
Chapter 2
Design Space Exploration of Compiler
Passes: A Co-Exploration Approach
for the Embedded Domain

Abstract Very Long Instruction Word (VLIW) processors represent an attractive
solution for embedded computing, offering significant computational power with
reduced hardware complexity. However, they impose higher compiler complexity
since the instructions are executed in parallel based on the static compiler sched-
ule. Therefore, finding a promising set of compiler transformations and defining
their effects have a significant impact on the overall system performance. In this
chapter, we provide a methodology with an integrated framework to automatically
(i) generate optimized application-specific VLIW architectural configurations and
(ii) analyze compiler level transformations, enabling application-specific compiler
tuning over customized VLIW system architectures. We based the analysis on a
Design of Experiments (DoEs) procedure that statistically captures the higher order
effects among different sets of activated compiler transformations. Applying the pro-
posed methodology onto real-case embedded application scenarios, we show that (i)
only a limited set of compiler transformations exposes high confidence level (over
95%) in affecting the performance and (ii) using them we could be able to achieve
gains between 16–23% in comparison to the default optimization levels. In the next
chapters, we go deeper in building machine learning models to tackle the problem.

2.1 VLIW

Embedded system design traditionally exploits the knowledge of the target domain,
e.g., telecommunication, multimedia, home automation etc., to customize the
HW/SW coefficients found onto the deployed computing devices. Although the
functionalities of these devices differ, the computational structure and design are
tightly connected with the platform they rely on. Platform-based designs have been
proposed as a promising alternative for designing complex systems by redefining the
problem of tuning specific design parameters of the platform template.

The scientific and commercial urge to use VLIW technology seems to be raised
again after three decades of existence [1]; VLIW processor templates are being used
particularly in embedded processors, designed to perform special-purpose functions,
usually for real-time or hardware acceleration. Being able to useVLIWpower-saving

© The Author(s) 2018
A. H. Ashouri et al., Automatic Tuning of Compilers Using Machine Learning,
PoliMI SpringerBriefs, https://doi.org/10.1007/978-3-319-71489-9_2

23

24 2 Design Space Exploration of Compiler Passes: A Co-Exploration …

cores in CPUs seems to be using day by day. However, the trade-offs between right
parallel execution and the speedup managed by compiler instead of hardware are
becoming a very complex task. VLIW can potentially achieve greater performance,
offering high degree of Instruction Level Parallelism (ILP) with low silicon and
power costs. On the one hand, architecture configurability of VLIW platforms offers
significant advantages regarding portability, sizing and parameter tuning provided to
the designer [1, 2]. On the other hand, it introduces a lot of complexity during opti-
mization due to multi-objective nature of the solution space and the multi-parametric
structure of the design space.

Although a significant amount of research has been conducted on exploring and
optimizing VLIW architectural parameters [3] and introducing specific compiler
optimization for VLIW processors [4, 5], there are limited references regarding the
analysis of the impacts of conventional compiler transformations onto VLIW archi-
tectures and moreover how these transformations are correlating with the underlying
architectural configuration. Nowadays, the existence of modular and reusable com-
piler tool-chains LLVM and ROSE [6] raises the opportunity for system designers
to exploit sophisticated compiler passes and customize their compiler infrastructure
accordingly. Given the large optimization space provided by the modern compiler
infrastructures, the designer has to traverse to find the best trade-off points, thus a
fine-grained and automatic characterization of the effects that each compiler trans-
formation has onto the application’s behavior, is considered of great importance.
Empirical evaluation of the effects, by simply activating and deactivating compiler
passes cannot be considered adequate, since a lot of inter-transformation interactions
and second order effects are neglected. Due to the complexity of characterizing the
solution space, there is a necessity to extend conventional exploration approaches
by applying sophisticated analysis and data-mining for extracting knowledge from
statistical results [7]. The problem becomes more demanding in the embedded com-
puting domain, which requires different optimizations related to each platform con-
figuration customized for a specific application domain. The main contribution of
this chapter consists of proposing a compiler/architecture methodology that provides
to the designer an integrated environment to automatically (i) generate optimized
application specific architectural configurations of VLIW-based platforms, and (ii)
a statistical analysis of the effects of compiler level transformations.

We target the design problem of compiler/architecture co-exploration in embed-
ded computing. Thus, we focus on enabling application-specific compiler tuning
over customized VLIW system architectures. First, a multi-objective exploration
loop targeting application-specific micro-architectural customization is applied for
extracting the best VLIW architecture candidates. We utilize the newly introduced
Roofline processor architecture model [8] for characterizing the differing architec-
tural solutions onto various resource constraints. The optimized VLIW architectural
configurations are then propagated to the compiler analysis phase in which the sta-
tistical effects of the applied compiler transformations are characterized in a fine-
grained manner. The developed exploration framework integrates the LLVM com-
piler infrastructure [9] as a source to source code transformation tool together with
the VEX compiler-simulator for mapping the transformed code onto custom VLIW

2.1 VLIW 25

architecture instances. We evaluated the overall methodology (customized architec-
ture selection and statistical compiler level analysis) using a GSM codec application
as the driving use case. We show that only a limited set of compiler transforma-
tions has a significant effect on optimizing performance across a set of GSM specific
VLIW processors. In addition to the application specific scenario, we present results
regarding the multiple embedded applications onto a single VLIW instance, showing
that the proposed analysis can be used to extract promising compiler transformations
in cross-application manner.

The rest of the chapter is organized as follows. Section2.2 provides a brief dis-
cussion on related work and the current state of the art in the field. In Sect. 2.3,
we introduce the basic methodology for architecture customization and statistical
compiler level analysis. Section2.3.2.1 presents the experimental evaluation of the
proposed methodology on differing customized VLIW architectures and benchmark
applications. Section2.4 summarizes the work and concludes this chapter.

2.2 Background

Although we have entered the era of multi-core systems, the high degree of instruc-
tion parallelism offered by VLIW architectures seems to make them an interesting
alternative for a large set of commercial embedded systems [1, 10, 11]. VLIW archi-
tectures are also emerging in the modern many-core embedded accelerator devices,
i.e., KALRAY MPPA256 for image and signal processing applications.

Several research works have targetted the generation of Pareto optimal VLIW
architectural configurations [3, 11] by exploring the space using pre-allocated com-
piler sequences over differing architecture instances. Towards the same direction of
VLIW architectural configuration, Wong et al. [12] introduced r-VEX, a reconfig-
urable and extensible VLIW processor. The source code is mapped using the VEX
(VLIW Example) environment [13], which forms a compilation-simulation system
that targets a broad class of VLIW processor architectures, and enables compiling,
simulating, analyzing and evaluating C programs [2].

In current literature, there is a lot of attention on iterative compilation and pre-
dictive compiler modeling to predict the potential speedup of compiler transformed
programs utilizing code features provided by static program analysis as mentioned in
the Chap.1. However, there is a lack of comprehensive analysis regarding the impact
of applying differing conventional compiler transformations on customized VLIW
architectures. Although, in VLIW compilation infrastructures [13] there are avail-
able batch compiler optimizationmodes, fine-grained analysis of compiler effects for
VLIW architectures and its relationwith architecture customization is not adequately
targeted.

http://dx.doi.org/10.1007/978-3-319-71489-9_1

26 2 Design Space Exploration of Compiler Passes: A Co-Exploration …

2.3 Methodology for Compiler Analysis of Customized
VLIW Architectures

In this section, we describe the proposed methodology for compiler analysis of cus-
tomized VLIW architectures. The proposed methodology comprises of two phases:
(i) Customized VLIW architecture selection and (ii) Statistical analysis of compiler
transformations. From a high-level point of view, we first generate a set of promising
VLIW architectural candidates that tailor to the characteristics of the target appli-
cation, optimizing on the performance-intensity trade-off curve with respect to the
overall hardware allocated resource. Then, statistical analysis of distributions gener-
ated over the compiler transformation space is performed on the set of these selected
customized VLIW solutions. This enables the designer to characterize the effects of
each compiler transformation in both an architecture specific manner and a cross-
architecture manner.

We used the Roofline performance model [8] as the basis for both generating
the custom architecture configurations and characterizing the effect of the com-
piler passes. Roofline relates processor performance to off-chip memory traffic. It
characterizes processor architectures in a two-dimensional space, i.e., performance
(Mops/sec) versus operational intensity (ops/Byte). Operational intensity is defined
as operations per byte of DRAM traffic, defining total byte accessed as those bytes
that go to the main memory after been filtered by the cache hierarchy. The advantage
of usingRooflinemodel is twofold: (i) it provides the designerwith an intuitive insight
visual metric for fast evaluation of the architectural optimality of the configuration
and (ii) it is useful to characterize the impact of applied compiler transformations
onto a specific architecture. For example, Fig. 2.1 depicts the Roofline model of
a specific VLIW configuration and the superposition of application configurations

Fig. 2.1 Roofline example

2.3 Methodology for Compiler Analysis of Customized VLIW Architectures 27

Fig. 2.2 Tool-chain implementing the proposed methodology

derived from an experimental campaign of 4K different compiler parameter combi-
nations. A general trend (highlighted by the arrow in Fig. 2.1) can be easily detected
towards higher performance and operational intensity points. Given this visual rep-
resentation, a designer can identify promising compiler passes to be applied. A cus-
tom exploration and analysis framework (Fig. 2.2) has been developed based on the
integration of open source tools to implement the proposed methodology. Specif-
ically, we used Multicube Explorer [14, 15] as the central DSE engine. Given the
architectural and compiler design space descriptions, it manages to automatically
generate configuration vectors according to the specified DoE – random DoE during
the phase of custom VLIW architecture selection and random effect DoE during the
compiler transformation analysis phase. The LLVM compiler infrastructure1 is inte-
gratedwithin the framework – specifically the LLVMC front-end and the opt tool – as
a source to source transformation tool of the original application code after applying
the compiler transformations instructed by the DSE engine. The transformed code
of the application is mapped onto the VLIW processor using the VEX [13] VLIW
compiler-simulator tool, which is used for both generating different VLIW architec-
tural configurations and mapping code onto these custom VLIW processors. Custom
scripts have been developed to evaluate each examined configuration according to
the Roofline model. Statistical analysis and visualization of results are performed
using the statistical language R [16].

1LLVM projected supported its C source-to-source compiler frontend till v2.8.

28 2 Design Space Exploration of Compiler Passes: A Co-Exploration …

2.3.1 Custom VLIW Architecture Selection

Application-specific customization of architecture’s parameters is one of the early
system design optimization phases for defining platform configurations that meet
the desired performance specifications. Given the large number of parameters that
usually defines a processor architecture and the delay required for simulating each
possible configuration, the task of optimal micro-architectural parameter selection
forms an extremely challenging exploration problem that for reasonably represen-
tative design space definitions becomes intractable, regarding the time required for
exhaustive evaluation. Several research works utilizing well-known meta-heuristics
[3, 17] have been already proposed for generating the Pareto optimal sets of the
aforementioned optimization problem.

In this chapter, however, we slightly shift the focus of exploration from deliver-
ing the optimal set of architectural configurations to discover custom architecture
configurations that do not correspond to the boundaries of Pareto regions, i.e., very
low-cost architectures with very poor performance or very expensive architectures
that deliver very high gains regarding performance. Thus, here we invoke a relaxed
optimization search strategy that is based on a random sampling of the targeted design
space rather than on an optimization oriented strategy, e.g. simulated annealing or
NSGA-II genetic optimization [17] etc.

Table2.1 shows the micro-architectural design space, Ω , considered for the cus-
tom VLIW architecture selection phase. In the first step, we randomly sample the Ω

design space. Each explored solution is stored in the database of explored solutions,
X after being characterized according to the performance and operational intensity
metrics defined within the Roofline model, where:

Performance(x) = #Operations(x)
#NumCycles(x) × ClkFreq(x)

(2.1)

Intensity(x) = #Operations(x)
#CacheMisses(x) × CacheLineSi ze(x)

(2.2)

After the formation of the X , we are interested in finding those explored archi-
tectures that maximize the performance and operational intensity of the application
while using minimum computational and memory resources. In order to extract the
desired architectural configurations, we performPareto filtering on the solution space
defined with the X , by considering the following multi-objective optimization prob-
lem:

min
x∈Ω

⎡
⎢⎢⎢⎢⎢⎣

1

Per f ormance(x)
1

I ntensi t y(x)
#CompResources(x)
#MemResources(x)

⎤
⎥⎥⎥⎥⎥⎦

(2.3)

2.3 Methodology for Compiler Analysis of Customized VLIW Architectures 29

Table 2.1 VLIW
microarchitectural design
space

Parameters Values (integer range)

lg2CacheSize [11–30]

lg2Sets [0,3]

lg2LineSize [5,9]

lg2ICacheSize [11,30]

lg2ICacheSets [0,3]

lg2ICacheLines [5,9]

ClkFreq [300,500]

NumCaches [1,2]

IssueWidth [1,16]

NumAlus [1,16]

NumMuls [1,4]

RegisterFile [32,128]

BranchRegister [32,128]

where computational resources are (i) number ofALUsand (ii) number ofmultipliers,
while memory resources are (i) data cache size, (ii) instruction cache size and (iii)
register file size. Although, in Eq.2.3 we present the unconstrained version of the
target optimization problem, we note that our exploration infrastructure permits also
the inclusion of arbitrary constraints either on the objectives itself or on specific
parameter combinations that the designer has a priori evaluated as not interesting.

The outcome of the optimization procedure defined in Eq.2.3 is a Pareto surface,
X p, of the explored X , thus exhibiting a large number of VLIW architectural config-
urations. In order to restrict the number of VLIW configuration that will be charac-
terized as the representative customized VLIW solutions that will be propagated to
the statistical compiler analysis phase, we perform a clustering on the performance
- intensity solution space. We used k-means [18] clustering for the aforementioned
procedure, with a configurable number of clusters, k, decided by the designer. The
clustering procedure partitions the X p solution space into k regions of interest, Xci

p ,
e.g. region of high intensity and high performance, or region of low intensity and high
performance etc. Eventually, each cluster should deliver one representative VLIW
architecture, that forms the optimal solutionwithin the cluster.We define this optimal
solution per cluster as the architectural configuration that minimizes area cost of the
processor while maximizing both the metrics of performance and operational inten-
sity. In order to extract this optimal configuration from each cluster, we iteratively
apply the following single-objective minimization problem in every Xci

p produced
by the k-means clustering:

min
x∈Xci

p

Area(x)
Performance(x) × Intensity(x)

(2.4)

30 2 Design Space Exploration of Compiler Passes: A Co-Exploration …

For the calculation of the area cost in Eq.2.4, the area model provided by the
McPAT [19] micro-architecture framework has been used, assuming a processor
technology of 90nm.

Finding an architectures which is optimized by using the right set of compiler
optimizations is an essential task to mitigate. However, reaching this goal has its
own tolerance and trade-off. Occasionally it happens to sacrifice the code size for
better performance or portability versus code size. Consequently, there should be a
precaution when using these options otherwise it ends up heavier and less-usable.
Without any optimization option, the compiler’s goal is to reduce the cost of compi-
lation and to make debugging produce the expected results. Turning on optimization
flags makes the compiler attempt to improve the performance and/or code size at the
expense of compilation time and possibly the ability to debug the program. Com-
pilers perform optimization based on the program knowledge. Not all optimizations
are controlled directly by an optimization pass. In this work, we select 15 compiler
passes supported by LLVM compiler are as described in the Table2.2.

2.3.1.1 DoE

Given a huge multi-objective optimization problem, it is necessary to use the design
of experiment (DoE) methods, i.e., Taguchi Design of experiment [20]. DoEs are
the basic components for building the exploration strategies. The DoE used in this
work was based on random factors which generated a set of random designed points.
In addition, the optimization algorithm used here was parallel DoE (PDoE) which
was based on the possibility of performing concurrent evaluation of the different
design points, i,e, in the experimental analyses, for each compiler transformations
per benchmark, the number of exploration was 500, therefore, it would have given
enough points for the system to use for DoE and Optimizer to generates the effects
and metrics besides the Pareto points (if exists).

2.3.2 Compiler Transformation Statistical Effect Analysis

The second phase of the proposed methodology receives as input the generated
custom VLIW architectures as described in the previous section, and for each of the
set of micro-architectural points, it evaluates the statistical effects of the compiler
transformations in a fine-grained manner. In this research work we focus on 15 of
the compiler passes supported by LLVM (see Table2.2).

As afirst step in our analysis,wehave to determine a reasonable number of samples
to produce a robust analysis of the main effects associated with the 15 compiler
parameters. In the following, each configuration of these compiler parameters, or
set of compiler options, will be defined as a vector of 15 values, where each value
represents a compiler pass option.

2.3 Methodology for Compiler Analysis of Customized VLIW Architectures 31

Table 2.2 Selected compiler transformations from LLVM framework

Compiler transformation Abbreviation Short description

Constant propagation Constprop Constant operands instructions are replaced
with a constant value and propagated

Dead code elimination Dce Checks instructions that were used by
removed instructions to see if they are
newly dead

Function integration/Inlining Inline Bottom-up inlining of functions into callees

Combine redundant instruction Instcombine Combine instructions to form fewer, simple
instructions. This pass does not modify the
CFG and applies algebraic simplification

Loop invariant dode motion Licm Removes as much code from the body of a
loop as possible. It does this by either
hoisting code into the pre-header block, or
by sinking code to the exit blocks if it is safe

Loop strength reduction Loop-reduce Strength reduction on array references
inside loops that have as one or more of
their components the loop induction
variable

Rotates loops Loop-rotate A simple loop rotation transformation

Unroll loops Loop-unroll A simple loop unrolling

Unswitch loops Loop-unswitch Transforms loops that contain branches on
loop-invariant conditions to have multiple
loops

Promote memory to register Mem2reg It promotes memory references to be
register references

Memory copy optimizations Memcpyopt Performs various transformations related to
eliminating memcpy calls, or transforming
sets of stores into memset’s

Reassociate expressions Reassociate It reassociates commutative expressions in
an order that is designed to promote better
constant propagation

Scalar replacement of aggre-
gates

Scalarrepl It breaks up alloca instructions of aggregate
type (structure or array) into individual
alloca instructions for each member if
possible

Sparse cond const propagation Sccp It assumes values are constant and Basic
Blocks are dead unless proven otherwise. It
proves values to be constant, and replaces
them with constants and Proves conditional
branches to be unconditional

Simplify the control flow graph Simplycfg Performs dead code elimination and basic
block merging

32 2 Design Space Exploration of Compiler Passes: A Co-Exploration …

To accommodate our goal, we defined a randomized design of experiments DN (p)
for each compiler parameter p. DN (p) is a list of options sets:

D(p) = [
o1+, o1−, o2+, o2−, . . . , oN+, oN−

]
(2.5)

where on+ corresponds to the n-th random option set in which compiler pass
p ∈ {OFF,ON} is set to its maximum value (ON) while all the others compiler
passes are randomly chosen. In a dual way, on− is equal to on+ except that p assumes
its minimum value (OFF).

By applying thisDoE,wecan easilymeasure howmuch the impact of the transition
(− → +) for parameter p impacts (in average over all the considered options sets)
on the performance without requiring a full-factorial design. As an example, Fig. 2.3
depicts the generated performance distributions by activating and deactivating the
‘licm’ and ‘reassociate’ compiler transformations for a GSM codec application. It
can be observed that while the activation of ‘licm’ has a clear positive effect on
performance—the median is shifted towards higher performance values, this is not
the case for the ‘reassociate’ transformation for which the activation and deactivation
distributions have almost the same shape and density, thus not permitting the designer
to recognize a clear trend.

As the second step, for each optimization set in D(p) we evaluate the vector of
performance responses with the actual architecture synthesis after the compilation
and simulation of the target application. We consider the hypothesis whether the
mean of the performance given by the options sets where p was minimum (or off) is
different from the mean where p was maximum (or on). In practice, this is framed as
a null-hypothesis statistical test, which, given the non-parametric (or non-gaussian)

(a) licm (b) reassociate

Fig. 2.3 a licm’s having significant positive effect, b reassociate’s causing no significant effect

2.3 Methodology for Compiler Analysis of Customized VLIW Architectures 33

nature of the underlying distributions,2 cannot be assessed with as a simple ANOVA
but, instead, with a Kruskal-Wallis test [21]. To complete the hypothesis test, the
designer sets an acceptance ratio of p − value% meaning that the probability of
‘measuring’ different means when the underlying distributions are equal (or the
chance of a false positive) is less than 5%.

2.3.2.1 Statistical Analysis

As mentioned in Sect. 2.2, there have been several works involving the machine
learning techniques and predictions [22–24]. In this research work we have focused
on analyzing the effects of applying the specific compiler transformations on the
design space. The probability of certainty about the effects of a specific compiler
transformation on performance metric could be done using some statistical tests;
ANOVA, Kruskal-Wallis. ANOVA [25] test has been widely used as a reliable tester
for normal distributions. In addition, using Kruskal-Wallis [21], is a good test tool
as it assumes the distribution to be non-parametric. This method is used for testing
whether samples originated from the same distribution or not. In this work, since
dealing with empirical data on experimental results, we assumed the models as non-
parametric, therefore, Kruskal-wallis was employed. The algorithm goes as:

• 1- Rank all the groups from 1 to N together
• 2- Statistical test is elaborated among the group to calculate the value K which
contains the square of the average ranks

• 3- Finally the p-value is approximated as Pr(χ2
g−1 ≥ K)

• 4- If the statistic is not significant, then there is no real evidence of difference
between samples and could be deduced the samples comply with the model.

In this chapter, the global threshold was set as high as 5% in order to increase the
robustness of the results. Therefore, a test is deduced as passed regarding Kruskal-
wallis test in which it has the p-value smaller than 0.05. In this case, a model is
passed if and only if it had confidence threshold over 95%; experimental analyses
represented in Fig. 2.5 will be focused later in this chapter.

In this section, we experimentally evaluate the proposed methodology. We con-
sider the GSM codec embedded application as the driving use case, automatically
generating four representative application specific architectures after applying the
custom VLIW architecture selection. We use these VLIW architectures for statisti-
cally analyzing the effects of compiler transformations across differing VLIW con-
figurations. Furthermore, we analyze the compiler transformation effects in a cross-
application manner, by considering a larger set of embedded applications mapped
onto a default (application independent) VLIW processor configuration.

The first subsection, introduce the experimental setup and the framework. The sec-
ond subsection will contain the architectural selection based on themethod described

2Since the distributions are built based on empirical/experimental data, the distribution is considered
in general non-parametric.

34 2 Design Space Exploration of Compiler Passes: A Co-Exploration …

in Sect. 2.3.1 and exploration on standard benchmark regarding the derived config-
urations will be presented. Eventually, there will be a comparison of the default
architecture among 5 other benchmarks will be discussed and depicted with the
statistical consolidations.

We apply the overall proposed methodology considering the GSM codec as the
driving application. We apply the custom VLIW architecture selection phase to gen-
erate optimized representative VLIW architectures in an application specificmanner.
The considered architectural design space is depicted in Table2.1. We configure the
search procedure to randomly generate and evaluate 30K configurations, using a
uniform sampling over the targeted configuration space (Table2.1). Applying the
multi-objective optimization problem defined in Eq.2.3 over the 30K solutions, the
Pareto surface of the configurations that maximize performance and operational
intensity while minimizing resources is generated. Without loss of generality, we
consider the generation of k = 4 clusters over the generated Pareto surface, aiming
at generation of four GSM-specific VLIW architectures. Figure2.4 shows results of
clustering of the extracted Pareto surface and its mapping onto the two-dimensional
performance versus intensity space. Each cluster has been characterized according to
its position on the performance versus intensity space as: (i) HH for the cluster placed
to the high intensity and high performance region, (ii) LH for the low intensity and
high performance region, (iii) LL for the low intensity and low performance region,
and (iv) HL for the high intensity and low performance region, respectively.

Fig. 2.4 Four clustered Pareto-sets

2.3 Methodology for Compiler Analysis of Customized VLIW Architectures 35

Table 2.3 VLIW architecture configurations

Parameters Arch-HL Arch-LH Arch-HH Arch-LL Arch-User

lg2CacheSize 15 12 13 12 16

lg2Sets 1 3 0 1 2

lg2LineSize 7 5 5 5 5

lg2ICacheSize 16 14 16 14 16

lg2ICacheSets 1 3 3 2 2

lg2ICacheLines 6 8 7 5 6

ClkFreq 400 450 450 300 500

NumCaches 2 1 1 1 1

IssueWidth 6 6 14 9 8

NumAlus 4 6 7 3 8

NumMuls 1 4 4 14 2

MemLoad 4 3 6 5 4

MemStore 2 8 4 6 4

RegisterFile 104 100 32 76 64

BranchRegister 76 84 88 48 64

Thefinal k = 4 representativeVLIWarchitectures are derived after applyingwithin
each cluster the optimization operator of Eq.2.4. Table2.3 reports the architectural
configuration for each of the k = 4 application specific VLIW architectures.

For each of the k = 4 application specificVLIWarchitectures, we explore the com-
piler level design space, defined in Table2.2.We generate the non-parametric distrib-
ution of the performance and intensity for each compiler transformation considering
500 samples per transformation. As described in Sect. 2.3.2, the non-parametric dis-
tributions are analyzed based on Kruskal-Wallis test to specify the statistical effect,
i.e. if the inclusion or exclusion of a specific transformation impacts in a specific
and robust manner the two considered metrics. Table2.4 summarizes the results
of Kruskal-Wallis statistical tests for each compiler transformation over the four
examined architecture configurations. As shown, four compiler passes (inline, licm,
loop-reduce and loop-rotate), over the fifteen initially considered, had a significant
impact on performance when activated. In addition, Fig. 2.5, shows the confidence
level for each of the considered compiler transformations. It is shown that the four
mentioned compiler transformations exhibit a high confidence level >99%. There-
fore, it could be implied that activating these specific transformations, the designer
can be around 99% confident that the effect on performance will be the same as the
one determined by the exploration.

In the second set of experiments, we perform statistical analysis in a cross-
application manner. For this experimental campaign, we assume a larger set of appli-
cations (namely GSM, AES encryption engine, ADPCM codec, JPEG decoder and

36 2 Design Space Exploration of Compiler Passes: A Co-Exploration …

Table 2.4 Summary of Kruskal-Wallis analysis on performance for GSM-specific VLIW archi-
tectures

Compiler transformation Arch-HL Arch-LH Arch-HH Arch-LL

Constprop – – – –

Dce – – – –

Inline
√ √ √ √

Instcombine – – – –

Licm
√ √ √ √

Loop reduce
√ √ √ √

Loop rotate
√ √ √ √

Loop unroll – – – –

Loop unswitch – – – –

Mem2reg – – – –

Memcpyopt – – – –

Reassociate –
√ √ √

Scalarrepl – – – –

Sccp – – – –

Simplyfycfg – – – –

Fig. 2.5 Confidence level characterization of compiler transformations regarding the effect on
performance for each on of the GSM specific VLIW architectures, resulted after Kruskal-Wallis
statistical test

2.3 Methodology for Compiler Analysis of Customized VLIW Architectures 37

Table 2.5 Kruskal-Wallis analysis on performance for multiple applications

Compiler
transformation

GSM AES ADPCM JPEG Blowfish

Constprop – – – – –

Dce – – – – –

Inline
√

–
√ √

–

Instcombine
√

–
√ √ √

Licm
√ √ √ √ √

Loop reduce
√ √ √ √ √

Loop rotate
√ √ √ √

–

Loop unroll – – – – –

Loop
unswitch

– – – – –

Mem2reg
√ √ √ √ √

Memcpyopt – – – – –

Reassociate
√

– – – –

Scalarrepl
√

– – –
√

Sccp – – – – –

Simplyfycfg – – – – –

Blowfish block cipher). The performance of each applications has been evaluated
considering a user specified VLIW architecture, Arch-User, defined in the last col-
umn of Table2.3. For each benchmark the compiler transformation statistical effect
analysis (Sect. 2.3.2) is applied, considering distributions of 500 samples per com-
piler transformation. Table2.5 summarizes in an aggregated manner the results of
the Kruskal-Wallis analysis considering in each case a confidense level ≥5%. For
the specific setup, we observe that there is a set of four compiler parameters (licm,
loop reduce, loop rotate and mem2reg) with significant effect on the performance
and with a high confidence level over all the examined application use cases. Fur-
thermore, examining each application in isolation, the designer can derive which are
the compiler parameters that need to be pre-allocated, thus reducing significantly
the design-time required to optimize the performance of the targeted application
during iterative compilation exploration. As an example, we depict in the Fig. 2.6,
the normalized speedup gains achieved by activating the compiler transformations
proposed by our methodology in comparison with several well-known compilation
strategies. It is shown that the proposed methodology defined speedup gains in all
the examined cases between 16 and 23%.

38 2 Design Space Exploration of Compiler Passes: A Co-Exploration …

Pe
rfo

rm
an

ce
 G

ai
n

Fig. 2.6 The gained speed-up we gained comparing to the default LLVM-O1 optimization level in
GSM benchmark

2.4 Conclusions and Future Work

This chapter presented a methodology for a compiler/architecture co-exploration
of VLIW platform design. It provides the designer with an integrated environ-
ment to automatically (i) generate optimized application specific VLIW architec-
tural configurations and (ii) analyze in a fine-grained manner the effects of compiler
level transformations regarding the performance and operational intensity trade-offs.
Being focused more on the analysis part, we showed that the adoption of the spe-
cific methodology either in a cross-architecture and/or cross-application manner, can
deliver significant application specific insights thus enabling the designer to guide
through decisions regarding the architecture and the compilation optimization strat-
egy. Future work is aligned with our strong belief that the proposed methodology
can be exploited in a straightforward manner within automated design frameworks
focusing on performance optimization through iterative compilation and architecture
specialization.

References

1. Fisher JA, Faraboschi P, Young C (2009) VLIW processors: once blue sky, now commonplace.
IEEE Solid-State Circuits Mag 1(2):10–17

2. Fisher JA, Faraboschi P, Young C (2004) Embedded computing: a VLIW approach to archi-
tecture, compilers and tools. Morgan Kaufmann, Burlington, MA

3. Ascia G, Catania V, Palesi M, Patti D (2005) A system-level framework for evaluating
area/performance/power trade-offs of vliw-based embedded systems. Design automation con-
ference. In: Proceedings of the ASP-DAC 2005. Asia and South Pacific, vol 2., pp 940–943

4. Fisher JA (1981) Trace scheduling: a technique for global microcode compaction. IEEE Trans
Comput 30(7):478–490

5. Hwu WMW, Mahlke SA, Chen WY, Chang PP, Warter NJ, Bringmann RA, Ouellette RG,
Hank RE, Kiyohara T, Haab GE et al (1993) The superblock: an effective technique for VLIW
and superscalar compilation. J Supercomput 7(1–2):229–248

References 39

6. Quinlan D (2000) Rose: compiler support for object-oriented frameworks. Parallel Process Lett
10:215–226

7. Fenacci D, FrankeB, Thomson J (2010)Workload characterization supporting the development
of domain-specific compiler optimizations using decision trees for datamining. In: Proceedings
of the 13th international workshop on software & compilers for embedded systems, p 5. ACM

8. Williams S,Waterman A, Patterson D (2009) Roofline: an insightful visual performance model
for multicore architectures. Commun ACM 52(4):65–76

9. The LLVM website (2013). http://www.llvm.org/
10. Faraboschi P, Homewood F (2000) ST200: a VLIW architecture for media-oriented applica-

tions. In: Microprocessor Forum. San Jose, CA
11. Saptono D, Brost V, Yang F, Prasetyo E (2008) Design space exploration for a custom VLIW

architecture: direct photo printer hardware setting using VEX compiler. In: Proceedings of the
2008 IEEE international conference on signal image technology and internet based systems,
SITIS ’08, pp 416–421, Washington, DC, USA. IEEE Computer Society

12. Wong S, Van As T, Brown G (2008) ρ-vex: a reconfigurable and extensible softcore VLIW
processor. In: International conference on ICECE Technology. FPT 2008, pp 369–372. IEEE

13. Hewlett-packard laboratories. vex toolchain. [online], available. http://www.hpl.hp.com/
downloads/vex/

14. Multicube explorer. http://m3explorer.sourceforge.net/
15. Zaccaria V, Palermo G, Castro F, Silvano C, Mariani G (2010) Multicube explorer: an open

source framework for design space exploration of chip multi-processors. In: 23rd International
conference on architecture of computing systems (ARCS), pp 1–7. VDE

16. R Core Team et al. (2013) R: a language and environment for statistical computing. Vienna,
Austria

17. Palermo G, Silvano C, Valsecchi S, Zaccaria V (2003) A system-level methodology for fast
multi-objective design space exploration. In: Proceedings of the 13th ACM Great Lakes sym-
posium on VLSI, pp 92–95. ACM

18. Kanungo T, Mount DM, Netanyahu NS, Piatko CD, Silverman R, Wu AY (2002) An efficient
k-means clustering algorithm: analysis and implementation. IEEE Trans Pattern Anal Mach
Intell 24(7):881–892

19. Li S, Ahn JH, Strong RD, Brockman JB, Tullsen DM, Jouppi NP (2009) McPAT: an integrated
power, area, and timing modeling framework for multicore and manycore architectures. In:
International symposium onmicroarchitecture.MICRO-42. 42ndAnnual IEEE/ACM, pp 469–
480. IEEE

20. Roy RK (2001) Design of experiments using the Taguchi approach: 16 steps to product and
process improvement. Wiley, Hoboken

21. BreslowN (1970)AgeneralizedKruskal-Wallis test for comparing k samples subject to unequal
patterns of censorship. Biometrika 57(3):579–594

22. Agakov F, Bonilla E, Cavazos J, Franke B, Fursin G, O’Boyle MF, Thomson J, Toussaint M,
Williams CK (2006) Using machine learning to focus iterative optimization. In: Proceedings
of the international symposium on code generation and optimization. IEEE Computer Society,
pp 295–305

23. Cavazos J, Dubach C, Agakov F (2006) Automatic performance model construction for the
fast software exploration of new hardware designs. In: Proceedings of the 2006 international
conference on compilers, architecture and synthesis for embedded systems, pp 24–34

24. Dubach C, Cavazos J, Franke B (2007) Fast compiler optimisation evaluation using code-
feature based performance prediction. In: Proceedings of the 4th international conference on
computing frontiers, pp 131–142

25. Thompson B (2002) Statistical, practical, and clinical: how many kinds of significance do
counselors need to consider? J Couns Dev 80(1):64–71

http://www.llvm.org/
http://www.hpl.hp.com/downloads/vex/
http://www.hpl.hp.com/downloads/vex/
http://m3explorer.sourceforge.net/

http://www.springer.com/978-3-319-71488-2

	2 Design Space Exploration of Compiler Passes: A Co-Exploration Approach for the Embedded Domain
	2.1 VLIW
	2.2 Background
	2.3 Methodology for Compiler Analysis of Customized VLIW Architectures
	2.3.1 Custom VLIW Architecture Selection
	2.3.2 Compiler Transformation Statistical Effect Analysis

	2.4 Conclusions and Future Work
	References

