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Abstract. Due to the dramatic development of measuring instruments
in recent years, a huge amount of large-scale data has been acquired in all
research areas. Along with this, research method has changed, and data-
driven methods are becoming important as the fourth scientific method-
ology. In the data-driven approach, the model is built according to the
theory, knowledge, data, and further the purpose of the analysis. Once a
model is built, useful information can be extracted from the data through
the fitted model. In this data-driven method, it is crucial to use a good
model and thud the evaluation of the model is essential in the success of
the data-driven approach. This paper outlines the model evaluation cri-
teria such as AIC, GIC, EIC, and so on, focusing on information criteria
for evaluating prediction accuracy based on statistical models. Since L1

regularization is important in recent data analysis, the evaluation of the
regularized model is also outlined.

1 Introduction

Due to recent development of information and communication technologies,
human society is changing very rapidly. Actually, by the development of sensor
devices, huge amount of data are now accumulating in various fields of scien-
tific research, such as in life science, marketing, finance, environmental science,
seismology, meteorology, astronomy and high-energy physics, etc.

Various changes occurred in this background. Firstly, the objects of scientific
research were expanded (Fig. 1). Until the 19th century, the main target of the
research was the static physical world. However, by the impact of Darwinism,
evolutionary and changing world such as the life, economy becomes important
objects in the 20th century. Further in this 21st century, owing to the devel-
opment of ICT, we are facing to the so-called cyber-physical world. Secondly,
objective of the research changed from the “quest for the truth” to the “predic-
tion, simulation, knowledge creation or decision making.” Thirdly, model itself
was changed from physical model derived from the first principle to the modeling
to achieve the objective of the research.

In parallel to the academic area, big data also appear in various aspects of
our society. Actually it emerged from internet communications, sensor, drone,
transaction, multi-media and various logs. And the emergence of the big data
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Fig. 1. Expansion of the objects of scientific research

is quickly changing our society. As examples, we can consider personalized
medicine, marketing, recommendation system, data-driven industry and smar-
tification of social infrastructure, and more recently, brilliant achievements of
artificial intelligence in games, image analysis, automatic driving and so on.

In the book entitled “post-capitalist society,” Drucker (1993) wrote

Every few hundred years in Western history there occurs a sharp trans-
formation. We cross what I called a “divide.” Within a few short decades,
society rearranges itself, its worldview, its basic values, its social and polit-
ical structure, its arts; its key institutions. Fifty years later, there is a new
world. And the people born then cannot even imagine the world in which
their grandparents lived and into which their own parents were born. We
are currently living through just such a transformation.

In the past history, the science has changed the society by expanding its
fields of applications and many area that used to be treated by the intuition and
experience of experts at one time became the objects of scientific approach. As
such examples, we may imagine the astrology, navigation, alchemy, production
process, management, marketing, finance, risk management. Further, in recent
years, service and policy making, even the scientific discovery became the object
of scientific research.

One typical transition is the emergence of data-driven society. In the book
entitled “Super Crunchers,” Ayres (2007) asserts that the “big data analysis”
surpasses the “experience and intuition” of experts in many area of decision mak-
ing, and showed many examples such as the evaluation of wine quality, recruit-
ing baseball players, airline customer service, individual pricing of premium and
online sales and so on.

This shows that cyber intelligence comes close to a human being in the intel-
lectual labor and it reminds us of the historic moment of the match between
horsecar and steam locomotive held at Baltimore & Ohio Railroad in 1830,
when the machine has caught up with an animal’s physical labor. We may say
that a data-centric society will appear before long and also that all research will
become data science.

From the viewpoint of the inductive inference, in the 20th century, the main
objective used be the exact reasoning based on well designed small number of
experimental data. Now, by the advent of the big data, an important problem
is the knowledge discovery or information extraction based on big data.
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However, although the big data may contain enormous knowledge and value,
it is usually difficult to extract them by the current methods and technologies
because it is mostly unstructured, has low value density, large scale, sparse and
further it is heterogeneous in terms of precision, form, observation frequency.
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Fig. 2. Fourth Science: Data Science

To fully utilize the information contained in the big data, it is necessary to
develop the fourth scientific methodology (Fig. 2). Until the 20th century, science
was driven by two scientific methodologies, namely, the experimental science
and the theoretical science. However, in the latter half of the 20th century, the
computing science was developed for understanding or prediction of complex
nonlinear systems. Now by the advent of big data, it is necessary to develop the
fourth scientific methodology, namely the data science.

The basic technologies for the data science are big data processing, visu-
alization and data analysis (Manyika et al. 2011). Big data processing is the
techniques to handle scattered big data and consists of various information pro-
cessing technologies such as distributed processing, parallel computation, etc.
Visualization is the technologies to grasp high-dimensional data and comput-
ing results such as dimension reduction, feature extraction, pattern recognition,
image processing. Data analysis is the method for obtaining deep knowledge
from big data and is related to statistical modeling, Bayes inference, machine
leaning, data mining, web information analysis, natural language processing and
optimization.

In the data-driven approach, the model is built according to the theory,
knowledge, data, and further the purpose of the analysis. Once a model is built,
useful information can be extracted from the data through the fitted model.
In this data-driven method, it is crucial to use a good model. Therefore, the
problem of developing good model evaluation criteria is a very important.

This paper is organized as follows. In Sect. 2, we will consider the role of
statistical modeling and viewpoint of predictive ability. Section 3 outlines the
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information criteria AIC, TIC and AICc which are obtained as the approximately
unbiased estimates of the expected log-likelihood of the model whose parameters
are estimated by the maximum likelihood method. Section 4 outlines the GIC for
the evaluation of any types of estimators defined by statistical functional, such
as M -estimator and Bayes model. In Sect. 5, the bootstrap information criterion
EIC is outlined which can be applied to wide class of models and situation. In
Sect. 6, evaluation criteria for the models obtained by regularization methods
are considered. Finally, Sect. 7 summarized the paper.

2 Statistical Modeling and Predictive Model Evaluation

In statistical modeling, model is built by properly combining the information
from the theory, empirical knowledge and data and even the objective of the
problem (Fig. 3). In general context, it can be formulated by using Bayes model.
Once the model is obtained, we can extract useful information from data, do
prediction and simulation, and decision making based on the model. So the
knowledge is provided through the model and the knowledge improves the model.
And thus it constitutes the spiral of knowledge development.

Statistical
Model

Knowledge
Signal

Various
Information

Data
Evaluation

Knowledge Objective

Fig. 3. Statistical modeling.

In statistical modeling, it is not necessarily assumed that the model is true
or a close replica of the truth and we rather use it as a tool to extract useful
information from data. Therefore, it is important to build a model by prop-
erly combining the information from the data and the prior information and
knowledge on the subject and objective of the problem (Fig. 3).

In this situation, it is obvious that if we use a good model, then we can get
good results but if we use a poor model, we will not be able to get meaningful
results. Therefore, the use of good model is essential in statistical modeling and
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statistical knowledge extraction, and the evaluation of the estimated model is
one of the most important problems in the data-driven approach. To achieve
this, development of criteria for evaluating the goodness of statistical model is
indispensable.

In developing a model evaluation criterion, Akaike advocated the predictive
point of view. In the conventional statistical procedure, the objective of model
fitting and parameter estimation is to obtain a good model that can reasonably
reproduce the true model as precise as possible (Fig. 4). In contrast to this, in
the predictive point of view, the estimated model is evaluated by the prediction
ability. Akaike (1973, 1974) measured this ability by the Kullback-Leibler infor-
mation between the predictive distribution and future data distribution. The
AIC is obtained as an estimate of (the essential part of) the Kullback-Leibler
information.

True
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Present
Data

Model
Estimation

Prediction

Evaluation

Model

True
Distribution

Present
Data

Estimation

Evaluation

Fig. 4. Conventional statistical modeling (left) and predictive modeling (right).

Akaike’s (1973, 1974) information criterion provides a useful tool for eval-
uating models estimated by the method of maximum likelihood and a number
of successful applications of AIC in statistical modeling and data analysis have
been reported (Bozdogan 1994; Kitagawa and Gersch 1996; Akaike and Kita-
gawa 1998). By extending Akaike’s basic idea, several attempts have been made
to relax the assumptions imposed in the derivation of AIC and obtained infor-
mation theoretic criteria which may be applied to the various types of statistical
models.

In recent years advances in the performance of computers enables us to con-
struct models for analyzing data with complex structure, and consequently more
flexible criteria are required for model evaluation and selection problems. The
purpose of the present paper is to overview information criteria which yield more
refined results than previously proposed criteria and may be applied to a variety
of statistical models. The use of the bootstrap in model evaluation problems is
also investigated from theoretical and practical points of view.
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3 Information Criteria for ML Models

3.1 Estimation of Kullback-Leibler Information

Assume that the observations are generated from an unknown “true” distribution
function G(x) and the model is characterized by a density function f(x). In the
derivation of AIC (Akaike 1973, 1974; Konishi and Kitagawa 2008), the expected
log-likelihood EY log f(Y ) =

∫
log f(y)dG(y) is used as the basic criterion to

evaluate the closeness of a model to the true model, which is equivalent to
the Kullback-Leibler information (1951). Here EY denotes the expectation with
respect to the true distribution G(y).

In actual statistical problems, the true distribution G(x) is unknown and only
a sample X = {X1, . . . , Xn} drawn from G(x) is given. We then use the log-
likelihood n−1� =

∫
log f(x)dĜn(x) = n−1

∑n
i=1 log f(Xi) as a natural estimator

of the expected log-likelihood. Here Ĝn(x) is the empirical distribution function,
having mass 1/n on each observation.

For a parametric model f(x|θ) with a parameter θ = (θ1, . . . , θm)T , it natu-
rally leads to the maximum likelihood estimator, θ̂ = θ̂(X ), which is the maxi-
mizor of the log-likelihood function

�(θ) =
n∑

i=1

log f(Xi|θ) ≡ log f(X |θ). (1)

Interestingly, although the log-likelihood is a good estimate of the expected
log-likelihood, EY log f(Y |θ), the maximum log-liklihood log f(X|θ̂) is NOT an
unbiased estimate of EY log f(Y |θ̂). Namely, (n−1 times of) the maximum log-
likelihood, n−1�(θ̂(X )), has a positive bias as an estimator of the expected log-
likelihood, EY log f(Y |θ̂(X )), and it cannot be directly used for model selection.

This bias occurs because the same data set X was used twice for the estima-
tion of the parameter and the expected log-likelihood. By correcting the bias

b(G) = nEX

{
1
n

log f(X |θ̂(X )) − EY log f(Y |θ̂(X ))
}

, (2)

an unbiased estimator of the expected log-likelihood is obtained by
n−1{log f(X |θ̂(X )) − b(G)}. Therefore, considering the definition of AIC,
generic information criteria is defined by

− 2 log f(X |θ̂(X )) + 2b̂(G), (3)

where b̂(G) is a properly defined approximation to b(G).

3.2 Information Criteria: AIC, TIC and AICc

In a general setting, it is difficult to obtain the bias b(G) in a closed form. Under
some setting, Akaike evaluated an asymptotic bias as b(G) = m, and advocated
the information criterion

AIC = −2 log f(X |θ̂ML) + 2m, (4)
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where m is the number of estimated parameters (Akaike 1973, 1974; Konishi
and Kitagawa 2008). Numerous successful application of the statistical modeling
based on AIC have been reported (Bozdogan 1994; Kitagawa and Gersch 1996;
Akaike and Kitagawa 1998).

Using the properties of the maximum likelihood estimators θ̂ML, for incor-
rectly specified models (Huber 1976), the asymptotic bias can be evaluated as
(Takeuchi 1976)

bT (G) = tr{I(G)J(G)−1}, (5)

where I(G) and J(G) are respectively the Fisher information matrix and the
expected Hessian defined by

I(G) = EY

[
∂ log f(Y |θ)

∂θ

∂ log f(Y |θ)
∂θT

]

,

J(G) = −EY

[
∂2 log f(Y |θ)

∂θ∂θT

]

. (6)

By correcting the asymptotic bias of the log likelihood, TIC is defined by
Takeuchi (1976)

TIC = −2 log f(X |θ̂ML) + 2tr{Ĵ(G)−1Î(G)}, (7)

where Ĵ(G) and Î(G) are consistent estimates of J(G) and I(G), respectively.
If the model contains the true distribution such that g(x) = f(x|θ) for some

θ, it holds that I(G) = J(G), and the asymptotic bias becomes bA(G) = m,
where m is the dimension of the parameter vector θ. Thus we obtain the Akaike
information criterion, AIC (Fig. 5).

Further, for some specific models, it is possible to evaluate the bias directly
and obtain a more precise bias correction term without resorting to asymptotic

Fig. 5. Bias of the maximum log-likelihood as an estimator of the expected log-
likelihood. (Konishi and Kitagawa 2008)
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theory. As the simplest example, consider the normal distribution model, yn ∼
N(μ, σ2). Then the log-likelihood of the model based on the data, {y1, . . . , yn},
is given by

�(μ, σ2) = −n

2
log(2πσ2) − 1

2σ2

n∑

α=1

(yα − μ)2.

By substituting the maximum likelihood estimators âj and σ̂2 into this expres-
sion, we obtain the maximum log-likelihood �(âj , σ̂

2) = −n
2 log(2πσ̂2) − n

2 . If
the data set is obtained from the same normal distribution N(μ, σ2), then
the expected log-likelihood is given by EG

[
log f(Z|μ̂, σ̂2)

]
= − 1

2 log(2πσ̂2) −
1

2σ̂2

{
σ2 + (μ − μ̂)2

}
, where G(z) is the distribution function of the nor-

mal distribution N(μ, σ2). Therefore, the difference between the two quan-
tity is �(μ̂, σ̂2) − nEG

[
log f(Z|μ̂, σ̂2)

]
= n

2σ̂2

{
σ2 + (μ − μ̂)2

} − n
2 . By tak-

ing the expectation with respect to the joint distribution of n observations
distributed as the normal distribution N(μ, σ2), and using EG

[
σ2

σ̂2(xn)

]
=

n
n−3 , EG

[{μ − μ̂(xn)}2] = σ2

n , we obtain the bias correction term for the
finite sample as

bcA(G) =
n

2
n

(n − 3)σ2

(

σ2 +
σ2

n

)

− n

2
=

2n

n − 3
. (8)

Here, we used the fact that for a χ2 random variable with degrees of freedom r,
χ2

r, we have E[1/χ2
r] = 1/(r − 2). Therefore, an information criterion (corrected

AIC) for the normal distribution model is given by

AICc = −2�(μ̂, σ̂2) +
4n

n − 3
. (9)

Similarly, for a linear regression model yn =
∑m

j=1 ajxnj + εn, ε ∼ N(0, σ2),
where yn and xnj , j = 1, . . . , m are the objective variable and the regressors,
respectively, the bias is evaluated as

bcA(G) =
(m + 1)n
n − m − 2

. (10)

4 Information Criteria for Wider Class of Models

4.1 Generalized Information Criterion GIC

This method of bias correction for the log-likelihood can be extended to a more
general estimator defined by a statistical functional such as θ̂ = T (Ĝn), where
T (·) = (T1(·), . . . , Tm(·))T is a functional on the space of distribution func-
tions. For such a general estimator, the asymptotic bias is given by Konishi and
Kitagawa (1996, 2008)

b1(G) = tr
{∫

T (1)(y;G)
∂ log f(y|T (G))

∂θT
dG(y)

}

, (11)
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where T (1)(Y ;G) = (T (1)
1 (Y ;G), . . . , T (1)

m (Y ;G))T and T
(1)
i (Y ;G) is the influ-

ence function defined by

T
(1)
i (X ;G) = lim

ε→∞{Ti((1 − ε)G + εδα) − Ti(G)}/ε (12)

with δα being a point mass at Xα. By subtracting the asymptotic bias estimate
from the log-likelihood, we have (Fig. 6)

GIC = −2 log f(X |θ) + 2b1(Ĝ). (13)

Fig. 6. Bias correction by GIC. (Konishi and Kitagawa 2008)

Example: GIC for the normal distribution model. Consider a simple
normal distribution model with unknown mean μ and the variance σ2

f(y|μ, σ2) =
1√

2πσ2
exp

{

− (y − μ)2

2σ2

}

. (14)

The maximum likelihood estimators of μ and σ2 are given by statistical func-
tionals,

Tμ(G) =
∫

xdG(x), Tσ2(G) =
∫

(x − Tμ(G))2dG(x), (15)

respectively. For these estimators, the derivatives of the functionals are given by

T (1)
μ (x;G) = x − μ, T

(1)
σ2 (x;G) = (x − μ)2 − σ2. (16)

Using these results, the bias correction term (11) is explicitly obtained by

b1(G) =
1
2

(
1 +

μ4

σ4

)
, (17)

where μ4 denotes the fourth central moments of the true distribution G. In partic-
ular, when the true distributions are standard normal distribution (μ4 = 3) and
Laplace distribution (μ4 = 6), they are given by b1(G) = 2 and 3.5, respectively.
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4.2 Maximum Likelihood Method: Relationship Among AIC, TIC
and GIC

Assume that the maximum likelihood method is used for the estimation of a
model f(x|θ) based on the observed data from G(x). The maximum likelihood
estimator, θ̂ML, is defined as a solution of the equation

n∑

α=1

∂ log f(xα|θ)
∂θ

= 0, (18)

which can be expressed as θ̂ML = T ML(Ĝ) using the p-dimensional functional
T ML(G) implicitly defined by

∫
∂ log f(x|θ)

∂θ

∣
∣
∣
∣
θ=T ML(G)

dG(x) = 0. (19)

The influence function for the maximum likelihood estimator can be obtain
as follows: By replacing the distribution function G in (19) with (1 − ε)G + εδx,
we have

∫
∂ log f(y|T ML((1 − ε)G + εδx))

∂θ
d {(1 − ε)G(y) + εδx(y)} = 0. (20)

Differentiating both sides with respect to ε and setting ε = 0 yield
∫

∂ log f(y|T ML(G))
∂θ

d {δx(y) − G(y)} (21)

+
∫

∂2 log f(y|T ML(G))
∂θ∂θT

dG(y) · ∂

∂ε
{T ML((1 − ε)G + εδx)}

∣
∣
∣
∣
ε=0

= 0,

Noting that
∫

∂ log f(y|T ML(G))
∂θ

dδx(y) =
∂ log f(x|T ML(G))

∂θ
(22)

and using (19), from (21), we obtain the influence function for the maximum
likelihood estimator θ̂ML = T ML(Ĝ)

T
(1)
ML(x;G) ≡ ∂

∂ε
{T ML((1 − ε)G + εδx)}

∣
∣
∣
∣
ε=0

= J(G)−1 ∂ log f(x|θ)
∂θ

∣
∣
∣
∣
θ=T ML(G)

, (23)

where J(G) is a p × p matrix given by

J(G) = −
∫

∂2 log f(x|θ)
∂θ∂θT

∣
∣
∣
∣
θ=T ML(G)

dG(x). (24)

By replacing the influence function T (1)(x;G) in (11) with (23), we obtain
the asymptotic bias of the log-likelihood for the estimated model f(x|θ̂ML)

bML(G) = tr

{

J(G)−1

∫
∂ log f(x|θ)

∂θ

∂ log f(x|θ)
∂θT

∣
∣
∣
∣
θ=T ML(G)

dG(x)

}

,

= tr
{
J(G)−1I(G)

}
(25)
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where the p × p matrix I(G) is given by

I(G) =
∫

∂ log f(x|θ)
∂θ

∂ log f(x|θ)
∂θT

∣
∣
∣
∣
θ=T ML(G)

dG(x). (26)

Therefore, for the model f(x|θ̂ML) estimated by the maximum likelihood
method, GIC in (13) is reduced to

TIC = −2
n∑

α=1

log f(xα|θ̂ML) + 2tr
{

J(Ĝ)−1I(Ĝ)
}

. (27)

4.3 GIC for the Models Estimated by M-estimators

In this subsection we derive an information criterion for evaluating a statistical
model estimated by M-estimators, using the generalized information criterion
GIC in (13).

Suppose that f(x|θ̂M ) is the model of the true distribution G(x), where θ̂M

is a p-dimensional M -estimator defined as the solution of the system of implicit
equations

n∑

α=1

ψ(xα, θ̂M ) = 0. (28)

Here, ψ = (ψ1, ψ2, · · · , ψp)T and ψi(x,θ) is a real-valued function defined on
the product space of the sample and parameter spaces. The M -estimator θ̂M is
given by θ̂M = T M (Ĝ) for the p-dimensional functional T M (G) defined as the
solution of the implicit equations

∫
ψ(y,T M (G))dG(y) = 0. (29)

Then the influence function for the M -estimator is obtained by the same
method as for the MLE as

T
(1)
M (x;G) ≡ ∂

∂ε
{T M ((1 − ε)G + εδx)}ε=0 = R(ψ, G)−1ψ(x,T M (G)), (30)

where R(ψ, G) is a p × p matrix whose (i, j)-components is given by

R(ψ, G)(i, j) = −
∫

∂ψj(x,θ)
∂θi

∣
∣
∣
∣
θ=T M (G)

dG(x), (i, j = 1, · · · , p). (31)

Substituting this influence function T
(1)
M (x;G) into (11), we have the asymp-

totic bias of the log-likelihood of the model f(x|θ̂M ) in estimating the expected
log-likelihood in the form

bM (G) = tr

{

R(ψ, G)−1

∫
ψ(x,T M (G))

∂ log f(x|θ)
∂θT

∣
∣
∣
∣
θ=T M (G)

dG(x)

}

= tr
{
R(ψ, G)−1Q(ψ, G)

}
, (32)
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where Q(ψ, G) is a p × p matrix defined by

Q(ψ, G) =
∫

ψ(x,T M (G))
∂ log f(x|θ)

∂θT

∣
∣
∣
∣
θ=T M (G)

dG(x). (33)

Then, GIC for evaluating the statistical model f(x|θ̂M ) with the M -estimator
θ̂M is given by

GICM = −2
n∑

α=1

log f(xα|θ̂M ) + 2tr
{

R(ψ, Ĝ)−1Q(ψ, Ĝ)
}

, (34)

where R(ψ, Ĝ) and Q(ψ, Ĝ) are p × p matrices given by

R(ψ, Ĝ) = − 1
n

n∑

α=1

∂ψ(xα,θ)T

∂θ

∣
∣
∣
∣
∣
θ=θ̂

,

Q(ψ, Ĝ) =
1
n

n∑

α=1

ψ(xα, θ̂)
∂ log f(xα|θ)

∂θT

∣
∣
∣
∣
∣
θ=θ̂

. (35)

4.4 GIC for Bayes Models

The basic predictive distribution model based on Bayesian approach is defined
by the parametric model {f(x|θ); θ ∈ Θ} and the prior distribution π(θ) of the
parameter θ as follows

h(z|X n) =
∫

f(z|θ)π(θ|X n)dθ, (36)

where π(θ|X n) is the posterior distribution of the θ based on the sample X n

and the prior distribution π(θ) and is given by

π(θ|X n) =
n∏

α=1

f(Xα|θ)π(θ)

/∫ n∏

α=1

f(Xα|θ)π(θ)dθ. (37)

By substituting the posterior distribution (37), the predictive distribution is
obtained by

h(z|X n) =

∫
exp

[
n

{
q(θ|X n) +

1

n
log f(z|θ)

}]
dθ

/ ∫
exp {nq(θ|X n)} dθ. (38)

Here, q(θ|X n) is given by

q(θ|X n) =
1
n

n∑

α=1

log f(Xα|θ) +
1
n

log π(θ). (39)



32 G. Kitagawa

For this density function, by obtaining the asymptotic expansion with respect
to the sample size n based on the Laplace approximation of integrals (Tierney
and Kadane 1986; Davison 1986), it becomes possible to apply information cri-
terion GIC.

Assume that θ̂q and θ̂q(z) are the modes of q(θ|X n) and q(θ|X n) +
n−1 log f(z|θ), respectively.

In the Laplace’s method of integrals, the integrand is Taylor expansion
around the mode, and obtain an approximation formula. For example, by apply-
ing the Laplace’s approximation to the denominator of Eq. (38), we obtain

∫
exp {nq(θ|X n)} dθ =

(2π)p/2

np/2

∣∣∣Jq(θ̂q)
∣∣∣1/2

exp
{

nq(θ̂q|X n)
} {

1 + Op(n−1)
}

. (40)

Here, Jq(θ̂q) = −∂2{q(θ̂q|X n)}/∂θ∂θT . Similarly, by the Laplace approximation
of the integrals in the numerator of (38), we obtain the approximation of the
predictive distribution

h(z|Xn) = (|Jq(θ̂q)|/|Jq(z)(θ̂q(z))|)1/2 exp

[

n

{

q(θ̂q(z)|Xn) − q(θ̂q |Xn) +
1

n
log f(z|θ̂q(z))

}]

× {1 + Op(n
−2)},

where Jq(z)(θ̂q(z)) = −∂2{q(θ̂q(z)|X n) + n−1 log f(z|θ̂q(z))}/∂θ∂θT . From this
Laplace approximation, we obtain the following asymptotic expansion of the
Bayesian predictive distribution model

h(z|X n) = f(z|θ̂)
{

1 +
1
n

a(z|θ̂) + Op(n−2)
}

. (41)

The estimator of the model θ̂ depends on whether the prior distribution
π(θ) depends on the sample size n or not. Here, we consider the following two
cases for the prior distribution (i) log π(θ) = O(1), and (ii) log π(θ) = O(n). In
the case of (i), θ̂ becomes the maximum likelihood estimator θ̂ML. On the other
hand, for the case (ii), it becomes the mode of the posterior distribution θ̂B. The
statistical functionals corresponding to these estimators are respectively given
as the solutions to
∫

∂

∂θ
log f(x|TML(G))dG(x) = 0,

∫
∂

∂θ
[log {f(x|TB(G))π(TB(G))}] dG(x) = 0.

Therefore, in (34), by putting ψ(x, θ̂) = ∂ log f(x|θ̂ML)∂θ and ψ(x, θ̂) =
∂
{

log f(x|TB(Ĝ)) + log π(TB(Ĝ))
}

∂θ, we obtain the following evaluation cri-
terion for the Bayes predictive distribution model h(z|X n)

GICB = −2
n∑

α=1

log h(Xα|X n) + 2tr
{

J(ψ, Ĝ)−1I(ψ, Ĝ)
}

. (42)
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4.5 Higher Order Bias Correction

The information criteria proposed previously are based on large-sample theory
to obtain approximately unbiased estimators for the expected log-likelihood or
equivalently the Kullback-Leibler information number.

We consider the statistical model f(y|θ̂), where θ̂ is defined by θ̂ = T (Ĝn)
with T (·) being a suitably defined m-dimensional functional. Hence by taking
the expectation of EY log f(Y |θ̂(X )) over the sampling distribution G of X , we
have an expectation of the form

EXEY log f(Y |θ̂(X )) =

∫

g(y) log f(y|T (G))dy +
1

n
a1(G) +

1

n2
a2(G) + O(n−3). (43)

Information criteria based on the asymptotic bias-corrected log-likelihood is
second order correct for EY log f(Y |θ̂) in the sense that the expectations
of n−1

{
log f(X |θ̂) −b1(Ĝ)

}
and EY log f(Y |θ̂) are in agreement up to and

including the term of order n−1, while the expectations of n−1 log f(X |θ̂) and
EY log f(Y |θ̂) differ in term of order n−1.

We consider the bias of log f(X |θ̂) − b1(θ̂), as the estimator of the expected
log-likelihood, defined by

EX

[
log f(X |θ̂) − b1(Ĝ) − nEY log f(Y |θ̂)

]

= EX

[
log f(X |θ̂) − nEY log f(Y |θ̂)

]
− EX

[
b1(Ĝ)

]
. (44)

The first term in the right-hand side of the above equation can be expanded as

b(G) = EX

[
log f(X |θ̂) − nEY log f(Y |θ̂)

]
= b1(G) +

1
n

b2(G) + O(n−2), (45)

where b1(G) is the first order bias correction term given in (11) and b2(G) is the
second order bias correction term.

The expectation of the asymptotic bias estimate b1(Ĝ) is given by

EX

[
b1(Ĝ)

]
= b1(G) +

1
n

Δb1(G) + O(n−2). (46)

Hence noting that the bias of log f(X |θ̂) − b1(Ĝ) is

EX

[
log f(X |Ĝ) − b1(Ĝ) − nEY log f(Y |θ̂)

]
=

1

n
{b2(G) − Δb1(G)} + O(n−2), (47)

we have the second order bias corrected information criterion in the form

GIC2(Ĝn) = −2�(Ĝ) + 2
{

b1(Ĝ2) +
1
n

(
b2(Ĝn) − Δb1(Ĝn)

)}

. (48)

It might be noted that GIC2 is third-order correct for the expected log-likelihood.
However, analytic expression of b2(G) and Δb1(G) are very complicated
(Kitagawa and Konishi 2010).
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Example: Second order bias correction for the normal distribution
model. For normal distribution model, these correction terms are explicitly
given by

b2(G) − Δb1(G) =
1
2

(μ4

σ4
+

μ6

σ6

)
, (49)

b1(G) − 1
n

Δb1(G) +
1
n

b2(G) =
1
2

(
1 +

μ4

σ4

)
+

1
2n

(μ4

σ4
+

μ6

σ6

)
, (50)

where μj is the j-th cumulant of the true distribution.
These show that the estimated bias correction term b1(Ĝn) is biased as an

estimator of b1(G), and the difference may not be negligible for small n. One of
the merit of AIC is that the bias correction term does not depend on G and thus
ΔbA(Ĝn) = 0.

5 Bootstrap Information Criterion EIC

The bootstrap method provides an alternative method for the evaluation of the
bias of the log-likelihood (Cavanaugh and Shumway 1997; Ishiguro et al. 1997;
Konishi and Kitagawa 1996; Shibata 1997). The advantage of the method is
that the calculation does not require the exact form of bias correction term.
In the bootstrapping, the true distribution function G(x) is replaced by the
empirical distribution function Ĝn(x) defined from the observations. Therefore,
in the bias term in (2), the samples X and Y from G(x) are replaced by X ∗

and Y ∗ from bootstrap sample Ĝn(x), and the expectation EY log f(Y | ·) by
EY ∗ log f(Y ∗| ·). Here EY ∗ denotes the expectation with respect to the empir-
ical distribution function Ĝn(y). The bootstrap estimate of the bias bB(Ĝn) is
obtained by (Fig. 7).

bB(Ĝn) = nEX∗

{
1
n

log f(X ∗|θ̃(X ∗)) − EY ∗ log f(Y ∗|θ̃(X ∗))
}

, (51)

where θ̃(·) is an arbitrarily defined estimator of θ. In the simple i.i.d. case, we
have

EY ∗ log f(Y ∗|θ̃(X ∗)) =
∫

log f(y∗|θ̃(X ∗))dĜn(y∗) =
1
n

log f(X |θ̃(X ∗)),(52)

and the bootstrap estimate of the bias becomes simply

bB(Ĝn) = EX∗
{

log f(X ∗|θ̃(X ∗)) − log f(X |θ̃(X ∗))
}

. (53)

In actual computation, the bootstrap bias correction term bB(Ĝn) is esti-
mated by

b∗
B(Ĝn) =

1
M

M∑

i=1

{
log f(X ∗

(i)|θ̃(X ∗
(i))) − log f(X |θ̃(X ∗

(i)))
}

, (54)
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Fig. 7. Bias correction by EIC. nEX [log f(X|θ), log f(xn|θ) and log f(x∗
n|θ ∗) are the

expected log-likelihood, log-likelihood and the bootstrap log-likelihood, respectively.
The expectation of D is the bias and that of D∗ is the bootstrap bias. The expectation
of D2 is known to be 0 (Konishi and Kitagawa 2008).

where M is the number of bootstrap replication, X ∗
(1), · · · ,X ∗

(M) are M inde-
pendent bootstrap resamples of size n from Ĝn(X ). The bootstrap information
criterion EIC then is defined by Ishiguro et al. (1997)

EIC = −2 log f(X |θ̃(X )) + 2b∗
B(Ĝn). (55)

This method of bootstrap bias correction can be easily extended to a predic-
tive distribution of a Bayesian model defined by p(y|X ) =

∫
p(y|θ)π(θ|X )dθ

where π(θ|X ) is the posterior distribution of θ given data X (Konishi and
Kitagawa 2008).

5.1 Decomposition of the Bias Term and the Reduction
of the Variance in Bootstrapping

A practically important problem with the bootstrap method for the model selec-
tion is the reduction of the variance of the bias estimate. If the variance in the
bootstrap simulation is large, a large M in (54) is necessary to obtain precise
bootstrap estimate b∗

B(Ĝn) requiring long computing time especially when the
model is very complicated. The variance of the bootstrap estimate of the bias
defined in (54) can be reduced by the decomposition of the bias term D(X ;G)
into three terms as follows (Fig. 7, Konishi and Kitagawa 1996, 2008; Ishiguro
et al. 1997):

D(X ;G) = D1(X ;G) + D2(X ;G) + D3(X ;G) (56)
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where

D1(X ;G) =
n∑

i=1

log f(Xi|T (Ĝn)) −
n∑

i=1

log f(Xi|T (G))

D2(X ;G) =
n∑

i=1

log f(Xi|T (G)) − n

∫
log f(y|T (G))dG(y) (57)

D3(X ;G) = n

∫
log f(y|T (G))dG(y) − n

∫
log f(y|T (Ĝn))dG(y).

Note that if θ̂ is the MLE, then T (G) and T (Ĝn) are the maximizer of∫
log f(y|T (G))dG(y) and

∑n
i=1 log f(Xi|T (Ĝn)), respectively.

For a general estimator defined by a statistical functional θ̂ = T (Ĝn), each
term can be evaluated. See Kitagawa and Konishi (2010) for details.

Further, it can be seen that V ar{D} = O(n) and V ar{D1 + D3} = O(1).
Therefore by estimating the bias by

b∗(Ĝn) = EX∗ [D1 + D3], (58)

a significant reduction of the variance can be achieved for any estimators defined
by statistical functional especially for large n.

5.2 Second Order Bootstrap Bias Correction

The bias of the log-likelihood shown in (2) can be expressed as

1
n

b(G) =
1
n

b1(G) +
1
n2

b2(G) +
1
n3

b3(G) + · · · , (59)

where bj(G) is the jth order bias correction term. Therefore, the expected value
of the bootstrap estimate of the bias term is given by

EX [bB(Ĝn)] = EX

[

b1(Ĝn) +
1
n

b2(Ĝn)
]

+ o(n−1)

= b1(G) +
1
n

Δb1(G) +
1
n

b2(G) + o(n−1), (60)

where Δb1(G) is the bias of the first order bias correction term b1(G). This means
that if Δb1(G) = 0, the bootstrap estimate automatically yields the second order
correction, namely it is the third order correct for the expected log-likelihood.

It is interesting to note that, in contrast to the above, the expected value of
(11) in the GIC and (5) in TIC for the MLE are given by

EX [b1(Ĝn)] = b1(G) +
1
n

Δb1(G) + o(n−1). (61)

In actual situations for which unbiasedness Δb1(G) is not assumed, we can
estimate the second order correction term by bootstrapping. If an analytic
expression for b1(G) is available, it is given by

1
n

b∗
2(Ĝn)= EX∗

[
log f(X ∗|T (Ĝn))− b1(Ĝn)− nEY ∗ log f(Y ∗|T (Ĝn))

]
. (62)
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On the other hand, if an analytic expression is difficult to compute, then we
can obtain the second order correction by double bootstrapping (Kitagawa and
Konishi 2010),

1

n
b∗∗
2 (Ĝn) = EX∗

[
log f(X ∗|T (Ĝn)) − b∗

B(Ĝn) − nEY ∗ log f(Y ∗|T (Ĝn))
]
, (63)

where b∗
B(G) is the bootstrap estimate of the first order correction term given

by (19).

6 Regularization, L1 Sparse Modeling and Bridge
Regression

In recent years, the regularization method is used for the modeling of big data in
many fields. In this section, we first consider application of GIC for the penalized
log-likelihood method or the L2 regularization problem. We then consider the
generalization of the Bayesian information criterion BIC for the application to
L1 regularization and the bridge regression which involves a more general Lp

regularization.

6.1 GIC for Penalized Log-Likelihood Method

The method based on maximizing the penalized log-likelihood function was orig-
inally introduced by Good and Gaskins (1971) in the context of density esti-
mation. The Bayesian justification of the method and application to Bayesian
modeling have been investigated by many authors such as Wahba (1978), Akaike
(1980), Kitagawa and Gersch (1984), Silverman (1985) and Shibata (1989).

Here, we consider a penalized log-likelihood of the form

�λ(θ) =
n∑

α=1

log f(xα|γ, σ) − n

2
λγ′Kγ, (64)

where θ = (γ, σ) and K is a non-negative definite matrix. If we put K = Ip,
k × k identity matrix, we obtained the simple L2 regularization term.

Given the data x1, . . . , xn, the maximum penalized log-likelihood estimates
θ̂ is obtained as the solution to the implicit function

n∑

α=1

ψ(Xα, θ̂) = 0, (65)

where ψ = (ψ1, · · · , ψp)T . Note that the penalized maximum likelihood estimator
θ̂PL is obtained by putting

ψ(Xα, θ̂) =
∂

∂θ

{

log f(Xα|θ̂PL) − λ

2
γ̂T Kγ̂

}

. (66)
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In the framework of the generalized information criterion GIC, the informa-
tion criterion for the model f(z|θ̂) with the estimator θ̂ obtained as the solution
of the (65) is given by

GICM = −2
n∑

α=1

log f(Xα|θ̂) + 2tr
{

J(ψ, Ĝ)−1I(ψ, Ĝ)
}

, (67)

where

J(ψ, Ĝ) = − 1

n

n∑
α=1

∂ψ(Xα, θ̂)T

∂θ
, I(ψ, Ĝ) =

1

n

n∑
α=1

ψ(Xα, θ̂)
∂ log f(Xα|θ̂)

∂θT
. (68)

6.2 Generalized BIC for Regularization Method

The BIC (Bayesian Information Criterion) proposed by Schwarz (1978)

BIC = −2 log f(xn|θ̂) + k log n (69)

≈ −2 log p(xn) = −2 log
{∫

f(xn|θ)π(θ)dθ

}

is a model evaluation criterion based on the posterior probability of a model.
Here, θ̂i is the maximum likelihood estimator of the k-dimensional parameter
vector θ of the model f(x|θ). Consequently, from the r models that are estimated
using the maximum likelihood method, the model that minimizes the value of
BIC can be selected as the optimal model.

Konishi et al. (2004) developed generalized Bayesian information criterion,
GBIC, for the evaluation of the models obtained by the maximum penalized like-
lihood method. In this subsection, a simplified version of GBIC is shown briefly.
Let f(x|θ̂P ) be a statistical model estimated by the regularization method for
the parametric model f(x|θ), and θ̂P is obtained by maximizing the penalized
log-likelihood function

�λ(θ) = log f(xn|θ) − nλ

2
θT Kθ, (70)

where K is a p × p matrix. The penalized log-likelihood function can be rewritten
as

�λ(θ) = log
{

f(xn|θ) exp
(

−nλ

2
θT Kθ

)}

. (71)

Then, exp(−nλ/2θT Kθ) in the above equation can be thought of as a prior
distribution in which the smoothing parameter λ is a hyper-parameter,

π(θ|λ) =
(nλ)p/2|K|1/2

(2π)p/2
exp

(

−nλ

2
θT Kθ

)

. (72)
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Given the data distribution f(xn|θ), and the prior distribution π(θ|λ) with
hyper-parameter λ, the marginal likelihood of the model can be rewritten as

p(xn|λ) =
∫

f(xn|θ)π(θ|λ)dθ

=
∫

exp {nq(θ|λ)} dθ, (73)

where

q(θ|λ) =
1
n

log {f(xn|θ)π(θ|λ)} =
1
n

{log f(xn|θ) + log π(θ|λ)} (74)

=
1
n

{
log f(xn|θ) − nλ

2
θT Kθ

}
− 1

2n

{
p log(2π) − p log(nλ) − log |K|

}
.

We note here that the mode, θ̂P , of q(θ|λ) coincides with a solution obtained
by maximizing the penalized log-likelihood function (70). By approximating it
using Laplace’s method for integrals, we have

∫
exp{nq(θ)}dθ ≈ (2π)p/2

np/2|Jλ(θ̂P )|1/2
exp

{
nq(θ̂P )

}
. (75)

where

Jλ(θ̂P ) = − 1
n

∂2q(θ|λ)
∂θ∂θT

∣
∣
∣
∣
θ̂P

= − 1
n

∂2 log f(xn|θ)
∂θ∂θT

∣
∣
∣
∣
θ̂P

+ λK. (76)

Taking the logarithm of this expression and multiplying it by −2, we obtain the
generalized Bayesian information criterion GBIC (Konishi et al. 2004; Konishi
and Kitagwa 2008),

GBIC = −2 log f(xn|θ̂P ) + nλθ̂
T

P Kθ̂P + log |Jλ(θ̂P )| − p log λ − log |K|.(77)

In the modeling by regularization method, the selection of the smoothing param-
eter λ is crucial and we select the λ that minimizes the GBIC as the optimal
smoothing parameter.

By interpreting the regularization method based on the above argument from
a Bayesian point of view, it can be understood that the regularized estimator
agrees with the estimate that is obtained through the maximization (mode)
of the following posterior probability depending on the value of the smoothing
parameter;

π(θ|xn;λ) =
f(xn|θ)π(θ|λ)

∫
f(xn|θ)π(θ|λ)dθ

, (78)

where π(θ|λ) is the density function resulting from (72) as a prior probability
of the p-dimensional parameter θ for the model f(xn|θ). For the Bayesian jus-
tification of the maximum penalized likelihood approach, we refer to Silverman
(1985) and Wahba (1990).
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Example: Regularization for the regression models. Suppose that n obser-
vations {(xα, yα); α= 1, 2,· · · , n} are observed in terms of a p-dimensional
explanatory variable x and a response variable Y , and consider a simple regres-
sion model

yα =
p∑

j=1

βjxαj + εα, εα ∼ N(0, σ2), (79)

where βT = (β1, . . . , βm), θ = (βT , σ2)T and (yα, xα1, . . . , xα,p), α = 1, . . . , n. If
we estimate the parameter vector θ by maximizing the penalized log-likelihood
function (70), the estimators for β and σ2 are respectively given by

β̂ = (XT X + nλσ̂2K)−1XT y, σ̂2 =
1
n

(y − Xβ̂)T (y − Xβ̂), (80)

where X is an n × m matrix given by X = (x1, x2,· · · , xn)T and xα =
(xα1, . . . , xαp).

By applying GBIC in (77), the evaluation criterion for the regularized regres-
sion model f(yα|xα; θ̂P ) estimated by the regularization method is given by

GBIC = n log σ̂2 + nλβ̂
T

Kβ̂ + n + n log(2π) + log |Jλ(θ̂P )| − log |K| − m log λ, (81)

where Jλ(θ̂P ) is the (m + 1) × (m + 1) matrix

Jλ(θ̂P ) =
1

nσ̂2

⎡

⎢
⎣

XT X + nλσ̂2K
1
σ̂2

XT e

1
σ̂2

e′X
n

2σ̂2
,

⎤

⎥
⎦ (82)

with the n-dimensional residual vector e =
(
y1 − β̂

T
x1, y2 − β̂

T
x2, · · · ,

yn − β̂
T
xn

)T

.

6.3 L1 Regularization and Bridge Regression

In recent years, with the advent of big data, modeling based on the L1 regular-
ization method has been widely used in many fields of science and technologies.
The feature of the L1 regularization method is that parameter estimation and
variable selection can be performed at the same time and it is important as a
method of extracting essential information from high dimensional data.

In this subsection, we will consider the evaluation of the bridge regression
model. The bridge regression model (Frank and Frieman 1993; Fu 1998) has an
Lp regularization term

�λ,p(β, σ2) = �(β, σ2) − nλ

2

p∑

j=1

|βj |p, (83)
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and it becomes the ridge regression for p = 2 and Lasso for p = 1. For 0 < p ≤ 1,
bridge regression method can perform the selection of variable and parameter
estimation simultaneously. Therefore, the bridge regression can be considered as
an estimation method that encompasses many estimation methods.

Kawano (2014) presents the GBIC for the bridge regression model

GBIC = n log σ̂2 + nλ
∑

j∈A

|β̂j |p + n + n log(2π) + log |Jλ| − 2|A| log p

+ 2|A|(1 +
1
p
) log 2 − 2|A|

p
log(nλ) + 2|A| log Γ

(
1
p

)

, (84)

where A = {j; β̂j �= 0}, and J is the (|A| + 1) × (|A| + 1) matrix given by

Jλ(θ̂P ) =
1

nσ̂2

⎡

⎢
⎣

XT X + nλσ̂2p(p − 1)K
1
σ̂2

XT e

1
σ̂2

e′X
n

2σ̂2
,

⎤

⎥
⎦ . (85)

For p < 1, the influence function cannot differentiate, so GIC can not be
directly applied. Matsui and Konishi (2011) use the SCAD penalty function to
derive GIC and BIC. In addition, Umezu et al. (2015) derived AIC for the bridge
regularization for 1 ≥ p < 1.

7 Summary

Due to the dramatic development of measuring instruments in recent years, a
huge amount of large-scale data has been acquired in all research areas. Along
with this, research method has changed, and data-driven methods are becoming
important as the fourth scientific methodology. In the data-driven approach, the
model is built according to the theory, knowledge, data, and further the purpose
of the analysis. Once a model is built, useful information can be extracted from
the data through the fitted model. In this data-driven method, it is crucial to
use a good model. Therefore, the problem of developing good model evaluation
criteria is a very important.

This paper outlined the model evaluation criteria such as AIC, GIC, EIC.
Which are obtained by bias-correction of the log-likelihood of an estimated
model. In particular, GIC can be applied to wide class of estimation proce-
dures such as M -estimators, Bayes models and penalized likelihood methods.
Bootstrap based information criterion EIC can be applied to various situation
for which analytic methods are difficult to apply. Since L1 regularization is
important in recent data analysis, the evaluation of regularization model is also
outlined.
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