Predicate Abstraction Based Configurable
Method for Data Race Detection
in Linux Kernel

Pavel Andrianov(®), Vadim Mutilin, and Alexey Khoroshilov

Institute for System Programming of the Russian Academy of Sciences,
Moscow, Russia
andrianov@ispras.ru

Abstract. The paper presents a configurable method for static data
race detection. The method is based on a lightweight approach that
implements Lockset algorithm with a simplified memory model. The
paper contributes two heavyweight extensions which allow to adjust
required precision of the analysis by choosing the balance between spent
resources and a number of false alarms. The extensions are (1) counterex-
ample guided refinement based on predicate abstraction and (2) thread
analysis. The approach was implemented in the CPALockator tool and
was applied to Linux kernel modules. Real races found by the tool have
been approved and fixed by Linux kernel developers.

Keywords: Static analysis -+ Data race - Predicate abstraction

1 Introduction

Bugs which are related to a parallel execution of code are considered to be the
most difficult for detecting and fixing. Race conditions are still remaining the
most numerous class of such bugs [11]. Data race condition is a situation in which
a shared memory location may be accessed from several threads simultaneously.
Such bugs can lead to severe consequences even to failure of the whole software
system [10].

There exist many tools for automatic detection of race conditions. We dis-
tinguish two basic classes of static analyzers: lightweight and heavyweight. The
first ones require significantly less resources, but frequently based on an unsound
approaches leading to inaccuracies of the analysis such as missed errors. Heavy-
weight analyzers allow to prove absence of errors, but consume a lot of resources,
such as time and memory. It means that heavyweight approaches are still impos-
sible to apply to real software systems.

Our main goal is to develop a lightweight static data race analyzer which
can be applied to operating system kernels. The key issue is increasing of the
accuracy of the analysis in a such way to make the tool useful for the verification
of such complicated software systems as the Linux kernel. Our contribution is a
© Springer International Publishing AG 2018

V. Itsykson et al. (Eds.): TMPA 2017, CCIS 779, pp. 11-23, 2018.
https://doi.org/10.1007/978-3-319-71734-0_2

12 P. Andrianov et al.

lightweight approach extended with heavyweight techniques which were usually
applied for precise verification of small programs.

The paper is organized as follows. Key challenges are presented in Sect. 2.
Then an overview of the method is given. The implementation of the approach
is discussed in Sect.4. Two extensions: refinement for data race conditions and
thread analysis are described in Sects. 5 and 6. Section 7 presents the results of
application to Linux kernel modules.

2 Key Challenges of Data Race Detection with Static
Analysis

Let us remind key concepts of static analysis. A program is modeled with a control
flow automaton (CFA) which is a set of states and transitions related to operators
in the program. A state of a program is considered to be its memory status which
includes a program counter determining a particular location in the program. The
goal of static analysis is to determine a set of reachable states from a given state
via transitions. If the set of all reachable states includes a special one (so called
error state) the bug is considered to be found. As the program usually has a huge
amount of states, an abstraction over states is used. The structure of the abstrac-
tion determines the accuracy of the analysis. For example, if the abstract state
represents values of all variables in a program, the analysis is very accurate, but
very slow. On the contrary, if the abstract state does not consider values of vari-
ables at all, the analysis is very fast and imprecise.

Now let us define a type of bugs which the analysis will detect. In software
systems race conditions usually arise in case of simultaneous accesses to the same
shared memory locations from different threads, one of the accesses is a write
access. Such races are called data races.

Race conditions do not always lead to an incorrect state of a program.
For example, simultaneous modification of a statistic counter leads only to an
insignificant differences. Such situations are known as benign races.

The task of static data race detection is a complicated problem, as in general
case to prove the correctness of all possible interleavings of several threads should
be checked, and it is the problem of exponential complexity. Methods of static
analysis with interleavings solve the problem for a very small programs [1,7,9].

Unlike to dynamic analyzers which always know what memory location is
accessed, static analyzers do not know values of pointers. It means that it is very
hard to precisely determine that two accesses are performed to the same memory
location. There are different approaches to deal with the problem: a precise mem-
ory model, alias analysis and others. Alias analysis provides a map from point-
ers to a set of memory locations which they point to. While using a conservative
approach which considers all possible aliases so-called may-aliases, the tool get
an enormous size of the map that leads to high resource consumption. Such tech-
niques are used only in heavyweight tools which are targeted at accuracy of the
analysis. Lightweight tools which are valued for their speed, likely do not use such
methods or use heuristics which may miss bugs in some cases.

Predicate Abstraction Based Configurable Method for Data Race Detection 13

One of the ways for decreasing a set of variables which may be involved in
a race condition is enabling an additional analysis of shared data. The analysis
outputs a set of potential shared variables. If a variable can never be shared,
it can not be involved in race condition. The main issue is conservatism of the
analysis. On the one hand, non conservative analysis can not handle complicated
cases, for example, related to pointer arithmetics. Thus, it can miss shared vari-
ables and consequently may miss a bug. On the other hand, if the analysis is
very conservative, the result is a set of shared variables that does not differ from
the set of all variables and it affects the speed.

The second important problem of static analysis is a significant percentage of
false alarms in comparison to dynamic analysis. Let us consider the main causes.

The first cause of false alarms is an inconsistency of conditions in the path. In
this case the path is called infeasible. Often the infeasibility of the path is related
only to operations in one thread. If from the whole path of execution consisted
of the paths in different threads one local infeasible path can be extracted, then
local infeasibility takes place. Otherwise, there is global infeasibility.

The second cause of false alarms is the detection of all possible synchroniza-
tion primitives which can be used for concurrent memory access exclusion. First,
all synchronization primitives are also objects in memory which may be equal.
The issue of pointers equality again leads us to precise memory model. Second,
conditional actions, like mutex_trylock, exist. A program behavior depends on a
possibility to acquire a lock, and if the lock is successfully acquired the function
returns a special code (usually zero). To be able to handle such cases an analysis
should somehow link the return value to the acquired lock.

The third important cause of false alarms is a thread dependency. Often a
program performs some preparation actions (initialization) and then creates a
number of auxiliary threads. The initialization may be done without any syn-
chronization and there can not be race conditions, as the other threads will be
created later. Thus, there is a need in a special kind of analysis, like thread
analysis, to determine blocks of code which can be executed in parallel.

3 Method Overview

As it was already said the program state is its memory state including the pro-
gram counter. For multithreaded program the state includes a set of program
counters for every thread of execution. Race condition is a program state, where
two accesses to the same memory location from the different threads is possible,
one of the accesses is a write access.

Now let us define a projection of a program state on a thread. A projection
on a particular thread includes memory state which is available only for the
thread: its local variables and shared data. To abstract from details of interaction
between threads, further we will consider analysis on projections. Such analysis
considers every thread separately from the others which are an environment for
the first one.

To define race conditions on projections we need the notion of compatibility.
We define two projections as compatible, if there exists one program state which

14 P. Andrianov et al.

can be projected to the given projections. For race condition we need two pro-
jections and they should be compatible, so that they correspond to one program
state. We define a race condition on projections as a pair of projections which
are compatible and corresponding program state is a race condition state.

The analysis operates with abstract states which include a set of program
states. As we consider analysis on projections, hereinafter the term abstract
state we will use as abstract projection-state.

The presented method is based on the algorithm Lockset. The algorithm was
initially implemented in a dynamic analyzer [12]. Our analysis is constructed in
a similar way, but is implemented in static analyzer. An abstract state of the
analysis stores information about acquired locks for every thread. After con-
struction the whole graph of abstract reachable states for every memory access
there is an abstract state containing a set of acquired locks. Two states are con-
sidered compatible if the intersection of containing lock sets is empty. According
to definition a warning about a potential race condition is reported if we have
two compatible states, where two accesses to the same memory location from
the different threads is possible, one of the accesses is a write access.

Calculation of lock sets during analysis stage is simple: if the analysis finds a
function acquiring a lock the corresponding lock is added to the abstract state,
and in the case of releasing a lock, the corresponding lock is removed from the
abstract state.

We use a simple memory model. For every pointer a unique identifier based
on its name and scope is constructed. If two identifiers are equal, the pointers
are considered to point to the same memory location. Thus, one pointer always
points to the same memory without a dependency on a program location. More-
over, while analyzing field access expressions we consider only field names, but
not the base expression of the structure. Thus, the memory model in the analysis
makes an assumption that memory locations which are pointed by two pointers
A — a and B — a are equal for the structures of the same type. If the structures
A and B have different types, the memory locations A — a and B — a will be
considered different.

Let us consider an example of lock analysis.

int global;
int func(int var) {
if (var) {
lock();
}
global++; lvar==0]
if (var) {
unlock();
}

[var == 0] [var I=0]

© 00 N O O W N =

10 }

Fig. 1. An example of lock analysis

Predicate Abstraction Based Configurable Method for Data Race Detection 15

The Fig. 1 presents only abstract states which contain information only about
acquired locks. Suppose that the function is called from several threads. A race
condition will be found in the example: there exists a transition (line 6), perform-
ing an access to the global variable global, from the state which has no acquired
locks {}, and also from the state which has a lock acquired. Intersection of the
lock sets is empty, thus the potential race condition takes place.

It should be noted that the approach uses a heuristic to decrease an amount
of false alarms. It is based on an assumption that situations when all the accesses
to some shared data are never protected are rare. Usually the majority of accesses
to one shared memory location use necessary lock protection and only a small
number of accesses to the same memory are missing the required locks. If the
analysis obtained an empty set of locks for all accesses to some variable then it
likely means that we missed something, e.g. more complicated synchronization
or thread dependencies. According to the heuristic race conditions will not be
reported for the shared variables which are not protected at all, although the
classic Lockset reports it as a potential race condition.

4 Implementation

The described method is implemented using a concept of CPA (Configurable
Program Analysis) [4] and called CPALockator. The concept allows to launch
several types of analysis together: sequentially or in parallel. Every analysis may
choose a balance between precision and consumed resources itself.

Thread Analysis

Source code Iﬂ
;
> -
52
Lock Analysis
Shared :
Analysis Shared data list
Predicate
il Analysis

Configuration J

Fig. 2. A method scheme

P =

Consider the analysis scheme presented in the Fig. 2. First, the shared analy-
sis is launched. Its result is a set of unshared variables for every program loca-
tion, mostly we interested in pointers which point to a local data. The other
variables are treated as shared. Further race conditions are reported only for
shared variables. Then a parallel composition of the three analysis is launched:

16 P. Andrianov et al.

Lock Analysis, Thread Analysis and Predicate Analysis. At this stage lock sets
are calculated for each access in a reached set by Lock Analysis, and potential
parallel blocks of code are determined in Thread Analysis. After finishing the
construction of the reached set, the set of potential race conditions is calculated
using the notion of compatibility of states. For each potential race condition
we have two paths leading to memory accesses and for them we start the next
step — Refinement. During the refinement for every path a logical formula is con-
structed. Then logical satisfiability of the formula is checked. If one of the paths
is infeasible, for example, a value of variable is not considered, the abstraction is
rebuilt. The corresponding condition on the variable affecting infeasibility of the
path is added as a new predicate to Predicate Analysis, and next iteration of the
analysis is started. It will construct the new abstraction without the infeasible
path. The process may continue until it will converge.

In theory one can imagine an example that requires an infinite number of
refinements, however in practice analysis usually needs only a finite number
of refinement iterations. For a large amount of source code one iteration of
refinement stage may take dozens of seconds. Therefore usually a time limit
is used, and when the time is expired all found race conditions are reported to a
user, even if there may be spurious ones. Experiments show that in many cases
spurious race conditions are removed with refinement quickly and the rest of
time is spent to prove the non spuriousness of the others.

Shared analysis and lock analysis have been already presented in the
paper [2]. Predicate analysis is a basic analysis which was implemented in CPA
concept long ago [3]. Detail description of two contributions of the paper: Refine-
ment process and Thread Analysis are presented in the next sections.

5 Refinement

The task of the refinement is to exclude spurious race conditions, related to
infeasible paths. Note, that the refinement solves the task of local infeasibility
and does not consider an interaction of threads with each other.

Consider the example on the Fig. 1. If the analysis does not consider possible
values of variables, four paths will be analyzed. One of them, in which the lock
is acquired (line 4) and is not released, affects the further analysis of the other
code. The path is infeasible, as the condition expression is the same in both
condition operators (lines 3 and 7). So, in a real execution only two paths may
appear, each of them has no acquired lock at the end.

The refinement method which is used in our analysis, is based on the classic
algorithm CEGAR — Counterexample Guided Abstraction Refinement [5]. First,
let us describe the original approach. The basic idea is that the chosen property is
proved not for the initial system which is rather complicated, but for a simplified
model of the system which is called an abstraction. The abstraction may be very
rough and miss large number of details, but it should be correct. In other words,
all states reachable in initial system should have corresponding reachable states
in the abstraction.

Predicate Abstraction Based Configurable Method for Data Race Detection 17

A number of states in abstraction is usually less than in the initial system
that makes its analysis easier, but due to imprecise model there may appear
spurious race conditions. In the case a counterexample is built, it is an example
of error path, leading to an error. After that the counterexample is checked on
the initial system. If it is feasible, the found error is considered to be a real
bug. The other case means the counterexample is obtained due to an imprecise
abstraction. Then the abstraction is refined, guided by the counterexample, and
details affecting on the feasibility of the counterexample are added. After that
the analysis continues on the refined abstraction. The iterations are repeated
until the correctness is proven or the real bug is found.

Abstraction of the program may be done in different ways, but the most
popular is predicate abstraction which is based on partition a set of program
states (values of its variables) on subsets with equal value of chosen predicates.

To check a counterexample and abstraction refinement there is a need to
represent a sequence of operators in initial program as logic formulas. There are
many approaches, as pre- and postconditions or path formulas, based on SSA
representation. To check satisfiability of the formulas the different SMT-solvers
(Satisfiability Modulo Theories) are used. If the path formula is unsatisfiable,
the conditions which then will be added to analysis, should be extracted. The
conditions are represented by predicates. There are different ways of extract-
ing predicates from a path formula, for example, syntactic methods or Craig
interpolation [6,8].

CEGAR approach (Fig.3) was implemented in different static verification
tools. It is successfully applied for solving reachability tasks, e.g. checking reach-
ability of an error location in a program. If a path from an entry point to an
error location is found the refinement is performed.

Feasible
path?

Interpolation

8

‘ Solver ‘

Fig. 3. A CEGAR approach

18 P. Andrianov et al.

For checking race conditions we use a modified version of CEGAR. Instead
of checking feasibility of the Error path we are checking spuriousness of race
condition. As far as race condition includes at least two paths we should check
feasibility of each path and compatibility of corresponding states. If we found
two feasible paths then a race condition is reported. Otherwise, for infeasible
paths we get new predicates and the abstraction is reconstructed.

In the example on Fig.1 during refinement a logical path formula is con-
structed, containing conditions [var == 1] and [var == 0]. The formula is passed
to a special component, called Solver which returns a verdict that the formula
is unsatisfiable. Together with the verdict the solver returns interpolants which
in fact are a contradictory part of the formula. For our example interpolant may
be, for example, [var == 0]. Further analysis will consider the value of the vari-
able and the infeasible path will not appear in the new abstraction. The Fig. 4
presents a graph of abstract states for Predicate Analysis and Lock Analysis for
the program. Braces contain an abstract state of Lock Analysis and abstract
states of Predicate Analysis are in square brackets.

[var == 0] [var = 0]
{3, [var==0] | [{,[var!=0] locki)
;
global++; lock}, [var =0 globalis:
{,[var==0] | [{locky, [var = 0]
[var == 0] y '[var 1=0]
[, [var==0] | [{lock}, [var = 0] urilock:

Fig. 4. An example of predicate analysis with lock analysis

Actually a program may contain not only one race condition. There are two
ways in CEGAR approach to behave.

(1) The Analysis continues until the first race condition is found. It means that
a pair of compatible states with accesses to the same shared data is found.
Then the refinement should check a path to each state for feasibility.

(2) The potential race conditions are refined after the Analysis stage and if there
are any spurious race conditions, the analysis is repeated on the new more
precise abstraction. A disadvantage of the strategy is an amount of repeated
work. For example, for similar paths the result of its refinement is equal, and
there is no need to refine them all.

Predicate Abstraction Based Configurable Method for Data Race Detection 19

We made experiments with both strategies. Both of them show good results,
but the second one is more flexible: the CEGAR loop may be stopped and the
results reported to the user if the abstraction reaches some level of precision. The
first strategy requires highly precise abstraction to be able to output results.

The described refinement method allows to exclude spurious race conditions
caused by local infeasible paths. It requires a great amount of time, as to exclud-
ing all infeasible paths from the abstraction a high level of precision is required
that means a great number of predicates. If the path contains a loop, the refine-
ment should consider all its iterations. The results of our experiments show that
majority of spurious race conditions are eliminated from abstraction quickly, and
remaining time is spent for proving the correctness.

6 Thread Analysis

There are cases, when accesses to shared data are allowed without usage of
explicit synchronization primitives. The main cause is that at the moment only
one thread may be active. For example, at initialization stage other threads
usually are not created. If the dependency between threads is not considered,
many spurious race conditions appear. Consider the example: one thread creates
another. The main function start performs some initialization actions, then cre-
ates a thread which works with a global variable. As the worker thread can not
be executed before it is created, a simultaneous access to the global variable is
impossible.

Abstract state of thread analysis contains a set of labels which describes
a set of active threads at the moment. Compatibility of states is defined as
existence of compatible labels which means corresponding threads can be active
simultaneously. A set of labels is modified at points of thread creation or thread
joining. The label is a pair: a unique name, related to the thread, and a binary
flag. At thread creation point a label with zero flag is added to the set of labels
of parent thread, and a label with flag one is added to the set of labels of child
thread.

Thread join is handled in a more complicated way. In general case the algo-
rithm of labels flow becomes very difficult, so we consider a simplified case assum-
ing a thread is joined in that thread which created it. In that case after joining
the corresponding thread is removed from the set of labels of parent thread.
With assumption made in the parent set of labels must have a label with zero
flag.

For the example on Fig.5 the analysis calculates a set {1.0} for the first
access to a global variable which means only one thread is working (Fig. 6). For
the second access to the same memory from the thread worker the set is {1.0,
2.1}. These two sets are not compatible, as they have no labels with different
flags (the first label has the same flag in the both sets). Thus, the race condition
is not reported.

20 P. Andrianov et al.

8 int start() {
9 ...
int global; 10 global = 0;
11 ...
int worker(voidx* arg) { 12 pthread_create(&thread,
o ., worker, ..);
global++; 13 ...
- 14 pthread_join(&thread) ;
} 15 result = global;
16 ...
17 }

~N O O W

Fig. 5. Example of multithreaded code

start()
11
global = O;
\
[
worker()
pthread_create() >
\
{11,2.0} global++;
pthread_join() l <

|5
B

result = global;

-

Fig. 6. An example of thread analysis

The described method does not support unbounded number of thread cre-
ation, this is a direction for a future work. The idea is to use abstract self-parallel
threads instead of number of similar thread creations. Note, the described
method is applied to the simple cases when a thread is joined in the same
thread, where it was created. In theory the approach allows to perform the
analysis of such cases, but the implementation requires more deep modification
of the tool. However, the complicated cases hardly ever appear in real software,
so the assumption is rather natural.

7 Experiments

Experiments were performed with a benchmark set which is based on mod-
ules of Linux kernel 4.5-rcl, subsystem drivers/net/wireless. Preparation of the
benchmarks was performed with LDV Tools infrastructure [14] which forms a
driver environment [13]. There were four launches: with one of the extensions
(refinement and thread analysis), with both of them and without them.

Predicate Abstraction Based Configurable Method for Data Race Detection 21

113 modules of the subsystem were successfully analyzed (Table1). There
were several main causes, leading to unknown verdicts in the other modules,
for example, time and memory limits, but the majority of them (54 cases) are
related to failures of components of LDV infrastructure.

Table 1. Results of the launch on drivers/net/wireless

Warnings | Unknowns | Safes | Time, h | Memory, Gb
Thread analysis, Refinement | 5 61 51 3.2 8.1
Refinement 6 67 44 4.1 4.0
Thread analysis 27 57 49 2.3 8.2
Default analysis 186 54 43 2.1 3.5

Results show that the thread analysis does not hardly increase the time of
analysis, but requires a lot of memory. Refinement behaves contrary. Explana-
tion is simple: thread analysis requires an own state space, and refinement only
checks the reachability of the existing states. For the launch with two extensions
warnings about race conditions were investigated. All of the five warnings are
related to the cases, when data is extracted from a shared list under protection,
but the other work is performed without locks. The cases are false alarms.

After that modules of the whole drivers/directory were analyzed with both of
the two extensions. There were 2219 warnings, which correspond to 405 modules.
Usually, the cause of warnings per module is the same, thus only one warning
for every module was analyzed. The most important cause of false alarms is an
imperfection of environment model which leads to more than 50% of false warn-
ings. For example, some driver handlers are called with lock protection, and the
environment model missed that fact. Moreover, there are dependencies between
handlers of different structures which do not allow them to be executed in paral-
lel that is also not considered in the environment model. Note, the environment
model is related to the stage of preparation, and not to the analysis.

There were cases, when structures of the same type are used for different
purposes with different types of protection. Therefore, the simple memory model
leads to about 10% of false warnings.

10% more of false alarms are related to cases when a data is extracted and
removed from a shared set under protection and the next work is performed
without locks. And about 10% are related to the inaccuracies in the analysis:
function pointers, missed locks and shared data detection.

About 15% of warnings are true. Note, that one module with a race condition
can produce more than 10 warnings for different variables. Thus, 290 found true
warnings correspond to 32 race conditions. These errors are reported to kernel
developers. The bugs were partly accepted, and several ones were fixed. The
list of fixed bugs are placed at http://linuxtesting.org/results/ldv, data race
category.

http://linuxtesting.org/results/ldv

22 P. Andrianov et al.

8 Conclusion

In the paper we described two heavyweight extensions of lightweight approach
for data race detection, which is implemented on top of the CPAchecker tool.
In fact it is a lightweight one, but it allows a flexible adjustment of the balance
between resources and accuracy. Our method considers the specifics of operating
system kernels, such as complex parallelism and synchronization primitives, and
active usage of pointer arithmetic. One more feature is an ability to scale on
large amounts of source code.

The described approach of static analysis for race detection shows good
results. Analysis of causes of false alarms indicates that to a practical applica-
tion of the tool to Linux kernel modules there is a need to improve the environ-
ment model. Development of the analysis may be continued in several directions:
increasing the accuracy of the internal analyzes and a memory model, support-
ing new synchronization primitives, for example, RCU (read-copy-update) and
development of approaches to speed up the analysis. Moreover, a separate task
is to investigate the possibility of practical application of the tool to the other
classes of tasks.

References

1. Alglave, J., Kroening, D., Tautschnig, M.: Partial orders for efficient bounded
model checking of concurrent software. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 141-157. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8_9

2. Andrianov, P., Khoroshilov, A., Mutilin, V.: Lightweight static analysis for data
race detection in operating system kernels. In: Proceedings of TMPA-2014, pp.
128-135 (2014)

3. Beyer, D., Keremoglu, M., Wendler, P.: Predicate abstraction with adjustable-
block encoding. In: Formal Methods in Computer-Aided Design, FMCAD 2010
(2010)

4. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification: con-
cretizing the convergence of model checking and program analysis. In: Damm, W.,
Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 504-518. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73368-3_51

5. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154-169. Springer, Heidelberg (2000). https://doi.org/10.1007/
10722167_15

6. Craig, W.: Three uses of the herbrand-gentzen theorem in relating model the-
ory and proof theory. J. Symbolic Logic 22(3), 269-285 (1957), https://www.
cambridge.org/core/article/three-uses-of-the-herbrand-gentzen-theorem-in-relati
ng-model-theory-and-proof-theory/7674DE501824D8FC294FB396CD5617DB

7. Gupta, A., Popeea, C., Rybalchenko, A.: Threader: a constraint-based verifier for
multi-threaded programs. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 412-417. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1_32

https://doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
https://www.cambridge.org/core/article/three-uses-of-the-herbrand-gentzen-theorem-in-relating-model-theory-and-proof-theory/7674DE501824D8FC294FB396CD5617DB
https://www.cambridge.org/core/article/three-uses-of-the-herbrand-gentzen-theorem-in-relating-model-theory-and-proof-theory/7674DE501824D8FC294FB396CD5617DB
https://www.cambridge.org/core/article/three-uses-of-the-herbrand-gentzen-theorem-in-relating-model-theory-and-proof-theory/7674DE501824D8FC294FB396CD5617DB
https://doi.org/10.1007/978-3-642-22110-1_32
https://doi.org/10.1007/978-3-642-22110-1_32

Predicate Abstraction Based Configurable Method for Data Race Detection 23

10.
11.

12.

13.

14.

Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. SIGPLAN Not. 39(1), 232-244 (2004)

Inverso, O., Tomasco, E., Fischer, B., La Torre, S., Parlato, G.: Bounded model
checking of multi-threaded C programs via lazy sequentialization. In: Biere, A.,
Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 585-602. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08867-9_39

Levenson, N.: Safeware: system safety and computers (1995)

Mutilin, V., Novikov, E., Khoroshilov, A.: Analysis of typical faults in Linux oper-
ating system drivers (in Russian). Proc. Inst. Syst. Program. RAS 22, 349-374
(2012)

Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: a
dynamic data race detector for multi-threaded programs. SIGOPS Oper. Syst.
Rev. 31(5), 27-37 (1997)

Zakharov, I.S., Mutilin, V.S., Khoroshilov, A.V.: Pattern-based environment mod-
eling for static verification of Linux kernel modules. Program. Comput. Softw.
41(3), 183-195 (2015)

Zakharov, I., Mandrykin, M., Mutilin, V., Novikov, E., Petrenko, A., Khoroshilov,
A.: Configurable toolset for static verification of operating systems kernel mod-
ules. Program. Comput. Softw. 41(1), 49-64 (2015), http://dx.doi.org/10.1134/
S0361768815010065

https://doi.org/10.1007/978-3-319-08867-9_39
http://dx.doi.org/10.1134/S0361768815010065
http://dx.doi.org/10.1134/S0361768815010065

2 Springer
http://www.springer.com/978-3-319-71733-3

Tools and Methods of Program Analysis

Ath International Conference, TMPA 2017, Moscow,
Russia, March 3-4, 2017, Revised Selected Papers
ltsykson, V.; Scedrov, A.; Zakharov, V. (Eds.)

2018, XV, 209 p. 71 illus., Softcover

ISBN: 978-3-319-71733-3

	Predicate Abstraction Based Configurable Method for Data Race Detection in Linux Kernel
	1 Introduction
	2 Key Challenges of Data Race Detection with Static Analysis
	3 Method Overview
	4 Implementation
	5 Refinement
	6 Thread Analysis
	7 Experiments
	8 Conclusion
	References

