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required mitigation and prevention and the approach to
assessing the hazards was the same.

For engineering geologists working in environments
where mass movements of any type are possible it is beholden
on them to ensure all the hazards are identified. The methods
of investigation for all forms of mass movement are essen-
tially the same and require the creation of an adequate ground
model that will enable the nature and scale of any hazards and
risks to be identified and quantified. The ground model can
then be used in the design of any measures needed to mitigate
the risk, whether this is to existing or proposed infrastructure
development. Note that the ground model is not a simple
definitive construct as it will develop and improve when
new data become available during investigations and any
subsequent construction. These developments of the ground
model must be incorporated into any design process.

There is a wealth of literature and on-going research into
the nature and causes of mass movement. Nevertheless, it is
still not possible to state with any certainty where or when a
slope failure will occur and what size it will be nor the extent
of the runout. Although snow avalanche research has proba-
bly advanced further in establishing these issues than land-
slide studies the Galtiir disaster in Austria in 1999 remains as
a salutary lesson showing there are still many unknowns.
Until these questions can be answered mass movement
research must continue to ensure there are no more disasters
like the 1963 Vaiont Reservoir landslide.
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Definition

Physical properties that determine the behavior of ground that
is under mechanical stress.
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Mechanical Properties

Mechanical properties of ground determine the behavior of
the ground under stress in a mechanical way; for example,
settlement of ground under a foundation, subsidence due to
underground excavation or extraction of gases and fluids,
tunnel and slope stability, and “breaking” of rock or cemented
soils. Deformation is the change in volume or shape of ground
under stress in which rheology and viscosity may be impor-
tant. Strength commonly denotes a stress condition at which
the ground fails (breaks) when a threshold in stress conditions
is exceeded. Constitutive models are the aggregate term
for relations that describe the chemical-physical-mechanical
behavior of ground.

Ground materials are diverse and may be gases, fluids,
solids (i.e., minerals, grains, and aggregates of grains or
minerals) and any mixture of these and also include man-
made ground, such as fills and waste dump materials. Ground
is commonly differentiated between soil and rock, soil being
an aggregate of loose or weakly bonded particles and
rock consisting of particles cemented or locked together,
giving rock a tensile strength. Soil and rock are, by some,
differentiated based on a compressive strength difference
with soil being weaker than 1 MPa and rock being stronger.
A differentiation is made between “intact” and “discontinu-
ous” ground, that is, ground without and with, respectively,
distinct planes of mechanical weakness (discontinuities) such
as faults, joints, bedding planes, fractures, schistosity.
A groundmass consists of (blocks of) intact ground
with discontinuities, if present.

Stress, Deviatoric Stress, Deformation, and Strain

If a normal (o) or shear () stress is applied on a body of
ground, the ground will deform, that is, will be strained,
respectively, and change in shape by an angle rotation. The
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Fig. 1 Deformation, stress and
strain

a) normal deformation
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normal stress minus the hydrostatic stress, which is the aver-
age of all normal stresses working on a body of ground, is the
deviatoric stress.

Total and Effective Stress, and Gas and Fluid
Pressure

A porous ground consists of a skeleton of solid particles with
pores in-between. The pores may contain gases and fluids.
When a load is applied on a body of ground, part of the load is
taken by the skeleton resulting in stress in the skeleton, and
part by the gas and fluid. The skeleton, gas and fluid will
deform. Many mechanical characteristics of the ground
depend on the stress between particles; therefore, normally
the load is divided into “effective stress,” or the stress in the
skeleton, and the stress (pressure) in the gas and fluid. In the
case of pores filled by water, this is the “porewater pressure.”
Effective stress together with the gas and fluid pressure is the
“total stress” which equals the stress from the outside on the
body of ground. In a porous ground without any gas or fluid
and in a nonporous ground, the effective stress equals the total
stress. Total stress may be applicable in situations where the
pore gas and fluid pressure cannot or dissipates too slowly, for
example, during fast loading of a low-permeable clay (the
“undrained” situation). In most cases, the presence of gas is
neglected under engineering conditions, but may be important
in, for instance, subsidence due to gas and oil exploitation.

Elastic Deformation
The relation between normal and shear stress and strain for an

intact, homogeneous, isotropic, and ideal-elastic body of
intact ground is formulated in Eqs. 1 and 2 (Fig. 1). In elastic

b) shear deformation
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deformation, stress and strain are coupled properties; there is
no strain without stress and vice versa. Under the influence of
a normal stress (o) in a particular direction, the material
becomes shorter in that direction and wider perpendicular to
the stress direction. The amount of shortening in relation to
the stress is expressed by the elastic deformation or Young’s
modulus (). The amount of widening in one direction related
to the shortening in the other direction is expressed by the
Poisson’s ratio (v).

(o] Al
El:i & = — & = — Up = —
& [ r &

O]

E,; = elastic Young’s modulus of deformation in / direction [Pa]

v;- = Poisson’s ratio of expanding in r direction due to stress
in [ direction

g; = stress in [ direction [Pa]

I, r = length respectively radius of body [m]

A,, A, = deformation in / respectively 7 direction [m]

&5, €. = strain in / respectively 7 direction

Shear stress (1) causes a deformation in shape governed by
the shear modulus (or modulus of rigidity). The shear modu-
lus is defined as follows:

= Ax = tand @)
z

Vax

G, = shear modulus in z direction due to shear stress in x
direction [Pa]

7., = shear stress in x direction on plane with normal in z
direction [Pa]

7. = shear strain

I, r = length respectively radius of body [m]

Ax = shear deformation in x direction [m]

z = height of body [m]

For an intact, homogeneous, isotropic, and ideal-elastic
solid, the Young’s modulus, Poisson’s ratio, and shear mod-
ulus are related following:

2G(1+v)=E 3)
Deformation characteristics are often expressed in terms of

Lamé parameters (also named “constants” or “coefficients”) /
and p:

G- vE _ E 4
T avi-—2v M7 @)

Moduli and Poisson’s ratio are anisotropic for most
intact ground and most groundmasses, that is, the values
vary with direction.

Mechanical Properties
Non-elastic Intact Ground and Groundmass

Most intact ground and virtually all groundmasses do not
deform in an ideally elastic manner, and the normal and
shear deformation moduli are not elastic or only partially
elastic (Fig. 2). Ground may deform as a combination of
plastic, elastic, and brittleness, properties which may also
depend on factors such as time, temperature, confining stress,
presence of gases and fluids, and nuclear radiation. Brittleness
means that the intact ground fails, that is, breaks or fractures.
Figure 2a shows a linear—elastic deformation; on release of
the stress, the sample will return to its original volume and
shape. In Fig. 2b the material behaves elasto-plastically; the
first part is elastic deformation, whereas in the second (plastic)
part the deformation increases under constant stress; the
ground does not return to its original volume and shape
when the stress is released; Fig. 2c is similar to Fig. 2b, but
at the boundary between elastic and plastic, the material fails
(brittleness). Figure 2d shows the deformation behavior of
most real ground which is a combination of elastic, plastic,
and brittle deformation. Intact ground, in particular rock,
may deform more-or-less elastically for stresses up to
50-80% of the unconfined compressive strength (UCS)
value (see below). Groundmasses are seldom intact but
mostly contain discontinuities. Discontinuous groundmasses
virtually never behave elastically, but mostly deform perma-
nently, thus plastically, with shear displacements along dis-
continuities. Under higher confining pressure or temperature,
most materials show a more gradual deformation without
brittleness, such materials are said to undergo ductile defor-
mation. As most intact ground and groundmasses do not or
not fully behave elastically, many engineers prefer the letter
“D” to denote the deformation modulus rather than “E.”
Table 1 lists values for D-moduli and Poisson’s ratios for
various intact grounds and groundmasses. Note the enormous
variation in values even for geologicallly or lithologically
similar ground.

Consolidation and Compaction

Under influence of stress, and over time, ground changes;
gases and fluids may be expelled, grains and particles
re-arrange, and the constituents of the ground may change
structurally and chemically. Generally, this results in a
decrease of volume. The expressions “consolidation” and
“compaction” are used interchangeably, but consolidation is
more often used for soil materials with low permeability and
compaction for permeable granular soil, for rock, and for soil
becoming rock. In soil mechanics, it is customary to differ-
entiate between primary and secondary consolidation. The
first is mainly related to expelling gases and fluids from
pores in the ground, whereas the second is more related to
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Mechanical Properties, Fig. 2 Various stress—strain (deformation) behavior; ¢ = stress; ¢ = strain; (e) Modified after Dusseault and Fordham
(1993). Note that in figures (a—d) the horizontal axis is strain while in (e) and (f) it is time

re-arrangement of grains and changes in material, the latter
particularly in organic soils, such as peat (Fig. 2f). Mathemat-
ically this is characterized by the “coefficient of consolida-
tion” (¢, — a smaller value indicates that more time is required
for consolidation) for short-term primary deformation and by
the “coefficient of secondary consolidation” for long-term
deformation (C, — a larger value indicates more consolida-
tion in a given time span) (Bodé and Jones 2013). Short and
long-term deformation under near-surface conditions may be
centimeters to many decimeters per year per meter thickness
of ground, the latter especially for ground such as peat and
household waste.

Compaction of granular soil-type material under stress
involves re-arrangement of the grains resulting in a smaller
volume. Compaction of rock and soil becoming rock involves
expelling of gases and fluids, re-arrangement, and structural
and chemical changes of particles, grains, and minerals. Com-
paction rates for ground under near-surface conditions are
very variable ranging from centimeters per year to millimeters
per millions of years or longer per meter thickness of ground.

Time Effects, Creep, and Temperature

Deformation of intact ground and groundmasses is time
dependent. There are several reasons that cause this

dependency, which can be divided into four phases with
increasing timespan: (1) No strain can be instant after apply-
ing a stress. Instant strain would require an infinite velocity of
the material particles, which is impossible. The particles have
a certain mass, and displacement requires a certain timespan.
If stress is applied, shock waves of stress-strain will travel
through the ground. It will take some time, albeit in engineer-
ing terms very little, mostly in the order of microseconds to
minutes, before stress and strain are again in equilibrium
throughout the ground. Under slow application of stress, the
shock wave effect may be minimal, but it will still take time
before equilibrium between stress and strain is established.
(2) All ground shows some (sometimes limited) effects of
longer-term deformation. This is called “creep.” Figure 2e
shows various options for strain versus time for long-term
deformation under constant stress. Some materials deform
with an increasing deformation rate leading to rapid failure
(curve i in Fig. 2e). Others deform very slowly, and deforma-
tion rates may attenuate (curve iv), be steady state (curve iii),
or re-accelerate after a long steady state period resulting in
failure (curve ii). Creep is responsible for the delay in, for
example, collapse of underground excavations. When a
groundmass is loaded with a new stress environment due to
excavation, the stress levels may not exceed the strength of
the groundmass. Hence, the excavation will not fail. How-
ever, when stresses are near to the maximum stresses the
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Mechanical Properties, Table 1 Example of deformation values

Mechanical Properties

Material Deformation modulus (D) (GPa)' | Poisson’s ratio (v)'
Soil
Doha marine loose sand** 0.02
Sand (Amsterdam)® 0.035-0.04 0.2
Residual soil & fill>* 0.01-0.04 0.15
London clay (drained; depending on depth and direction)> 0.007-0.2 0.125
Aeschertunnel glacial till*< 0.08 0.2
Clay (Amsterdam)® 0.01 0.15
Peat (Amsterdam)® 0.002 0.15
Frozen dense sand (artificially frozen, T ~ —10 °C) (short/long-term)™" 0.75/0.33 0.3%
Frozen stiff clay (artificially frozen, T ~ —10 °C) (short/long-term)™" 0.3/0.12 0.006-0.13"
Ice (natural fresh water ice; T ~ —5 °C)™ 10 0.33
Man-made material
Concrete (regular commercial, Portland cement, 28 days cured)® 27-35 0.2
Iron/steel 200 0.3
Intact rock
Hawkesbury sandstone' 6-14 0.15
Falset carboniferous sandstone™ 35-60 0.1-0.2
Vinalmont limestone™ 70 0.31
Sibbe limestone™ 1.2 0.25
K6nigshain granite”° Slightly weathered 50

Moderately weathered 25

Highly weathered 15
Aspb slightly fractured diorite and granite” 69-79 0.21-0.28
Basalt*9 78 0.25
Gorleben salts (uniaxial/triaxial short-term laboratory tests; average of different 25/33 0.25-0.32
formations)"
Rock mass
Hawkesbury sandstone’”! 0.05-2.5
Sheared flysch”™” 0.433
Marly shale (standard zone)™ 1.8
Mu-cha tunnel fault (sheared sandstone and shale in clay matrix)** 0.2 0.3
Sydney-Gunnedah Basin coal’ 2.5 0.24
Aspé slightly fractured diorite and granite®? 55 0.26
Basalt®®4 10-40 0.3
Gorleben salts (short-term dilatometer tests; average of different formations)'** 19

Notes: Values reported are for normal (near-) surface engineering conditions. '“D " is the deformation modulus and “v” the Poisson’s ratio; values for
50% of the failure strength if reported. *“Loose to dense” refer to the packing of the particles. *Undrained and drained refer to the dissipation of pore
gas and fluid pressures during loading; generally undrained applies to fast loading situations and drained for slow. *Glacier deposit: clayey sand and
silt, with gravel and isolated boulders. *Values indicative only; strongly dependent on test conditions, deformation rate, compaction, temperature,
structure, and quantity. ®Indicative only depending on type of concrete, aggregate, and cement type. ’ Weathering description follow BS 5930: 1999
(1999). 8Summary literature typical values based on different basalts. *Properties determined by rock mass classification and/or back analyses from
tunnel construction. '°Dilatometer tests. Data from: *Chen (2010), ®Bosch and Broere (2009), °Chan and Stone (2005), dKarakus and Fowell (2005),
“Coulter and Martin (2004), Jessberger et al. (2003), 8Kirsch and Richter (2009), "Lee et al. (2002), ‘Schulson (1999), ‘Bamforth et al. (2008), kAshby
and Jones (2012), 'Pells (2004), ™Kouokam (1993), "Swart (1987), °Thuro and Scholz (2004), PAndersson (2010), 4Schultz (1995), "Briuer et al.
(2011), “Marinos et al. (2009), *Alejano et al. (2008), *Yu (1998), ¥Sainsbury (2008)

groundmass can sustain, small microcracks may develop with
time. The number of cracks will increase over time, and grow
together, until, after some time, the groundmass fails. Simi-
larly, in slope stability, loading a discontinuity with a shear
stress may cause asperities on the plane to be stressed such
that no immediate failure occurs, but with time microcracks
form in the asperities which break after some time. The length
of the period between stress loading and failure may range

from seconds to many years. (3) All grounds show a very
long-term creep effect that is often also strongly dependent on
temperature and confining stress. The ground deforms and
after some time the ground may fail even if the ground is
stressed well below the maximum sustainable stresses. The
mechanisms for this effect are largely unknown, but it is
thought that re-crystallization under stress and weathering
may play a role. Long-term creep is likely responsible for
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some collapses of excavations after long-time spans, some-
times after many hundreds of years. (4) On geological
timespans, ground may show viscous flow.

Volumetric (Hydrostatic) Deformation

A body of ground will first compress due to setting and
closure of fissures (small cracks) if it is under equal stress
from all directions (Fig. 3), then a second phase of elastic
deformation occurs for the particle skeleton. This is followed
by a collapse of the pore structure in porous ground which
effectively also destroys the skeleton structure. With continu-
ing increase in stress, the particles in the ground will interlock
and the amount of volume change with stress increase
strongly reduces, resulting in a strong increase of the volu-
metric deformation modulus. Further increase in stress will
cause the structures of particles and minerals to be destroyed
and, at even higher stress levels, molecular and atomic struc-
tural changes. This high level of stress does not normally
occur in engineering but may occur during underground
nuclear tests. The bulk modulus (K) of volumetric deforma-
tion of ground is defined as:

O hydrostatic
AV]V
Ohydrostatic = hydrostatic stress [Pa]
AV = change in volume [m’] ¥ = volume [m’]

bulk modulus [Pa] = K =
®)

For an intact, homogeneous, isotropic, and ideal-elastic
solid, the bulk modulus is related to Young’s and shear moduli
as follows:

EG

K=366-p

(6)

During compression, gases and fluids are expelled from
the ground if possible. If not, part of the stress is taken up by
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the gases and fluids which will increase the overall deforma-
tion moduli and may prevent pore collapse. Note that a
ground under equal stress is not really failing in the sense
that a failure plane and a strength can be defined as discussed
below.

Unconfined and Confined Compressive Strength

The compressive strength is the compressive stress at failure
on a sample under a deviatoric normal compressive stress
(o). Compressive strength of ground material can be tested
under different stress configurations. Depending on the type
of test undertaken the compressive strength is denoted as
Unconfined Compressive Strength (UCS), (normal) triaxial
compressive strength, or true-triaxial compressive strength.
Note that the tests are measuring the compressive strength but
that the failure mode is actually due to stresses in the sample
exceeding the shear or tensile (the latter sometimes referred to
as splitting or bending) strength. Normally also the change in
dimensions of the sample are measured during the test to
obtain deformation characteristics. Triaxial and true-triaxial
tests are mostly completed with pore pressure transducers
allowing measurement of gas and fluid pressure in the
sample during the test.

Unconfined Compressive Strength (UCS)

The Unconfined Compressive Strength (UCS) (also uniaxial
strength) is the compressive stress (¢ ;) measured at failure on
a sample of ground under the condition that the confining
pressure is zero (6, = o3 = 0) (Fig. 4). The test is normally
done on a cylinder sample, but can also be done on a cubic
sample. Soil samples should have some form of attraction or
gluing effect between particles; otherwise, the sample falls
apart under its own weight. Alternatively, a sleeve or jacket
of, for example, rubber is used to maintain sample integrity.
The approximate failure plane is indicated in Fig. 4d; the

avv —

Fig. 3 Volumetric stress-strain of — p— o ] i
porous ground 0-1 UJ 03 l I locking |
— 8 of particles
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Fig. 4 Unconfined Compressive
Strength (UCS) test on a cylinder
sample; (a) sample and stress
configuration; (b) test equipment;
(c¢) stress configuration in a Mohr-
circle diagram; (d) test result
(Photos courtesy W. Verwaal, TU
Delft, 2017)
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angle may be slightly different from the failure plane angle
indicated in Fig. 4c due to changes in failure plane area during
the test. Figure 4c shows the failure state in the Mohr-circle
diagram with the Mohr-Coulomb failure envelope. Examples
of UCS values are listed in Table 2. Test standards and pro-
cedures are given in ASTM D7012-10 (2008) and Ulusay and
Hudson (2007).

Triaxial Compressive Strength

In a triaxial test, the compressive stress (o) is measured at the
point failure of a sample that is under confining pressure
(Fig. 5). The test is normally done on a cylinder sample in a
sleeve of a foil of rubber (for soil) or metal, such as, copper or
steel (for rock). The sample with sleeve is positioned in a
pressure cell in which water or oil gives the confining pressure
on the sleeve (Fig. 5b, c, e). The test is denoted a “normal
triaxial test” but more commonly just “triaxial test”. Example
values in terms of the Mohr-Coulomb failure envelope param-
eters are listed in Table 2. Test standards are given in ASTM
D7012-10 (2008) and Ulusay and Hudson (2007). The con-
fining pressure cell is made of glass or another transparent
material for low-pressure tests, for example, on soil and very
weak rock, and of steel for high-pressure tests on rock.

True-Triaxial Compressive Strength

The compressive stress (¢;) is measured at the point of failure
of a sample that is under confining pressure. In a true-triaxial

o,
UCS =g,

g, —>
(normal stress)

test, the confining pressure is not equal in the x and y direc-
tions (0; # 0, # a3) (Fig. 6). The test is done to investigate
the influence of the intermediate principal stress (g,). A true-
triaxial test apparatus is technically highly complicated. The
test is normally done on cube or rectangular prism samples,
where platens compress the sample from three perpendicular
directions independently. The whole test setup can be placed
in a pressure cell to allow for pore pressures. Various solutions
are used to solve technical problems that arise from the
reduction in size or change in shape of the deforming sample,
whereas the test platens cannot easily change size or shape.

Tensile Strength; Direct Tensile Strength (DTS)
and Brazilian Tensile Strength (BTS)

Intact ground with some attraction or gluing between grains
or particles has a tensile strength. The tensile strength can be
established by a confined or unconfined Direct Tensile
Strength (DTS) test (Fig. 7a, d) or by an indirect tensile
strength test, including the Brazilian (or indirect or splitting)
Tensile Strength (BTYS) test (Fig. 7b, €). The DTS can be done
in a confining pressure cell. Standards and test procedures are
given in ASTM D3967-08 (2008), ASTM D2936-08 (2008),
and Ulusay and Hudson (2007). The tensile strength plots
negative in the Mohr’s circle diagram (Fig. 7c). The BTS is
established by compressing a disk of the ground. The disk will
fail by induced internal tensile stress. The Brazilian Tensile
Strength (BTS) is then:
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2P

0 Brazilian =

t
O/ Brazilian = Brazilian Tensile Strength (BTS) [Pa | (7

P = load on sample at failure [N]
D = diameter [m] ¢ = thickness [m]

Estimation of the tensile strength of ground is notoriously
unreliable. Small inhomogeneities or small cracks, which are
often invisible, may decrease the tensile strength considerably.

Mechanical Properties, Table 2 Examples of strength values

Name

Soil

Sand (rounded particles) (loose to dense)'?
Sand (angular particles) (loose to dense)'
Sandy gravel (loose to dense)'?
Residual soil & fill™*

Clay (undrained) (very soft to hard)
Clay (drained)**¢

Peat (drained)>*

Frozen dense sand (artificially frozen, T~—10°C) (short/
long-term)**"

Frozen stiff clay (artificially frozen, T~—10°C) (short/
long-term)**"

23.d

Ice (natural fresh water ice)*>&"

Man-made material

Concrete (regular commercial, normal strength, Portland,
28 days cured)®

Iron (yield strength)™
Steel (low-alloy) (yield strength)™
Intact rock
Vindhyan sandstone”
Hawkesbury sandstone®
Eagle Ford Shale®
Yucca Mountain-Topopah Spring Tuff?
(TSw2/Tptpmn)
(TSw3/Tptpv)
Vinalmont limestone"
Sibbe limestone"
Basalt™*
Konigshain Granite™
Slightly weathered
Moderately weathered
Highly weathered
Completely weathered
Residual soil

Gorleben salts (short-term laboratory tests; average of
different formations)"
Rock mass

Sheared flysch'®"

Mu-Cha Tunnel Fault (sheared sandstone & shale in clay
matrix)' %
Basalt™!**

Deriner Granodiorite!**

ucs
(MPa)

7/4

6/1.5

15-40

50
500-1,980

102
21-60
2.1

187
16
190
3.5
266

185
38
13

26

4.5
2.6

80
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Additionally, failure in a tensile stress environment is a mech-
anism propelling itself. If failure starts, the tensile force must be
taken by the remaining not yet failed part, increasing the tensile
stress in that volume. This volume is stressed even more and
fails faster. Tensile failure is a (very) rapid process and happens
normally with little warning. For these reasons, the tensile
strength of intact rock is not or only partially considered in
design in rock mechanics. Examples of intact tensile strength

are listed in Table 2.

/

¢
TS (MPa) (degrees)
27-35
33-45
35-50
25
0
20-35
20
20-50% of | 38/22
UCs
1.5/7.5
13 25-48!
2-5 437K
200
680-2,400
6.9 37
3.5 47
0.93 24
11.6 48
4.0 47
7
0.38
145 31
18
3.5
1
25
35
1.6
16
28
16 40

cohesion’
(MPa)

o oo

0.01-0.3
0-0.15
0.006
2/1.4

0.8/0.6

0.25'

5 57,k,l

33
4.2
0.41

40
3.5

66

0.015
0.025

0.073
0.1

0.6-6
0.35

range of confining
pressure (MPa)

<0.5
<0.1
<0.5

<0.15
<1.4

<0.2!

<17

<15
<20
<3

<15
<10

3.4-34.5

<0.4

~2.5
~3.5

3.4-345
<1.5

(continued)
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Mechanical Properties, Table 2 (continued)

[S[ON o’ cohesion’ range of confining

Name (MPa) TS (MPa) (degrees) | (MPa) pressure (MPa)
Falset Granodiorite®'"Y <0.6

Fresh (zone 1) 175 10.2 47 0.017

Slightly weathered (zone 1-2) 110 4.1 46 0.016

Moderately weathered (zone 3) 80 2.7 38 0.014

Highly weathered (zone 4) 3 17 0.008

Completely weathered (zone 5) 0.5 6 0.003
Falset Lower Muschelkalk Limestone'!!

Large blocky 80 8” 62 0.027

Small blocky 70 8” 18 0.007
Sydney-Gunnedah Basin coal' % 0.8 38 1.9 ~12.5

Notes: Note the large variation between different materials, the wide variation within the same material due to different states of weathering, and
the large influence of block size on mass properties while the intact material strengths (UCS and 7S) are about the same. Values reported are for
normal (near) surface engineering conditions. For groundmasses, the UCS and 7S are of the intact ground. ¢ and cohesion’ are effective Mohr-
Coulomb failure envelope parameters with the range of confining pressures as the properties are validated within the given range only. Not all
literature reports whether effective or total ¢ and cohesion are reported, but the test conditions imply effective, except where otherwise indicated.
“Loose to dense” refers to the packing of the particles (following BS5930), which influences the ¢’ values. *very soft to hard” refers to the
consistency of the clay BS 5930: 1999 (1999). *Undrained” and “drained” refer to the dissipation of pore gas and fluid pressures during loading;
generally, undrained applies to fast loading situations and drained for slow. Values reported for undrained cohesion are “Su” (or “cu”) and ¢ and
cohesion are total stress Mohr-Coulomb failure envelope parameters (i.e., without accent). *Values indicative only; strongly dependent on test
conditions, deformation rate, compaction, temperature, structure, and quantity. Strength is the highest stress sustained in the test; highest values for
fast loading. *UCS and TS at temperature —1°C to —16°C; shear properties at —2°C; shear samples contain ground fragments and air bubbles.
SConcrete strength values are indications for “regular” commercially available concrete without additives or reinforcement. UCS of commercially
available “high-strength” concrete is 40-150 MPa, up to 200 MPa with 7S up to 9 MPa for “ultra-high strength” concrete (UHC 2006). UCS for
special purposes concrete (e.g., military) may be over 800 MPa. 'Cohesion’ and ¢ depend on the strength combination of aggregate and cement
matrix; i.e., does the material shear through low-shear strength aggregate or are high-shear strength aggregate particles overridden. The values in the
table are therefore only indicative of a particular combination of aggregate and cement matrix. The values are based on combined regression of data
from various authors. *Summary literature for typical values based on different basalts. Weathering classifiers indicating an increasing grade of
weathering from fresh to slightly weathered, etc., follow ISO 14689-1: 2003 (2003). The zones follow BS 5930: 1999 (1999) and not the replacement
standard ISO 14689-1: 2003 (2003) as the replacement is at present considered by some to be inferior to the BS 5930 (Price et al. 2009). '°¢’ and
cohesion’ determined by rock mass classification and/or back analyses from tunnel construction. 'y’ and cohesion’ back analyzed from slope
engineering. '*“Large blocky” implies that most of the blocks in the rock mass are about equi-dimensional with sides between 0.6 and 2 m, while
“small blocky” implies equi-dimensional with sides between 6 and 20 cm (ISO 14689-1: 2003 2003). Data from: *Craig (2004), °Chan et al. (2005),
“Bosch and Broere (2009), 9BS 5930: 1999 (1999), “Jessberger et al. (2003), thang et al. (2007), #Schulson (1999), hGagnon and Gammon (1995),
iArenson et al. (2003), {Bamforth et al. (2008), *Sormenberg et al. (2003), 'Wong et al. (2007), ™Ashby and Jones (2012), "Dubey (2006), °Pells
(2004), PHsu and Nelson (2002), 9Ciancia and Heiken (2006), "Swart (1987), *Schultz (1995), ‘Thuro and Scholz (2004), "Brauer et al. (2011),
YMarinos et al. (2009), ¥Yu (1998), *Cekerevac et al. (2009), *Hack (1998), “Kouokam (1993), **Sainsbury (2008)

Point Load Strength (PLS)

Point Load Strength (PLS) tests have been developed to get an
idea about the strength of a piece of rock with little effort. The
test can be done on lumps of rock or borehole cores with a size
of about 50 mm. The sample is placed between two standard-
ized steel “points” (Fig. 8). The two points are moved together
by mechanical or hydraulic loading until the sample breaks.
The maximum force (P) at failure divided by D?is“Is.” The Is
value has to be corrected if the sample size differs much from
50 mm. The procedure can be found in ASTM D5731-08
(2008) and Ulusay and Hudson (2007). Normally the result is
denoted “Issg” or “PLS.” The PLS test is not intended as a
replacement for Unconfined Compressive Strength (UCS)
testing. The test is very sensitive for irregularities and inho-
mogeneities in the sample, such as discontinuities. In partic-
ular, if these are present near one of the points, the PLS value
is significantly reduced. Notwithstanding this, various

relations have been proposed between PLS and UCS
(Rusnak and Mark 2000); a commonly used, but in the opin-
ion of the author unreliable, relation is (Bieniawski 1975;
Broch and Franklin 1972):

UCS =24 x Issg ®)

The author does not regard the PLS test as particularly
useful, and not much if any better than the faster, and simpler
to execute, rebound and “Simple Means” tests below.

Impact and Rebound Tests; Schmidt Hammer, Ball
Rebound, and Equotip

Rebound measurements are based on a piston or ball that
drops from a certain height onto the surface of the material
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Mechanical Properties, Fig. 5 (Normal) Triaxial test (a, b) sample effective stresses; (e) disassembled pressure cell for rock, left bottom
and stress configuration; (c) transparent pressure cell for soil; (d) stress  plate with sample, right steel upper part (Photos courtesy W. Verwaal,
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Mechanical Properties, Fig. 6 True-triaxial test; (a, b) sample and stress configuration; (c) test equipment (x and z are two of the three pressure
jacks) (Photo courtesy W. Verwaal, TU Delft, 2017)
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Mechanical Properties, Fig. 7 Tensile strength; (a, d) Direct Tensile Strength (DTS); (b, e) Brazilian Tensile Strength (BTS); (c) stress
configuration in a Mohr-circle diagram (Photos courtesy W. Verwaal, TU Delft, 2017)
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Mechanical Properties, Fig. 8 Point Load Strength (PLS)

to be measured. The rebound of the piston or ball after hitting
the surface depends on the elastic parameters of the tested
material and on the strength of the material at the surface. The
crushing of surface asperities and surface material, which
dissipates energy, causes this latter effect. Rebound measure-
ment apparatus are the Schmidt Hammer which was origi-
nally developed for testing concrete quality (Fig. 9a, b)
(Schmidt 1951; ASTM C805/C805M-13 2013; ASTM
D5873-14 2014), the Equotip developed for steel testing
(Fig. 9¢, d) (Equotip 2018), and ball rebound (Pool 1981).
The rebound values on rock surfaces have been correlated
with intact rock strength (Fig. 9b, d) (Deere and Miller 1966;
Stimpson 1965; Pool 1981; Verwaal and Mulder 1993; Hack
et al. 1993; Hoek 2017; Ulusay and Hudson 2007). The
execution of the test damages the rock at the impact point;
asperities are crushed, and generally, the rock material will be
compressed. Therefore, repeated impacts on the same loca-
tion show increasing values. The tests are also influenced by
local differences in structure and texture, presence of fluids
(water), asperities (roughness of the surface), loose material
on the surface, and in particular, a discontinuity beneath the
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Mechanical Properties, Fig. 9 (a) Schmidt Hammer; (b) conversion Schmidt Hammer to UCS (Modified from Hoek 2017); (¢) Equotip
equipment; (d) Equotip conversion to UCS (Modified from Verwaal and Mulder 1993) (Photos courtesy A. Mulder, TU Delft, 2017)

surface. Schmidt hammer values are influenced by the mate-
rial to a fairly large depth (order of centimeters) beneath the
surface whereas ball rebound and Equotip release consider-
ably less energy and are influenced by a thinner layer of
material (order of millimeters).

“Simple Means” Intact Rock Strength Field
Estimates

“Simple means” field tests make use of hand pressure, geo-
logical hammer, etc., to estimate the strength of cohesive soil
and intact rock in classes following the British and ISO
standards (BS 5930: 1981 (1981); BS 5930: 1999 (1999);
ISO 14689-1: 2003 (2003)) (Table 3). Extensive numbers of
tests allowed a thorough analysis of the accuracy and reliabil-
ity of the simple means field tests for estimating intact rock
strength (Fig. 10).

Shear Strength Tests

Direct shear strength of discontinuities and ground material
can be established in a “Golden shear box,” respectively, a
“direct shear testing apparatus” (Fig. 11). The sample is
mounted in two half steel boxes and opposite forces are

applied to the two steel boxes. The horizontal displacement
(Ohorizonta) and vertical opening (dyerical) between the two
steel box halves are measured during the test. This allows
the “angle of roughness” of the failure plane of a discontinu-
ity, or the “dilatancy” under shear displacement of intact
ground material to be established. Standards for testing are
ASTM D3080M-11 (2011); ASTM D5607-08 (2008) and to
be found in Ulusay and Hudson (2007). The shear test can
also be executed as a “ring shear test” (Bromhead 1979;
ASTM D6467-13 2013). In the latter test, the two halves of
the test box are not translated but rotated. The advantage of
the ring over a direct shear test is the potentially unlimited
displacement. This makes the test particularly suitable for
measuring residual shear strength properties or for determin-
ing how the shear strength changes during transition from
undisturbed to remolded material. The Golden, direct, or ring
test equipment can be placed in a fluid (e.g., water, oil) tank
with fluid under pressure and a pore pressure transducer
incorporated in the sample near to the discontinuity or the
expected failure surface to measure the pore pressure. Shear
strength of intact rock that is more than “very weak” in
strength is seldom established by direct or ring-shear, but
mostly by triaxial or true-triaxial testing, because the neces-
sary stresses are so high that testing equipment is very heavy
and expensive. For further details, refer to chapters on Rock
Field Tests and Soil Field Tests.
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Mechanical Properties, Table 3 “Simple means” field test for estimating strength (ISO 14689-1: 2003 2003; BS 5930: 1999 1999)

Cohesive soil (BS 5930: 1999)

Intact rock (ISO 14689-1 2003)

Undrained Unconfined
Field compressive compressive
Term identification strength (kPa) Term Field identification strength (MPa)
Very soft Finger easily 0-20 Extremely | Indented by thumbnail <1
pushed in up to weak
25 mm
Soft Finger pushed 2040 Very weak | Crumbles under firm blows with point of geological 1-5
inup to 10 mm hammer, can be peeled by a pocket knife
Firm Thumb makes 40-75 Weak Can be peeled by a pocket knife with difficulty, shallow | 5-25
impression indentations made by firm blow with point of
easily geological hammer
Stiff Can be 75-150 Medium Cannot be scraped or peeled with a pocket knife, 25-50
indented strong specimen can be fractured with single firm blow of
slightly by geological hammer
thumb
Very stiff Can be 150-300 Strong Specimen requires more than one blow of geological 50-100
indented by hammer to fracture it
thumbnail
Hard or Can be >300 Very Specimen requires many blows of geological hammer | 100-250
very weak scratched by strong to fracture it
mudstone thumbnail Extremely | Specimen can only be chipped with geological >250
strong hammer

Notes: Some extremely weak rocks will behave as soils and should be described as soils. Geological hammer should be about 1 kg. Blows by the point
of a geological hammer should be done with care as the hammer may break on impact with an unexpected harder item (e.g., a piece of quartz)
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Mechanical Properties, Fig. 10 Correlation between “simple means”
estimate and UCS (Modified from Hack and Huisman 2002)

Constitutive Models

Constitutive models are the aggregate term for relations that
describe mathematically the chemical-physical-mechanical

behavior of the ground or groundmass, normally the relation
between the parameters stress, strain, strength, time, and
temperature (Wang and Huang 2009; Yang et al. 2013).
They may also encompass parameters such as electricity,
magnetism, and nuclear radiation. Equations 1 and 2 are
examples of simple constitutive models as is the Mohr-
Coulomb failure envelope. Many hundreds of constitutive
models for ground and groundmasses are defined; some
highly complicated, for example, time and temperature-
dependent viscous behavior of an anisotropic discontinuous
groundmass with gases and fluids in which nuclear material is
stored (e.g., Karato 2012; Cai and Horii 1992; Wang and
Huang 2009). Many models for groundmasses are (in part)
based on rock mass classification (Marinos and Hoek 2000;
Hack et al. 2003; Barton 2002; Bieniawski 1989; Price et al.
2009). Description of these is outside the scope of this
chapter.

Test Procedures, Standards and Codes of Practice

The results of the various tests mentioned in this chapter
depend often on factors such as sample size and form (i.e.,
cylindrical, rectangular, or cubical), methodology of testing
(e.g., rate of stress increase), environment temperature, and
gas or fluid content. The dependencies mean that results can
be compared and be applied in design of engineering struc-
tures only if the tests are done strictly following a particular
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Mechanical Properties, Fig. 11 (a—c) Golden shear box test for shear
strength of a discontinuity; during the test the top-box is installed on top
of the bottom-box and fixed in horizontal direction, the bottom-box is

test procedure as described in “standards” or “codes of
practice,” for instance, standards of the International Stan-
dard Organization (ISO). Often test results depend to a certain
extent on the method of testing; therefore, the test conditions
should be as much as possible similar to those that will exist
where applied, for example, the confining stress in a triaxial
test should be similar to the stress environment in sifu where
the test result is applied.

Summary

Mechanical properties of ground are diverse and numerous.
Although tests have been designed for all properties, inhomo-
geneity of the ground, restricted size of laboratory samples,
and high costs of full-scale testing often prohibits a complete
characterization of the ground by tests alone. Expert judge-
ment and estimation of ground characteristics and properties
is often as, if not more, important than testing.

Cross-References

» Angle of Internal Friction
» Biological Weathering

» Chemical Weathering

» Consolidation

» Deviatoric Stress

» Dilatancy

« are normally cut tight-

after test la',mm;

pulled from underneath the top-box (green arrow); (d, e) Direct shear
box test with detail of the direct sample box (Photos courtesy
W. Verwaal, TU Delft, 2017)

» Mohr Circle

» Mohr-Coulomb Failure Envelope
» Physical Weathering

» Rock Field Tests

» Rock Mass Classification

» Shear Modulus
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Rocks derived from other pre-existing rocks that, in the
course of geological processes, have undergone mineralogi-
cal, chemical, and structural changes in the solid state, in
response to the changes in physical and chemical conditions
existing at depth.
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