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Abstract. The design, specification, and correct implementation of an archi-
tectural design are after the task of requirements specification the perhaps most
important design decisions, when building large software or software based
systems. Architectures are responsible for software quality, for a number of
quality attributes such as maintainability, portability, changeability, reusability
but also reliability, security, and safety. Therefore, the design of architectures is
a key issue in system and software development. For highly distributed, net-
worked systems and for cyber-physical systems we need a design concept which
supports composition, parallelism, and concurrency and finally real time but
keeps all of the general advantages of object-oriented programming. We
describe an approach to specify and implement systems along the lines of some
of the established concepts of object-orientation – such as inheritance and class
instantiation. This leads to an approach that nevertheless provides an execution
model which is parallel and concurrent in nature and supports real time and
modular composition. This way, it lays the foundation of a software and systems
engineering style where classical object-orientation can be extended to
cyber-physical systems in straightforward way.

Keywords: Specification � Design � Contracts � Assumptions � Commitments
System specification � Interface � Architecture

1 Introduction

Object-oriented programming is currently the perhaps most widely used programming
style in software development. It combines a number of useful concepts in program-
ming in a way that, in particular, the development of large software systems is
supported by it. Nevertheless, object-oriented programming shows a number of
deficiencies when dealing with distributed cyber-physical systems. First of all, in
classical object-oriented programming the execution model is inherently sequential. All
attempts to extend or generalize it to parallel execution models without significant
changes in the underlying execution model make the understanding and design of
object-oriented programs utterly complicated. Secondly, the composition of object-
oriented programs shows some weaknesses and open issues. This is related to the
recognized lack of a clear notion of component, a lack of parallel composition, and the
lack of a parallel execution model as needed usually for the development of
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cyber-physical systems as we see them nearly everywhere nowadays. A further issue is
time and probability which are first class citizens in cyber-physical applications.

When looking at software families and product lines, architecture becomes even
more significant, because it determines the possibilities and options of variability and
reusability (see [8]). With this in mind, it is a key issue to have an appropriate
methodology with a calculus for the design of architectures. This includes a number of
ingredients.

• A key concept for subsystems, also called components, as building blocks of
architectures: this means that we have to determine what the concept of a subsystem
is and, in particular, what the concept of an interface and interface behavior is.
Interfaces are the most significant concept for architectures. Subsystems are com-
posed and connected via their interfaces.

• The second ingredient is composition. We have to be able to compose systems by
composition via their interfaces. Composition has to reflect parallel execution.

• This requires that interfaces of subsystems can be structured into a family of
sub-interfaces, which are then the basis for the composition of subsystems, more
precisely the composition of sub-interfaces of subsystems with other sub-interfaces
of subsystems. For this we need a syntactic notion and a notion of behavior
interface.

• In addition, we are interested in options to specify properties of interface behaviors
in detail.

• Moreover, we have to be able to deal with interface types and subsystem types.
These concepts allow us to introduce a notion of subsystems and their types, called
system classes as in object-oriented programs, and these can also be used to
introduce types of interfaces, properties of assumptions of the interfaces of sub-
systems which we compose.

• As a result, we also talk about the concept of refinement of systems and their
interfaces as a basis of inheritance.

A key is the ability to specify properties of subsystems in terms of their interfaces
and to compose interface specifications in a modular way.

In the following, we introduce a logical calculus to deal with interfaces and show
how we can use it to define subsystems via properties of their interface assumptions
also be able to deal with architectural patterns such as layered architectures.

2 A Formal Model of Interfaces

The key to software and system design is interface specifications where we do not only
describe syntactic interfaces but also specify interface behavior.

2.1 Data Models

Systems exchange messages. Messages are exchanged between systems and their
operational context and also between subsystems. Systems have states. States are
composed of attributes. In principle, we can therefore work out the data model for a
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service-oriented architecture which consists, just as an object-orientation, of all the
attributes which are part of the local states of the subsystems which consists of the
description of the data which are communicated over the interfaces between the
subsystems.

2.2 Syntactic Interfaces and Interface Behavior

We choose a very general notion of interface where the key is the concept of a channel.
A channel is a directed typed communication line on which data of the specified type
are transmitted. As part of an interface, a channel is a possibility to provide input or
output to a system. Therefore, we speak about input channels and output channels.

Syntactic Interfaces
An interface defines the way a system interacts with its context. Syntactically an
interface is specified by a set C of channels where each channel has a data type
assigned that defines the set of messages, events, or signals that are transmitted over
that channel.

In this section, we briefly introduce syntactic and semantic notions of discrete
models of systems and their interfaces. This theoretical framework is in line with [1]
called the FOCUS approach. Systems own input and output channels over which streams
of messages are exchanged. In the following we denote the universe of all messages by
IM.

Let I be a syntactic interface of typed input channels and O be a syntactic interface
of typed output channels that characterize the syntactic interface of a system. (I▶O)
denotes this syntactic interface. Figure 1 shows system F with its syntactic interface in
a graphical representation as a data flow node.

System Interaction: Timed Data Streams
Let IN denote the natural numbers (including 0) and INþ denote the strictly positive
natural numbers.

The system model is based on the concept of a global clock. The system model can
be described as time synchronous and message asynchronous. In the following, we
work with streams that include discrete timing information. Such streams represent
histories of communications of data messages transmitted within a time frame. By this
model of discrete time, time is structured into an infinite sequence of finite time
intervals of equal length. We use the natural numbers INþ to number the time intervals.

x1: S1

xn: Sn

y1: T1

ym: Tm
F

M M

Fig. 1. Graphical representation of a system F as a data flow node with its syntactic interface
consisting of the input channels x1, …, xn of types S1, …, Sn and the output channels y1, …, ym
of types T1, …, Tm, resp.
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Definition. Timed Streams
Given a message set M � IM of data elements of type T we represent a timed stream

s of type T by a function

s : INþ ! M�

In a timed stream s a sequence of messages s(t) is given for each time interval
t 2 INþ ; s(t) ¼ e indicates that in time interval t no message is communicated. By
(M*)∞ we denote the set of timed streams. ❑

Throughout this paper, we work with a couple of basic operators and notations for
streams over the message set that are shortly summarized as follows:

〈 〉 empty sequence or empty finite stream,
〈m〉 one-element sequence containing m as its only element,
a^s concatenation of the finite sequence with the finite or infinite sequence s,
s(t) element in the t-th time interval of the stream s,
s#t prefix of length t 2 IN of the stream s (which corresponds to a sequence of

message in t time intervals),
s"t the stream s without its first t time intervals,
#s number of messages in stream s,
M#s number of copies of messages of stream s that are in a given set M � IM (for

{m}#x we also write m#x),
�x denotes the result x(1)^x(2)^ … of concatenating the sequences x(1), x(2), x(3),

… resulting in a finite stream in M* or an infinite stream in INþ ! Mð Þ:

A channel history for a set C of typed channels (which is a set of typed identifiers)
assigns to each channel c 2 C a timed stream of messages communicated over that
channel.

Let C be a set of typed channels; a (total) channel history x is a mapping

x : C ! ðINþ ! M�Þ

such that x(c) is a timed stream of type Type(c) for each channel c 2 C. We denote the

set of all channel histories for the channel set C by C
!
. A finite (partial) channel history

is a mapping

x : C ! ð 1; . . .; tf g ! M�Þ

with some number t 2 IN such that x(c) respects the channel type of c. ❑

As for streams, for every history z 2 C
!

and every time t 2 IN the expression z#t
denotes the partial history (the communication on the channels in the first t time
intervals) of z until time t. z#t yields a finite history for each of the channels in C
represented by a mapping of the type C ! ð 1; . . .; tf g ! IM�Þ: z#0 denotes the history
with the empty sequence associated with all its channels.
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Interface Behavior

For a given syntactic interface (I▶O) a relation that relates the input histories in l
!

with

output histories in O
!

defines its behavior. It is called system interface behavior (see
[10]). We represent the relation by a set-valued function. In the following we write ℘
(M) for the power set over M.

Definition. Interface Behavior and Causal Interface Behavior
A function

F: l
!! }ðO!Þ

is called an I/O-behavior; F is called causal in input x if (for all times t 2 IN and input

histories x, z 2 l
!
):

x#t = z#t) y#t: y 2 F(x)f g ¼ y#t: y 2 F(z)f g

F is called strongly causal if (for all times t 2 IN and input histories x, z 2 l
!
):

x#t = z#t) y#t + 1: y 2 F(x)f g ¼ y#t + 1: y 2 F(z)f g ❑

Causality indicates consistent time flow between input and output histories (for an
extended discussion of causality see [1]).

Notation: Extension of predicates on infinite histories to finite ones. Throughout the
paper, we use the following notation: Given a predicate

p: C
!! IB

on infinite histories, we extend it also to finite histories x of length t by the definition:

pðxÞ � 9 x0 2 C
!
; t 2 IN : x ¼ x0#t ^ pðx0Þ ❑

In other words, assertion p(x) holds for a finite history x if there exists some infinite
history x′ for which predicate p holds and which is identical to x till time t. This
notation is easily extended to n-ary predicates on histories.

Interface Assertions
The interface behavior of systems can be specified in a descriptive logical style using
interface assertions.

Definition. Interface Assertion
Given a syntactic interface (I▶O) with a set I of typed input channels and a set O of

typed output channels, an interface assertion is a formula in predicate logic with
channel identifiers from I and O as free logical variables which denote streams of the
respective types. ❑
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We specify the behavior FS for a system with name S with syntactic interface (I▶O)
and an interface assertion Q by a scheme:

spec S 
in  I
out  O 

Q 

Q is an assertion containing the input and the output channels as free variables for

channels. We also write q(x, y) with x 2 l
!

and y 2 O
!

for interface assertions. This is
only another way to represent interface assertions which is equivalent to the formula
Q x x1ð Þ=x1; . . .x xnð Þ=xn½ Þ; y y1ð Þ=y1; . . .y ymð Þ=ym�.
Definition. Meaning of Specifications and Interface Assertions

An interface behavior F fulfills the specification S with interface assertion q(x, y) if

8x 2 l
!
; y 2 O

!
: y 2 F xð Þ ) q x; yð Þ

S and q(x, y) are called (strongly) realizable if there exists a “realization” which is a

strongly causal function f: l
!! O

!
that fulfills S. ❑

The purpose of a specification and an interface assertion is to specify systems.

Composing Interfaces
Finally, we describe how to compose systems from subsystems described by their
interface behavior. Syntactic interfaces (Ik▶Ok) with k = 1, 2 are called composable, if
their channel types are consistent and O1 \O2 ¼ £; I1 \O1 ¼ £; I2 \O2 ¼ £:

Definition. Composition of Systems – Glass Box View
Given for k = 1, 2 composable interface behaviors Fk : (Ik▶Ok) with composable

syntactic interfaces; let I = I1\O2 [ I2\O1, O = O1 [ O2 and C = I1 [ I2 [ O1 [ O2;
we define the composition (F1 � F2) : (I▶O) by

ðF1 � F2ÞðxÞ ¼
�
y 2 O

!
: 9 z 2 C

!
: x = z I ^ y = zj jO ^ zjO1 2 F1ðzjI1Þ ^ zjO2

2 F2ðzjI2Þ
�

where | denotes the usual restriction operator for mappings. ✠
In the glass box view the internal channels and their valuations are visible. In the

black box view the internal channels are hidden. From the glass box view we can
derive the black box view of composition.

Definition. Composition of Systems – Black Box View – Hiding internal channels
Given two composable interface behaviors Fk : (Ik▶Ok) with k = 1, 2; let I = I1\O2

[ I2\O1 and O = O1\I2 [ O2\I1 and C = I1 [ I2 [ O1 [ O2
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ðF1 � F2Þ xð Þ ¼ fy 2 O
!

: 9 z 2 C
!

: y ¼ zjO ^ z 2 ðF1 � F2Þ xð Þg

Shared channels in (I1 \ O2) [ (I2 \ O1) are hidden by this composition. ✠

Black box composition is commutative and associative as long as we compose only
systems with disjoint sets of input channels.

A specification approach is called modular if specifications of composed systems
can be constructed from the specification of their components. The property of mod-
ularity of composition of two causal interface specifications Fk, k = 1, 2, where at least
one is strongly causal is as follows. Given system specifications by specifying asser-
tions Pk:

spec F1

in  I1
out  O1

P1

spec F2

in  I2
out  O2

P2

We obtain the specification of the composed system F1⊗F2 as a result of the
composition of the interface specification F1 and F2 as illustrated in Fig. 3: L1 [ L2

denotes the set of shared channels.

spec F1⊗F2

in    I1\L2 ∪ I2\L1

out O1\L1 ∪ O2\L2

∃ L1, L2:  P1 ∧ P2

The specifying assertion of F1⊗F2 is composed in a modular way from the spec-
ifying assertions of its components by logical conjunction and existential quantification
over streams denoting internal channels (Fig. 2).

I2\L1

O2\L2L 1

L 2O1\L1

I1\L2 F1 F2

Fig. 2. Composition F1⊗F2
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In a composed system, the internal channels are used for internal communication.
The composition of strongly causal behaviors yields strongly causal behaviors. The

set of systems together with the introduced composition operators form an algebra. For
properties of the resulting algebra, we refer to [1, 4]. Since the black box view hides
internal communication over shared channels, the black box view provides an
abstraction of the glass box composition.

Note that this form of composition works also for instances. Then, however, often it
is helpful to use not channels identified by instance identifiers but to connect the
channels of classes and to use the instance identifiers to address instances.

3 Specifying Contracts

Contracts are used in architectures (see [7, 9, 11–16]). In the following we show how to
specify contracts.

3.1 Interface Assertions for Assumption/Commitment Contracts

Specifications in terms of assumptions and commitments for a system S with syntactic

interface (I▶O) and with input histories x 2 l
!

and output histories y 2 O
!

are syn-
tactically expressed by interface assertions asu(x, y) and cmt(x, y). We write
A/C-contracts by the following specification pattern:

assume : asu x; yð Þ
commit : cmt x; yð Þ

with interface assertions asu(x, y) and cmt(x, y). In the following section we explain
why, in general, in the assumption not only the input history occurs but also the output
history y. We interpret this specification pattern as follows:

• Contracts as Context Constraints: the assumption asu(x, y) is a specifying assertion
for the context with syntactic interface (I▶O)

Understanding the A/C-contract pattern as context constraints leads to the following
meaning: if the input x to the system generated by the context on its input y, which is the
system output, fulfills the interface assertion given by the assumption asu(x, y) then the
system fulfills the promised assertion cmt(x, y). This leads to the specification:

asu x; yð Þ ) cmt x; yð Þ

Assertion asu(x, y) is a specification indicating which inputs x are permitted to be
generated by context E fulfilling the assumption given the output history y.

3.2 Contracts in Architectures

In this section, we discuss methodological applications of the A/C-pattern in system
development with emphasis on system architecture design. We study contracts for
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subsystems and their role in designing and reasoning about architectures and their
relationship to the A/C-contract of the composite system. This provides a basis for a
method for supporting steps in architecture design.

Architectures are blue prints to build and structure systems. Architectures contain
descriptions of subsystems and specify how to compose the subsystems. In other
words, architectures are described by the sets of subsystems where the subsystems are
described by their syntactic interfaces and their interface behavior. Shared channels
describe internal communication between the subsystems.

In the following we assume that each system used in an architecture as a component
has a unique identifier k.

4 On Systems, Their Interfaces and Properties

In the following, we use the term system in a specific way. We address discrete
systems, more precisely discrete real-time system models with input and output. For us,
a system is an entity that shows some specific behavior by interacting with its oper-
ational context. A system has a boundary, which determines what is inside and what is
outside the system. Inside the system there is an encapsulated internal structure. The set
of actions and events that may occur in the interaction of the system with its operational
context at its border determines the syntactic (“static”) interface of the system. At its
interface, a system shows some interface behavior.

From the behavioral point of view, we distinguish between

• the syntactic interface of a system that describes which actions may be executed at
the interface and which kind of information is exchanged by these actions across the
system border,

• the semantic interface (also called interface behavior) which describes the behavior
evolving over the system border in terms of the specific information exchanged in
the process of interaction by actions according to the syntactic interface.

F

F3

x1 : T1

y6: T’6

x4 : T4

x3 : T3x2 : T2

x6 : T6

y3 : T’3

y4 : T’4

x8 : T8

y8 : T’8 F2
F1

y7 : T’7 x7 : T7

x5 : T5 y5 : T’5

Fig. 3. Architecture of a system with interface behavior F = F1⊗F2⊗F3
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For specifying predicates there are further properties that we expect. We require
that system behaviors fulfill properties such as causality and realizability. However, not
all interface assertions guarantee these properties (see [3, 5]).

4.1 About Architecture

Architecture of systems and also of software systems is about the structuring of sys-
tems. There are many different aspects of structuring of systems and therefore of
architecture. Examples are functional architectures which structure systems in terms of
their offered services (see [2]) – also called functional features. We speak of a func-
tional architecture or of a service feature architecture (see [6]). Another very basic
concept of architecture is the decomposition of a larger system into a number of
subsystems that are composed and provide this way the behavior of the overall system.
We speak of a sub-system architecture.

This shows that architecture is the structuring of a system into smaller elements, a
description how these elements are connected and behave in relationship to each other.
A key concept of architecture is the notion of element and interface. An interface shows
at the border of a system how the system interacts with its operational context.

4.2 On the Essence of Architecture: Architecture Design is Architecture
Specification

Architecture is not what is represented and finally implemented in code but a
description of architectural structures and rules which are required by the design for
implementations leading to code that is correct w.r.t. the specified architecture. The
rules, structure, and therefore the principles of architecture usually cannot be reengi-
neered from the code but provide an additional design frame that is documented in the
architecture specification. An architecture design is the specification of the system’s
structures, rules, and principles.

Implemented systems realize architectures, more precisely architecture designs
described by specifications. Architectures define the overall structure of systems.
Consequently, architectures have to be specified. Designs of sub-system architectures
are specifications of the sets of subsystems, relevant properties of their interfaces
including their interface behavior, and the way the interfaces are connected. This
defines the way the subsystems are composed following the design of an architecture in
terms of their interfaces that follow the rules and principles of the architectural design.

4.3 Logical Sub-system Architectures

Logical sub-system architectures including service-oriented architectures are execution
platform independent. They consist of the following ingredients

• A set of elements called sub-systems, each equipped with a set of interfaces
• A structure connecting these interfaces

This shows that a key issue in architectural design is the specification of interfaces
including their interface behavior and the description of the architectural structure.
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5 Interfaces and Their Composition

An interface is structured into a syntactic part, which describes the set of available
activities on the system border, separated in activities of the context (which are input to
the system) and activities of the system (which are output of the system). The syntactic
part is the basis for the behavior part which describes the logic of behavior.

A system has a syntactic interface and an interface behavior. The interface can be
formalized as we shown by sets of input and output channels and the relationship of
their valuations. The interface of a system can be structured into a set of sub-interfaces
that may serve as connectors to other sub-systems.

Two interfaces that fit syntactically together can be connected by a composition of
the two systems over their interfaces, if their syntactic interfaces fit together (formally,
what is an input channel of one of the interfaces is an output channel of the other
system and vice versa).

A system has an interface the behavior of which is specified by an interface
assertion L. If we want to use the system in context with a number of other systems we
partition the syntactic interface into a number of sub-interfaces. Each sub-interface can
be specified by an assertion L’ for which we require

L ) L0

In the following, we show how to deal with export, import and assumption/
commitment interfaces.

5.1 Export Interfaces

We consider the following example illustrated by Fig. 4. We specify subsystem K1 as
follows: y1, z2: {req}, x1, z1: D

L1 � ½#z1 ¼ min # x1; #z2ð Þ ^ 8 d 2 D : d#z1	 d# x1 ^ y1 ¼ z2�

We specify K2 in analogy as follows: z2, x2: {req}, z1, y2 : D

L2 � ½#y2 ¼ min # z1;# x2ð Þ ^ 8 d 2 D : d# y2	 d# z1 ^ z2 ¼ x2�

Composing the two components results into the following interface assertions

#z1 ¼ min #x1;#z2ð Þ ^ 8 d 2 D : d#z1	 d#x2
^#y2 ¼ min #z1;# x2ð Þ ^ 8 d 2 D : d#y2	 d#z1 ^ y1 ¼ z2 ^ z2 ¼ x2

Hiding z1 and z2 by existential quantification we get

#y2 ¼ min #x1;#x2ð Þ ^ 8 d : d#y2	 d#x2 ^ y1 ¼ x2

In this special case, the composed system fulfills the same assertion as the two
sub-systems.
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For the hidden channels, we get the assertions

z2 ¼ y1 ^ z2 ¼ x2

and

#y2 ¼ min #z1;#x2ð Þ ^ 8 d : d#y2	 d#x1	 d#x1 ^#z1 ¼ min #x1;#z2ð Þ

This assertion characterizes the properties of the internal channels of this little
architecture.

However, we may also specify an assertion for the internal channels:

9 x1; y1; x2; y2 : #z1 ¼ min #x1;#z2ð Þ ^ 8 d 2 D : d#z1	 d#x2
^#y2 ¼ min #z1;#x2ð Þ ^ 8 d 2 D : d#y2	 d#z1 ^ y1 ¼ z2 ^ z2 ¼ x2

which can be simplified to

9 x1; y2 : #z1 ¼ min #x1;#z2ð Þ ^ 8 d 2 D : d#z1	 d#z2
^#y2 ¼ min #z1;#z2ð Þ ^ 8 d 2 D : d#y2	 d#z1

This condition is an assertion for the internal channels z1 and z2.
We call interfaces that describe the service offered of a system export interfaces.

They describe the export a service without any assumptions about properties of their
context.

5.2 Import Interfaces

If a component requires a certain interface to be able to fulfill its task this is expressed
by an import interface. An import interface is a specification of a requested interface.
Given a system with interface assertion G and the input assumption A we compose it
with a system with interface B if the composition condition holds

B ) A

A is called assumption. We get the interface specification of the composed
component

K1

y1

x1

z2

z1
K2

z2

z1

x2

y2

K1

y1

x1

z2

z1
K2

x2

y2

Fig. 4. Example of two sub-systems and their composition
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ðA ) GÞ ^ B

which is equivalent to

G ^ B

Example: Consider the component K1 in Fig. 4 with the specification as before and
the additional assumption

Asu1 � 8 t : #z2#t	ð#z1#tÞþ 1

For the second component, we add the assertion Asu1 to the specifying assertion of
sub-system K2 leading to interface assertion

L20 ¼ ðL2 ^ Asu1Þ

We get obviously

L20 ) Asu1

Only if component K2 with specification L2′ fulfills the assumption Asu1 we may
compose the components and get the assertion

ðL1 ^ L20Þ � ðL1 ^ L2 ^ Asu1Þ

We get assumptions as additional condition for the internal channels. To fulfill
these assumptions, we have to add the following assumption to K2 – note z2 = y1 ^
z2 = x2

8 t : #x2#t	ð#z1#tÞþ 1

This demonstrates how assumptions are part of specifications and how they have to
be distributed.

5.3 Assumption/Commitment Specifications

We may also work with interfaces that provide assumptions and commitments at the
same time. Consider interface specifications with interface assertions L1 and L2 where

L1 ) ðA1 ) C1Þ L2 ) ðA2 ) C2Þ

and interface specifications with an assumption A1 and a commitment C1 and with
assumption A2 and commitment C2 such that

ðA1 ) C1Þ ) A2

ðA2 ) C2Þ ) A1
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In other words, the specifications fulfil mutually the resp. assumptions. Then the
interface assertion

L1 ^ L2

implies assumption A1 as well as assumption A2.

Example: We introduce an additional assumption Asu2 and commitment Com2 for the
second component

Asu2 � 8 t : #ðz1#tÞ	#ðz2#tÞ
Com2 � 8 t : #ðz1#tÞ	#ðz2#tÞþ 1

and a commitment for the first component

Com1 � 8 t : #z1#t	#z2#t

and add Asu2 to L1 and Asu1 to L2:

L10 � Asu2 ^ L1 L20 � Asu1 ^ L2

We get obviously

L10 ) Asu2 L20 ) Asu1

and by composition a component that fulfills the specification

L10 ^ L20

This demonstrates how we compose systems specified by assumptions and com-
mitments. ❑

We get a logical calculus of interface assertions for the composition of systems.

5.4 Using Different Types of Interfaces Side by Side

We distinguish the following three types of interfaces:

• export interfaces: they describe services offered by the system to its outside world
• import interfaces: they describe services required by the system from its outside

world
• assumption/commitment interfaces: they describe assumptions about the behavior of

the outside world and the commitment of the system under the condition that the
assumption holds.

We consider the following cases:

• Connecting export and import interfaces: Given an export interface described by
interface assertion P and an import interface described by interface assertion Q
which fit together syntactically we speak of a sound connection if
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P ) Q

• Connecting two export interfaces: Given two export interfaces with interface
assertions A1 and A2 that fit together syntactically then we speak of a sound
connection annotated by (see Fig. 6)

A1 ^ A2

• Connecting two assumption/commitment interfaces: Given two assumption/
commitment interfaces with assumptions A1 and A2 and commitment P1 and P2
that fit together syntactically and where if

ðA2 ) P2Þ ) A1

ðA1 ) P1Þ ) A2

We speak of a sound connection; the connection is annotated by P1 ^ P2.
The case of connecting an export interface with an assumption/commitment

interface is considered as a special case of connecting two assumption/commitment
interfaces where one assumption is true.

Similarly, the composition of an export interface with an input interface can be
understood as a special case where one assumption is true (for the export interface) and
one commitment is true (for import interface). This shows that the general case is the
assumption of two assumption/commitment interfaces that cover all other cases as
special cases.

A system has an interface that can be structured into a family of sub-interfaces each
of which is determined by an interface specification. Now we show how these
sub-interfaces can be combined into a comprehensive interface. Let us consider a
simple example of a system with three sub-interfaces S1, S2, and S3 as described in
Fig. 5.

The interface specification of a sub-system defines the contract for the subsystem
between its implementer and the architect that uses the subsystem. Each implemented
subsystem may fulfill many contracts. The sub-interfaces shown in Fig. 4 describe

Fig. 5. System S with 3 sub-interfaces of different types
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three different types of interfaces. S1 is the assertion specifying a service, offered by the
system (called provided service). S3 is a service that is structured into an assumption A3

and a commitment C3. S2 is an interface assertion that specifies a service which is
assumed to be provided called required service.

The three sub-services are put together into the over-service specified by the fol-
lowing interface specification in terms of interface assertions. This finally leads to a
complete overall interface specification for the system S.

ðS2 ^ A3Þ ) ðC3 ^ S1Þ

Here the assertion S2 ^ A3 defines an assumption while the assertion defines a
commitment C3 ^ S1.

Channels allow us, in addition, the structuring of interfaces. Interfaces consist of
channels where each channel has a data type indicating which data are communicated.

An important aspect in structuring interfaces is the separation of the set of channels
of the interface into input and output channels. This has semantic consequences. We
require causality which is a notion similar to monotonicity in a domain theoretic
approach. Causality for an interface consisting of a set of input channels and output
channels where the input and output are timed streams indicating the asymmetry
between input and output. Causality basically says that the output produced till time t
does only depend on input received before time t. The reverse does not hold. Input
generated at time t can be arbitrary and does not have to depend on the output produced
till time t.

6 Composition: Interfaces in Architectures

Given specifications of S1 and S2 by interface assertions A1 and A2 we define the
interaction assertion

A1 ^ A2

which specifies the interaction between the subsystems that are connected via their
interfaces.

t

Syst

Sys

em S1

A

em S2

A1
2

Fig. 6. Connecting subsystem S1 with subsystem S2 via their interfaces
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Another specification may give only the interaction assertion Q which describes the
result A1 ^ A2.

We may introduce a layering between subsystems, if we specify only one interface,
by assertion P and do only specify the behavior of the other one by assertion A. For
instance, for a layer in a layered architecture the interface looks as shown in Fig. 7.

6.1 Interaction Assertions

Given a set of systems with interface assertions we may compose them into an
architecture, provided the semantic interfaces fit together. We call the architecture
well-formed, if all assumptions are implied by the interface assertions the interfaces
they are composed with.

For each pair of connected interfaces, we speak of a connector, we derive an
interaction assertion which describes the properties of the data streams that are com-
municated over this connector. An example of an interaction assertion is given at the
end of Sect. 5.1 specifying the properties of the internal channels z1 and z2 of the
composition shown in Fig. 4.

6.2 Layered Architectures

Layered architectures have many advantages. In many applications, therefore layered
architectures are applied. In a layered architecture as shown in Fig. 8 the key idea is
that system S2 offers some service that does not include any assumptions about the way
it is used. Therefore, we describe the service by some interface assertion A2. The
interface P of system S1 can be arbitrary. However, the specification of the interface Q
of S1 reads as follows

Q ¼ ½A1 ) P�

and P is an interface specification for the reverse interface, then the interface can only
be used in a meaningful way if the assumption is fulfilled by system S1. Note that S2
does not rely in any way on the behavior of S1 – it is supposed only to offer export
interface A.

Figure 8 shows the composition of layer S2 providing service A1 with system S1
requiring this service. We get

System S

A

P

Fig. 7. Interface between two layers
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ðA1 ) PÞ ^ ðA2 ) A1Þ

which hiding interface A1 results in

A2 ) P

If we replace the component S2 with the interface assertion A2 by the component S′
with interface assertion A2 ) B where

B ) A1

then the arguments work as well. S2′ is a refinement of S2 and we get for the
composition

ðA2 ) BÞ ^ ðB ) A1Þ

which results the hiding interface B again into

A2 ) P

The sub-systems of a layered architecture are partitioned in layers. The set of layers
is in a linear order and sub-systems of layer k are only connected to layer k − 1 or
k + 1.

However, this definition is not sufficient. The key idea of a layered architecture is
that layer k offers services to layer k + 1 but does not assume anything about layer
k + 1. Layer k may use services offered by layer k − 1 but has to know nothing more
about layer k − 1. In other terms, a layer imports a number of services (from layer
k − 1) and exports a number of services (for layer k + 1). The only relationship
between the layers is by the services that are exported to the next layer.

The idea of layered architecture thus is therefore not captured by data flow (by the
idea that data may only flow from lower to higher layers or vice versa) nor by control
flow (by the idea that calls may only be issued by higher to lower layers) but by the
“design flow”. Lower layers can be designed without any knowledge of the higher
layers – only knowing the services that are requested at the higher layer.

System S1

A1

P

System S2

A2

Fig. 8. Composition of two layers

36 M. Broy



Example: Layered Architecture of a Question Answering System
We describe a simple layered architecture of two layers L1 and L2 as shown in

Fig. 9. We start by defining two types of messages

Qst the set of questions
Asw the set of answers

Let the predicate

asw : Qst� Asw ! B

specify by asw(q, a) that a is an answer for question q. We define for x 2 (Qst*)∞ and y
2 (Asw*)∞ the two assertions

P ¼ 8 k 2 IN : k	#�x ) asw �x kð Þ; �y kð Þð Þ
A ¼ 8 t 2 IN : #x#t	 1þ#y#t

P expresses that all questions are answered and A expresses that no further question
is asked before all previous questions are answered. We specify the layer L1 with input
channel x and output channel y by

A ) P

We can add a layer L2 with input channel x´ and y and output channel x and y´which
controls x and satisfies this way the assumption. Let x´ be an infinite sequence of ques-
tions. A solution for the layer is given by the specification p(x, y, x´, y´) which holds if

y0 ¼ y

and (for all t)

x(t) ¼ e otherwise
x0 kð Þ if # y# t 
 1ð Þð Þ ¼ k ^# x0# t
 1ð Þð Þ ¼ k

�

The layer makes sure that the system gets only one question at a time. ❑
The example shows a classical assumption/commitment specification.

Layer L2

Layer L1

yx

y’x’

Fig. 9. Composition of the two layers L1 and L2
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7 Concluding Remarks and Future Work

The purpose of this paper is to show that architecture can be specified by assertions
similar to assertion logic in programs. This includes also on assertion calculus for
architecture. The key here is a denotation for interaction in our case in terms of timed
streams.

An interesting question is the logical flow of the assertions through an architecture.
An example are assumptions and how they propagate through the architecture.
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