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Abstract. Efficiently exploiting GPUs is increasingly essential in sci-
entific computing, as many current and upcoming supercomputers are
built using them. To facilitate this, there are a number of programming
approaches, such as CUDA, OpenACC and OpenMP 4, supporting dif-
ferent programming languages (mainly C/C++ and Fortran). There are
also several compiler suites (clang, nvce, PGI, XL) each supporting dif-
ferent combinations of languages. In this study, we take a detailed look
at some of the currently available options, and carry out a comprehen-
sive analysis and comparison using computational loops and applications
from the domain of unstructured mesh computations. Beyond runtimes
and performance metrics (GB/s), we explore factors that influence per-
formance such as register counts, occupancy, usage of different mem-
ory types, instruction counts, and algorithmic differences. Results of this
work show how clang’s CUDA compiler frequently outperform NVIDIA’s
nvce, performance issues with directive-based approaches on complex
kernels, and OpenMP 4 support maturing in clang and XL; currently
around 10% slower than CUDA.

Keywords: Compilers - CUDA + OpenACC - OpenMP - GPU
Benchmarking

1 Introduction

The last ten years has seen the widespread adoption of Graphical Process-
ing Units (GPUs) by the high performance computing community. For a wide
range of highly parallel workloads they offer higher performance and efficiency.
Programming techniques for GPUs have also evolved significantly. The CUDA
[1] language extensions to C/C++ and the OpenCL language [2] provide a low-
level programming abstraction commonly referred to as Single Instruction Mul-
tiple Thread (SIMT) that gives fine-grained control over GPU architectures.
CUDA/OpenCL allows the exploitation of low-level features like scratch pad

© Springer International Publishing AG 2018
S. Jarvis et al. (Eds.): PMBS 2017, LNCS 10724, pp. 22-43, 2018.
https://doi.org/10.1007/978-3-319-72971-8_2



Comparison of Parallelisation Approaches, Languages, and Compilers 23

memory, warp operations, and block-level synchronization. However, converting
existing applications to use CUDA or OpenCL is a substantial undertaking that
require significant effort and considrable changes to the design of the programe
and the source code. Furthermore, getting good performance can entail detailed
work in orchestrating parallelism.

To simplify the adoption of GPUs, particularly for existing codes, high-level
directive based programming abstractions were introduced. OpenACC [3] intro-
duced in 2011 was one of the first supporting GPUs. Subsequetly OpenMP
standard introduced support for accelerators starting from version 4 [4], with
refinements in 4.5 and 5.0. Of particular note is that the evolution of directive
based approaches being driven by the acquisition of large US DoE systems such
as Titan and the upcoming Summit and Sierra systems. To be able to efficiently
utilize these systems it was necessary that existing codes be modified to support
GPUs with relative ease. Many of these codes are written in Fortran and as such
there is now compiler support for writing CUDA, OpenACC, and OpenMP with
Fortran in various compilers.

It is generally agreed that the best performance can be achieved by using
CUDA, but the difference between CUDA and directive-based approaches vary
significantly based on a multitude of factors. Primarily these include the type
of computation being parallelized, as well as the language being used (C or
Fortran), and the compiler. This motivates the present study: for a number of
parallel loops, coming from the domain of unstructured mesh computations, we
wanted to get an idea of what performance looks like on different GPUs, different
languages, and different compilers. Given the available systems and compilers,
we would like to acertain what the state-of-th-art is with regard to utilizing GPU
based systems for this class of applications.

We evaluate some of the most commonly used compilers and parallelization
approaches. We explore the performance of CUDA C, compiled with nvce, as well
as with Google’s recent clang based compiler [5]. We also explore the performance
of the compilers by Portland Group (PGI, now owned by NVIDIA) which has
had support for wirting CUDA applications in Fortran [6,7]. Additionally, as part
of a recent push by IBM, preparing for the Summit and Sierra machines there
has been support for CUDA Fortran with the XL compilers since v15.1.5 [8]. We
also explore XL compiler performance in this paper. For OpenACC we use the
PGI compilers which support both C and Fortran. There is also good support
for OpenACC by the Cray compilers, however we did not have access to such
a machine and therefore will not be part of this analysis. For OpenMP 4 there
are two compilers developed by IBM directed at developing applications using
C: the XL compilers (since v13.1.5), and an extension to Clang [9]. There is also
support for writing OpenMP 4 parallizations in Fortran applications using the
XL compilers (since v15.1.5).

While there is a tremendous amount of research on performance evaluation of
various combinations of languages and compilers, we believe our work is unique
in its breadth: it directly compares C and Fortran implementations of the same
code (Airfoil), and with three different parallelizations: CUDA, OpenACC, and
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OpenMP, and with five different state-of-the-art compilers. We also present an
in-depth study trying to explain the differences with the help of instruction
counters and the inspection of low-level code. Specifically, we make the following
contributions:

1. Using a representative CFD application called Airfoil, we run the same algo-
rithms on NVIDIA K40 and P100 GPUs, with CUDA, OpenMP 4, and Ope-
nACC parallelizations written in both C and Fortran, compiled with a number
of different compilers.

2. We carry out a detailed analysis of the results with the help of performance
counters to help identify differences between algorithms, languages, and
compilers.

3. We evaluate these parallelizations and compilers on two additional appli-
cations, Volna (C) and BookLeaf (Fortran) to confirm the key trends and
differences observed on Airfoil.

The rest of the paper is structured as follows: Sect. 2 discusses some related
work, Sect.3 briefly introduces the applications being studied, then Sect.4
presents the test setup, compilers and flags. Section5 carries out the bench-
marking of parallelizations and the detailed analysis, and finally Sect.6 draws
conclusions.

2 Related Work

There is a significant body of existing research on performance engineering for
GPUs, and compiler engineering, as well as some comparisons between paral-
lelization approaches - the latter however is usually limited in scope due to the
lack of availability of multiple implementations of the same code. Here we cite
some examples, to show how this work offers a wider look at the possible com-
binations.

Work by Ledur et al. compares a few simple testcases such as Mandelbrot and
N-Queens implemented with CUDA and OpenACC (PGI) [10], Herdman et al.
[11] take a larger stencil code written in C, and study CUDA, OpenCL and
OpenACC implementations, but offer no detailed insights into the differences.
Work by Hoshino et al. [12] offers a detailed look at CUDA and OpenACC
variants of a CFD code and some smaller benchmarks written in C, and show
a few language-specific optimizations, but analysis stops at the measured run-
time. Normat et al. [13] compare CUDA Fortran and OpenACC versions of an
atmospheric model, CAM-SE, which offers some details about code generated
by the PGI and Cray compilers, and identifies a number of key differences that
let CUDA outperform OpenACC, thanks to lower level optimizations, such as
the use of shared memory. Kuan et al. [14] also compare runtimes of CUDA
and OpenACC implementations of the same statistical algorithm (phylogenetic
inference). Gonge et al. [15] compare CUDA Fortran and OpenACC implemen-
tations of Nekbone, and scale up to 16k GPUs on Titan - but no detailed study
of performance differences.
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Support in compilers for OpenMP 4 and GPU offloading is relatively new [16]
and there are only a handful of papers evaluating their performance: Martineau
et al. [17] present some runtimes of basic computational loops in C compiled
with Cray and clang, and comparisons with CUDA. Karlin et al. [18] port three
CORAL benchmark codes to OpenMP 4.5 (C), compile them with clang, and
compare them with CUDA implementations - the analysis is focused on runtimes
and register pressure. Hart el. al. [19] compare OpenMP 4.5 with Cray to Ope-
nACC on Nekbone, however the analysis here is also restricted to runtimes, the
focus is more on programmability. We are not aware of academic papers studying
the performance of CUDA Fortran or OpenMP 4 in the IBM XL compilers aside
from early results in our own previous work [20]. There is also very little work
on comparing the performance of CUDA code compiled with nvee and clang.

Thus we believe that there is a significant gap in current research: a compar-
ison of C and Fortran based CUDA, OpenACC, and OpenMP 4, the evaluation
of the IBM XL compilers, the maturity of OpenMP 4 compared to CUDA in
terms of performance and a more detailed investigation into the reasons for the
performance difference between various languages, compilers, and parallelization
approaches. With the present study, we work towards filling this gap.

3 Applications

The applications being studied in this work come from the unstructured mesh
computations domain solving problems in the areas of computational fluid
dynamics, shallow-water simulation and Lagrangian hydrodynamics. As such,
they consist of parallel loops over some set in the mesh, such as edges, cells
or nodes, and on each set element some computations are carried out, while
accessing data either directly on the iteration set, or indirectly via a mapping
to another set. Our applications are all written using the OP2 domain specific
language [21] embedded in C and Fortran, targeting unstructured mesh compu-
tations. For OP2, the user has to give a high level description of the simulation
using the OP2 API. Then the OP2 source-to-source translator generates all par-
allelized versions from the abstract description [22]. While OP2 is capable of
many things, its relevant feature for this work is that it can generate different
parallelizations such as CUDA, OpenACC, and OpenMP4, based on the abstract
description of parallel loops.

A key challenge in unstructured mesh computations is the handling of race
conditions when data is indirectly written. For the loops with indirect incre-
ments (which means we incrementing some value through a mapping so there
are multiple iterations incrementing the same value), we use coloring to ensure
that no two threads will write to the same memory at the same time. We can use
a more sophisticated coloring approach for GPUs using CUDA as described in
[23], where we create and color mini-partitions such that no two mini-partitions
of the same color will update the same cell. This allows mini-partitions of the
same color to be processed by the blocks of one CUDA kernel. Within these
mini-partitions, each assigned to a different CUDA thread block, each thread
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will process a different element within these blocks, and thus is it necessary to
introduce a further level of coloring. For an edges to cells mapping, we color all
edges in a mini-partition so that no two edges with the same color update the
same cell. Such a coloring is shown in Fig. 1. Here, we first calculate the incre-
ment of every thread in the block, then we iterate through the colors and add
the increment to the cell with synchronization between each color. The benefit
of such an execution scheme is that there is a possibility that the data we loaded
from the global memory can be reused within a block, which can lead to a per-
formance increase due to fewer memory transactions. This technique is referred
to as hierarchical coloring in the paper.

Organizing parallelism

... iMPIboundary
'Owner-compute
5, Halo exchanges

Fig. 1. [llustration for hierarchical coloring on a computation on edges that write data
on the cells. The blocks are colored so that there is no neighboring blocks with the
same color and inside the blocks threads colored so that no two threads with the same
color write the same data.

With other methods such as OpenACC and OpenMP4 there is no method
for thread synchronization and data sharing in blocks, which is essential for
the hierarchical coloring technique described above. Therefore a global coloring
technique is used in case of these parallelization approaches. This technique is
similar to the thread coloring inside the mini-partitions, but works on the full
set. We assign colors to each thread in a way that no two edges of the same
color update the same cell and threads from the same color can run parallel in a
separate CUDA kernel with synchronization between the kernels. This however
excludes the possibility of the reuse of the data of the cells.

3.1 Airfoil

Airfoil is a benchmark application, representative of large industrial CFD
applications. It is a non-linear 2D inviscid airfoil code that uses an unstruc-
tured grid and a finite-volume discretisation to solve the 2D Euler equations
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using a scalar numerical dissipation. The algorithm iterates towards the steady
state solution, in each iteration using a control volume approach, meaning the
change in the mass of a cell is equal to the net flux along the four edges of
the cell, which requires indirect connections between cells and edges. Airfoil is
implemented using OP2; where two versions exists, one implemented with OP2’s
C/C++ API and the other using OP2’s Fortran API [21,24].

The application consists of five parallel loops: save_soln, adt_calc, res_calc,
bres_calc and update [22]. The save_soln loop iterates through cells and is
a simple loop accessing two arrays directly. It basically copies every four state
variables of cells from the first array to the second one. The adt_calc kernel
also iterates on cells and it computes the local area/timestep for every single
cell. For the computation it reads values from nodes indirectly and writes in
a direct way. There are some computationally expensive operations (such as
square roots) performed in this kernel. The res_calc loop is the most complex
loop with both indirect reads and writes; it iterates through edges, and computes
the flux through them. It is called 2000 times during the total execution of the
application and performs about 100 floating-point operations per mesh edge.
The bres_calc loop is similar to res_calc but computes the flux for boundary
edges. Finally update is a direct kernel that includes a global reduction which
computes a root mean square error over the cells and updates the state variables.

All test are executed with double precision on a mesh containing 2.8 million
cells and with SOA data layout described in [22].

3.2 Volna

Volna is a shallow water simulation capable of handling the complete life-cycle of
a tsunami (generation, propagation and run-up along the coast) [25]. The sim-
ulation algorithm works on unstructured triangular meshes and uses the finite
volume method. Volna is written in C/C++ and converted to use the OP2
library [21]. For Volna we examined the top three kernels where most time is
pent: computeFluxes, SpaceDiscretization and NumericalFluxes. In the
computeFluxes kernel there are indirect reads and direct writes, in Numer-
icalFluxes there are indirect reads with direct writes and a global reduction
for calculating the minimum timestep and in SpaceDiscretization there are
indirect reads and indirect increments.

Tests are executed in single precision, on a mesh containing 2.4 million tri-
angular cells, simulating a tsunami run-up to the US pacific coast.

3.3 BookLeaf

BookLeaf is a 2D unstructured mesh Lagrangian hydrodynamics application
from the UK Mini-App Consortium [26]. It uses a low order finite element
method with an arbitrary Lagrangian-Eulerian method. Bookleaf is written
entirely in Fortran 90 and has been ported to use the OP2 API and library.
Bookleaf has a large number of kernels with different access patterns such as
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indirect increments similar to increments inside res_calc in Airfoil. For test-
ing we used the SOD testcase with a 4 million element mesh. We examined
the top five kernels with the highest runtimes which are getq_christiensenl,
getq_christiensen_q, getacc_scatter, gather, getforce_visc. Among these
there is only one kernel (getacc_scatter) with indirect increments (where col-
oring is needed), the gather and getq_christiensenl have indirect reads and
direct writes as adt_calc in Airfoil, and the other two kernels have only direct
reads and writes.

4 Test Setup

For testing we used NVIDIA K40 and P100 GPUs in IBM S824L systems (both
systems has 2*10 cores) with Ubuntu 16.04. We used nvce in CUDA 9.0 and
clang 6.0.0 (r315446) for compiling CUDA with C/C++. For compiling CUDA
Fortran, we used PGI 17.4 compilers and IBM’s XL compiler 15.1.6 beta 12 for
Power systems. For OpenMP4, we tested clang version 4.0.0 (commit 6dec6f4
from the clang-ykt repo), and the XL compilers (13.1.6 beta 12). Finally, for
OpenACC, we used the PGI compiler version 17.4. The specific compiler versions
and flags are shown in Table 1.

Table 1. Compiler flags used on K40 GPU (for P100 cc60 and sm_60 is used)

Version Flags
PGI 17.4-0 -03 -ta=nvidia,cc35 -Mcuda=fastmath
-Minline=reshape (-acc for OpenACC)
XL 15.1.6 beta 12 | -O3 -qarch=pwr8 -qtune=pwr8 -ghot

13.1.6 beta 12 |-gxflag=nrcptpo -qinline=level=10
-Wx,-nvvm-compile-options=-ftz=1
-Wx,-nvvm-compile-options=-prec-div=0
-Wx,-nvvm-compile-options=-prec-sqrt=0
(-gsmp=omp -qthreaded -qoffload for OpenMP4)

clang for 4.0 -03 -ffast-math -fopenmp=libomp -Rpass-analysis

OpenMP4 -fopenmp-targets=nvptx64-nvidia-cuda
-fopenmp-nonaliased-maps -ffp-contract=fast

clang for 6.0 -03 —cuda-gpu-arch=sm_35 -ffast-math

CUDA

nvee 9.0.176 -03 -gencode arch=compute_35,code=sm_35

—use_fast_math

5 Benchmarking

5.1 Airfoil

The run times of different versions of Airfoil on the K40 and P100 GPUs are
shown in Fig.2. The hierarchical coloring is used in res_calc and bres_calc,
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Fig. 2. Measured run times of versions on the K40 and P100 GPU

because these have indirect increments and in the case of other kernels we don’t
need coloring because they have only direct updates. The versions using the
hierarchical coloring scheme have the best performance, due to the huge per-
formance gains in res_calc thanks to data reuse. The main differences between
versions with the same coloring strategy is in the run times of the res_calc and
adt_calc kernels, where most of the computation is performed. In the following,
we examine performance in detail on all five kernels.

save_soln: save_soln is a really simple kernel with only direct reads and writes.
It copies state variables of the cells, and thus is highly memory bounded. In
CUDA versions we used 200 blocks so each thread processes more than one cell
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to save on integer instructions. However this leads us to a for loop inside the
kernel, increasing control instructions, and slowing performance. In Table 2 the
runtimes of the save_soln kernel are shown: all versions have approximately
the same performance. The bandwidth values shown in the table are the useful
bandwidth from the users perspective, that is the sum of the moved simulation
data and mappings for the kernel divided by the run time of the kernel. In case
of C/C++, OpenMP4 and OpenACC versions have about 5-7% better run-
times and bandwidth than CUDA versions (even though the OpenMP4 version
compiled with clang on the K40 GPU is the only version that have only 75%
occupancy). If we run one thread per cell and delete the loop from the kernel
the performance of CUDA matches the performance of OpenMP4. The results
shows that in a simple case such as save_soln Fortran performs about as well
as the C/C++ versions, and the high level approaches such as OpenMP4 and
OpenACC can reach the performance of CUDA.

Table 2. Measured run time, bandwidth, register count and occupancy values in case
of save_soln

K40 P100

Run time | BW Reg. count |Run time |[BW Reg. count

(s) (GB/s) |(Occupancy) |(s) (GB/s) |(Occupancy)
nvce - CUDA 1.055 175 21 (100%) 0.362 509 24 (100%)
clang - CUDA 1.055 175 21 (100%) 0.362 509 24 (100%)
PGI - OpenACC |1.006 183 26 (100%) 0.351 526 29 (100%)
XL - OpenMP4 1.003 184 17 (100%) 0.357 517 19 (100%)
clang - OpenMP4 |0.982 188 35 (75%) 0.356 518 32 (100%)
PGI - F.CUDA 1.061 174 32 (100%) 0.368 502 32 (100%)
PGI - F_OpenACC|1.012 182 24 (100%) 0.349 528 29 (100%)
XL - F.CUDA 1.060 174 32 (100%) 0.362 502 32 (100%)
XL - F_.OpenMP4 |1.009 183 22 (100%) 0.352 524 24 (100%)

adt_calc: In case of adt_calc the loop iterates over cells and reads data indi-
rectly from the nodes while updating a single value per cell multiple times. The
operation contains some expensive square root calculations which introduce high
numbers of additional floating point operations and increase the register counts
for the kernel. For adt_calc the directive based approaches use significantly
higher numbers of registers than CUDA as shown in Table 3; this means lower
occupancy and about 30% worse performance on the K40 machine (on the P100
machine the difference is only about 10-20%). In case of OpenMP4 with the XL
compiler and OpenACC with the PGI compiler every time the value on the cell
is written we see a global store instruction instead of calculating the intermedi-
ate results in registers and only write the final results to the global memory as
other versions do. Another source of performance difference for OpenMP4 with
clang compiler comes from the lack of usage of texture caches for loading the
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read only data from the nodes. The cause of clang CUDA slightly outperform-
ing nvcc CUDA on the K40 machine is that it computes the expensive square
root operations with fewer floating point instructions, which leads to about 16%
less floating point instructions than nvcce (this also holds for the P100 card) for
adt_calc. The Fortran versions have high register counts, thus lower occupancy,
this is one of the key reasons for the 30% lower performance on the K40 GPU
(on the P100 GPU the difference is about 10-15%), also Fortran versions use
about 50% more integer instructions than C/C++ versions. The directive based
approaches perform within 20% of CUDA Fortran’s performance and the with
the PGI compiler the versions execute twice as many integer instructions than
other versions.

Table 3. Measured run time, bandwidth, register count and occupancy values in case
of adt_calc

K40 P100

Run time | BW Reg. count |Run time |[BW Reg. count

(s) (GB/s) |(Occupancy) |(s) (GB/s) |(Occupancy)
nvce - CUDA 2.810 148 40 (75%) 0.869 477 40 (75%)
clang - CUDA 2.756 151 36 (75%) | 0.867  |478 40 (75%)
PGI - OpenACC | 4.071 102 86 (31.25%) |0.978 424 96 (31.25%)
XL - OpenMP4 3.775 110 64 (50%) 0.984 421 72 (43.75%)
clang - OpenMP4 [4.108 101 88 (31.25%) |1.077 385 96 (31.25%)
PGI - F.CUDA 3.753 116 64 (50%) 0.955 434 56 (56.25%)
PGI - F_OpenACC |4.341 96 86 (31.25%) |1.053 394 96 (31.25%)
XL - F.CUDA 3.581 116 78 (37.5%) 1.001 415 88 (31.25%)
XL - F_.OpenMP4 |3.905 106 80 (37.5%) |1.090 380 86 (31.25%)

res_calc: In the case of res_calc we have indirect updates, therefore we need
coloring to avoid race conditions. The runtime and bandwidth results are shown
in Table4 for hierarchical coloring, and for global coloring in Table5. In this
kernel there is a lot of indirectly read and written data, therefore the runtime
can be significantly improved with the hierarchical coloring approach due to
data reuse. However, hierarchical coloring leads to higher register counts and
arithmetic instruction counts, but the impact of these factors are smaller than
the gain from better memory usage. As we saw it in adt_calc for CUDA versions
clang performs better than nvce in terms of integer and floating point instruction
counts (clang has 2-5% lower instruction counts on both GPUs). The OpenMP4
and OpenACC versions have 2-5% higher run time because of low occupancy
(caused by register pressure) and the OpenMP4 versions don’t use the texture
caches as much (or at all in case of clang) as other versions which lead to 3 times
as much global loads and high number of integer instructions. The results are
shown in Tables 6 and 7.
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Table 4. Measured run time, bandwidth, register count and occupancy values of
res_calc in case of hierarchical coloring

K40 P100

Run time | BW Reg. count |Run time |BW Reg. count

(s) (GB/s) |(Occupancy) |(s) (GB/s) |(Occupancy)
nvcee - CUDA  |13.118 67 53 (56.25%) |3.727 235 50 (56.25%)
clang - CUDA |12.537 70 56 (56.25%) |3.721 235 51 (56.25%)
PGI - F.CUDA |16.880 72 69 (43.75%) |4.425 198 78 (37.5%)
XL - F.CUDA |16.235 54 72 (43.75%) |3.968 221 70 (43.75%)

Table 5. Measured run time, bandwidth, register count and occupancy values of
res_calc in case of global coloring

K40 P100

Run time BW Reg. count |Run time |BW Reg. count

(s) (GB/s) |(Occupancy) |(s) (GB/s) |(Occupancy)
nvce - CUDA 21.133 41 46 (62.5%) |6.706 131 40 (56.25%)
clang - CUDA 21.083 42 46 (62.5%) |6.676 131 40 (56.25%)
PGI - OpenACC |21.472 41 72 (43.75%) |6.617 132 88 (31.25%)
XL - OpenMP4  [22.277 |39 71 (43.75%) | 7.200 122 80 (37.5%)
clang - OpenMP4 |22.245 39 96 (31.25%) |6.676 131 96 (31.25%)
PGI - F_.CUDA 22.700 38 87 (31.25%) |6.993 125 88 (31.25%)
PGI - F_OpenACC|22.992 38 87 (31.25%) |6.713 130 96 (31.25%)
XL - F.CUDA 22.236 39 88 (31.25%) | 6.806 129 94 (31.25%)
XL - F_.OpenMP4 |23.755 37 110 (25%) 7.229 121 104 (25%)

Table 6. Average number of instructions and transactions performed in res_calc kernel
with hierarchical coloring (absolute values for nvce and for other versions relative to
nvee) on k40 GPU

nvce | clang | Fortran PGI | Fortran XL
Integer instructions 191743K | 0.86 0.82 0.90
Floating point (64 bit) instructions | 88698K | 0.87 | 0.97 0.95
Control instructions 8955K | 0.90 | 0.64 0.26
Texture read transactions 761K |1.00 |16.91 8.88
Global read transactions 188K | 1.00 0.95 4.22

Fortran versions with hierarchical coloring have 23-30% worse performance
than the same C/C+++ versions, while with global coloring this difference is only
5% (15% on P100), but generally Fortran versions have high register counts and
lower occupancy, as well as higher numbers of integer instructions and global load
transactions. With Fortran the differences between the performance of CUDA
and directive based approaches are about the same as described above.
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Table 7. Average number of instructions and transactions performed in res_calc kernel
with global coloring (absolute values for nvec and for other versions relative to nvcc)

on K40 GPU
fp (64 bit) | Integer | Control | Texture read | Global read
transaction transaction
nvce - CUDA 93555K 94994K | 1439K | 2175K 334K
clang - CUDA 0.98 0.94 1.00 1.01 1.04
PGI - OpenACC 1.03 1.38 1.00 0.98 1.00
XL - OpenMP4 1.00 1.50 1.00 0.28 3.53
clang - OpenMP4 0.97 1.26 1.00 0.00 3.42
PGI - fortran CUDA 1.03 1.80 2.00 1.05 13.47
PGI - fortran OpenACC | 1.03 1.55 1.00 3.73 3.73
XL - fortran CUDA 1.00 2.20 2.00 3.74 3.73
XL - fortran OpenMP4 | 1.00 1.82 1.00 3.77 3.73

Table 8. Measured run time, bandwidth, register count and occupancy values in case
of bres_calc in case of hierarchical coloring

K40 P100

Run BW Reg. count Run BW Reg. count

Time (s) | (GB/s) (Occupancy) | Time (s) | (GB/s) (Occupancy)
nvce - CUDA 0.064 32 44 (62.5%) 0.032 64 48 (62.5%)
clang - CUDA | 0.064 32 44 (62.5%) | 0.032 64 46 (62.5%)
PGI - F_.CUDA | 0.082 25 53 (56.25%) | 0.029 71 72 (43.75%)
XL - F.CUDA |0.061 33 48 (62.5%) 0.035 59 64 (50%)

Table 9. Measured run time, bandwidth, register count and occupancy values in case
of bres_calc in case of global coloring

K40 P100

Run time BW Reg. count |Run time |[BW Reg. count

(s) (GB/s) |(Occupancy) |(s) (GB/s) |(Occupancy)
nvee - CUDA 0.072 28 44 (62.5%) |0.035 58 42 (62.5%)
clang - CUDA 0.071 29 38 (75%) 0.034 59 37 (75%)
PGI - OpenACC |0.072 28 71 (43.75%) | 0.034 60 56 (56.25%)
XL - OpenMP4 0.084 24 72 (43.75%) | 0.037 55 80 (37.5%)
clang - OpenMP4 |0.079 26 88 (31.25%) |0.039 52 94 (31.25%)
PGI - F_.CUDA 0.096 21 56 (56.25%) |0.038 54 72 (43.75%)
PGI - F_OpenACC|0.073 28 102 (25%) |0.036 57 88 (31.25%)
XL - F.CUDA 0.078 26 70 (43.75%) | 0.037 55 80 (37.5%)
XL - F.OpenMP4 |0.078 26 94 (31.25%) |0.035 57 80 (37.5%)
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bres_calc: The bres_calc kernel also has indirect reads and writes, so we need
coloring like with res_calc. In bres_calc the versions using hierarchical color-
ing performs equally good except the Fortran CUDA version compiled with the
PGI compiler as shown in Table8. The CUDA Fortran version with the PGI
compiler has 30% lower performance compared to other versions with hierar-
chical coloring. On the K40 GPU in res_calc CUDA PGI has high number
of load transactions but in this case the PGI version doesn’t use the texture
cache. However on the P100 GPU the version using the PGI compiler have same
amount of memory transactions as nvce, but executes less floating point opera-
tions. In case of global coloring on the C/C++ side OpenACC performs as good
as CUDA versions despite the lower occupancy as shown in Table9. However
the OpenMP4 versions have the same issue as in case of res_calc and get high
number of global read transactions while don’t use the texture cache, which
(with the lower occupancy due to high register counts) leads to the 20% lower
performance.

In this case Fortran versions have only 10% lower performance than C/C++
versions (except for CUDA with the PGI compiler which has the same issue as
with hierarchical coloring). The key reason for the difference is the lower occu-
pancy of the Fortran versions and the higher instruction and memory transac-
tion counts on both GPU. However in this case the directive based approaches
performing equally to CUDA Fortran with the XL compiler. Surprisingly for
bres_calc the Fortran OpenACC version has as low register count as the CUDA
versions on the C/C++ side.

Update: The CUDA Fortran versions have lower occupancy because of the high
register usage (the OpenACC version has a separate kernel for reduction thus
have lower register count for the bulk of the kernel and the OpenMP4 version
performs about the same as the C/C++ versions). All of the Fortran versions
ended up with about 4 times more texture read (except OpenMP4 which doesn’t
use texture cache, but has 12 times more global loads), global load and store
transactions than CUDA with nvcc. CUDA Fortran versions also have spilled
registers (which introduce about 10k—20k local load and store transactions).

Effect of tuning the number of registers per thread. In case of the
Airfoil application, the key performance limiter is the latency of accesses to
global memory. To achieve high bandwidth, we need many loads in flight. This
requires increasing the occupancy, which is limited by the number of registers
used in these kernels. To get better occupancy we can limit the maximum number
of registers per thread during the compilation. The register counts where the
occupancy decreases if we use one more register per thread are the same for both
K40 and P100 GPUs with 128 thread per block. For CUDA C/C++ versions
we restricted the register counts to 56, 48 and 40 in order to increase occupancy,
while for other versions we got higher register counts thus the restricted the
register usage to 80, 72 and 64. With hierarchical coloring the shared memory
required by the kernel could be the bottleneck for occupancy. In Figs.3 and 4
the runtime of limited versions relative to the original version in percentage are
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Fig. 4. Runtime of CUDA C versions with limited register per thread relative to original
versions measured on K40. Lower is better.

shown. The shared memory requirement of res_calc and bres_calc is roughly
4 KB per block which limits the occupancy at 68.8% on the K40, meaning that
we cannot reach better occupancy by further reducing the maximum register
count (reducing the count to 48 would lead to 62.5% and to 40 would lead to
75% occupancy). On the P100 GPU shared memory requirement maximizes the
occupancy at 94% thanks to more available shared memory. For most language-
compiler combinations, limiting the register count only affects the adt_calc,
res_calc and bres_calc kernels. In the OpenMP4 - clang, Fortran OpenMP4 -
XL, and Fortran CUDA - PGI combinations, update is also affected by the
limiting because of the high register count as shown in Table 10.

With the increased occupancy, we do get better run times in most cases (a
limit of 56in case of C/C++ and CUDA and 80 for other versions), except for
the clang OpenMP4 and CUDA with nvce. However further limitation of register
counts leads to performance degradation, with the exception of CUDA Fortran
code compiled with XL (which have the best performance with register count
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Table 10. Measured run time, bandwidth, register count and occupancy values in case
of update (for OpenACC versions the second register count belongs to the reduction
kernel, the run times are the sum of the two kernels)

K40 P100
Run time | BW Reg. count |Run time |[BW Reg. count
(s) (GB/s) |(Occupancy) |(s) (GB/s) |(Occupancy)
nvee - CUDA 4.478 175 31 (100%) 1.519 516 32 (100%)
clang - CUDA 4.481 175 32 (100%) |1.519 516 32 (100%)
PGI - OpenACC |4.416 177 36 (75%) 1.588 493 38 (75%)
18 (100%) 12 (100%)
XL - OpenMP4 4.497 174 32 (100%) 1.660 472 32 (100%)
clang - OpenMP4 |5.175 151 86 (31.25%) |1.719 456 86 (31.25%)
PGI - F.CUDA 4.598 170 79 (43.75%) |1.654 474 48 (62.5%)
PGI - F_OpenACC | 4.350 180 37 (75%) 1.583 495 40 (75%)
18 (100%) 16 (100%)
XL - F.CUDA 4.598 169 80 (37.5%) |1.566 500 80 (37.5%)
XL - F_.OpenMP4 |5.074 154 46 (62.5%) |1.712 458 40 (75%)

limited to 72). The reason for the loss of performance is the increasing number
of spilled registers, and the latency introduced by the usage of these registers.

The main differences lie in the run times of res_calc and adt_calc. For
res_calc on C/C++ side limiting the register count increases the performance by
2-5% in case of CUDA with hierarchical coloring, the OpenMP4 XL compiler and
the Fortran versions also get better run times by 1-2% but the OpenACCversion
performs the same, while the OpenMP4 clang versions get 2% higher run time
thus get higher total run time despite of the 5% performance increase in update
and adt_calc. For Fortran CUDA with XL and Fortran OpenACC with PGI
compiler reach 15% better performance in adt_calc for the first level limitation.
These results implies that for the most cases the increased occupancy gained
with the restriction of the register usage could increase performance significantly
(especially for kernels with low occupancy). In terms of instruction counts the
limitation of register usage leads to slightly increased integer instruction counts
in our cases.

5.2 Volna

For Volna the SpaceDiscretization kernel has a huge impact on runtime (half
of the time is spent in this kernel when using global coloring), and so the hier-
archical coloring leads to significant overall performance gain as shown on Fig. 5
(the measurements are in single precision because Volna requires only single pre-
cision to get correct results). However the presence of the local reads in com-
puteFluxes in case of clang CUDA leads to 20% performance loss in this kernel.
On other kernels we found the same tendencies as we observed on Airfoil, i.e.
clang reaches lower floating point and integer instruction counts compared to
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nvce. The directive based approaches have lower performance in the two most
time consuming kernels. The OpenMP4 with XL has about 50% lower perfor-
mance in SpaceDiscretization on the K40 GPU (the difference is 40% on the
P100 machine), while for the other kernels these approaches performed within
10% of CUDA’s performance and in some cases even better as shown in Table 11.
In terms of occupancy the OpenMP4 with XL reach about the same occupancy
in most cases as CUDA, while OpenMP4 clang and OpenACC have high register
counts as shown in Table 12. In terms of instruction counts in case of Volna the
directive based approaches performed the same as in Airfoil. The OpenMP4 ver-
sions don’t use texture caches (in case of XL the texture cache usage is about 15%
of nvee’s) and all directive based approach have higher global read transactions
and about 30% higher integer instruction counts.
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Table 11. Run times of the five most time consuming Volna kernels on the K40 GPU

nvcee clang |nvce clang clang XL PGI
CUDA CUDA CUDA CUDA OpenMP4 | OpenMP4 | OpenACC
global global
compute Fluxes 1.336 |1.693 |1.323 1.734 2.186 1.613 1.623
Space Discretization |1.758 |1.834 |4.150 4.134 3.973 6.261 4.762
Numerical Fluxes 0.431 |0.431 |0.507 0.511 0.549 0.528 0.496
Evolve Values RK2_2/0.312 |0.313 |0.326 0.325 0.416 0.300 0.302
Evolve Values RK2_1/0.371 |0.372 |0.366 0.365 0.648 0.383 0.338

Table 12. Register counts and occupancy of the five most time consuming Volna
kernels on the K40 GPU (for OpenACC the second register count belongs to the
reduction kernel)

nveec clang nvec clang clang XL PGI
CUDA CUDA CUDA CUDA OpenMP4 |OpenMP4 |OpenACC
global global
compute 56 60 22 22 93 78 7
Fluxes (56.25%) |(56.25%) |(100%) (100%) |(31.25%) (37.5%) (37.5%)
Space 32 36 28 25 64 30 30
Discretization [(100%) |(75%) (100%) (100%) |(50%) (100%) (100%)
Numerical 28 16 45 46 40 30 33 (75%)
Fluxes (100%) |(100%) (62.5%) [(62.5%) |(75%) (100%) 12
(100%)

Evolve Values |26 24 26 24 80 25 28
RK2_2 (100%) |(100%) (100%) (100%) |(37.5%) (100%) (100%)
Evolve Values |28 27 28 27 86 32 33
RK2.1 (100%) |(100%) (100%) (100%) |(31.25%) (100%) (75%)

5.3 BookLeaf

Considering that in BookLeaf most of the time is spent in direct kernels or
indirect read kernels, there is not as much difference between hierarchical and
global coloring versions in total run time, as shown in Fig. 6. However in case
of getacc_scatter, which is the only kernel with indirect increments among the
top five most time consuming kernels, the runtime of the hierarchical coloring
is at least 50% better than that of the global coloring versions. All versions
are within 7% of the performance of the best version which is Fortran CUDA
with hierarchical coloring compiled with the XL compiler on the K40, while on
the P100 machine the PGI compiler performance is about 10% lower than the
performance of the versions compiled with the XL compiler. As we saw in Airfoil,
the CUDA versions have high register count in the most cases, but OpenACC
and OpenMP4 reach better occupancy as shown in Table 14 which leads even
better runtime than in case of CUDA versions as shown in Table 13.
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Table 13. Run times of the five most time consuming BookLeaf kernel on K40 GPU

CUDA - |CUDA OpenACC |CUDA - |CUDA OpenMP4

PGI global - PGI XL global - XL
getq_christiensenl |0.937 0.937 1.033 0.979 0.987 0.866
getq_christiensen_q|0.933 0.934 0.975 0.888 0.889 0.751
getacc_scatter 0.457 0.450 0.917 0.497 0.785 0.769
gather 0.526 0.526 0.525 0.523 0.523 0.542
getforce_visc 0.493 0.493 0.484 0.421 0.421 0.390




40 G. D. Balogh et al.

Table 14. Register counts of the five most time consuming BookLeaf kernel on K40

GPU
CUDA - |CUDA OpenACC |CUDA - |CUDA OpenMP4
PGI global - PGI XL global - XL
getq_christiensenl |78 78 s 144 86 78
(37.5%) (37.5%) (37.5%) (18.75%) |(31.25%) (37.5%)
getq-_christiensen_q | 86 86 143 126 126 70
(31.25%) | (31.25%) (18.75%) | (25%) (25%) (43.75%)
getacc_scatter 75 79 28 96 54 23
(37.5%) (37.5%) (100%) (31.25%) |(56.25%) (100%)
gather 30 30 23 32 32 23
(100%) (100%) (100%) (100%) (100%) (100%)
getforce_visc 44 40 32 56 56 32
(62.5%) (75%) (100%) (56.25%) | (56.25%) (100%)

6 Conclusions

In this paper we have carried out a detailed study of some of the most popular
parallelization approaches, programming languages, and compilers used to pro-
gram GPUs, on a number of parallel loops coming from the domain of unstruc-
tured mesh computations. OpenMP4 and OpenACC are high level models using
directives on loops in order to utilize GPUs, while CUDA use a lower level Single
Instruction Multiple Threads model.

In this class of applications, a key common computational pattern is the
indirect incrementing of data: to avoid race conditions we explored the use of
coloring. The high level models must use global coloring of the iteration set to
ensure that no two threads writes the same value when running simultaneously,
whereas with lower-level models (CUDA) it is possible to apply a “two-level”
coloring approach permitting better data reuse.

In case of Fortran, the CUDA versions with global coloring and OpenACC
versions are within 10% of each other’s performance. However the OpenMP4
versions use higher number of registers per thread in some cases, leading to low
occupancy, as well as lower performance executing reductions. Directive based
approaches also use higher numbers of integer and control instructions.

On the C/C++ side, CUDA code compiled with the clang compiler performs
2-5% better in terms of runtime and in most cases can outperform nvce in the
optimization of computations thus perform 20% fewer integer and floating point
instructions compared to nvcc. The higher level approaches currently using more
registers (even for simple kernels in case of OpenMP4 with the clang compiler)
which leads to lower occupancy that lowers the performance. Also these versions
now executing 30% more integer instructions than CUDA, but in some cases
they performs within 5% of nvce’s performance. Since the support for OpenMP4
is relatively new there are still some issues that lowers performance, such as
the more infrequent use of the texture cache and the lower performance when
performing reductions. Also the OpenACC and OpenMP4 with the XL compiler
currently have problems with computations with multiple increment of the same
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data as in adt_calc where these versions write back all intermediate result to the
global memory introducing the gap between the their performance and CUDA’s.

We have also shown that using CUDA one can handle race conditions more
efficiently thanks to block-level synchronization; this in turn enables an execu-
tion approach with much higher data reuse. Kernels with indirect increments
using hierarchical coloring have significantly better performance than the ver-
sions using global coloring; in case of Airfoil hierarchical coloring leads to about
35% better overall performance, for Volna the difference is about 50% and with
BookLeaf about 3%.

In summary, we have demonstrated that support for C is only slightly better
than for Fortran, for all possible combinations, with a 3-10% performance gap.
Our work is among the first ones comparatively evaluating the clang CUDA
compiler and IBM’s XL compilers; clang’s CUDA support is showing great per-
formance already, often outperforming nvce. Even though the XL compilers are
only about one year old, they are already showing competitive performance and
good stability - on the OpenMP 4 side often outperforming clang’s OpenMP
4 and PGI’'s OpenACC. Directive based approaches demonstrate good perfor-
mance on simple computational loops, but struggle with more complex kernels
due to increased register pressure and instruction counts - lagging behind CUDA
on average by 5-15%, but in the worst cases by up to 50%. It still shows that
OpenMP 4 GPU support isn’t yet as mature as OpenACC, nevertheless, they
are within 5-10%. Our results also demonstrate how CUDA allows for more flex-
ibility in applying optimizations that are currently not possible with OpenACC
or OpenMP 4.
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