
Hierarchical P Systems with Randomized
Right-Hand Sides of Rules

Artiom Alhazov1,2, Rudolf Freund3, and Sergiu Ivanov4,5(B)

1 Institute of Mathematics and Computer Science, Academy of Sciences of Moldova,
Academiei 5, 2028 Chişinău, Moldova
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Abstract. P systems are a model of hierarchically compartmentalized
multiset rewriting. We introduce a novel kind of P systems in which rules
are dynamically constructed in each step by non-deterministic pairing of
left-hand and right-hand sides. We define three variants of right-hand side
randomization and compare each of them with the power of conventional
P systems. It turns out that all three variants enable non-cooperative
P systems to generate exponential (and thus non-semi-linear) number
languages. We also give a binary normal form for one of the variants of
P systems with randomized rule right-hand sides.

1 Introduction

Membrane computing is a research field originally founded by Păun in 1998,
see [13]. Membrane systems (also known as P systems) are a model of computing
based on the abstract notion of a membrane. Formally, a membrane is treated
as a container delimiting a region; a region may contain objects which are acted
upon by the rewriting rules associated with the membranes. Quite often, the
objects are plain symbols coming from a finite alphabet, but P systems operating
on more complex objects (e.g., strings, arrays) are often considered, too, e.g.,
see [10].

A. Alhazov—The work is supported by National Natural Science Foundation of
China (61320106005, 61033003, and 61772214) and the Innovation Scientists and
Technicians Troop Construction Projects of Henan Province (154200510012).

c© Springer International Publishing AG 2018
M. Gheorghe et al. (Eds.): CMC 2017, LNCS 10725, pp. 15–39, 2018.
https://doi.org/10.1007/978-3-319-73359-3_2



16 A. Alhazov et al.

A comprehensive overview of different flavors of membrane systems and their
expressive power is given in the handbook which appeared in 2010, see [14]. For
a state of the art snapshot of the domain, we refer the reader to the P systems
website [17], as well as to the bulletin series of the International Membrane
Computing Society [16].

Dynamic evolution of the set of available rules has been considered from the
very beginning of membrane computing. Already in 1999, generalized P systems
were introduced in [9]; in these systems the membranes, alongside the objects,
contain operators which act on these objects, while the P system itself acts on
the operators, thereby modifying the transformations which will be carried out
on the objects in the subsequent steps. Among further ideas on dynamic rules,
one may list rule creation [5], activators [1], inhibiting/deinhibiting rules [8],
and symport/antiport of rules [7]. One of the more recent developments in this
direction are polymorphic P systems [3,4,12], in which rules are defined by pairs
of membranes, whose contents may be modified by moving objects in or out.

We remark that the previous studies on dynamic rule sets either treated
the rules as atomic entities (symport/antiport of rules, operators in generalized
P systems), or allowed virtually unlimited possibilities of tampering with their
shape (polymorphic P systems). In the present work, we propose a yet different
approach which can be seen as an intermediate one.

In hierarchical P systems with randomized rule-right-hand sides (or with ran-
domized RHS, for short), the available left-hand sides and right-hand sides of
rules are fixed, but the associations between them are re-evaluated in every step:
a left-hand side may pick a right-hand side arbitrarily (randomly). In Sect. 3,
we present three different formal definitions of this intuitive idea of randomized
RHS:

1. rules exchange their RHS,
2. each rule randomly picks an RHS from a common collection of RHS, shared

between the rules,
3. each rule randomly picks an RHS from a possible collection of RHS associated

with the rule itself.

P systems with randomized RHS may have a real-world (possibly biological)
application for representing systems in a hostile environment. The modifications
such P systems effect on their rules may be used to represent perturbations
caused by the environment (mutations), somewhat in the spirit of faulty Turing
machines (e.g., see [6]).

In this article, we will focus on the expressive power of P systems with ran-
domized RHS, as well as on comparing them to the classical model with or
without cooperative rules. One of the central conclusions of the present work is
that non-cooperative P systems with randomized RHS can generate exponen-
tial number languages, thus (partially) surpassing the power of conventional P
systems.

This paper is structured as follows. Section 2 recalls some preliminaries about
multisets, strings, permutations, as well as conventional P systems. Section 3
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defines the three variants of RHS randomization. Section 4 discusses the compu-
tational power of the three variants of P systems with randomized RHS. Section 5
shows a binary normal form for one of the variants of P systems with random-
ized RHS. Finally, Sect. 6 summarizes the results of the article and gives some
directions for future work.

2 Preliminaries

In this paper, the set of positive natural numbers {1, 2, . . . } is denoted by N
+,

the set of natural numbers also containing 0, i.e., {0, 1, 2, . . . }, is denoted by N.
Given k ∈ N

+, we will call the set N
+

k = {x ∈ N
+ | 1 ≤ x ≤ k} an initial

segment of N
+.

An alphabet V is a finite set. The families of recursively enumerable, context-
free, linear, and regular languages, and of languages generated by tabled Lin-
denmayer systems are denoted by RE,CF,LIN,REG, and ET0L, respectively.
The families of sets of Parikh vectors as well as of sets of natural numbers (mul-
tiset languages over one-symbol alphabets) obtained from a language family F
are denoted by PsF and NF , respectively.

For further introduction to the theory of formal languages and computability,
we refer the reader to [14,15].

2.1 Linear Sets over N

A linear set over N generated by a set of vectors A = {ai | 1 ≤ i ≤ d} ⊂fin N
n

(here A ⊂fin B indicates that A is a finite subset of B) and an offset a0 ∈ N
n is

defined as follows:

〈A,a0〉N =

{
a0 +

∑d

i=1
kiai

∣∣∣∣∣ ki ∈ N, 1 ≤ i ≤ d

}
.

If the offset a0 is the zero vector 0, we call the corresponding linear set homoge-
neous; we also use the short notation 〈A〉N = 〈A,0〉N.

We use the notation N
nLINN = {〈A,a0〉N | A ⊂fin N

n, a0 ∈ N
n}, to refer to

the class of all linear sets of n-dimensional vectors over N. Semi-linear sets are
defined as finite unions of linear sets. We use the notation N

nSLINN to refer to
the classes of semi-linear sets of n-dimensional vectors. In case no restriction is
imposed on the dimension, n is replaced by ∗. We may omit n if n = 1. A finite
union of linear sets which only differ in the starting vectors is called uniform
semilinear:

N
nSLINU

N
=

{⋃
b∈B〈A,b〉N | A ⊂fin N

n, B ⊂fin N
n
}

Let us denote such a set by 〈A,B〉N.
Note that a uniform semilinear set 〈A,B〉N can be seen as a pairwise sum of

the finite set B and the homogeneous linear set 〈A〉N:

〈A,B〉N = {a + b | a ∈ 〈A〉N,b ∈ B}.
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This observation immediately yields the conclusion that the sum of two uniform
semilinear sets 〈A1, B1〉N and 〈A2, B2〉N is uniform semilinear as well and can be
computed in the following way:

〈A1, B1〉N + 〈A2, B2〉N = {a + b | a ∈ 〈A1 ∪ A2〉N,b ∈ B1 + B2}.

As is folklore,

PsCF = PsLIN = PsREG = N
∗SLINN.

2.2 Multisets

A multiset over V is any function w : V → N; w(a) is the multiplicity of a in w.
A multiset w is often represented by one of the strings containing exactly w(a)
copies of each symbol a ∈ V . The set of all multisets over the alphabet V is
denoted by V ◦. By abusing string notation, the empty multiset is denoted by λ.
The projection (restriction) of w over a sub-alphabet V ′ ⊆ V is the multiset w|V ′

defined as follows:

w|V ′(a) =

{
w(a), a ∈ V ′;
0, a ∈ V � V ′.

Example 1. The string aab can represent the multiset w : {a, b} → N with
w(a) = 2 and w(b) = 1. The projection w|{a} = w′ is defined as w′(a) = w(a) = 2
and w′(b) = 0.

We will (ab)use the symbol ∈ to denote the relation “is a member of” for
multisets. Therefore, for a multiset w, a ∈ w will stand for w(a) > 0.

2.3 Strings and Permutations

A (non-empty) string s over an alphabet V traditionally is defined as a finite
ordered sequence of elements of V . Equivalently, we can define a string of length
k as a function assigning symbols to positions: s : N

+
k → V . Thus, the string

s = aab can be equivalently defined as the function s : N
+
3 → {a, b} with

s(1) = a, s(2) = a, and s(3) = b. We will use the traditional notation |s| to
refer to the length of the string s (i.e., the size k of the initial segment N

+
k it is

defined on). In addition, the size of the empty string λ is 0.
A string s : N

+
k → V is not necessarily surjective (there may be symbols

from V that do not appear in s). We will use the notation set(s) to refer to the
set of symbols appearing in s (the image of s):

set(s) =
{
a ∈ V | a = s(i) for some i ∈ N

+|s|
}

.

Given a string s : N
+

k → V , a prefix of length k′ ≤ k of s is the restriction
of s to N

+
k′ ⊆ N

+
k. For example, aa is a prefix of length 2 of the string aab.

We will use the notation prefk′(s) to denote the prefix of length k′ of s.
Given a finite set A, a permutation of A is any bijection ρ : A → A. Given a

permutation σ : N
+

k → N
+

k and a string s : N
+

k → V of length k, applying σ
to s is defined as σ(s) = s ◦ σ (where ◦ is the function composition operator).
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Example 2. Following the widespread tradition, we will write permutations in
Cauchy’s two-line notation. The permutation σrev of N

+
3 which “reverses the

order” of the numbers, can be written as follows:

σrev =
(

1 2 3
3 2 1

)
.

Applying σrev to a string reverses it:

σrev(aab) = baa.

Any finite set B trivially can be represented by one of the strings listing all of
its elements exactly once. All such strings are equivalent modulo permutations.
Given a fixed enumeration B = {b1, . . . , bn}, we define the canonical string
representation of B to be the string δ(B) = b1 . . . bn.

2.4 Rule Sides

We consider arbitrary labeled multiset rules r : u → v over an alphabet V ,
where r is the rule label we attach for convenience, and u and v are strings
over V representing multisets. As usual, the application of such a rule means
replacing the multiset represented by u by the multiset represented by v.

For a given rule r : u → v, we define the left-hand-side and the right-hand-
side functions as follows:

lhs(u → v) = lhs(r) = (u),
rhs(u → v) = rhs(r) = (v).

Using the brackets ( and ), for a given string w, the notation (w) is used to
describe the multiset represented by w. As usual, we will extend the notations
for these functions lhs and rhs lifted to sets of rules: given a set of rules R,
lhs(R) = {lhs(r) | r ∈ R} and rhs(R) = {rhs(r) | r ∈ R}. Furthermore, for any
string (finite ordered sequence) of rules ρ : N

+
k → R we define the strings of

left-hand sides lhs(ρ) = lhs ◦ ρ and of right-hand sides rhs(ρ) = rhs ◦ ρ.

Example 3. Take R = {r1 : aa → ab, r2 : cc → cd} and consider the string of
rules ρ = r1r1r2. Then lhs(ρ) = (aa)(aa)(cc) and rhs(ρ) = (ab)(ab)(cd). Thus,
lhs(ρ) and rhs(ρ) can be considered as strings of multisets.

We will (ab)use the symbol → for combining two strings of multisets α, β :
N

+
k → V ◦ of the same length k. The string α → β will be defined as follows,

for any i ∈ N
+

k:
(α → β)(i) = α(i) → β(i).

Example 4. Consider the following two strings of multisets: α = (aa)(aa)(cc)
and β = (ab)(ab)(cd). α → β is simply the string of rules that can be obtained
by taking the multisets from α as left-hand sides and β as right-hand sides, in
the given order: α → β = (aa) → (ab)(aa) → (ab)(cc) → (cd) (which exactly
corresponds with ρ from Example 3).
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2.5 (Hierarchical) P Systems

A (hierarchical) P system is a construct

Π = (O, T, μ,w1, . . . , wn, R1, . . . Rn, hi, ho),

where O is the alphabet of objects, T ⊆ O is the alphabet of terminal objects,
μ is the membrane structure injectively labeled by the numbers from {1, . . . , n}
and usually given by a sequence of correctly nested brackets, wi are the multisets
giving the initial contents of each membrane i (1 ≤ i ≤ n), Ri is the finite set of
rules associated with membrane i (1 ≤ i ≤ n), and hi and ho are the labels of
the input and the output membranes, respectively (1 ≤ hi ≤ n, 1 ≤ ho ≤ n).

In the present work, we will mostly consider the generative case, in which Π
will be used as a multiset language-generating device. We therefore will system-
atically omit specifying the input membrane hi.

Quite often the rules associated with membranes are multiset rewriting rules
(or special cases of such rules). Multiset rewriting rules have the form u → v,
with u ∈ Oo \ {λ} and v ∈ Oo. If |u| = 1, the rule u → v is called non-
cooperative; otherwise it is called cooperative. Rules may additionally be allowed
to send symbols to the neighboring membranes. In this case, for rules in Ri, v ∈
O × Tari, where Tari contains the targets out (corresponding to sending the
symbol to the parent membrane), here (indicating that the symbol should be
kept in membrane i), and inh (indicating that the symbol should be sent into
the child membrane h of membrane i). Note that all variants of the function rhs,
as well as the operator → from the previous section can be naturally extended
to rules having right-hand sides with target indications (from O × Tari).

In P systems, rules are often applied in the maximally parallel way: in
any derivation step, a non-extendable multiset of rules has to be applied. The
rules are not allowed to consume the same instance of a symbol twice, which
creates competition for objects and may lead to the P system choosing non-
deterministically between the maximal collections of rules applicable in one step.

A computation of a P system is traditionally considered to be a sequence
of configurations it can successively pass through, stopping at the halting con-
figuration. A halting configuration is a configuration in which no rule can be
applied any more, in any membrane. The result of a computation of a P system
Π as defined above is the contents of the output membrane ho projected over
the terminal alphabet T .

Example 5. For readability, we will often prefer a graphical representation of P
systems. For example, the P system Π1 = ({a, b}, {b}, [1 ]1, a, R, 1) with the rule
set R = {a → aa, a → b} may be depicted as in Fig. 1.

Due to maximal parallelism, at every step Π1 may double some of the sym-
bols a, while rewriting some other instances into b.

Note that, even though Π1 might express the intention of generating the set
of numbers of the powers of two, it will actually generate the whole of N

+ (due
to halting). Indeed, for any n ∈ N

+, an can be generated in n steps by choosing
to apply, in the first n − 1 steps, a → aa to exactly one instance of a and a → b
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a → aa

a → b

a
1

Fig. 1. The example P system Π1

to all the other instances, and by applying a → b to every a in the last step
(in fact, for n > 1, in each step except the last one, in which a → b is applied
twice, both rules are applied exactly once, as exactly two symbols a are present,
whereas all other symbols are copies of b).

While maximal parallelism and halting by inapplicability are staple ingredi-
ents, various other derivation modes and halting conditions have been considered
for P systems, e.g., see [14].

We will use the notation OPn(coo) to denote the family of P systems with
at most n membranes, with cooperative rules. To denote the family of such
P systems with non-cooperative rules, we replace coo by ncoo. To denote the
family of languages of multisets generated by these P systems, we prepend Ps
to the notation, and to denote the family of the generated number languages,
we prepend N .

3 P Systems with Randomized RHS

In this section we consider three different variants of defining P systems with
randomized RHS. We immediately point out that, despite the common intuitive
background, the details of the resulting semantics vary quite a lot.

3.1 Variant 1: Random RHS Exchange

In this variant of P systems, rules randomly exchange right-hand sides at the
beginning of every evolution step. This variant was the first to be conceived and
is the closest to the classical definition.

A P system with random RHS exchange is a construct

Π = (O, T, μ,w1, . . . , wn, R1, . . . Rn, ho),

where the components of the tuple are defined as in the classical model
(Sect. 2.5).

As different from conventional P systems, Π does not apply the rules from
Ri directly. Instead, for each membrane 1 ≤ i ≤ n, we take the canonical rep-
resentation of Ri, i.e., δ(Ri), and non-deterministically (randomly) choose a
permutation σ : N

+|Ri| → N
+|Ri| to compute the canonical representation of Rσ

i

from δ(Ri) as follows:

δ(Rσ
i ) = lhs(δ(Ri)) → σ(rhs(δ(Ri))).
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We now extract the set of rules Rσ
i = set(δ(Rσ

i )) described by the string δ(Rσ
i )

as constructed above. Π will then apply the rules from Rσ
i according to the usual

maximally parallel semantics in membrane i.
In other words, Π non-deterministically permutes the right-hand sides of

rules in each membrane i, and then applies the obtained rules according to the
maximally parallel semantics.

Note that we first have to transform the set Ri into its canonical string
representation δ(Ri) in order to be able to obtain a correct representation of the
|Ri| rules and from that a correct representation of the |Ri| rules in Rσ

i , even if
the number of different left-hand sides and/or different right-hand sides of rules
does not equal |Ri|.
Example 6. Consider the P system Π2 = ({a, b}, {b}, [1 ]1, a, R, 1) with the rule
set R = {a → aa, c → b}. Π2 is graphically represented in Fig. 2.

a → aa

c → b

a
1

Fig. 2. The P system Π2 with random RHS exchange generating the number language
{2n | n ∈ N}.

The number language generated by Π2 (the set of numbers of instances of
b that may appear in the skin after Π2 has halted) is exactly {2n | n ∈ N

+}.
Indeed, while Π2 applies the identity permutation on the right-hand sides, a →
aa will double the number of symbols a, while the rule c → b will never be
applicable. When Π2 exchanges the right-hand sides of the rules, the rule a → b
will rewrite every symbol a into a symbol b. After this has happened, no rule
will ever be applicable any more and Π2 will halt with 2n symbols b in the skin,
where n + 1 is the number of computation steps taken.

We will use the notation

OPn(rhsExchange, coo)

to denote the family of P systems with random RHS exchange, with at most n
membranes, with cooperative rules. To denote the family of such P systems with
non-cooperative rules, we replace coo by ncoo. To denote the family of languages
of multisets generated by these P systems, we prepend Ps to the notation, and
to denote the family of the generated number languages, we prepend N .

3.2 Variant 2: Randomized Pools of RHS

In this variant of P systems, every membrane has some fixed left-hand sides and
a pool of available right-hand sides to build rules from. An RHS from the pool
can only be used once.
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A P system with randomized pools of RHS is a construct

Π = (O, T, μ,w1, . . . , wn,H1, . . . Hn, ho),

where Hi defines the left- and right-hand sides available in membrane i and the
other components of the tuple are defined as in the classical model (Sect. 2.5).

For 1 ≤ i ≤ n,Hi = (li, ri) is a pair of strings of multisets over O. The string
ri may contain target indications (i.e., be a string of multisets over O × Tari).
The strings li and ri are not necessarily of the same length. The length of the
shortest of the two strings li and ri is denoted by

ki = min(|li|, |ri|).
At the beginning of every computation step in Π, for every membrane i, we

construct the set of rules it will apply in the following way:

1. non-deterministically choose two (random) permutations

σl : N
+|li| → N

+|li|, σr : N
+|ri| → N

+|ri|;

2. take the first ki elements out of σl(li) and σr(ri):

l′i = prefki
(σl(li)), r′

i = prefki
(σr(ri));

3. construct the set of rules Ri to be applied in membrane i by combining the
left- and right-hand sides from l′i and r′

i:

Ri = set(l′i → r′
i).

In step (3), we combine the strings l′i and r′
i using the operator → defined in

Subsect. 2.4 and then apply the operator set to obtain the corresponding set of
rules from the string representation.

After having constructed the set Ri for each membrane i, Π will proceed to
applying the obtained rules according to the usual maximally parallel semantics.

When computing the strings l′i and r′
i, we apply two different permutations σl

and σr to li and ri, in order to ensure fairness for the participation of left-hand
and right-hand sides when |li| �= |ri|. For example, if we only permuted ri in the
case in which |li| > |ri|, the left-hand sides located at positions k > |ri| in li
would never be used.

We do not explicitly prohibit repetitions in li or in ri, but we avoid repeated
rules by constructing Ri using the set function.

Example 7. Consider the following P system with randomized pools of RHS:
Π3 = ({a, b}, {b}, [

1
]
1
, a,H, 1), with H =

(
(a), (aa)(b)

)
; (a) stands for the mul-

tiset containing an instance of a, while (aa)(b) is the string denoting the two
multisets (aa) and (b). The graphical representation of Π3 is given in Fig. 3.

The pair H = (l, r) of strings of multisets is represented by listing the mul-
tisets of l and r in two columns and by drawing a vertical line between the two
columns.
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a aa
b

a
1

Fig. 3. The P system Π3 with randomized pools of RHS generating the number lan-
guage {2n | n ∈ N}.

Π3 follows exactly the same pattern as Π2 from Example 6: while the identity
permutation is applied to r,Π3 keeps doubling the symbols a in the skin. Once
the multisets (aa) and (b) are permuted in r, and thus the rule a → b is formed,
all symbols a are rewritten into symbols b in one step and Π3 must halt. Note
that randomly taking the right-hand sides from a given pool avoids having the
extra dummy rule c → b in Π2.

We will use the notation

OPn(rhsPools, coo)

to denote the family of P systems with randomized pools of RHS, with at most n
membranes, with cooperative rules. To denote the family of such P systems with
non-cooperative rules, we replace coo by ncoo. To denote the family of languages
of multisets generated by these P systems, we prepend Ps to the notation, and
to denote the family of the generated number languages, we prepend N .

3.3 Variant 3: Individual Randomized RHS

In this variant of P systems, each rule is constructed from a left-hand side and
a set of possible right-hand sides.

A P system with individual randomized RHS is a construct

Π = (O, T, μ,w1, . . . , wn, P1, . . . Pn, ho),

where Pi is the set of productions associated with the membrane i and the other
components of the tuple are defined as in the classical model (Sect. 2.5).

A production is a pair u → R, where u ∈ O◦ is the left-hand side and
R ⊆ O◦ is a finite set of right-hand sides. The right-hand sides in R may have
target indications, i.e., for a production in membrane i, we may consider R ⊆
(O × Tari)◦. At the beginning of each computation step, for every membrane i,
for each production u → R ∈ Ri,Π will non-deterministically (randomly) pick
a right-hand side v from R and will construct the rule u → v (this happens once
per production). Π will then apply the rules thus constructed according to the
maximally parallel semantics.

Example 8. Generating the language of the powers of two is the easiest com-
pared with Variants 1 and 2. Indeed, consider the P system with individ-
ual randomized RHS Π4 = ({a, b}, {b}, [1 ]1, a, P, 1) with only one production:
P = {a → {aa, b})}. Its graphical representation is given in Fig. 4.
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a → {aa, b}
a

1

Fig. 4. The P system Π4 with individual randomized RHS generating the number
language {2n | n ∈ N}.

Π4 works exactly like Π2 and Π3 from Examples 6 and 7: it doubles the
number of symbols a and halts by rewriting them to b in the last step.

We will use the notation

OPn(rndRhs, coo)

to denote the family of P systems with individual randomized RHS, with at most
n membranes, with cooperative rules. To denote the family of such P systems
with non-cooperative rules, we replace coo by ncoo. To denote the family of lan-
guages of multisets generated by these P systems, we prepend Ps to the notation,
and to denote the family of the generated number languages, we prepend N .

We will sometimes want to set an upper bound k on the number of right-
hand sides per production. To refer to the family of P systems with individual
randomized RHS with such an upper bound, we will replace rndRhs by rndRhsk

in the notation above.

3.4 Halting with Randomized RHS

The conventional (total) halting condition for P systems can be naturally lifted to
randomized RHS: a P system Π with randomized RHS (Variant 1, 2, or 3) halts
on a configuration C if, however it permutes rule right-hand sides in Variant 1,
or however it builds rules out of the available rule sides in Variants 2 and 3, no
rule can be applied in C, in any membrane.

Note that, for Variants 1 and 3, the permutations chosen do not affect the
applicability of rules, because applicability only depends on left-hand sides,
which are always the same in any membrane. The situation is different for Vari-
ant 2, because the number of available left-hand sides in a membrane of Π may
be bigger than the number of available right-hand sides. Therefore, if Π is a P
system with randomized pools of RHS, the way rule sides are permuted may
affect the number of rules applicable in a given configuration. This is why, for
Π to halt on C, we require no rule to be applicable for any permutation.

In this paper, we will mainly consider P systems with randomized pools of
RHS in which, in every membrane, there are at least as many right-hand sides
as there are left-hand sides. To refer to P systems with this restriction, we will
use the notation rhsPools′. In these systems, the problem with the applicability
of rules as described above can be avoided.
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3.5 Equivalence Between Variants 1 and 2

Before discussing the computational power of the P systems with randomized
RHS in general, we will briefly point out a strong relationship between P systems
with random RHS exchange and P systems with randomized pools of RHS, with
the restriction that every membrane contains at least as many right-hand sides as
it has left-hand sides, i.e., for P systems with randomized RHS of type rhsPools′.

Theorem 1. For any k ∈ {coo, ncoo}, the following holds:

PsOPn(rhsExchange, k) = PsOPn(rhsPools′, k).

Proof. Any membrane with random RHS exchange trivially can be transformed
into a membrane with randomized pools of RHS by listing the left-hand sides of
the rules in the pool of LHS and the right-hand sides of the rules in the pool of
RHS.

Conversely, consider a membrane i with randomized pools of RHS, with the
string li of LHS and the string ri of RHS, |li| ≤ |ri|. We can transform it into
a membrane with random RHS exchange as follows. For every LHS u from li,
pick (and remove) an RHS v from ri, and construct the rule u → v. According
to our supposition, we will exhaust the LHS before (or at the same time as) the
RHS. For every RHS v′ which is left, we add a new (dummy) symbol z′ to the
alphabet, and add the rule z′ → v′. Since the symbol z′ is new and does not
appear in any RHS, it will never be produced and the rule z′ → v′ will essentially
serve as a stash for the RHS v′. 
�

3.6 Flattening

The folklore flattening construction (see [14] for several examples as well as [11]
for a general construction) is quite directly applicable to P systems with indi-
vidual randomized RHS.

Proposition 1 (flattening). For any k ∈ {coo, ncoo}, the following is true:

PsOP1(rndRhs, k) = PsOPn(rndRhs, k).

Proof (sketch). Since in the case of individual randomized RHS, randomiza-
tion has per rule granularity (whereas in the other two variants randomization
occurs at the level of membranes), we can simulate multiple membranes by
attaching membrane labels to symbols. For example, a production ab → {cd, f}
in membrane h becomes ahbh → {chdh, fh}, while the send-in production
a → {(b, ini), (b, inj)} becomes ah → {bi, bj}. 
�

On the other hand, for Variants 1 and 2 similar results cannot be proved in
such a way, a situation which happens very seldom in the area of P systems,
especially in the case of variants of the standard model. Yet intuitively, it is easy
to understand why this happens, as in both Variants 1 and 2 the right-hand sides
in just one membrane can randomly be chosen for any left-hand side, whereas
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different membranes can separate the possible combinations of left-hand sides
and right-hand sides of rules. A formal proof showing that flattening is impossible
for the types rhsExchange and rhsPools′ will be given in the succeeding section
by constructing a suitable example.

4 Computational Power of Randomized RHS

In this section, we look into the computational power of the three different
versions of P systems with randomized right-hand sides. We first shortly consider
the case of cooperative rules and then focus on the case of non-cooperative rules.

4.1 Cooperative Rules

The following result concerning the relationship between P systems with indi-
vidual randomized RHS and conventional P systems holds for both cooperative
and non-cooperative rules:

Proposition 2. For any n ∈ N
+ and α ∈ {ncoo, coo}, P sOPn(rndRhs, α) ⊇

PsOPn(α).

Proof. Any conventional P system can be trivially seen as a P system with
individual randomized RHS in which every production has exactly one right-
hand side. 
�

Now, the computational completeness of cooperative P systems trivially
implies the computational completeness of P systems with individual random-
ized RHS.

Corollary 1. For any n ∈ N
+, PsOPn(rndRhs, coo) = PsRE.

4.2 Non-cooperative Rules

First we mention an upper bound for the families PsOPn(ρ, ncoo), for any vari-
ant ρ ∈ {rhsExchange, rhsPools′, rndRhs}:

Proposition 3. For any n ∈ N
+ and ρ ∈ {rhsExchange, rhsPools′, rndRhs},

PsOPn(ρ, ncoo) ⊆ PsET0L.

Proof. No matter how the rule sets are constructed in the three different vari-
ants, we always get a finite set of different sets of rules – tables – correspond-
ing to tables in ET0L-systems, which can also mimic the contents of different
membranes in the usual way by using symbols marked with the corresponding
membrane label. 
�

Next we show one of the central results of this paper: randomized rule right-
hand sides allow for generating non-semilinear languages already in the non-
cooperative case.
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Theorem 2. The following is true for ρ ∈ {rhsExchange, rhsPools′, rndRhs}:

{2m | m ∈ N} ∈ NOPn(ρ, ncoo) \ NOPn(ncoo).

Proof. The statement follows (for n ≥ 1) from the constructions given in Exam-
ples 6, 7, and 8 and from the well-known fact that non-cooperative P systems
operating under the total halting condition cannot generate non-semilinear num-
ber languages (for example, see [14]). 
�

This result is somewhat surprising at a first glance, but becomes less so when
one remarks that the constructions from all three examples only effectively use
one rule to do the multiplication, which is non-deterministically changed to a
“halting” rule. Since there is only one rule acting at any time, randomized right-
hand sides allow for clearly delimiting different derivation phases.

It turns out that this approach of synchronization by randomization can be
exploited to generate even more complex non-semilinear languages.

Theorem 3. Given a fixed subset of natural factors {f1, . . . , fk} ⊆ N, the fol-
lowing is true for any ρ ∈ {rhsExchange, rhsPools′, rndRhs}:

L = {fn1
1 · . . . · fnk

k | n1, . . . , nk ∈ N} ∈ NOP1(ρ, ncoo).

Proof. First consider the P system with randomized pools of RHS Π5 =
({a, b}, {b}, [1 ]1, a,H, 1) with H = (l, r), l = (a) and r =

(
af1

)
. . .

(
afk

) (
b
)
.

This P system is graphically represented in Fig. 5.
Similarly to the P systems from Examples 6, 7, and 8, Π5 halts by choosing to

pick the right-hand side b and constructing the rule a → b. If Π5 picks a different
right-hand side, it will multiply the contents of the skin membrane (membrane 1)
by one of the factors fi, 1 ≤ i ≤ k. This proves that L ∈ NOP1(rhsPools′, ncoo),
and, according to Theorem 1, L ∈ NOP1(rhsExchange, ncoo) as well: take the P
system with the rules {a → af1 , z2 → af2 , . . . , zk → afk , zk+1 → b} (the rules
with zj in their left-hand sides are dummy rules).

To show that L ∈ NOP1(rndRhs, ncoo), just construct a P system with the
only production a → {af1 , . . . , afk , b}. 
�

a af1

...
afk

b

a
1

Fig. 5. The P system Π5 with randomized pools of RHS generating the number lan-
guage {fn1

1 · . . . · f
nk
k | n1, . . . , nk ∈ N}.
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Therefore, randomizing the right-hand sides of rules in non-cooperative P
systems allows for generating non-semilinear languages which cannot be gener-
ated without randomization. A natural question to ask is whether randomizing
the RHS leads to a strict increase in the computational power. The answer is
trivially positive for P systems with individual randomized RHS (Variant 3).

Proposition 4. For any n ∈ N
+, PsOPn(rndRhs, ncoo) � PsOPn(ncoo).

Proof. The inclusion follows from Proposition 2, as any conventional P system
can be trivially seen as a P system with individual randomized RHS in which
every production has exactly one right-hand side. Theorem3 proves the strictness
of the inclusion. 
�

On the other hand, the other two variants of randomizing right-hand sides—
random RHS exchange (Variant 1) and randomized pools of RHS (Variant 2)—
actually prevent one-membrane P systems with non-cooperative rules from gen-
erating some semilinear languages, which result also shows that flattening is not
possible for these two variants.

In what follows, we will use the expression “only one rule is applied” to refer
to the fact that only one given rule u → v is applied in a certain configuration,
possibly in multiple copies. Dually, by saying “at least two rules are applied”, we
mean that at least two different rules, u → v and u′ → v′, are applied, possibly
in multiple copies each.

Theorem 4. For ρ ∈ {rhsExchange, rhsPools′}, the following holds:

Lab = {an | n ∈ N} ∪ {bn | n ∈ N} /∈ PsOP1(ρ, ncoo).

Proof. Consider a P system Π with randomized RHS of the variant given by ρ
and with non-cooperative rules. We immediately remark that no left-hand side
in Π may be a or b, because in this case Π will never be able to halt with its
only (skin) membrane containing either the multiset an or bn. Furthermore, any
RHS of Π contains combinations of symbols a, b, or LHS symbols. Indeed, if an
RHS contained a symbol not belonging to these three classes, instances of this
symbol would pollute the halting configuration. Finally, Π contains no RHS v
such that a ∈ v and b ∈ v. If Π did contain such an RHS, then any computation
could be hijacked to produce a mixture of symbols a and b.

With these remarks in mind, the statement of the theorem follows from the
contradicting Lemmas 1 and 2, which are shown immediately after this proof. 
�
Lemma 1. Take a Π ∈ OP1(ρ, ncoo), ρ ∈ {rhsExchange, rhsPools′}, such that
it generates the number language Ps(Π) = Lab. Then it must have a compu-
tation in which more than one rule is applied (two different left-hand sides are
employed) in at least one step.

Proof. Suppose that Π applies exactly one rule in every step of every computa-
tion. We make the following two remarks:
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1. Since the words in Lab are of unbounded length, Π must have an LHS t and
an RHS v such that t ∈ v, otherwise all computations of Π would have one
step and would only produce words of bounded length.

2. Every such RHS v must contain at most one kind of LHS, i.e., if t1 and t2
are two LHS of Π then t1 ∈ v and t2 ∈ v implies t1 = t2. If this were not the
case, after using v,Π would have to apply two different rules (assuming that
Π has at least as many RHS as LHS).

According to these observations, as well as to those from the proof of Theo-
rem 4, any RHS v of Π is the of the form v = αβ, where α ∈ {ak, bk | k ∈ N}, β ∈
{tk | k ∈ N}, and t is an LHS of Π. Note that both α and β may be empty.
According to observation (1), Π must have at least an RHS for which β �= λ
and there exists such an RHS which must be applied an unbounded number of
times.

In what follows, we will separately treat the cases in which Π contains or
does not contain mixed RHS, i.e., RHS for which both α �= λ and β �= λ.

No mixed RHS: Suppose that any RHS of Π which contains a left-hand side is of
the form tk2 . Then, according to our previous observations on the possible forms
of the RHS of Π, all RHS containing a are of the form ai and all RHS containing
b are of the form bj . According to the remarks from the proof of Theorem4, a
and b must not be LHS of Π. Therefore, in any computation of Π, all of a’s
and b’s are produced in the last step. But then, the number of terminal symbols
Π produces in a computation can be calculated as a product of the sizes of the
RHS of the rules it has applied, which implies that there exists such a p ∈ N

such that ap /∈ Ps(Π) and therefore Ps(Π) �= Lab. (p may be picked to be the
smallest prime number greater than the length of the longest RHS of Π.)

Mixed RHS: It follows from the previous paragraph that, in order to generate
the number language Lab,Π should contain and apply at least one RHS of the
form aitk1

1 and at least one RHS of the form bjtk2
2 . Take a computation C of

Π producing a and applying the rule t → aitk1
1 at a certain step. Instead of

this rule, apply t → bjtk2
2 , and, in the following step, the rule t2 → aitk1

1 . (We
can do so because Π is allowed to pick any permutation of RHS.) Now, Π may
continue applying the same rules as in C and eventually halt with a configuration
containing both a and b. This implies that Ps(Π) �= Lab.

It follows from our reasoning that, if Π applies exactly one rule in any step
of any computation, it cannot produce Lab, which proves the lemma. 
�
Lemma 2. Take a Π ∈ OP1(ρ, ncoo), ρ ∈ {rhsExchange, rhsPools′}, such that
it generates the number language Ps(Π) = Lab. Then, in every computation of
Π, exactly one rule is applied (one left-hand side is employed) in every step.

Proof. Suppose that, in every computation of Π, there exists a step at which
at least two different rules are applied. This immediately implies that Π has no
RHS of the form ai or bj , for i, j ≥ 0. Indeed, consider a computation producing
the multiset an and a step in it at which more than one rule is applied. Then
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Π can replace one of the RHS introduced into the system at this step by bj and
thus end up with a mix of a’s and b’s in the halting configuration. Therefore,
all RHS of Π containing a have the form aiva and all RHS containing b have
the form bjvb, where va and vb are non-empty multisets which only contain LHS
symbols (which are neither a nor b).

Now, consider a computation Ca of Π halting on the multiset an, and take the
last step sa at which at least two different rules are applied. We will consider three
different cases, based on whether a and an LHS t appear in the configurations
of Ca after step sa.

Both a and t are present: Suppose both a and an LHS t are present at step sa +1
in computation Ca. Then t is the only LHS present, because, by our hypothesis,
only one rule is applied (maybe in multiple instances) at step sa + 1. In this
case, replace the rule applied at step sa + 1 in Ca by t → bjvb, where bjvb is a
right-hand side of Π used in a computation Cb producing b’s. From step sa + 2
on in the modified computation, just apply the same rules as applied to the
symbols of vb (and to those derived from vb) in Cb. The modified computation
will reach a halting configuration containing a mix of a’s and b’s.

Only a is present: Suppose only a is present at step sa + 1 in computation Ca.
Then all of the RHS used at step sa are λ, because Π has no RHS of the form ai.
Then, replace one of these empty RHS by bjvb, where bjvb is a right-hand side of
Π used in a computation Cb producing b’s. As before, just apply the same rules
as in Cb in the modified computation to get a mix of a’s and b’s in the halting
configuration.

No symbols a are present: Suppose now that there are no instances of a present
at step sa + 1 in computation Ca. Recall that Π has no RHS of the form ai.
Since we suppose that sa is the last step at which at least two different rules are
applied, this means that, in order to produce any a’s in Ca,Π must have and
use an RHS of the form aitk. This RHS contains (multiple copies of) exactly one
kind of LHS symbol: t.

Consider a computation Cb halting on the multiset bn. We pick n sufficiently
big to ensure that Cb uses at least two RHS containing b: bjvb and bj′

v′
b (possibly

the same). Without losing generality, we may suppose that these two RHS are
either used at the same step in Cb or that bj′

v′
b is used at a later step than bjvb.

Then, replace bj′
v′

b by aitk, pick one of the LHS symbols t′ ∈ v′
b and apply the

same rules to t (and to the symbols derived from t) in the modified derivation
as were applied to t′ (and to the symbols derived from t′) in Cb. The modified
derivation will therefore contain a mix of a’s and b’s in the halting configuration.

It follows from our reasoning that, if in any derivation of Π there is a step at
which at least two different rules are applied, then Ps(Π) �= Lab, which proves
the lemma. 
�

The previous two lemmas are contradicting each other, which means that
there exist no one-membrane P systems with random RHS exchange or with
random pools of RHS which generate the union language Lab = {an | n ∈ N} ∪
{bn | n ∈ N} (this is the statement of Theorem 4). Together with Theorem 3, this
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leads us to the curious conclusion that one-membrane non-cooperative P systems
with random RHS exchange or with randomized pools of RHS are incomparable
in power to the conventional P systems.

Corollary 2. For ρ ∈ {rhsExchange, rhsPools′}, the following two statements
are true:

PsOP1(ρ, ncoo) \ PsOP1(ncoo) �= ∅, (1)
PsOP1(ncoo) \ PsOP1(ρ, ncoo) �= ∅. (2)

Proof. Statement (1) follows from Theorem 3. Statement (2) follows from The-
orem 4. 
�

Theorem 4 also allows us to draw a negative conclusion as to the computa-
tional completeness of one-membrane non-cooperative P systems with random
RHS exchange (Variant 1) and non-cooperative P systems with randomized pools
of RHS (Variant 2).

Corollary 3. For ρ ∈ {rhsExchange, rhsPools′}, the following is true:

PsOP1(ρ, ncoo) � PsRE.

It turns out that allowing multiple membranes strictly increases the expres-
sive power of Variants 1 and 2 and allows for easily generating all semilinear
languages, as shown by the following theorem.

Theorem 5. For ρ ∈ {rhsExchange, rhsPools′}, the following holds:

N
∗SLINN ∈ PsOP∗(ρ, ncoo).

Proof. Consider the following semilinear language of d-dimensional vectors L =⋃
1≤i≤n〈Ai,bi〉N, where Ai ⊂fin N

d and bi ∈ N
d. We construct the correspond-

ing P system with randomised pools of RHS:

Π6 =
(
O, T, [ [ ]2 . . . [ ]n+1 ]1, w0, λ, . . . , λ,H1, . . . Hn+1, 1

)
,

with the alphabet and the initial contents of the skin defined as follows:

– O = {a1, . . . , ad, t} contains a symbol per each dimension of the vectors, plus
the special symbol t,

– T = {a1, . . . , ad} contains exactly one symbol per dimension of vectors,
– w0 = t.

The pools of LHS and RHS H1 = (l1, r1) associated with the skin membrane 1
of Π6 are:

l1 = (t), r1 =
(
u1 (t, in2)

)
. . .

(
un (t, inn+1)

)
,

where the multiset ui corresponds to the offset bi: Ps(ui) = bi, 1 ≤ i ≤ n.
Finally, the pools of rule sides Hi+1 = (li+1, ri+1) associated with inner mem-
brane i + 1 are defined as follows:

li+1 = (t), ri+1 =
(
t (vi1, out)

)
. . .

(
t (viki

, out)
) (

λ
)
,
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t t (v11, out)
. . .

t (v1k1 , out)
λ

λ
2

t t (vn1, out)
. . .

t (vnkn , out)
λ

λ
n + 1

. . .

t u1 (t, in2)
. . .

un (t, inn+1)

t

1

Fig. 6. The P system Π6 with randomized pools of RHS generating the semilinear
language L =

⋃
1≤i≤n〈Ai,bi〉N.

where the multisets vij , 1 ≤ j ≤ ki, correspond to the vectors of the set Ai =
{ai1, . . . ,aiki

}: Ps(vij) = aij , 1 ≤ j ≤ ki. By abuse of notation, we write (w, out)
to mean that every symbol instance in w gets the target indication out. Π6 is
graphically represented in Fig. 6.

Π6 starts by non-deterministically building one of the rules t → ui (t, ini+1)
in the skin membrane. An application of this rule adds the multiset corresponding
to the offset bi to the skin membrane and puts t into inner membrane i + 1.
In the following steps only rules in membrane i + 1 may become applicable. In
this membrane, Π6 may build rules of the form t → t (vij , out), 1 ≤ j ≤ ki,
which will sustain t while also sending the multiset vij corresponding to the
vector aij ∈ Ai out into the skin. Alternatively, Π6 may choose to build the
rule t → λ, an application of which will erase t and halt the system. In such
a computation, Π6 generates the multiset language corresponding to 〈Ai,bi〉N.
Since Π6 can choose to send t into any one of its inner membranes in the first
step and since the computations of said membranes cannot interfere, we conclude
that Ps(Π6) = L.

To complete the proof, we evoke Theorem 1 to show that there exists a P sys-
tem with random RHS exchange (Variant 1) generating the same language L.

This theorem allows us to draw a definitive conclusion about the impossibility
of flattening for non-cooperative Variants 1 and 2, in contrast to Proposition 1
showing the opposite result for Variant 3.

Corollary 4. For ρ ∈ {rhsExchange, rhsPools′} and any k ≥ 2, the following
holds:

PsOP1(ρ, ncoo) � PsOPk(ρ, ncoo).

We conclude this section with two more observations regarding the compu-
tational power of the Variants 1 and 2. We have seen that, with a single mem-
brane and without cooperation, such P systems cannot generate all semilinear
languages; yet it turns out they can generate all uniform semilinear languages.

Theorem 6. For ρ ∈ {rhsExchange, rhsPools′}, the following is true:

N
∗SLINU

N
⊆ PsOP1(ρ, ncoo).
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Proof. Consider two finite sets of d-dimensional vectors A,B ⊂fin N
d, A =

{x1, . . . ,xn}, B = {y1 . . . ,ym}, and the uniform semilinear set 〈A,B〉N. We will
now construct the P system Π = (O, T, [ ]

1
, w0,H, 1) with pools of randomized

RHS in the following way:

– O = {a1, . . . , ad, t} contains a symbol per each dimension of the vectors, plus
the special symbol t,

– T = {a1, . . . , ad} contains exactly one symbol per dimension of vectors,
– w0 = t,
– H = (l, r), with l = (t) and r = (w′

1t) . . . (w′
nt) (v′

1) . . . (v′
m),

such that Ps(w′
i) = xi, 1 ≤ i ≤ n, and Ps(v′

j) = yj , 1 ≤ j ≤ m.

In every step, Π either chooses one of the RHS (w′
it) which will enable it to

reuse the left-hand side symbol t in the following step, or it constructs a rule
of the form t → v′

j , which erases the only instance of t and halts the system.
Thus, Π performs arbitrary additions of vectors xi ∈ A and then, in the last
step of the computation, introduces one of the initial offsets yj ∈ B. Therefore,
Ps(Π) = 〈A,B〉N. The fact that we can construct such a P system Π for any
uniform semilinear set proves the statement of the theorem. 
�

Even though one-membrane non-cooperative P systems with random RHS
exchange and with randomized pools of RHS cannot generate all unions of linear
languages (Theorem 4), they can still generate some limited unions of exponential
languages.

Theorem 7. For ρ ∈ {rhsExchange, rhsPools′}, the following is true:

L′
ab =

{
a2n | n ∈ N

}
∪

{
b2

n | n ∈ N

}
∈ PsOP1(ρ, ncoo).

Proof. A P system Π7 generating the language L′
ab can be constructed as follows:

Π7 = ({a, b, t}, {a, b}, [ ]1, t,H, 1), where H = (l, r), l = (t) and r = (tt)(a)(b).
A graphical representation of Π7 is given in Fig. 7.

Π7 works by sequentially multiplying the number of symbols t by 2, until it
decides to rewrite every instance of t to a or every instance of t to b. Therefore,
Ps(Π7) = L′

ab. According to Proposition 1, there also exists a P system with
random RHS exchange generating L′

ab, which completes the proof. 
�

t tt
a
b

t
1

Fig. 7. The P system Π7 with randomized pools of RHS generating the union language

L′
ab =

{
a2n | n ∈ N

}
∪

{
b2

n | n ∈ N

}
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The construction from the previous proof can be clearly extended to any
number of distinct terminal symbols and to any function of the number of steps
f(n) given by a product of exponentials (like in Theorem3). That is, one can
construct a P systems with random RHS exchange or with randomized pools of
RHS generating the union language

{
a

f(n)
i

∣∣∣ n ∈ N, 1 ≤ i ≤ m
}

, for some fixed
number m. Note, however, that we cannot use the same approach to generate
unions of two different exponential functions. We conjecture that generating such
unions is entirely impossible with Variants 1 and 2 of randomized RHS.

5 Variant 3: A Binary Normal Form

In this section we present a binary normal form for P systems with individual
randomized RHS: we prove that, for any such P system, there exists an equivalent
one in which every production has at most two right-hand sides.

We now introduce a (rather common) construction: symbols with finite timers
attached to them. Given an alphabet O, we define the following two functions:

timerso(t, O) =
t⋃

i=1

{〈a, i〉 | a ∈ O} ,

timersr(t) = {〈a, i〉 → 〈a, i − 1〉 | 2 ≤ i ≤ t}
∪ {〈a, 1〉 → a | a ∈ O}.

Informally, timerso(t, O) attaches a t-valued timer to every symbol in O, while
timersr(t) contains the rules making this timer work.

We also define the following function setting a timer to the value t > 0 for
each symbol in a given string a1 . . . an:

wait(t, a1 . . . an) = 〈a1, t〉 . . . 〈an, t〉.
For t = 0, wait is defined to be the identity function: wait(0, a1 . . . an) =
a1 . . . an.

We can now show that, for any P system with individual randomized RHS
there exists an equivalent one having at most two RHS per production.

Theorem 8 (normal form). For any Π ∈ OPn(rndRhs, k), k ∈ {coo, ncoo},
there exists a Π ′ ∈ OPn(rndRhs2, k) such that Ps(Π ′) = Ps(Π).

Proof. Consider the following P system with individual randomized RHS Π =
(O, T, μ,w1, . . . , wn, P1, . . . Pn, ho) that has at least one production with more
than two RHS. We will construct another P system with individual randomized
RHS Π ′ = (O′, T, μ, w1, . . . , wn, P ′

1, . . . P
′
n, ho) such that Ps(Π ′) = Ps(Π). The

new alphabet will be defined as

O′ = O ∪ timerso(t, O) ∪ {p1, . . . , pt | p ∈ Vp},

where t + 2 is the number of right-hand sides in the productions of Π having
the most of them, and Vp is an alphabet containing a symbol for each of the
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individual productions of Π. (If there are two identical productions in Π which
belong to two different membranes, Vp will contain one different symbol for each
of these two productions.)

For every membrane 1 ≤ i ≤ n, the new set of productions P ′
i is constructed

by applying the following procedure to every production p ∈ Pi:

– If p has the form u → {v}, we add the production u → {wait(t, v)} to P ′
i .

– If p has the form u → {v1, v2}, we add u → {wait(t, v1), wait(t, v2)} to P ′
i .

– If p has the form u → {v1, . . . , vk}, with k ≥ 3, we add the following produc-
tions to Pi: {

u → {wait(t, v1), p1}
}

∪ {
pj → {wait(t − j, vj+1), pj+1} | 1 ≤ j < k − 2

}
∪ {

pk−2 → {wait(t − k + 2, vk−1), wait(t − k + 2, vk)}}
.

These productions are graphically represented in Fig. 8, in which arrows go
from LHS to the associated RHS.

u p1

wait(t, v1)

. . . pj pj+1

wait(t − j, vj+1)

. . . pk−2 wait(t − k + 2, vk)

wait(t − k + 2, vk−1)

Fig. 8. Timers allow sequential choice between any number of right-hand sides.

Finally we add the rules from timersr(t), treated as one-RHS production, to
every P ′

i .
Instead of directly choosing between the right hand-sides of a production

p : u → {v1, . . . , vk} in one step, Π ′ chooses between v1 and delaying the choice
to the next step, by producing p1. This choice between settling on an RHS or
continuing the enumeration in the next step may be kept on until k − 2 RHS
have been discarded. If pk−2 is reached, Π ′ must choose one of the two remaining
RHS.

Thus, Π ′ evolves in “macro-steps”, each consisting of exactly t steps. In the
first step of a “macro-step”, Π ′ acts on the symbols from O, producing some
symbols with timers and delaying some of the choices by producing symbols pj .
All symbols with timers wait exactly until the t-th step of the “macro-step” to
turn into the corresponding clean versions from O. Since t + 2 is the number
of RHS in the biggest production of Π,Π ′ has the time to enumerate all of the
RHS of this production.

Since every delayed choice of Π ′ is uniquely identified by a production-specific
symbol pj , and since only the productions from timersr(t) can act upon the
symbols with timers in Π ′, the simulations of two different productions of Π
cannot interfere. This concludes the proof of the normal form. 
�
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6 Conclusions and Open Problems

In this article, we introduced and partially studied P systems with randomized
rule right-hand sides. This is a model of P systems with dynamic rules, in which the
matching between left-hand and right-hand sides is non-deterministically changed
during the evolution. In each step, such P systems first construct the rules from
the available rule sides and then apply them, in a maximally parallel way.

We defined three different randomization semantics: random RHS exchange
(Variant 1), randomized pools of RHS (Variant 2), and individual randomized
RHS (Variant 3). We studied the computational power of the three variants
and showed that Variant 3 is quite different in power from Variants 1 and 2.
Indeed, P systems with individual randomized RHS (Variant 3) appear as a strict
extension of conventional P systems, while random RHS exchange (Variant 1)
and randomized pools of RHS (Variant 2) seem to increase the power when only
one LHS is used, but to decrease the power when more LHS are present. Finally,
we gave a binary normal form for P systems with individual randomized RHS
(Variant 3).

6.1 Open Questions

The present work leaves open quite a number of open questions. We list the ones
appearing important to us, in no particular order.

Full power of Variants 1 and 2: Are cooperative, multi-membrane P systems
with random RHS exchange (Variant 1) or with randomized pools of RHS (Vari-
ant 2) computationally complete? If not, what would be the upper bound on
their power? In this article, we showed that applying these two randomization
semantics to the non-cooperative, one-membrane case, yields a family of multi-
set languages incomparable with the family of semi-linear vector sets. How much
more can be achieved with cooperativity? We conjecture that, even with LHS
containing more than one symbol, Variants 1 and 2 will not be computationally
complete. However, we expect that considering systems with multiple membranes
may actually bring a substantial boost in computational power, because, in both
Variants 1 and 2, randomization happens over each single membrane, meaning
that one might use a rich membrane structure to finely control its effects.

Compare the variants: How do the three variants of RHS randomization compare
among one another when applied to non-cooperative rules? We saw that, in all
three cases, exponential number languages can be generated. We also saw that
individual randomized RHS (Variant 3) produce a strict superset of the semi-
linear languages (Proposition 4). Does it imply that Variant 3 is strictly more
powerful than Variants 1 and 2? We conjecture a positive answer to this question.

Excess of LHS: In the case of P systems with randomized pools of RHS (Vari-
ant 2), what is the consequence of having more LHS available in a membrane
than there are RHS? The results in this paper concern a “restricted” version of
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Variant 2, in which we require that LHS are never in excess. How strong is this
restriction? Our conjecture is that allowing an excess of LHS does not increase
the computational power.

Applications to vulnerable systems: As noted in the introduction to the present
work, randomized RHS can be seen as a representation of systems mutating in
a toxic environment. However, we did not give any concrete examples. It would
be interesting to look up any such concrete cases and to evaluate the relevance
of this unconventional modeling approach.

6.2 Further Variants

Forbidding identical rules: In any of the three variants, it may happen that
identical rules are constructed, in any membrane. In the previous chapters, in
this case this rule was simply taken into the set of rules. Yet we could also forbid
such a situation to happen and in such a case completely abandon the whole
rule set. Another solution can be to take out all rules having been constructed
more than once from the constructed rule set.

The situation of getting identical rules can easily be avoided by avoiding
identical RHS: the right-hand sides of rules can be made different by adding
suitable powers of a dummy symbol d, which does not count for the final result
(i.e., d is no terminal symbol). As d also does not appear on the left-hand side
of a rule, the computational power of any of the P systems variant considered in
this paper will not be changed by this changing of the set of RHS available for
constructing the set of rules.

Identical RHS in Variant 3: In P systems with individual randomized RHS the
computational power mainly arises from the possibility to specify different sets
of RHS for the left-hand sides of rules. What happens if the set R of RHS must
be the same for all left-hand sides?

Tissue P systems with randomized RHS: The idea of randomizing right-hand
sides can be extended from hierarchical P systems, i.e., from P systems with
a tree-like membrane structure, to tissue P systems, i.e., P systems with cells
arranged in an arbitrary graph structure.

Several issues, especially the variants of tissue P systems with randomized
RHS, are discussed together with some first results in a preliminary but extended
version of this paper, see [2].
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