-state detector consisting of a wafer of doped silicon,
for example, of a high-resistivity n-type with typical thickness of about 300 µm,
with p-n junctions shaped in the form of long and thin parallel strips separated by a
distance (pitch) ranging between 20 and 200 µm. In a possible setup, one surface of
the wafer is grounded and the strips are implanted on the opposite side and connected
to the bias voltage via DC or AC coupling. The junction may be realised by p+-type
silicon and, for a typical wafer thickness, it gets completely depleted by a bias voltage
of order 100 V. A MIP loses 1.66 · 2.33 MeV/cm ≈ 3.87 MeV/cm in silicon [5].
Given that the average excitation energy is ε = 3.6 eV, a total of 3×104 eh-pairs are
produced on average across a 300 µm-thick junction. The signal carriers drift under
the effect of the bias voltage and the induced charge is measured by the front-end
electronics.

The charge division method consists in an analog measurement of the signal from
the strips close to the one which recorded the hit, i.e. the one with the largest signal
yield. The centre-of-mass of the strip charges x̄ = ∑

i Qi xi/
∑

i Qi , where i runs
over the strips and xi (Qi ) are the strip positions (measured signal), provides an
estimator of the impact position with typical resolution of about

σ ana
x ∼ d

SNR
, (2.117)

where d is the strip pitch and SNR is the signal-over-noise ratio. This can be easily
proved by using the standard propagation of error for uncorrelated measurements,
see Eq. (4.73):

x̄ =
∑

i Qi xi∑
i Qi

⇒ σ 2
x̄ =

∑
j

∣∣∣∣ ∂ x̄

∂ Q j

∣∣∣∣
2
δQ2

j =
∑

j

(
x j − x̄

)2

(∑
i Qi

)2 δQ2
j = d2

∑
j δQ2

j(∑
j Q j

)2 ,

σx̄ = d

SNR
, with SNR =

∑
j Q j√∑
j δQ2

j

≡ S

N
. (2.118)

http://dx.doi.org/10.1007/978-3-319-70494-4_4
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Conversely, if the strips can be read in digital mode only, the position resolution is
given by the strip pitch:

σ dig
x = d√

12
, (2.119)

Additional sources of uncertainty affecting the collection of charge carriers, like
thermal diffusion, multiple-scattering, δ-rays, should be also considered for realistic
detectors.

Solution

In the absence of charge division, the spatial resolution of a microstrip detector is
primarily determined by the pitch size d. Since the particle flux can be asumed to
be uniformly distributed across the microstrip detectors, we can estimate the spatial
resolution (FWHM) as:

σ x
FWHM = 2.35

d√
12

= 34 µm, (2.120)

where the factor of 1/
√

12 comes from the assumed flux uniformity, see Prob-
lem 2.42.

Suggested Readings

For a first introduction to microstrip detectors, the reader is addressed to Sect. 10.6
of Ref. [1].

Bando n. 18211/2016

Problem 2.44 A silicon detector is made of a pixels with dimension 100 µm ×
200 µm. What is the smallest spatial resolution in the two dimensions, if the detector
has digital readout?

Discussion

Pixel detectors are semiconductive detectors where the active volume is segmented
in small picture elements (pixels), which are independently read-out. Planar pixel
detectors are commonly employed in HEP experiments as vertex detectors, thanks
to their superior spatial resolutions in two dimensions, which allows for a small
occupancy even at the closest distance to the interaction point, and their close-to-
ideal efficiency to detect the passage of ionising particles.

Solution

If the detector is operated in digital readout, see Problem 2.43, a lower bound to the
spatial resolution (FWHM) in the two directions is given by:
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{
σ x

FWHM = 2.35 dx√
12

= 68 µm

σ
y

FWHM = 2.35 dy√
12

= 136 µm
(2.121)

where the factor of 1/
√

12 comes from the assumed flux uniformity, see Prob-
lem 2.42.

Suggested Readings

For a comprehesive introduction to pixel detectors in HEP experiments, the reader
is addressed to Ref. [21].

Bando n. 18211/2016

Problem 2.45 Why is a diode used as radiation detector usually operated with an
inverse bias?

Solution

A p-n junction operated at inverse bias give rise to an active region depleted from
mobile charge where an intense electric field can sweep out free charges liberated
by a ionising particle. The thickness of the depletion zone for the case of a silicon
p-n junction realised by a p+-doped material put into contact with a lightly doped n
region, is approximately given by:

W = 0.5

√( ρn

Ω cm

)(
V0 + Vbias

V

)
µm, (2.122)

where ρn is the resistivity of the n-type region, V0 ∼ 1 V is the barrier voltage, and
Vbias is the bias voltage, see e.g. Ref. [2]. The importance of applying an inverse
bias to the junction as to enlarge the active volume is made clear by Eq. (2.122). For
example, for typical values ρn = 2×104 Ω cm, the thickness of the depletion region
would change from 70 to 700 µm, if a reverse bias Vbias = 100 V is applied.

Suggested Readings

An introduction to the physics of semiconductors for particle detectors can be found
in Chap. 20 of Ref. [1].

Bando n. 13705/2010

Problem 2.46 Consider a D0 meson produced with an energy of 20 GeV. Determine
the spatial resolution necessary to measure the production and decay vertex position,
and indicate which detectors are best suited for an efficiency exceeding 90%.
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Solution

The D0 meson decays via the electroweak interaction with a lifetime of about 0.41 ps,
corresponding to cτ ≈ 120 µm [2]. A good channel to reconstruct its decay is
D0 → K ±π∓. The probability of surviving up to a distance d ot more from its
production vertex is given by Eq. (1.174):

P [x ≥ d] = exp

[
−mc

|p|
d

cτ

]
= exp

[
− 1√

γ 2 − 1

d

cτ

]
(2.123)

Requiring this probability to be at least 90% is equivalent to impose that the flight
distance should be in excess of:

d90% = (− ln 0.9) c τ γ = (0.105 · 123 · 11) µm ≈ 140 µm, (2.124)

where we have used the fact that γ ≈ 11 is large. Therefore, if we want to reconstruct
at least 90% of the D0 decays from their decay vertex, the vertex resolution must
be smaller than about 140 µm. This can be easily achieved by silicon-based vertex
detectors, either pixel- or mictrostrip-based.

Discussion

For E = 20 GeV, the decay products have energy of about 10 GeV each. In this
regime, multiple scattering usually dominates the tracking resolution when using
silicon detectors with pixel/pitch size � 100 µm, see Problem 3.9. The impact point
resolution (σip) is the uncertainty on the position of closest approach of the track
extrapolation to the primary vertex point (PV), and is related to the resolution on the
position of the secondary vertex (SV), see Fig. 2.11. Modulo resolution effects, the
quantity

s j
ip = sign

[
ip j · (SV − PV)

]
(2.125)

should be positive for tracks emerging from the same secondary vertex. Conversely,
the detector rsolution smears the impact point of tracks emerging from the PV around
zero, with equally likely values of sip. This property can be exploited to define
tagging algorithms for displaced vertexes and experimental methods to measure
their efficiency in data [24, 25]. Assuming a MS-dominated regime, the impact point
resolution is given by:

σip ≈ r1

√
〈θ2

1 〉, (2.126)

where r1 is the distance of the innermost silicon layer from the interaction point
and 〈θ2

1 〉 is given by Eq. (2.8). For example, assuming the design of the CMS pixel
detector, one has r1 = 4.4 cm and a MS mean angle of about 2 × 10−4 rad at |p| =
10 GeV, giving σip ≈ 10 µm, see Ref. [26]. A more realistic simulation, which

http://dx.doi.org/10.1007/978-3-319-70494-4_1
http://dx.doi.org/10.1007/978-3-319-70494-4_3
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Fig. 2.11 Cartoon
illustrating the two-body
decay of a D0 meson. The
distance of closest approach
of the extrapolation of the
daughter particles
trajectories to the primary
vertex (PV) is called impact
parameter

pπ

pK

ipK

ipπ

d

PV

SV

includes measurement uncertainty and MS in the beam pipe, gives about a factor of
2 larger resolution, which still satisfies the constraint of Eq. (2.124).

Suggested Readings

For an overview of tracking and vertexing performances at the LHC, the reader is
recommended to read the review article [26].

Bando n. 18211/2016

Problem 2.47 Explain why Ge sensors need to be cooled, while Si sensors do not.

Solution

Germanium detectors are commonly operated at liquid nitrogen temperature (T =
77 K) to reduce the leakage current Id due to thermal excitation, and hence the
electronic noise and power consumption, see Problem 2.41). The bias current depends
exponentially on the temperature T :

Id(T ) ∝ T 2 exp

[
− Egap

2 kB T

]
⇒ Id(T2)

Id(T1)
=

(
T2

T1

)2

exp

[
− Egap

2 kB

(
1

T2
− 1

T1

)]
,

(2.127)

where Egap is the energy gap, see e.g. Sect. 34.7 of Ref. [2]. Although the same effect
exists in silicon, the energy gap in the latter is larger than in germanium. For example,
at room temperature, one has Egap = 1.1 eV for silicon and 0.7 eV for germanium,
corresponding to a factor of 3 × 103 larger leakage current for the latter.

Bando n. 18211/2016

Problem 2.48 Which property of a SiPM makes it a preferable solution cimpared
to a conventional PMT for an integrated imaging PET-MRI system?
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Discussion

Silicon photomultipliers (SiPM), also known as Pixelized Photon Detectors (PPD)
are photodetectors composed by an array of pixel-size photodiodes with typical size
ranging from 25 × 25 µm2 to 100 × 100 µm2, packed over a small area, typically
from 0.5 × 0.5 mm2 to 5 × 5 mm2, and operated in Geiger mode, i.e. with a bias
voltage in excess of the break-down voltage. When a eh-pair is created in the depleted
region, the intense electric field triggers the formation of an avalanche. The high bias
voltage provides large gains per incident photon and per pixel, but proportionality
between the number of photons impinging on a given cell and the collected charge
is lost. The proportionality with the total input photons is restored by summing the
binary cell outputs from the full array.

Solution

SiPM’s represent a convenient alternative to PMT’s for applications in environment
with intense magnetic field, like in positron emission tomography-magnetic reso-
nance imaging (PET-MRI) applications, since the amplification stage in a SiPM
does not require the photoelectrons to be accelerated along the dynode of conven-
tional PMT’s, which suffers from the presence of magnetic fields, for example by
altering the gain.

Suggested Readings

For an introduction to SiPM’s, the reader is addressed to the dedicated PDG review [2]
and references therein.

Bando n. 1N/R3/SUB/2005

Problem 2.49 Order the following detectors by decreasing dead time: silicon, plastic
scintillator, drift chamber. Which one would you chose for a time measurement with
resolution of a few hundred ps?

Discussion

The dead time τ is the time required by a detector to process one event and be ready
to accept a new event. Depending whether the detector is sensitive or not to a new
event while processing the previous one, two types of dead-time exist: extendable or
not-extendable. In the first case, if we assume that the first event occurred at time t0,
the arrival of a new event at a time t1 < t0 + τ shifts the time at which the detector
is ready to accept and process a new event to at least t2 = t1 + τ . In the second case,
the new event does not change the detector state at all, and the subsequent event
can be accepted and processed at any time t1 ≥ t0 + τ , regardless of what happens
meanwhile. See Problem 3.38 for more details.

Solution

Plastic scintillators are generally faster than inorganic scintillators, with decay times
of a few ns, see e.g. Table 7.1 of Ref. [1]. Fast photodetectors can also have risetimes

http://dx.doi.org/10.1007/978-3-319-70494-4_3
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below 1 ns, see e.g. Ref. [2]. A coupled scintillator-photodetector system is ready to
accept and process a new event after the fluorescent excitation from the previous event
have decayed to the ground level, which can take about 10 ns for fast scintillators.

A silicon strip or pixel detector has time resolutions of a few ns, but the time
needed to collect the full charge released in the depleted zone can take a few tens of
nanoseconds (10 ns for electrons and 25 ns for holes in a 300 µm thich detector, see
Sect. 34.7 of Ref. [2]). The readout electronics further increases the processing time
to at least 50 ns.

In a drift chamber, the dead time is mostly due to the time taken by the primary
ionisation electrons (ions) to drift to the anode (cathode), see Problem 2.42. For a
typical electron velocity of 5 cm/µs, the time needed to drift over 1 cm is about
200 ns. During this time, a new event would cause pile-up and confusion on the time
measurement.

A time measurement with a few hundreds ps time resolution is best accommodated
with plastic scintillators coupled to fast photo multipliers, like microchannel plate
(MCP) or gas electron multipliers (GEM), with a fast sampling frequency of the
readout electronics as to allow for the full pulse shape reconstruction.

Suggested Readings

More details on the dead time of particle detectors, including techniques for measur-
ing it in the laboratory, can be found in Sect. 5.7 of Ref. [1]. Table 34.1 of Ref. [2]
summarises the typical resolutions and dead times of common charged particle detec-
tors.

Bando n. 18211/2016

Problem 2.50 The mean counting rate on single electrode for a given detector is
150 kHz. Estimate an upper bound to the processing time of the analog pre-amplifier
and shaper, if the pile-up probability has to be maintained below 3%.

Solution

For what concerns the pileup of multiple events, we can use the same line of
thought used to relate the true and measured rate in a non-paralyzable system, see
Problems. 2.49 and 3.38. Referring to Eq. (3.186) with ε = 1, we can therefore invert
the equation and express the true rate ν as a function of the measured rate m and of
the dead time τ , i.e.

ν = m

1 − m τ
. (2.128)

Requiring that the pile-up is less than δ = 3% amounts to require that the ratio
between the measured rate and the true rate is larger than 1 − δ, or equivalently:

http://dx.doi.org/10.1007/978-3-319-70494-4_3
http://dx.doi.org/10.1007/978-3-319-70494-4_3
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m

ν
= 1 − m τ > 1 − δ ⇒ τ <

δ

m
= 0.03

1.5 × 105 Hz
= 200 ns. (2.129)

Bando n. 18211/2016

Problem 2.51 A proportional cylindrical tube has inner radius R, wire radius r , and
anodic tension V0. What is the value of the electric field at a distance d ≤ R from
the anode?

Solution

Let’s assume that the anode is connected to a potential V0 > 0 and that the cathode
is grounded. The wire acquires a charge with uniform linear density. By using the
cylindrical symmetry of this configuration, it is easy to prove that the electric field
must be radial, i.e. E = E(d) er . By virtue of Gauss law, the field intensity E(r)

must scale as d−1, i.e.

E(d) = c0

d
, (2.130)

where c0 is a constant that depends on the boundary conditions. Since E = −∇V ,
the electric potential V (d) must be proportional to ln d. Together with the boundary
conditions at the two electrodes, this fully determines the potential to be:

V (d) = V0

ln(r/R)
ln(d/R), (2.131)

from which we get the result:

E(d) = −∂V

∂d
= V0

ln(R/r)

1

d
. (2.132)

Discussion

The d−1 scaling of the electric field makes the cylindrical tube suitable for charge mul-
tiplication. For example, assuming typical values r = 20 µm, R = 5 cm, V0 = 2 kV,
the electric field at a distance of 100 µm from the wire is about 20 kV/cm, which is
enough to trigger the formation of an avalanche with its resulting charge multiplica-
tion. As an eample, the gas multiplication factor M for a cylindrical chamber filled
with P-10 gas (90% Ar, 10% C H4) at STP can be estimated from Diethorn formula:

ln M = V0

ln(R/r)

ln 2

ΔV
ln

(
V0

p r ln(R/r) K

)
≈ 7.3 ⇒ M = 1.5 × 103,

(2.133)

where p is the gas pressure and K and ΔV are gas-specific parameters, see e.g.
Table 6.1 of Ref. [7] for a few examples.
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Suggested Readings

An introduction to the physics of electronic avalanches in gas can be found in Ref. [1,
7]. For a more comprehensive review of gaseous detectors, the reader is addressed
to Ref. [8].

Bando n. 1N/R3/SUB/2005

Problem 2.52 The cathode readout can be used in wire detectors, like multiwire
chambers, TPC, LST, and even RPC. What does it mean? What are the main advan-
tages of this setup?

Discussion

Multiwire proportional chambers (MWPC), time projection chambers (TPC), lim-
ited streamer tubes (LST), and resistive plate chambers (RPC) are all examples of
gaseous ionisation detectors that measure the ionisation charge left behind by parti-
cles interacting with the gas. A gaseous detector consists in a pair of electrodes kept
at different electrostatic potentials and separated by a gaseous medium. The anode
is usually shaped in a way as to produce intense electric fields nearby its surface. A
metallic wire kept at a positive voltage bias is the solution at the basis of the MWPC,
TPC, and LST technology. A plane capacitor with small inter-plane distance is an
other option, which is e.g. used in RPC detectors. The cathode confines the elec-
tric field and shields the detector from the outside. The usual way of opertaing a
gaseous detector is to ground the cathode and read the anode in AC-coupling, i.e.
separating the bias voltage from the readout electronics by means of a capacitor, see
Problem 2.53. Alternatively, one can set the cathode at a negative bias voltage, and
couple the anode directly to the readout electronics.

Solution

Let’s consider the case where the anode consists in a set of parallel wire with small
inter-distance, stretched along the coordinate x , and let y be the orthogonal coordi-
nate. The passage of a ionising particle induces the formation of an electron avalanche
in the neighbourhood of the anode. The positive ions drift towards the cathode induc-
ing a signal (a time-dependent voltage pulse) between the two electrodes. If the detec-
tor is operated in anode readout, only the y coordinate can be measured with good
resolution. If the cathode is segmented along y, like in the form of parallel strips,
then a cathode readout, i.e. a measurement of the pulse induced at the cathode, offers
the possibility of measuring also the x coordinate. If the cathode readout is analogic,
a centre-of-gravity method allows to measure the x position with high precision
(indeed, only limited by the noise of the electronics). If the readout is digital-only,
the x resolution is instead determined by the granularity of the cathode.

Suggested Readings

An introduction to gaseous detectors and to their readout can be found in Sect. 6.6
of Ref. [1]. A more advanced and complete reference on the subject is provided by
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Fig. 2.12 AC and DC
couplings for a generic
detector
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Ref. [8]. A stimulating discussion on this subject can be also found in the Nobel
lecture by G. Charpak (1992), the inventor of the MWPC.

Bando n. 18211/2016

Problem 2.53 Does a radiation detector AC-coupled to its electronics have a larger
noise compared to a DC-coupled detector with the same electronics?

Discussion

The readout electrode of a charge-sensitive detector, like a microstrip silicon detector,
an RPC, a MWPC, etc., can be either set to a large bias voltage or be grounded. In
the former case, the front-end electronics, which usually starts with a pre-amplifier,
needs to be decoupled from the bias voltage by a capacitance (AC-coupling). In the
latter case, the electrode can be directly accessed by the pre-amplifier (DC-coupling),
see Fig. 2.12.

Solution

AC-coupling offers the advantage of having the opposite electrode (e.g. the cathode,
for wire detectors) grounded, resulting in a convenient configuration to insulate the
detector. However, it provides an extra decoupling capacitance in input to the readout
chain, thus increasing the electronic noise compared to a DC-coupling. Indeed, for
a capacitive sensor, the charge-equivalent noise Qn can be parametrised as:

Q2
n = i2

n Fi TS +
(

e2
n Fv

TS
+ Fv f A f

)
C2, (2.134)

where C is the sum of all capacitances shunting the input, i2
n and e2

n are the quadratic
current and voltage noise densities, TS is the characteristic shaping time, and Fi,v,v f

are devise-specific constants [2].
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Suggested Readings

For an introductory discussion on the readout of silicon detectors, the reader is
addressed to Sect. 10.9 of Ref. [1]. More details on low-noise electronics for capac-
itive detectors can be found in the dedicated PDG review [2].

Bando n. 1N/R3/SUB/2005

Problem 2.54 A discriminator is operated with a threshold Vth = 0.4 V and receives
in input signals that have a constant rise-time equal to TS = 10 ns, but an amplitude
variation between Vmin = 0.5 V and Vmax = 1 V. Estimate the lower bound on the
time resolution due to the variable amplitude. Which technique would you use to
reduce such an effect?

Discussion

A discriminator is a device that produces a digital signal when an analogical input
pulse overcomes a predefined threshold. A discriminator in combination with a TDC
device can be used for timing measurements of signals. When the input signals differ
in amplitude and/or rise-times, the time measurement performed by a discriminator
with fixed threshold is affected by event-by-event fluctuations on the pulse shape,
giving rise to the so-called time walk. A number of time-pickoff methods can be
deployed to mitigate the walk effect. A common method is based on the constant
fraction triggering (CFT), which consists in analysing the zero-crossing of a signal
obtained by a linear combination of the pulse V , delayed by a fixed time τd, with
−k V , where k is an attenuation coefficient. The triggering time tR is defined as the
time at which:

V (tR − τD) − k V (tR) = 0. (2.135)

Since Eq. (2.135) is homogeneous in V , signals with the same time-shape, but dif-
ferent amplitude, will give the same triggering time tr, see Fig. 2.13. This method is
however affected by a residual walk effect if the pulse shape differ from one event to
another. In this case, one can try to reduce the delay time τD as to trigger on the rising
edge of the signals, where event-by-event changes are smaller, a technique known
as amplitude and risetime compensation (ARC).

Solution

The time derivative of the signal is distributed in the range

dV

dt
∈

[
Vmin

TS
,

Vmax

TS

]
= [0.05, 0.1] V

ns
. (2.136)

Signals with time derivatives at the edge of the interval of Eq. (2.136) will trigger
the disciminator at times:
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Fig. 2.13 Application of the
CFT technique to a pair of
Gaussian-like signals with
different amplitude

tmin = Vth

Vmax/TS
= 0.4 V

0.1 V/ns
= 4 ns

tmax = Vth

Vmin/TS
= 0.4 V

0.05 V/ns
= 8 ns (2.137)

The time walk Δt is therefore given by

Δt = tmax − tmin = 4 ns. (2.138)

A technique to eliminate the time walk is for example the constant fraction trig-
gering, which is appropriate for this case since the signals feature the same rise-time.

Suggested Readings

Discriminators are briefly discussed in Sect. 14.0 of Ref. [1], while a few time-
pickoff methods are described in Sect. 17.2 of the same reference. The reader is also
addressed to Ref. [23] for application of discriminators in experiments.

Appendix 1

The computer program below illustrates the numerical evaluation of the information
Iεπ

from Problem 2.28. The algorithm approximates the Rieman integral by the finite
sum of rectangles:

∫
dx f (x) ≈

∑
i

f

(
xi+1 − xi

2

)
· Δx
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The integral to be approximated is given by:

Iεπ
= E

[
−∂2 f (x, επ )

∂2επ

]
≡

∫ +∞

−∞
dt f (t, επ )

[
−∂2 ln f (x, επ )

∂2επ

]
, (2.139)

with:

∂ ln f (x, επ )

∂επ

= N (t; tπ , σt ) − N (t; tK , σt )

f (t, επ )
(2.140)

∂2 ln f (x, επ )

∂2επ

= − [N (t; tπ , σt ) − N (t; tK , σt )]
2

f (t, επ )2
(2.141)

import math

# gaussian function
def gaus(x, m, s):

return 1./math.sqrt(2*math.pi)/s * math.exp(-math.pow(x - m,2)/2/s/s)

m_pi = 6.68 $ TOF\index{Time of flight@Time-of-flight} for pi m_k
= 6.87 # TOF\index{Time of flight@Time-of-flight} for K sigma =
0.2 # std of TOF\index{Time of flight@Time-of-flight} measurement

def integrate(x_l=6.0, x_h=7.5, step=0.01, f_pi=0.5):
integ = 0.0
n_step = int((x_h-x_l)/step)
for s in xrange( n_step ):

t = x_l + (s+0.5)*step
g_pi = gaus(t, m_pi, sigma)
g_k = gaus(t, m_k, sigma)
val = math.pow(g_pi - g_k, 2)/(f_pi*g_pi + (1. - f_pi) * g_k )
integ += val*step

return integ

##############################
for f_pi in [0.1, 0.3]:

res = integrate(x_l=5., x_h=10, step=0.001, f_pi=f_pi)
print f_pi"==>", res
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