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Abstract. In this paper we refine the four-dimensional GLV method on
elliptic curves presented by Longa and Sica (ASIACRYPT 2012). First
we improve the twofold Cornacchia-type algorithm, and show that the
improved algorithm possesses a better theoretic upper bound of decom-
position coefficients. In particular, our proof is much simpler than Longa
and Sica’s. We also apply the twofold Cornacchia-type algorithm to GLS
curves over Fp4 . Second in the case of curves with j-invariant 0, we
compare this improved version with the almost optimal algorithm pro-
posed by Hu, Longa and Xu in 2012 (Designs, Codes and Cryptography).
Computational implementations show that they have almost the same
performance, which provide further evidence that the improved version
is a sufficiently good scalar decomposition approach.
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1 Introduction

Scalar multiplication is the fundamental operation in elliptic curve cryptography.
It is of vital importance to accelerate this operation and numerous methods
have been extensively discussed in the literature; for a good survey, see [3]. The
Gallant-Lambert-Vanstone (GLV) method [5] proposed in 2001 is one of the
most important techniques that can speed up scalar multiplication on certain
kinds of elliptic curves over fields of large characteristic. The underlying idea,
which was originally exploited by Koblitz [10] when dealing with subfield elliptic
curves of characteristic 2, is to replace certain large scalar multiplication with a
relatively fast endomorphism, so that any single large scalar multiplication can
be separated into two scalar multiplications with only about half bit length. If
scalar multiplication can be parallelized, this two-dimensional GLV will result
in a twofold performance speedup. Specifically, let E be an elliptic curve, P be
a point of prime order n on it and ρ be an efficiently computable endomorphism
of E satisfying ρ(P ) = λP . The GLV method consists in replacing kP with
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multi-scalar multiplication of the form k1 + k2ρ(P ), where the decomposition
coefficients |k1|, |k2| = O(n1/2).

Higher dimensional GLV method has also been intensively studied, because
m-dimensional GLV would probably achieve m-fold performance acceleration
using parallel computation. In 2009, Galbraith et al. [4] proposed a new family
of GLS curves on which the GLV method can be implemented. On restricted
GLS curves with j-invariant 0 or 1728 they considered four dimensional GLV.
Later in 2010, Zhou et al. [18] introduced a three-dimensional variant of GLV
by combining the two approaches of [5] and [4]. But soon Longa and Sica [11]
indicated that the more natural understanding of Zhou et al. idea is in four
dimensions. Moreover they extended this idea and realized four-dimensional GLV
method on quadratic twists of all previous GLV curves appeared in [5].

Apart from constructing curves and efficient endomorphisms, scalar decom-
position is also a crucial step to realize the GLV method. Two approaches are
often used. One uses Babai rounding with respect to a reduced lattice basis,
since the problem of scalar decomposition can be reduced to solving the closest
vector problem (CVP). The other uses division with remainder in some order of
a number field after finding a short divisor. In two-dimensional case, these two
methods have been fully analyzed, including the theoretically optimal upper
bound of decomposition coefficients [16] and comparison of the two methods
[13]. In four-dimensional case, Longa and Sica [11,12] used the first approach.
Instead of LLL algorithm, they introduced a specific and more efficient reduc-
tion algorithm, the twofold Cornacchia-type algorithm, to get a short basis. More
importantly, they showed this new algorithm gained an improved and uniform
theoretic upper bound of coefficients C · n1/4 where C = 103

√
1 + |r| + s with

small values r, s given by the curve, which guaranteed a relative speedup when
moving from a two-dimensional to a four-dimensional GLV method over the
same underlying field. As for the restricted case of GLS curves with j-invariant
0 in [4], Hu, Longa and Xu [7] essentially exploited the second approach, whereas
the short divisor was found by a specific way, which led to an almost optimal
upper bound of coefficients 2

√
2p = O(2

√
2n1/4).

From the analysis it seems that in j-invariant 0 case Hu et al.’s decomposition
method is better than Longa et al. On the other hand, practical implementations
show that Longa et al. analysis of the upper bound C = 103

√
1 + |r| + s is far

from compact, hence it is expected to be optimized. In this paper, we improve
the original twofold Cornacchia-type algorithm described in [11,12]. And we
showed that this improved version possesses a better theoretic upper bound of
decomposition coefficients C ·n1/4 with C = 6.82

√
1 + |r| + s, which is very close

to Hu et al.’s. In particular, our proof is much simpler than Longa and Sica’s
[12]. Finally we also make experiments to compare the improved version with
the original one, which shows the former outputs a shorter basis in most cases.
Moreover, we also indicate that the twofold Cornacchia-type algorithm can also
be applied to the four-dimensional GLV method on GLS curves over Fp4 [4].
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It is also necessary to compare the two different four-dimensional decompo-
sition methods (the twofold Cornacchia-type algorithm and the algorithm in [7])
just as [13] did for the two-dimensional case. To this end, we first show that a
j-invariant 0 curve which is suitable for one of the four-dimensional GLV method
will be applicable for the other, and by this we provide a unified way to construct
a j-invariant 0 curve equipped with both endomorphisms required in [11,12] and
the endomorphism required in [4,7]. In addition, we discover the explicit rela-
tion of the two 4-GLV methods. Next we can make comparison by computational
implementation. Implementations show that our improved Cornacchia-type algo-
rithm behaves almost the same as Hu et al. algorithm, which provide further
evidence that the improved version is a sufficiently good scalar decomposition
approach.

Paper Organization. The rest of the paper is organized as follows. In Sect. 2
we recall some basic facts on GLV method and GLS curves, and the main idea
of Longa and Sica’s to realize four-dimensional GLV. In Sect. 3 we improve the
twofold Cornacchia-type algorithm and give a better upper bound, and extend
this algorithm to four-dimensional GLS curves over Fp4 . Section 4 explores the
uniformity of the two four-dimensional GLV methods on j-invariant 0 curves. In
Sect. 5 we compare our modified algorithm with the original one and compare
the two four-dimensional decomposition methods on j-invariant 0 curves using
computational implementations. Finally, in Sect. 6 we draw our conclusions.

2 A Brief Recall of GLV and GLS

2.1 The GLV Method

In this part, we briefly summarize the GLV method following [5]. Let E be an
elliptic curve defined over a finite field Fq. Assume that #E(Fq) is almost prime
(that is hn with large prime n and cofactor h ≤ 4) and 〈P 〉 is the subgroup
of E(Fq) with order n. Let us consider a non-trivial and efficiently computable
endomorphism ρ defined over Fq with characteristic polynomial X2 + rX + s.
We call a curve satisfying the above properties a GLV curve. Then ρ(P ) = λP
for some λ ∈ [0, n) where λ is a root of X2 + rX + s mod n.

Define the group homomorphism (the GLV reduction map w.r.t. {1, ρ})

f : Z × Z → Z/n

(i, j) �→ i + λj (mod n).

Then K = ker f is a sublattice of Z × Z with full rank. Assume v1, v2 are two
linearly independent vectors of K satisfying max{|v1|, |v2|} < c

√
n for some

positive constant c, where | · | denotes the maximum norm. Expressing (k, 0)
as the Q-linear combination of v1, v2 and rounding coefficients to the nearest
integers, we can obtain

kP = k1P + k2ρ(P ), |(k1, k2)| < c
√

n.
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For scalar decomposition in this way, it is essential to choose a basis {v1, v2} of K
as short as possible. To this end, Gallant et al. [5] exploited a specific algorithm,
the Cornacchia’s algorithm. Complete analysis of the output of this algorithm
was given in [16], which showed the constant c in upper bound can be chosen as√

1 + |r| + s.

2.2 The GLS Curves

In 2009, Galbraith et al. [4] extended the work of Gallant et al. and implemented
this method on a wider class of elliptic curves by generalizing Iijima et al. con-
struction [8]. For an elliptic curve E defined over Fp, the latter considered its
quadratic twist E′ defined over Fpk , and constructed an efficient endomorphism
on E′(Fpk) by composition of the quadratic twist map (denoted by t2) and its
inverse, and the Frobenius map π of E:

ψ : E′(Fpk)
t−1
2→ E(Fp2k) π→ E(Fp2k) t2→ E′(Fpk). (1)

Galbraith et al. replaced t2 with a general separable isogeny (t−1
2 with the dual

isogeny) or particularly a twist map of higher degree1. Instead of considering
the characteristic polynomial of ψ on E′(Fpk), they use the polynomial of ψ on
E′(Fpk). For example, in (1) ψ satisfies ψk(P ) + P = OE′ for any P ∈ E′(Fpk).
Moreover, Galbraith et al. also described how to obtain higher dimensional GLV
method by using elliptic curves E over Fp2 with #Aut(E) > 2 [4, Sect. 4.1].

Theorem 1 ([4]). Let p ≡ 1 mod 6 and let E defined by y2 = x3 + B be a
j-invariant 0 elliptic curve over Fp. Choose u ∈ Fp12 such that u6 ∈ Fp2 and
define E′ : y2 = x3 + u6B over Fp2 . The isomorphism t6 : E → E′ is given by
t6(x, y) = (u2x, u3y) and is defined over Fp12 . Let Ψ = t6πt−1

6 . For P ∈ E′(Fp2)
we have Ψ4(P ) − Ψ2(P ) + P = OE′ .

For this case, Hu et al. [7] described the complete implementation of
4-dimensional GLV method on such kind of GLS elliptic curves. For scalar
decomposition, first they found a short vector v1 in ker f through analyzing
properties of p and #E′(Fp2). Since Z

4 is isomorphic to the order Z[Ψ ] and
ker f is isomorphic to some prime ideal n of Z[Ψ ] (which will be explained in
Sect. 2.3), this amounts to having found a short element in n, still denoted by
v1. {v1, v1Ψ, v1Ψ

2, v1Ψ
3} forms a sublattice of ker f . Then to decompose an arbi-

trary scalar k under this basis is equivalent to divide k by v1 in Z[Ψ ] with
remainder that is the decomposition of k.

We present here the pseudo-algorithm of their method. Note that p is a
prime with p ≡ 1 (mod 6) and we choose u such that #E′(Fp2) is prime or
almost prime. The matrix A appeared in the algorithm is given in [7].

1 Assume E and E′ are defined over Fq. E′ is called a twist of degree d of E if there
exists an isomorphism td : E → E′ defined over Fqd and d is minimal.
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Algorithm 1. (Finding a short basis)
Input: p, N = #E′(Fp2), A.

Output: Four linearly independent vectors in ker f : v1, v2, v3, v4.
1) Find integers a, b such that a2 + ab + b2 = p

and a ≡ 2 mod 3, b ≡ 0 mod 3.
2) Let r1 ← (p − 1)2 + (a + 2b)2,

r2 ← (p − 1)2 + (2a + b)2,
r3 ← (p − 1)2 + (a − b)2.

3) If N = r1, then v1 ← (1,−a, 0,−b),
else if N = r2, then v1 ← (1,−b, 0,−a),
else if N = r3, then v1 ← (1,−a − b, 0, a).

3) Return: v1, v2 = v1A, v3 = v2A, v4 = v3A.

2.3 Combination of GLS and GLV and the Twofold
Cornacchia-Type Algorithm

In [11,12], Longa and Sica put forward that choosing a GLV curve E/Fp, we
may obtain four-dimensional scalar multiplication on a quadratic twist of E as
in Sect. 2.2.

Let E′/Fp2 be a quadratic twist of E via the twist map t2 : E → E′. Let ρ
be the non-trivial Fp-endomorphism on E with ρ2 + rρ + s = 0. Suppose that
#E′(Fp2) = nh is almost prime and 〈P 〉 ⊂ E′(Fp2) is the large prime subgroup.
Let ψ = t2πt−1

2 and φ = t2ρt−1
2 . They are defined over Fp2 on E′. ψ, φ satisfy

ψ2(P ) + P = OE , φ2(P ) + rφ(P ) + sP = OE with ψ(P ) = μP, φ(P ) = λP
respectively. Hence for any scalar k ∈ [1, n−1) we can obtain a four dimensional
decomposition

kP = k1P + k2φ(P ) + k3ψ(P ) + k4ψφ(P ), with max
i

(|ki|) < 2Cn1/4

for some constant C. As in 2-dimensional GLV case, first we consider the 4-GLV
reduction map w.r.t. {1, φ, ψ, φψ}

f : Z
4 → Z/n

(x1, x2, x3, x4) �→ x1 + x2λ + x3μ + x4λμ (mod n).

Second, find a short basis of the lattice ker f: {v1, v2, v3, v4} with maxi |vi| ≤
Cn1/4. Obviously, we can use LLL algorithm [2] to find a reduced basis, but the
theoretic constant C is not desired [11,16]. Then Longa and Sica proposed the
twofold Cornacchia-type algorithm to find such a short basis {v1, v2, v3, v4}. It
consists of the Cornacchia’s algorithm in Z and the Cornacchia’s algorithm in
Z[i]. It is efficient but more importantly, it gives a better and uniform upper
bound with constant C = 51.5(

√
1 + |r| + s).

View φ, ψ as algebraic integers satisfying X2 + rX + s = 0,X2 + 1 = 0
respectively. Assume that they generate disjoint quadratic extension of Q and
denote this biquadratic extension Q(φ, ψ) by K. Let oK be its ring of integers.
Since the prime n is large and integer solutions λ, μ of the two polynomials
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with coefficients modulo n exist, we always have that n splits completely in K
[9, Theorem 7.4]. Hence there are four prime ideals of oK lying over n. And there
is only one that contains φ − λ, ψ − μ. Denote it by n. We have φ ≡ λ (mod n)
and ψ ≡ μ (mod n).

The order Z[φ, ψ] ⊆ oK is a Z-module of rank 4. Under the basis {1, φ, ψ, φψ}
there is a canonical isomorphism ϕ from Z

4 to Z[φ, ψ], and we can show that
ϕ(ker f) is the submodule n ∩ Z[φ, ψ]. Denote n ∩ Z[φ, ψ] by n′ and Z[φ, ψ] by o.
The following composition of two maps is just the GLV reduction map f w.r.t.
{1, φ, ψ, φψ}.

Z
4 �−−−−−→

ϕ
Z[φ, ψ]

mod n∩Z[φ,ψ]−−−−−−−−−→ Z/n

(x1, x2, x3, x4) �−→ x1 + x2φ + x3ψ + x4φψ �−→ x1 + x2λ + x3μ
+x4λμ(mod n)

Note that o contains the Gaussian domain Z[ψ] = Z[i]. To find a short Z-
basis of n′, first we find out the generator ω of the prime ideal n′ ∩Z[i] (Gaussian
domain is a PID) using the original Cornacchia’s algorithm. Then n′ = ωo +
(φ − λ)o. Note that o = Z[i] + φ · Z[i]. We can deduce

n′ = ω · Z[i] + ωφ · Z[i] + (φ − λ) · Z[i] + φ(φ − λ) · Z[i]
= ω · Z[i] + (φ − λ) · Z[i].

We can equate o with Z[i] × Z[i] naturally under the basis {1, φ}. Then n′ is
a Z[i]-submodule generated by (ω, 0) and (−λ, 1). It is essential to view n′ in
this way, since we may recall that in [5] Cornacchia’s algorithm is just used to
find a short basis of the Z-submodule of Z

2 generated by (n, 0) and (−λ, 1).
Replacing Z with Z[i], we can generalize the algorithm in Z to the variant in
Z[i] (Cornacchia’s algorithm in Z[i]) to obtain a short basis of n′.

Q(φ) Z[φ] (n, φ − λ) Q(i, φ) Z[i, φ] n′
����������

Q Z nZ Q(i) Z[i] ωZ[i]

Finally, once we find a short2 Z[i]-basis {v1, v2} of n′, then {v1, v1 · i, v2, v2 · i}
is also a short Z-basis of n′. More specifically, let v1 = (a1 + b1i, c1 + d1i), v2 =
(a2 + b2i, c2 + d2i), then

n′ = (a1 + b1i + (c1 + d1i)φ)Z[i] + (a2 + b2i + (c2 + d2i)φ)Z[i].

Furthermore, ker f = ϕ−1(n′) is generated by rows of the matrix
⎛

⎜⎜
⎝

a1 c1 b1 d1
−b1 −d1 a1 c1
a2 c2 b2 d2

−b2 −d2 a2 c2

⎞

⎟⎟
⎠ .

2 For a vector v = (α, β) ∈ Z[i] × Z[i], we denote by |v|∞ the maximal norm, that is
|v|∞ = max{|α|, |β|} where |α| is the absolute value as a complex number.
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3 Improvement and Extension of the Twofold
Cornacchia-Type Algorithm

In this section, we give our improvement of the twofold Cornacchia-type algo-
rithm and analyze it. We will show that the output of this improved algorithm
has a much lower (better) upper bound compared with that of the original one.
For the full description and analysis of the original twofold Cornacchia-type
algorithm, one can refer to [12].

3.1 The Improved Twofold Cornacchia-Type Algorithm

The first part of the improved twofold Cornacchia-type algorithm is also to
find out the Gaussian integer ω lying over n, which exploits the Cornacchia’s
algorithm in Z as described in [12]. Here we briefly describe and analyze this
algorithm. Note that it is the following analysis of this algorithm that inspires
us to give the proof of Theorem 2.

Algorithm 2. (Cornacchia’s algorithm in Z)
Input: Two integers: n, μ.

Output: The Gaussian integer lying over n: ω.
1) Let r0 ← n, r1 ← μ, t0 ← 0, t1 ← 1
2) While |r1| ≥ √

n do
q ← � r0

r1
�,

r ← r0 − qr1, r0 ← r1, r1 ← r,
t ← t0 − qt1, t0 ← t1, t1 ← t.

3) Return: ω = r1 − it1.

This is actually the procedure to compute the gcd of n and μ using the
extended Euclidean algorithm. It is well known that it produces three sequences
(rj)j≥0, (sj)j≥0 and (tj)j≥0 satisfying

(
rj+1 sj+1 tj+1

rj+2 sj+2 tj+2

)
=

(
0 1
1 −qj+1

)(
rj sj tj

rj+1 sj+1 tj+1

)
, j ≥ 0

where qj+1 = �rj/rj+1� and the initial data
(

r0 s0 t0
r1 s1 t1

)
=

(
n 1 0
μ 0 1

)
.

These sequences also satisfy the following important properties for all j ≥ 0:

1. rj > rj+1 ≥ 0 and qj+1 ≥ 1,
2. (−1)jsj ≥ 0 and |sj | < |sj+1|(this holds for j > 0),
3. (−1)j+1tj ≥ 0 and |tj | < |tj+1|,
4. sj+1rj − sjrj+1 = (−1)j+1μ,
5. tj+1rj − tjrj+1 = (−1)jn,
6. sjn + tjμ = rj .
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The former three properties make sure that

|tj+1rj | + |tjrj+1| = n and |sj+1rj | + |sjrj+1| = μ, (2)

the former of which implies |tj+1rj | < n. If Algorithm 2 stops at the m-th
step such that rm ≥ √

n and rm+1 <
√

n, then |tm+1| <
√

n. Then |ω|2 =
|rm+1 − itm+1|2 = r2m+1 + t2m+1 < 2n. Together with n|NZ[i](ω) = |ω|2 we have
|ω| =

√
n.

For the (original) Cornacchia’s algorithm in Z[i], we also have three such
sequences. But just as mentioned in [12], in the j-th step with rj = qj+1rj+1 +
rj+2, positive quotient qj+1 and nonnegative remainder rj+2 are not available
in Z[i]. If we choose qj+1 as the closest Gaussian integer to rj/rj+1 denoted by
�rj/rj+1�, the former three properties will not hold any more, which makes it
more difficult to analyze the behaviour of {|sj |} and {|tj |}. Hence the Eq. (2),
which plays a crucial role in the analysis of Cornacchia’s algorithm in Z, becomes
invalid in Z[i].

For controlling {|sj |}, Longa and Sica [12] use the notation of “good” (“bad”)
index. When j is good, they obtain an upper bound of |sj+1rj | (also of |sjrj+1|
since they are bounded each other by (2)) [12, Lemma 4]. When j is bad, they
transfer the upper bound of |sj+1| (or |sj |) to that of |sj−1| [12, Lemma 5]. They
take 1/

√
1 + |r| + s as the terminal condition of the main loop of the algorithm,

which is indeed determined by the ability of analyzing the upper bound of |sj |
and |rj |.

In this paper, we give up the notation of “good” index, and replace it by
something easier to work with (the following Lemma 1). This appears to be
the “expected behavior” for the {|sj |}, which leads to a neater and shorter
argument. And during this improved analysis, by some calculation we obtain an
optimized terminal condition of the sequence {rj}, which is an absolute constant
independent of the curve. In addition, we make a subttle modification of the
second output. We describe the second part of our improved twofold Cornacchia-
type algorithm in the following Algorithm 3. Note that about the running time
of Algorithm 3, it is completely the same as that of the original algorithm, that
is O(log2 n). One may refer to [12].

Algorithm 3. (Improved Cornacchia’s algorithm in Z[i])
Input: Two Gaussian integers: ω, λ.

Output: Two vectors in Z[i]2: v1, v2.
1) Let r0 ← λ, r1 ← ω, s0 ← 1, s1 ← 0
2) While |r1| ≥

√
2 +

√
2n1/4 do

q ← � r0
r1

�,
r ← r0 − qr1, r0 ← r1, r1 ← r,
s ← s0 − qs1, s0 ← s1, s1 ← s.

3) Compute r2 ← r0 − � r0
r1

�r1, s2 ← s0 − � r0
r1

�s1
4) Return: v1 = (r1,−s1),

v2 = (r0,−s0) if max{|r0|, |s0|} ≤ max{|r2|, |s2|},
= (r2,−s2) otherwise.
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3.2 A Better Upper Bound

Theorem 2. The two vectors v1, v2 output by Algorithm 3 are Z[i]-linearly
independent. They belong to n′ and satisfy |v1|∞ ≤

√
2 +

√
2n1/4, |v2|∞ ≤

(2 +
√

2)(
√

1 + |r| + s)n1/4.

Before proving the theorem, we need the following two lemmas. Lemma
1 replaces Longa and Sica’s Lemma 4 in [12], and is crucial to our proof of
Theorem 2.

Lemma 1. If | sj

sj+1
| < 1, then we have

|sj+1rj | ≤ (2 +
√

2)|ω|, |sjrj+1| ≤ (3 +
√

2)|ω|.
Proof. First we have sj+1rj − sjrj+1 = (−1)j+1ω. If the condition | sj

sj+1
| < 1

holds, and noticing that | rj+1
rj

| ≤ 1√
2
, from | sj

sj+1
· rj+1

rj
| < 1√

2
we can deduce

∣∣∣∣1 − sjrj+1

sj+1rj

∣∣∣∣ ≥ 1 −
∣∣∣∣
sjrj+1

sj+1rj

∣∣∣∣ > 1 − 1√
2
.

Together with sj+1rj − sjrj+1 = (−1)j+1ω we have

|ω| = |sj+1rj − sjrj+1| > (1 − 1√
2
)|sj+1rj |,

which implies

|sj+1rj | ≤ 1
1 − 1√

2

|ω| = (2 +
√

2)|ω|,

and
|sjrj+1| ≤ (3 +

√
2)|ω|.

��
Lemma 2. For any nonzero vector (α, β) ∈ n′ ⊂ Z[i]2 we have

max{|α|, |β|} ≥
√|ω|

√
1 + |r| + s

.

Proof. The key point is that n′ is an ideal in o with norm n, then the norm of
any nonzero element in n′ is divisible by n, hence no less than n. Note that here
the norm is from Z[i, φ] to Z[i]. Complete proof can be found in [16]. ��
Proof (Proof of Theorem 2). The vectors v1, v2 are Z[i]-linearly independent
according to the fourth property, and they belong to n′ because (rj ,−sj) =
tj(ω, 0) + (−sj)(−λ, 1) deduced from the sixth property.

We denote the output {r, s} of the j-th step in the loop of Algorithm 3
by {rj+1, sj+1}, and assume Algorithm 3 stops at the m-th step. Then
v1 = (rm+1,−sm+1) and |rm| ≥

√
2 +

√
2n1/4 and |rm+1| <

√
2 +

√
2n1/4.
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We need to consider two cases. For brevity, we denote two constants√
1 + |r| + s,

√
2 +

√
2 by c1, c2 respectively.

For the case | sm

sm+1
| < 1, using Lemma 1 we have |sm+1| ≤ c2

√|ω|. Together

with |rm+1| < c2
√|ω| we can easily deduce

|v1|∞ ≤ c2n
1/4.

Moreover, if |rm+1| <

√
|ω|

c1
, by Lemma 2 we have a lower bound |sm+1| ≥

√
|ω|

c1
,

which implies |rm| ≤ c1(2 +
√

2)
√|ω| using again Lemma 1. Together with the

restricted condition |sm| < |sm+1| ≤ c1(2 +
√

2)
√|ω| we can obtain

|(rm,−sm)|∞ ≤ c1(2 +
√

2)n1/4.

If |rm+1| ≥
√

|ω|
c1

, when |sm+1| ≥ |sm+2| we have

|sm+2| < c2
√

|ω|, |rm+2| ≤ |rm+1| < c2
√

|ω|.
When |sm+1| < |sm+2| we can use Lemma 1 to deduce |sm+2| ≤ c2(2+

√
2)

√|ω|.
Hence in both cases we have

|(rm+2,−sm+2)|∞ ≤ c1(2 +
√

2)n1/4.

Finally by the definition of v2 we always have

|v2|∞ ≤ c1(2 +
√

2)n1/4.

For the case | sm

sm+1
| ≥ 1, let k ≤ m be the index satisfying

|sk| ≥ |sk+1| ≥ · · · ≥ |sm| ≥ |sm+1| and |sk−1| < |sk|.
Applying Lemma 1 to the (k − 1)-th step we have |skrk−1| ≤ (2 +

√
2)|ω|. Since

|rk−1| > |rk| > · · · > |rm| ≥ c2
√|ω| we can easily deduce |sk| ≤ c2

√|ω| and
then |sm+1| ≤ |sk| ≤ c2

√|ω|. Together with |rm+1| < c2
√|ω| we obtain

|v1|∞ ≤ c2n
1/4.

Similarly, if |rm+1| <

√
|ω|

c1
we have |sm+1| ≥

√
|ω|

c1
by Lemma 2, which implies

|sk| ≥
√

|ω|
c1

and then |rk−1| ≤ c1(2 +
√

2)
√|ω| by Lemma 1. Hence |rm| ≤

c1(2 +
√

2)
√|ω|. Together with |sm| ≤ |sk| ≤ c2

√|ω| we have

|(rm,−sm)|∞ ≤ c1(2 +
√

2)n1/4.

On the other hand, if |rm+1| ≥
√

|ω|
c1

, following the same argument described in
the case |sm| < |sm+1| we also have

|(rm+2,−sm+2)|∞ ≤ c1(2 +
√

2)n1/4.

Therefore,
|v2|∞ ≤ c1(2 +

√
2)n1/4.

��
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Following Theorem 2 and the argument in Sect. 2.3, we can easily obtain the
conclusion.
Theorem 3. In the 4-dimensional GLV scalar multiplication using the combi-
nation of GLV and GLS, the improved twofold Cornacchia-type algorithm will
result in a decomposition of any scalar k ∈ [1, n) into integers k1, k2, k3, k4 such
that

kP = k1P + k2φ(P ) + k3ψ(P ) + k4ψφ(P )

with

max
i

(|ki|) < 6.82
(√

1 + |r| + s
)
n

1
4 .

Remark 1. Our proof technique is general and by some modification it can also
be applied to improve the upper bound of coefficients given by the original
twofold Cornacchia-type algorithm in [12].

3.3 Extension to 4-Dimensional GLS Curves over Fp4

The twofold Cornacchia-type algorithm can be extended naturally to the
4-dimensional GLV method on GLS curves over Fp4 , which is just the case k = 4
in Eq. (1). Let E be an elliptic curve over Fp, E′′ be a quadratic twist of E(Fp4)
over Fp4 . Then as described in Eq. (1), the efficient Fp4 -endomorphism ϕ on
E′′ satisfying ϕ4 + 1 = 0 on the large prime subgroup 〈P 〉 of E′′(Fp4). Hence
4-dimensional GLV method can be implemented on E′′. Moreover, in this case,
the twofold Cornacchia-type algorithm can be used for scalar decomposition as
well. Let’s explain it more specifically.

View ϕ as an algebraic integer satisfying X4 + 1 = 0. Let K = Q(ϕ) be the
quartic extension over Q, oK be the ring of integers of K. Since ϕ is a 8-th root
of unity, then oK = Z[ϕ]. Note that ϕ2 satisfies X2 + 1 = 0. Write ϕ2 as i, then
Z[ϕ2] = Z[i] ⊂ oK . We assume that P is of prime order n and ϕ(P ) = νP , then
ν is a root of X4+1 ≡ 0(mod n). Denote by n the prime ideal lying over n which
contains n and ϕ − ν.

First, find out the Gaussian integer ω ∈ Z[i] lying over n with ωP = 0 using
Algorithm 2 on the input (n, ν2 (mod n)). Then invoke Algorithm 3 on the
input (ω, ν). Denote the output by (u1, u2) where ui ∈ Z[i] × Z[i]. Following
the same argument of Theorem 2 we can obtain that u1 and u2 are Z[i]-linearly
independent and

|u1|∞ ≤
√

2 +
√

2n1/4, |u2|∞ ≤
√

3(2 +
√

2)n1/4.

If we assume uk = (αk, βk) with αk = ak + ibk and βk = ck + idk for k = 1, 2,
then a short basis of the kernel of the GLV reduction map with respect to
{1, ϕ, ϕ2, ϕ3} is generated by rows of the following matrix

⎛

⎜⎜
⎝

a1 c1 b1 d1
−b1 −d1 a1 c1
a2 c2 b2 d2

−b2 −d2 a2 c2

⎞

⎟⎟
⎠ .
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4 Relations of the Two 4-Dimensional GLV Methods
on j-invariant 0 Elliptic Curves over Fp2

In this section, we focus on the elliptic curves with j-invariant 0. We want to
explore the relations of the two 4-dimensional GLV methods on this kind of
elliptic curves. The first one is put forward in [4] and described in Sect. 2.2, and
the second one is put forward by Long and Sica [12] and described in Sect. 2.3.

Note that both two methods create their target curves and endomorphisms
by using twists of original curves (especially twists of higher degree). For the
general theory of twists, one may refer to [6] or [17, Chap. X]. And twists used
to be employed to find pairing-friendly elliptic curves with prime order [1,14].
By carefully choosing and balancing some parameters of twists, we can obtain
the following theorem.

Theorem 4. For any j-invariant 0 curve E′ over Fp2 , if one of the two
4-dimensional GLV methods can be implemented, then the other can be used
as well.

Let Fp be a prime field with p ≡ 1(mod 3), E′ be an elliptic curve over
Fp2 with j-invariant 0. Fix a primitive element α of the field Fp2 . Up to a Fp2 -
isomorphism, E′ can be written as

E′ : y2 = x3 + αl, for some l ∈ {0, · · · , 5}.

Let ζ3 =
(
α(p+1)

) p−1
3 be a 3-th root of unity in Fp, then ρ : (x, y) �→ (ζ3x, y)

is an efficient endomorphism of E′. It is not hard to discover the following two
lemmas.

Lemma 3. If and only if l = 1, 3 or 5, we can find an A ∈ Fp and a non-
quadratic residue v ∈ Fp2 , such that αl = Av3.

Proof. Since F
∗
p2 = 〈α〉, we can write v = αm for some odd integer m if it exists.

Then the existence of such an A and v is equivalent to the existence of an odd
integer m ∈ [1, p2 − 1) satisfying

αl

α3m
∈ Fp.

This condition is equivalent to p2 − 1 | (p − 1)(3m − l), namely p + 1 | 3m − l,
since the order of α is p2 − 1. Because p + 1 is even and m needs to be odd, it
is necessary that l is odd.

Since p ≡ 1(mod 3), when l = 1, we can take m = p+2
3 ; when l = 3, take

m = 1 and when l = 5, take m = 2(p+1)+5
3 . ��

Lemma 4. If and only if l = 1, 3 or 5, we can find a B ∈ Fp and a u ∈ Fp2

which is neither a quadratic residue nor a cubic residue, such that αl = Bu.
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Proof. The argument is similar to that of Lemma 3. If such a u exists, we can
let u = αk for some integer k with 2 � k and 3 � k. Then the existence of such
B and u is equivalent to the existence of an integer m ∈ [1, p2 − 1) satisfying
2 � k, 3 � k and

αl

αk
∈ Fp.

This condition is equivalent to p+1 | k− l since the order of α is p2 −1. Because
p + 1 is even and k needs to be odd, it is necessary that l is odd.

Note that p ≡ 1(mod 3). When l = 1, we can take k = 3(p + 1) + 1; when
l = 3, take k = 2(p + 1) + 3 and when l = 5, take k = 4(p + 1) + 5. ��
Remark 2. Note that m and k appeared in the proofs are not unique. We evaluate
them in this way because we should choose v and u carefully to obtain the
equality of endomorphisms explaining the relation of the two 4-GLV methods,
which is described in the following Theorem 5.

Assume that we have found an E′ as above with almost prime group E′(Fp2)
and l = 1, 3 or 5. According to Lemma 3, we can find an A ∈ Fp and a non-
quadratic residue v ∈ Fp2 such that αl = Av3. Let E1 be the curve over Fp

defined by
E1 : y2 = x3 + A.

Then obviously E′ is a quadratic twist of E1(Fp2). Denote the twist map (x, y) �→
(vx, v3/2y) from E1 to E′ by t2, the Frobenius endomorphism of E1 by π1. Now,
Long and Sica’s 4-dimensional GLV method described in Sect. 2.3 can be applied
on E′. Take ψ = t2π1t

−1
2 and φ = t2ρt−1

2 . Then on the large prime subgroup of
E′(Fp2) they satisfy ψ2 + 1 = 0 and φ2 + φ + 1 = 0 respectively. Following the
twofold Cornacchia-type algorithm we will accomplish the 4-dimensional scalar
decomposition.

Let E2 be the curve over Fp defined by

E2 : y2 = x3 + B.

Obviously, E′ is a twist of degree 6 of E2(Fp2). Denote this twist map (x, y) �→
(u1/3x, u1/2y) from E2 to E′ by t6, the Frobenius endomorphism of E2 by π2. Let
Ψ = t6π2t

−1
6 . On the large prime subgroup of E′(Fp2) it satisfies Ψ4−Ψ2+1 = 0.

Therefore, we can implement the 4-dimensional GLV scalar multiplication on E′

as described in Sect. 2.2 and [7].

Proof (of Theorem 4). This theorem is almost trivial following Lemma 3 and
Lemma 4, because they conclude that the condition of choosing E′ that is suit-
able for the two GLV methods are the same, i.e. l = 1, 3, or 5.

Moreover, from the above we see that there is a unified and easy way to
construct a j-invariant 0 curve over Fp2 suitable for both 4-dimensional GLV
methods, that is, we only need to try α, α3 and α5 when given p and α, until
the group order is almost prime. This is very helpful for our implementation in
Sect. 5. ��
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In addition, the explicit relation of the two 4-GLV methods can be described
as follows.

Theorem 5. Ψ is the composition of ψ and φ that is

Ψ = φψ = ψφ.

Proof. For any point (x, y) on E′, φψ(x, y) = ψφ(x, y) = (ζ3v(1−p)xp, v
3(1−p)

2 yp),
and Ψ(x, y) = (u

1−p
3 xp, u

1−p
2 yp). In any case of l, we always have u/v3 = α2(p+1)

for v, u chosen in Lemmas 3 and 4. Hence we have

u
1−p
3 /v1−p = αk 1−p

3 −m(1−p) = α2(p+1) 1−p
3 = α

p2−1
3 = ζ3,

and
u

1−p
2 /v

3(1−p)
2 = αk 1−p

2 −3m 1−p
2 = α2(p+1) 1−p

2 = 1.

Therefore, φψ(x, y) = Ψ(x, y). ��
This connection can be interpreted clearly by the following commutative

graph.

Remark 3. On the group E′(Fp2), one of the two 4-dimensional GLV methods
uses {1, φ, ψ, φψ} as the basis of scalar decomposition, while the other uses
{1, Ψ, Ψ2, Ψ3} = {1, φψ, 1 + φ,−ψ}. Thus for a scalar k, we have two algorithms
to decompose it, that is Algorithm 1 and the improved twofold Cornacchia-type
algorithm.

5 Comparison

In this section, first we compare the improved twofold Cornacchia-type algo-
rithm with the original one on two families of twists of GLV curves. Then we
compare the two 4-dimensional decomposition algorithms, the improved twofold
Cornacchia-type algorithm and Algorithm 1 in Sect. 2.2, by choosing j-invariant
0 curves over Fp2 with prime order rational-point groups.

For the first comparison, two GLV curves are chosen from [11], which are
E1 : y2 = 4x3 − 30x − 28 over Fp with ρ2 + 2 = 0 and E2 : y2 = x3 + b
over Fp with p ≡ 1(mod 3) and ρ2 + ρ + 1 = 0. For some prime p, choose
a primitive element α of F

∗
p2 . For E1, we use its twist w.r.t.

√
α as our tar-

get curve, denoted by E′
1. For E2 we exploit the way as in Sect. 4. Choosing
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curves E2 (or parameters b) and their twists amount to choosing target curves
E′

2 of the form y2 = x3 + αl with l = 1, 3 or 5. We use SEA algorithm [15] to
compute #E′

i(Fp2) and enumerate p within certain range until the group order
is prime. We choose three about 127-bit primes for each Ei to implement the
original and improved twofold Cornacchia-type algorithm. We care about the
ratio of maxo (resp. maxm) to n1/4 where maxo (resp. maxm) denotes the max-
imum value of the maximum norm of four vectors output by the original (resp.
improved) twofold Cornacchia-type algorithm. First, from tables it is certain
that the improved decomposition algorithm performs better than the original
one in most cases. Second, this performance seems to depend on the GLV model
that we choose, since the improvement showed in Table 2 is more evident and
consistent than that in Table 1. Finally, we should also recognize that in practice
this improvement is rather limited and only by a few bits, so its general practical
effect is no more than a couple percentage points.

Table 1. Decomposition on E1

p 128-bit 127-bit 126-bit

n 254-bit 252-bit 250-bit

maxo /n1/4 3.67 0.98 3.00

maxm /n1/4 0.68 0.98 0.67

Table 2. Decomposition on E2

p 127-bit 128-bit 129-bit

n 254-bit 255-bit 257-bit

maxo /n1/4 4.64 8.56 4.61

maxm /n1/4 1.08 1.05 1.09

For the second comparison, we find ‘cryptographically good’ j-invariant 0
curves by the way described in Sect. 4. That is for any prime p, we consider
y2 = x3 + αl with l = 1, 3 or 5 where 〈α〉 = F

∗
p2 . We also enumerate p with

p ≡ 1(mod 3) within certain range until the group order is prime. As showed
in Sect. 4, we implement Algorithm 1 and the improved twofold Cornacchia-
type algorithm to find a short basis of the kernel of the GLV reduction map
w.r.t. {1, φ, ψ, φψ}. We choose 15 different curves with prime order. For 11 of
them the output of the two decomposition algorithms are identically same. In
the remaining 4 cases the length differences of components of four vectors are
within 1 bits since the ratios of maximum length are less than 2. In a word, the
two decomposition algorithms are same for more than 70% of all cases we have
investigated, and in remaining cases the length differences are almost negligible.
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6 Conclusion

We refined Longa and Sica’s four-dimensional GLV method and analyzed it from
two aspects. First we improve the original twofold Cornacchia-type algorithm
and show that it possesses a better theoretic upper bound of decomposition
coefficients through a neater and shorter proof. Comparison implementations
show our improved version performs better in most cases. Second we present
relations of the two four-dimensional GLV methods in j-invariant 0 case, and
compare our improved twofold Cornacchia-type algorithm with the almost opti-
mal scalar decomposition method using computational implementation. Imple-
mentations show that they have almost the same performance, which provide
further evidence that the improved version is a sufficiently good scalar decom-
position method.
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their advice on a first version of this work. And we would like to thank the anonymous
reviewers for their detailed comments and suggestions. This work is supported by
National Natural Science Foundation of China (61379139) and the Strategic Priority
Research Program of the Chinese Academy of Sciences, Grant No. XDA06010701.

A Implementation I

We list up tables in this part showing comparable data of the original twofold
Cornacchia-type algorithm and the improved one. We chose two GLV curves
and considered 3 different primes p for each curve. In the tables, R1 represents
maxo /n1/4 while R2 represents maxm /n1/4.

E1 : y2 = 4x3 − 30x − 28 with ρ2 + 2 = 0

p 255211775190703847597530955573826073969

n 16283262548997589981439669766846726243580995059600230271972911887471787246897

Original twofold Cornacchia outputs:

v1 [7673580244184025940, −1568296852280298804, −7673580244184025939, 1568296852280298804]

v2 [41504494925480727303, −167904017217468081, 41504494925480727308, −167904017217468080]

v3 [7673580244184025939, −1568296852280298804, 7673580244184025940, −1568296852280298804]

v4 [−41504494925480727308, 167904017217468080, 41504494925480727303, −167904017217468081]

R1 3.6741744846002408025240887433477717824

Improved twofold Cornacchia outputs:

v1 [7673580244184025940, −1568296852280298804, −7673580244184025939, 1568296852280298804]

v2 [3136593704560597608, 7673580244184025939, 3136593704560597608, 7673580244184025940]

v3 [7673580244184025939, −1568296852280298804, 7673580244184025940, −1568296852280298804]

v4 [−3136593704560597608, −7673580244184025940, 3136593704560597608, 7673580244184025939]
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(continued)

R2 0.67930167056205598699343592919037215116
p 170141183460469231731687303715884047161
n 7237005577332262213973186563042989258422395530349600540822048403344118204929

Original twofold Cornacchia outputs:
R1 0.97789758543585283902428717528465557293
Improved twofold Cornacchia outputs:
R2 0.97789758543585283902428717528465557293
p 85070591730234615865843651857942020329
n 1809251394333065553493296640760747176355670214223299403819059252318350656377

Original twofold Cornacchia outputs:
R1 2.9993369087131711807648390857675716140
Improved twofold Cornacchia outputs:
R2 0.67147473658255740348192194949887835750

E2: y2 = x3 + αl with ρ2 + ρ + 1 = 0
p 170141183460469231731687303715884022771
n 28948022309329048855892746252171948734834290114750903245851799285340816353501

Original twofold Cornacchia outputs:
v1 [-1, 0, -11594629644441225966, 2528224560705443369]
v2 [-5, -1, -60501372782911573199, -1481731401619452490]
v3 [11594629644441225966, -2528224560705443369, -1, 0]
v4 [60501372782911573199, 1481731401619452490, -5, -1]
R1 4.6383178294172491273770196206212208904
Improved twofold Cornacchia outputs:
v1 [1, 0, -14122854205146669335, -2528224560705443369]
v2 [0, 1, 2528224560705443369, -11594629644441225966]
v3 [14122854205146669335, 2528224560705443369, 1, 0]
v4 [-2528224560705443369, 11594629644441225966, 0, 1]
R2 1.0827239688765246962710751584135402862
p 212676479325586539664609129644855136153
n 45231284858326638837332416019018715703337988259090681324905724939638218907073

Original twofold Cornacchia outputs:
R1 8.5642929985382088374000139113179346885
Improved twofold Cornacchia outputs:
R2 1.0514088258644207810221621225523176688
p 340282366920938463463374607431768216949
n 115792089237316195423570985008687911591087162208992817759013437099099781551273

Original twofold Cornacchia outputs:
R2 4.6127000361231510412490970651777643836
Improved twofold Cornacchia outputs:
R2 1.0866705232352987405800189002480493540
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B Implementation II

The table in this part shows comparable data of the two 4-dimensional
scalar decomposition methods on j-invariant 0 curves, the Improved twofold
Cornacchia-type algorithm and Algorithm 1 in Sect. 2.2. We considered 15 such
curves. In this table, R1 represents max1 /n1/4 where max1 denotes the maxi-
mum value of the maximum norm of four vectors output by Algorithm 1, while
R2 represents maxm /n1/4.

p1 170141183460469231731687303715884008641

n1 28948022309329048855892746252171943926515682497197240131140526345303172118961

R1 1.1538418893890212054803449849102612298

R2 1.6922054648996739026934892690950051293

p2 170141183460469231731687303715884022771

n2 28948022309329048855892746252171948734834290114750903245851799285340816353501

R1 1.0827239688765246962710751584135402862

R2 1.0827239688765246962710751584135402862

p3 170141183460469231731687303715884023107

n3 28948022309329048855892746252171948849171146919057501863641160451816855376557

R1 1.0790558850578940013923115927424455442

R2 1.0790558850578940013923115927424455442

p4 170141183460469231731687303715884025321

n4 28948022309329048855892746252171949602569744119638481820693392786551599853609

R1 1.0401348050858175786751875288307348229

R2 1.0401348050858175786751875288307348229

p5 170141183460469231731687303715884032929

n5 28948022309329048855892746252171952191369913468171321827487260495155499120273

R1 1.1333269230515924468020204150516792233

R2 1.1333269230515924468020204150516792233

p6 212676479325586539664609129644855136153

n6 45231284858326638837332416019018715703337988259090681324905724939638218907073

R1 1.0514088258644207810221621225523176688

R2 1.0514088258644207810221621225523176688

p7 212676479325586539664609129644855146767

n7 45231284858326638837332416019018720218018417802573857331203271572310044141717

R1 1.0631742993045731231299194386209802906

R2 1.0631742993045731231299194386209802906

p8 212676479325586539664609129644855147811
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(continued)

n8 45231284858326638837332416019018720662601939572979434825619748814731700156669

R1 1.1546548547005925646516200767383098250
R2 1.7408774991513931654681153269611596499
p9 212676479325586539664609129644855149071
n9 45231284858326638837332416019018721198744499491278384489588201195670328020421

R1 1.0522088043252422449082166720537976875
R2 1.0522088043252422449082166720537976875
p10 212676479325586539664609129644855151543
n10 45231284858326638837332416019018722249701332999103696126702882015428082644173

R1 1.0728298189131269695962120071877785004
R2 1.0728298189131269695962120071877785004
p11 340282366920938463463374607431768214633
n11 115792089237316195423570985008687910015705821725059268401541167257952106734113

R1 1.1533461523122356182763890986020527353
R2 1.7784391593844653239311556780499756686
p12 340282366920938463463374607431768216949
n12 115792089237316195423570985008687911591087162208992817759013437099099781551273

R1 1.0866705232352987405800189002480493540
R2 1.0866705232352987405800189002480493540
p13 340282366920938463463374607431768218167
n13 115792089237316195423570985008687912421194511547120121287422632647148162076797

R1 1.0701593715410208710572988188847176510
R2 1.0701593715410208710572988188847176510
p14 340282366920938463463374607431768225079
n14 7115792089237316195423570985008687917124536804592137431048915777342117090497813

R1 1.0993884293669724136434037720100320491
R2 1.0993884293669724136434037720100320491
p15 340282366920938463463374607431768229507
n15 115792089237316195423570985008687920137464469908874606049864275583449996674837

R1 1.1542595730165208435416372700910158905
R2 1.7590231897838901268908695652015694112

References

1. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006). https://doi.org/10.1007/11693383 22

2. Cohen, H.: A Course in Computational Algebraic Number Theory, vol. 138.
Springer Science & Business Media, Heidelberg (2000). https://doi.org/10.1007/
978-3-662-02945-9

3. Cohen, H., Frey, G., Avanzi, R., Doche, C., Lange, T., Nguyen, K., Vercauteren,
F.: Handbook of Elliptic and Hyperelliptic Curve Cryptography. CRC Press, Boca
Raton (2005)

https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/978-3-662-02945-9
https://doi.org/10.1007/978-3-662-02945-9


42 H. Yi et al.

4. Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryp-
tography on a large class of curves. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 518–535. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-01001-9 30

5. Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster point multiplication on elliptic
curves with efficient endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 190–200. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44647-8 11

6. Hess, F., Smart, N.P., Vercauteren, F.: The eta pairing revisited. IEEE Trans. Inf.
Theory 52(10), 4595–4602 (2006)

7. Zhi, H., Longa, P., Maozhi, X.: Implementing the 4-dimensional GLV method on
GLS elliptic curves with j-invariant 0. Des. Codes Crypt. 63(3), 331–343 (2012)

8. Iijima, T., Matsuo, K., Chao, J., Tsujii, S.: Construction of Frobenius maps of
twists elliptic curves and its application to elliptic scalar multiplication. In: Pro-
ceedings of SCIS 2002, pp. 699–702. IEICE, Japan (2002)

9. Janusz, G.J.: Algebraic Number Fields, vol. 7. American Mathematical Society
(1996)

10. Koblitz, N.: CM-curves with good cryptographic properties. In: Feigenbaum, J.
(ed.) CRYPTO 1991. LNCS, vol. 576, pp. 279–287. Springer, Heidelberg (1992).
https://doi.org/10.1007/3-540-46766-1 22

11. Longa, P., Sica, F.: Four-Dimensional Gallant-Lambert-Vanstone scalar multipli-
cation. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp.
718–739. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-
4 43

12. Longa, P., Sica, F.: Four-dimensional Gallant-Lambert-Vanstone scalar multipli-
cation. J. Cryptol. 27(2), 248–283 (2014)

13. Park, Y.-H., Jeong, S., Kim, C.H., Lim, J.: An alternate decomposition of an
integer for faster point multiplication on certain elliptic curves. In: Naccache, D.,
Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 323–334. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45664-3 23
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