
Chapter 2

Related Work

This chapter discusses relevant work for the implementation of a reactive instinctive be-
havior, while considering all three aspects of an artificial intelligence agent. Therefore,
the accordance of the state of the art with our proposed characteristics is evaluated con-
sidering hardware, sensors and algorithms.

2.1 Review of Autonomous Driving

The following section gives an overview of the history of autonomous driving. It proposes
a separation into four main periods, each characterized by special approaches, tasks or
events:

1. Mobile Robots and first steps toward autonomous driving (1969-1987)

2. Autonomous Driving on Highways (1987-2003)

3. Autonomous Off-road and Urban Driving - The DARPA Challenges (2004-2007)

4. Commercial Autonomous Driving (2007-present)

It is not possible to name all projects or developments of each period. Hence, only a few
representative or outstanding examples will be given.

2.1.1 The Origin of Autonomous Driving and the First Steps

(1969-1987)

An important origin of autonomous driving can be found in the field of autonomous
mobile robots, where the first results were achieved over a decade before the first steps
with autonomous vehicles were made.

© Springer Fachmedien Wiesbaden GmbH 2018
A. Schaub, Robust Perception from Optical Sensors for Reactive 
Behaviors in Autonomous Robotic Vehicles, DOI 10.1007/978-3-658-19087-3_2



14 2 Related Work

Figure 2.1: Shakey the Robot [230]

The First Autonomous Mobile Robots: Although different other machines might
be classified as mobile robots, since they moved autonomously - like the tortoise robots
of William Grey Walter [300], ‘Shakey’ was the first autonomous mobile robot that made
use of the perception, planning and action principle - see Figure 2.1. The construction
started in 1966 at Stanford University, whereas the first results of the complete system
were achieved and published in 1969 [230]. It is remarkable that it already used vision
(besides tactile ‘cat whisker’ sensors) for the environmental perception and motion con-
trol. Moreover, techniques were developed in the context of this project like e.g. the A*
search algorithm [152] or the generalized Hough transform [109], which are still in the
basic repertoire of robotics. Nevertheless, the computational power was so limited that
it needed several minutes to process images and plan its path before it made a ‘shaky’
move.
In 1971, Hans Moravec started his work on visual navigation with the Stanford Cart

(Figure 2.2), which was originally developed in the 1960s to evaluate the possibilities of
remotely controlling a rover on the moon [15]. He used stereo cameras to detect obstacles
and to estimate its own motion [221]. Despite the advancing computational power of
micro-controllers the performance of obstacle recognition was still very slow and weak.
However, the basic concepts of stereo algorithms and path finding are still used today,
while the dynamic model of the robot was comparable to a car with only two degrees of
freedom.
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Figure 2.2: The Stanford Cart [313]

An outstanding result was achieved in 1979, when the cart successfully passed a chair-
filled room completely autonomously with a speed of ≈ 0.15 [cm/s] [222]
Encouraged by this work Moravec continued working on autonomous mobile robots. Now
being employed at the Carnegie Mellon University he started the CMU Rover (Figure 2.3)
project in 1981 [224]. Having learned from the Stanford Cart, the rover was equipped
with not only cameras but also infrared short term sensors and sonar sensors for the long
range. The dynamic model of the CMU Rover was more flexible with three degrees of
freedom achieved by three independently steerable omni-directional wheels. Those three
robots were only a few examples among many other projects that pioneered in the field
of autonomous mobile robots in the 70s and 80s - see also e.g. [80]. Due to the limited
processing power at that time, an extensive data accumulation was not possible and a
‘fast’ computation combined with an efficient representation was essential. Hence, those
approaches used concepts similar to those of reactive algorithms and can be considered
as their forerunners.
The first vehicle using the perception-to-action principle appeared in the mid 70s, when
the Tsukuba Mechanical Engineering Lab in Japan developed an autonomous vehicle
called “The Intelligent Vehicle” [286]. It used stereo TV cameras and analogue processing
hardware to follow way points and to detect obstacles with a maximal driving speed of
10 [km/h].
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Figure 2.3: The CMU Rover [223]

Figure 2.4: The Navlab I Van [291]

CMU’s Navlab: The CMU Robotics Institute did not only build up different au-
tonomous mobile robots at that time, its Navigation Laboratory also started in 1984 the
research on automated vehicles. Their first automated vehicle, the Navlab Chevrolet van
- see Figure 2.4, was built in 1986 [106], but the first results were only achieved at the
end of the decade due to computational limitations. The Navlab van managed to drive
autonomously with a maximum speed of up to 20 [mp/h] on normal roads [279].
The earlier experiences with autonomous mobile robots definitely payed off for this project.
Many algorithms developed for the autonomous vehicle could be applied to mobile robots
and vice versa. For example the famous potential field approach [176], which has a reac-
tive character (see Section 2.3.1), was an essential part of the integrated path planning
and dynamic steering control [180] and the dynamic obstacle avoidance used for Navlab
was developed first for mobile robots [181, 117]. At that time the Navlab van was the
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Figure 2.5: The VaMoRs Van with its Front Cameras [98]

state of the art for autonomous vehicle in the USA, but autonomous driving was also
pursued in Europe.

Dickmanns’ VaMoRs: At the Bundeswehr University of Munich the group of E.D.
Dickmanns started to make specific hardware developments in the early 80s to enable
autonomous driving. The limiting factor at that time was, same as for the mobile robots,
the computational power especially for sensor processing.
A breakthrough was the BVV2 pre-processor system for image processing [143], which
provided abstract features that were relevant for motion control in a hierarchical process-
ing structure to a master PC that was in charge of the motion control. This system did
not consist of a single processor but split the task to several processor (10 Intel 8086)
and only certain regions selected by several search windows (32x32 pixels) were processed
to be real time capable. This approach was able to extract necessary information within
20 [ms], whereas standard processor were so slow that they needed around 100 [s] to
process an entire image.
The developments resulted in the construction of the van VaMoRs (Versuchsfahrzeug für
autonome Mobilität und Rechnersehen) in 1985 [102], which was a test platform for the
perception algorithms and for autonomous driving in general - see Figure 2.5. In order
to be able to drive autonomously, the used approach needed a well structured highway
environment with good lane-markings. The image processing hard- and software worked
contour based and tried to match with high order world models (and later second or-
der dynamic models for objects). Kalman filters were explicitly designed to consider the
non-linear perspective projection. Moreover, the road curvature was determined from the
visual input and served as visual feedback for the control system.
This vision-based approach was called 4D-Vision, as 3-D space was an essential part of
the model as well as temporal constraints - time as fourth dimension [99].
Although the assumptions, models and techniques seem nowadays to be very restrictive,
two remarkable ‘world’s first’ achievements were made [102]. First in 1986, VaMoRs drove
fully autonomously (up to 10 [m/s]) on a skidpan at the Daimler Benz AG in Stuttgart,
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where the longitudinal and lateral motion were controlled by the output of an edge-based
image processing algorithm. The second achievement was in 1987, when VaMors demon-
strated autonomous high-speed driving on the closed Autobahn from Munich to Dingolfing
with a maximum speed of 96 [km/h] and covered more than 20 [km] autonomously.
This pioneering work attracted world wide attention and demonstrated the possibility of
autonomous driving.

2.1.2 Autonomous Driving on Highways (1987-2003)

In 1987 a EUREKA project called PROMETHEUS (PROgraMme for a European Traffic
of Highest Efficiency and Unprecedented Safety) was initialized with a duration of 96
months until 1995 [115]. The aim of the project was to develop new concepts and so-
lutions for more efficient and safer road traffic systems. This included infrastructure as
well as vehicle developments by using (for that times) new microelectronics, information
processing and aritificial intelligence. With an investment volume of 749 Million Euros
PROMETHEUS is to the author’s best knowledge the largest publicly funded project for
autonomous driving so far. The participants were car manufactures, universities, research
institutes, eletronic companies and suppliers from all over Europe. Among them were also
the Bundeswehr University of Munich with Ernst Dickmanns and the Daimler Benz AG,
building on the know-how accumulated in previous projects (see Section ).
In 1987, the original plan of the PROMETHEUS project was to experiment with in-road
cables for the vehicle guidance, but, due to the encouraging results of Dickmanns’, com-
puter vision was used instead [98] and became a prominent role of the project. In the
course of PROMETHEUS Daimler-Benz presented the Vita I [288] in 1991, which was a
sister-vehicle to VaMoRs equipped with its second generation of sensor and computing
hardware.
Due to new algorithm in 1993, the Vita I and the updated VaMoRs were able to estimate
the number of lanes and the ego-state and to identify obstacles. The authorities even
allowed the group of Dickmanns to test on public roads with normal traffic [100].
In 1992, 6 years after the start of VaMoRs, a new vehicle called VaMoRs-P or VaMP
was introduced [101]. The computers were small enough, so that a Mercedes 500SEL
passenger car could be used instead of a 5-ton van. The twin vehicle at Daimler-Benz was
the Vita II [289], which only had slightly different perception system. Two spectacular
demonstrations were given with the new sedan cars that attracted worldwide attention.
In 1994 at the final presentation of the PROMETHEUS project VaMP drove in real traffic
around Paris with up to 130 [km/h], while automatically changing lanes and overtaking
slow vehicles [101].
After that the computer hardware was renewed with a magnitude faster PowerPCs and
in 1995 VaMP managed to drive 95% of the 1600 [km] long way from Munich to Odense,
Denmark autonomously [103]. The maximum speed reached while being in automatic
mode was 180 [km/h]. Both longitudinal and lateral control was done again by the arti-
ficial intelligence, whereas at the CMU’s ‘No Hands Across America’ demonstration the
NavLab 5 vehicle was automatically steered for 98% of the time, but a human operator
had to control the longitudinal speed [243].
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Figure 2.6: The VaMoRs-P 500SEL [102]

Figure 2.7: The Lancia Thema 2000 from the ARGO Project [50]

After the PROMETHEUS project ended the research on autonomous driving on high-
ways continued - for instance in the ARGO project of the Artificial Vision and Intel-
ligent Systems Lab (VisLab) of the University of Parma, which also took part in the
PROMETHEUS project. The ARGO vehicle, see Figure 2.7, drove in 1998 the ‘MilliM-
ilia in Automatico’, which was a journey through Italy, where 94% of the 2000 [km] were
covered autonomously [50].
With the experience of over 10 years of autonomous driving the group of Dickmanns

extended its research to other scenarios. The old VaMors van was still used from 1994
until 2004 with the cameras and the processing hardware being revised a third time [98].
The goal then was to drive in more unstructured environments and even off-roads. In
2004 VaMoRs demonstrated in an autonomously executed mission its capability to leave
the road to go off-road, to avoid even negative obstacles (ditches) and to reach an off-road
target position [236, 98].

2.1.3 The DARPA Challenges (2004-2007)

The advances of autonomous vehicles in the new millennium were mainly driven by com-
petitions hosted by the American Defense Advanced Research Projects Agency (DARPA)
and the European Landrobot Trial (ELROB). Well structured environments like highways
were left and off-road or urban scenarios provided new challenges.
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Figure 2.8: The Winner of the DARPA Grand Challenge 2005: 1. Stanley, 2. Sandstorm,

3. H1ghlander [59]

DARPA Grand Challenge 2004: Nearly ten years after the PROMOTHEUS project
was finished the DARPA announced the Grand Challenge to promote research on au-
tonomous ground vehicle. In this challenge, an autonomous mobile robot had to navigate
through an unknown territory. The first Grand challenge was on March 13 in 2004 in
the Mojave desert from Barstow, California, to Primm, Nevada. The team, whose robot
would have covered the 142-mile track fastest and in no more than 10 hours, would have
been rewarded with 1 million dollars.
Even though 106 teams were registered and 15 participated in the final race, the Red Team
from Carnegie Mellon University, performing best, could cover only 5% of the course [59].
Its autonomous vehicle called Sandstorm (see Figure 2.8) was counted as the favorite
since it qualified first and was the only autonomous vehicle that could comply with all the
pre-event rules. However, due to weaknesses in the perception, navigation and planning
modules, it collided with several fence post and was finally stopped by a large boulder
stone [295]. Nevertheless, Sandstorm traveled 7.4 miles with an average speed of 15 [mph]
and a top speed of 36 [mph]. The main issues arose because of algorithmic errors and
not because of limiting computational power. However, valuable experiences regarding
cross-country autonomous driving were made during this Grand Challenge. At the clos-
ing ceremony a next edition of the DARPA Grand Challenge was announced for October
2005.

DARPA Grand Challenge 2005: On October 8 in 2005, only 18 month after the
first Grand Challenge, the second edition was hold with a 2 million dollars reward for the
winner. Only 23 teams out of 197 applicants were selected in the qualification process
to participate in the final race. The finalists had to prove that they are able to perform
better than all vehicles of the Challenge of the preceding year. Again a difficult 132 mile
route was chosen which led through the desert roads of Nevada. The 2005 route was
slightly less demanding since no obstacles were directly placed on the roads and precise
GPS data was provided [59].
In contrast to the first Challenge 5 teams finished the course successfully and 4 even within
the 10 hours time-limit. The winner was the robot Stanley from the Stanford University
with 6 hours 53 minutes. The 2nd place took Sandstorm from CMU’s Red Team, which
also participated in 2004, with 7 hours 5 minutes. Rank 3 was H1ghlander with 7 hours 14
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minutes, which is a twin robot of Sandstorm and also from Red Team. The race times of
the three winning vehicles were all well below the 10 hours and were very similar, although
the chosen hardware (compare Figure 2.8) and especially the implemented algorithms had
significant differences.
Stanley was based on a VW Touareg and used mainly off-the-shelf hardware like e.g. its
laser scanners, which where the main perception sensors together with a camera system.
The main focus was laid on the development of artificial intelligence algorithms and
especially in the fields of machine learning and probabilistic reasoning [282].
The CMU’s robots Sandstorm and H1ghlander were both constructed based on a 998
HMMWV and Hummer H1 in accordance to the team’s strategy of keeping components
as simple as possible and thus robust [294]. Although both robots have different electro-
mechanical hardware like e.g. the steering actuators, they use the same combination
of LIDAR and RADAR for environment perception and the same navigation algorithm.
Nevertheless, both were run with different parameter settings during the race, H1ghlander
with a full speed strategy and Sandstorm with a more conservative one, in order to
maximize the probability of at least one robot finishing. Despite the conservative strategy
Sandstorm finished the race faster, as H1ghlander encountered technical problems during
the race.

DARPA Urban Challenge 2007: In 2007 the next Darpa Challenge was carried
out, but this time on a totally new level. The scenario was moved from the static and
easily model-able desert terrain to the more challenging dynamic urban environment of
an entire mock-up town belonging to the US Army. The task this time was much more
complex, since it was not a conventional race as in the Grand Challenges. The robots had
to fulfill a series of different missions, which were defined by a set of check points.
After the announcement 89 teams coming mainly from universities with industry part-
ners applied and submitted first a technical paper, which had to sketch the respective
concepts of an autonomous urban vehicle. This led to the invitation of 53 teams from all
over the world, which presented their vehicles and demonstrated the capability of basic
autonomous driving maneuvers. In the next round, the remaining 36 teams had to accom-
plished a difficult qualifying event with several stages to proof the capability of following
way points, evading obstacles and obeying the traffic rules to ensure certain quality and
safety standards. Nevertheless, 11 teams got the admission for the 97 [km] long final race
on November 3. The missions in the final event included parking in a defined parking lot,
overtaking parked or slow vehicles, executing U-turns in case of blocked roads, merging
into fast-moving traffic, turning left while observing the traffic on the other lane, and
handling the right of way at intersections with multiple stop signs. During the whole time
the vehicles had to move within traffic that consisted of the other robots participating
in the final and additionally 50 especially trained human drivers. The speed limit was
48 [km/h] on the fastest parts of the course. Despite those challenging conditions three
vehicles finished the challenge without human intervention and three other teams could
solve all of the given tasks with only small interventions.
The winner of the urban challenge was Team Tartan Racing from Carnegie Mellon Uni-
versity with its vehicle Boss, a 2007 Chevy Tahoe [293] with drive-by-wire modifications.
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Figure 2.9: The Winner of the DARPA Urban Challenge 2007: 1. Boss [293], 2.Junior

[220]

Figure 2.10: Left: Team AnnieWAY [171], Middle: TerraMax [74], Right: MuCAR3 at

ELROB 2010 [158]

Although the team could gather experiences in the preceding DARPA Challenges, the
totally different tasks required a lot of new developments like a planner for unstructured
as well as structured environments, a tracker for moving obstacles, and a mission and
behavioral planner. The sensory equipment consisted of different LIDARs, radar, only
one camera and an IMU aided GPS module, which became crucial in the narrow urban
environment. Boss performed best already in the qualifying and, therefore, could start
from the pole position to finish the course with the fasted time, which was 4 hours 10
minutes with an average speed of 22.5 [km/h]. Ranked second place was a VW Passat
called Junior, which belonged to Sebastian Thrun’s Stanford team that won the Grand
Challenge 2005 [220]. It used a modular software architecture based on the one used in
2005 with revised and new modules for sensor interfaces, perception, navigation, drive-
by-wire, and global services. The planning part had also to be modified to enable a global
mission planning together with one planner for driving on roads, one for unstructured
environments, and a state chart realizing the behavioral planer to initiate actions like U-
turns. Junior used 5 different types of laser measurement systems, a multi-radar assembly
and also an IMU-aided GPS. Although the pure operational race time was 4h 5min, Ju-
nior was ranked 2nd with a time of 4h 29min due to being stuck behind two vehicles that
crashed. The average speed of 22 [km/h] was lower than the value of the Grand Challenge
in 2005, but this is caused by the speed limits and the complicated environment.
Several European teams also managed to reached the final like Team Carolo from Tech-
nische Universität Braunschweig with its vehicle Caroline [247], which couldn’t finish the
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course, and Team AnnieWAY from Karlsruhe Institute of Technology in cooperation with
the former institute of Dickmann from University of the Bundeswehr [171], who didn’t
complete the race either. Both teams and Stanford used a VW Passat, a popular choice
at that time because of an available kit for autonomous driving making CAN bus partially
accessible and enabling electric steering, braking, accelerating and gear shifting.
Among the finalists was also a team from Vislab of the University of Parma with an
Oshkosh MTVR Truck called TerraMax. This truck is originally a military vehicle and
therefore not a typical urban vehicle [74]. A remarkable point was also the sensory equip-
ment as they relied mainly on 11 cameras [51], which were used in mono, stereo and
trinocular setups to cover the environment. TerraMax had to quit the race after 90
minutes due to a computer error, whereas it should be mentioned that all finalists had
problems. Even the winning teams encountered different minor bugs either due to logic,
hardware or GPS errors.
Many lessons could be learned from the urban challenge such as no available off the shelf
sensors was sufficient - even not the 64 beam Velodyne laser [293]. Moreover, the used
models were too simple for urban driving, as no pedestrians, traffic lights and bikes were
considered. Very often traffic jams had to be solved by humans and often operators had
to intervene. The urban challenge also demonstrated that it is not possible to consider
each scenario that may occur in a realistic traffic environment. Hence, this motivates a
reactive instinctive behavior, as a high abstraction ability and adaptivity are required to
establish safety modules being able to cope with un-modeled scenarios. Nevertheless, the
urban challenge promoted various innovations in the fields of moving obstacles detection,
localization, mixed mode planning, curb detection, vehicle tracking, and the behavioral
planners that cope with a broad range of traffic situations. This technology demonstra-
tion attracted a lot of international attention and made huge impact on car manufactures,
so that they intensified again their research on autonomous driving. However, the devel-
opment of reactive approaches was of minor importance in this period, as the focus laid
on accumulating and fusing large amount of data from different sensors (see also Section
2.2.2).

European Landrobot Trial (ELROB): Besides the three DARPA challenges a se-
ries of competitions for autonomous vehicles was established in Europe in 2006 called
ELROB (European Landrobot Trial). ELROB is part of European Robotics, which is a
non-profit organization with the goal to bring together users, researchers and industry to
promote European robotics [111]. The ELROB wants to clearly distinguish itself from
being a competition similar to the DARPA Challenges and defines itself as a demonstra-
tion of the current capabilities of European robotics.
The first trial was organized by the German Army, but in 2007 an additional civilian
track was established. The focus at the trials lies on real world scenarios, whereas no sim-
plifications like detailed maps or well visible road markings are provided. The missions
take place on- and off-roads and include different categories like transport convoy, camp
security, transport mule, reconnaissance and surveillance, and autonomous navigation.
The latter two categories are of special interest, as they demand a high level of navigation
in unstructured environments. Due to this fact and the lack of a stable GNSS connection
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Figure 2.11: Left: Google’s Prius in 2011 [145], Right: Google’s Lexus RX450h in 2012[140]

or a reliable map, reactive approaches and concepts are used for the autonomous control
of the ELROB vehicles (like in [158, 299]). The ELROB trials were held every year be-
tween 2006 until 2012 with alternating military and civilian version. Since 2012 the trial
takes place every two years with a variety of scenarios in urban and off-road environments.

2.1.4 Commercial Autonomous Driving (2008-present)

After the DARPA Urban Challenge demonstrated the technical possibilities, the dream of
driving autonomously got back into consciousness worldwide. The major car companies
started to intensify their research on advanced driver assistance systems and first dates
were estimated, when an autonomous vehicle could be bought. GM plans to deliver Cadil-
lacs that are able to drive automatically in uncritical situations in 2017 [203] and Nissan
announced in 2014 even a fully autonomous vehicle for 2020 [26]. Besides the technical
topics there is another big question mark regarding insurances [168] and especially legal
issues. Therefore, politics started to give an increased attention to autonomous driving
[131]. In 2011 Nevada and California were the first states to legalize autonomous driving
on public roads [214, 242], while in 2013 Florida, Michigan and District of Columbia fol-
lowed their example. The current status of all states can be checked in [120]. European
manufacturers shouldn’t have a disadvantage, so that politics allowed autonomously driv-
ing on certified roads in England [33], France and Germany [248, 285].
The development of technology for autonomous vehicles attracted not only classical car
manufacturers. The best example here is Google, which started already as a sponsor of
the Standford teams in the DARPA challenges in 2005 [282] and 2007 [220]. The for-
mer leaders of the Stanford team Sebastian Thrun and Chris Urmson from the Carnegie
Mellon University [294, 293] became heads of the autonomous driving group at Google
[145] starting in 2009 [244]. They set up a fleet of Toyota Prius and changed later to
Lexus RX450h [140], which were driving autonomously first in California and then later
also in Nevada. Starting officially in 2011 the fleet covered over 1.5 million kilometers
autonomously until May 2015 [292] while consisting then of over 20 vehicles.

Those vehicles depended strongly on the Velodyne 64-beam laser and accurate maps
[145], for which the experience that was collected for years from Google Maps and Google
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Figure 2.12: Google’s Self-Driving Prototype Vehicle [142]

StreetView paid off. Although to be considered as very safe, the Google cars have been
involved in 11 minor accidents without any human damage until May 2015 [34], whereas
Google stated that the artificial intelligence was never the cause for any of those accidents
[244].
A further step was made in May 2014, when Google announced a car directly designed
for autonomous driving [141]. The special shape reminded of a golf cart with a Velodyne
Lidar on rooftop. Another very unusual feature is the missing steering wheel and pedals
in the first prototype, so that it cannot be controlled by a human operator. Google started
tests on public roads in Mountain View, CA in the summer of 2015 [142]. For those tests
a speed limit of 25 [mph] is set and safety drivers will be aboard, who can overtake the
control of the vehicle with an added steering wheel and pedals. The software basis is the
same as for the autonomous vehicles that are based on conventional vehicles.

Another new player is the electric car manufacturer Tesla, who announced an au-
tonomous driving function for its Model S for summer 2015 [13]. In fact a combination of
the existing driver assistance systems like the automatic emergency braking, blind spot
observation, collision warning sensors, and lane marking detection enable a hands-free
driving on highways and an automatic lane change that must be triggered by the driver
[253]. Additionally, Tesla released a low-speed automatic driving for parking lots. The
speed had to be very limited since ultra-sound sensors are used for perception. Never-
theless, the sensory equipment is not compatible to autonomous cars like the ones from
Google’s fleet. A fatal accident occurred in July 2016 as a driver was relying on the
so called ‘autopilot’ functionality of the Tesla S and crashed into a turning truck on a
highway [266].

The 2014 Mercedes S-class has the capability of driving automatically on highways
and well defined streets, but requires the driver to keep his hands on the steering wheel
due to legal issues. If the driver doesn’t comply, the car warns him and eventually forces
him to drive to the side of the road and to stop [13]. Daimler has a long tradition
regarding autonomous driving. All started with Dickmanns’s presentation of VaMors
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Figure 2.13: Audi’s RS7 ‘Jack’ [25]

at the Daimler Benz AG in Stuttgart in 1986 and the following common projects with
the test vehicles Vita I [288] and Vita II [289]. With the experience gathered in the
EU Projects a steering assistant was developed in 1994 [129], but image processing for
driver assistance systems became a prominent topic at Daimler. The group around Uwe
Franke worked on computer vision algorithms for e.g. lane recognition [312] or vehicle
tracking [137] and developed early real-time stereo vision approaches[128]. The shift from
highways to urban areas already started in 1998 [124], while the complex environments
raised many new topics starting from bus stop recognition [127], new collision avoidance
techniques [130], road modeling [302], efficient representations of the environment [240]
and many more. A breakthrough was the combination of the 3D reconstruction algorithm
Semiglobal Matching [159] with optical flow [227, 303] to the 6D Vision approach [245].
With this the environment could be modeled in 3D and dynamic objects could be detected
with only using a pair of calibrated cameras. The 6D-Vision approach is used since 2013
in the Mercedes-Benz S-, E- and C-class to observe crossing traffic and pedestrians [125].
Moreover, in August 2013 a Mercedes Benz S500 Intelligent Drive completed the 100
kilometer long Bertha Benz route through dense traffic and complex urban and rural
environments autonomously [216]. Bertha Benz, who was the wife of the patent motor
car inventor Carl Benz, covered the same route exactly 125 years before and demonstrated
the first long distance drive of an automotive.
Besides Mercedes, the other premium manufacturers made also remarkable achievements
on their way to build autonomous vehicles. Audi proposed and demonstrated an approach
for autonomous or piloted parking [166] in a parking garage, which is equipped with
LIDAR sensors. Another topic tackled by Audi is high-speed autonomous driving on a
race track with the vehicle being close to its handling limits [133]. The current autonomous
vehicle named ‘Jack’ from the piloted driving project is an Audi RS7 (2.13) that already
demonstrated its autonomous driving capability on the highways of Nevada and on the
German Autobahn A9 near Ingolstadt [25].
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Figure 2.14: The autonomous Freightliner Inspiration Truck [41]

BMW also focuses on automated driving in well structured environments like highways.
Since 2011, BMW has a fleet of test vehicles that drives on the German Autobahn A9 with
speeds up to 130 [km/h] [16]. The autonomous driving research belongs to the ‘connected
drive’ group [107]. This makes thematically sense, since an intelligent vehicle is closely
connected with its environment and to the internet to obtain additional information about
e.g. the traffic density.
Not only premium car manufactures work on autonomous driving. Volvo as company
with a long tradition of vehicle and crash safety started to work on automated driving
for pedestrian safety with the goal of ‘zero deaths’ in car accidents by 2020 [93]. In 2017
Volvo plans to launch ‘Drive Me’, an experiment in which 100 autonomous vehicles are
provided to normal customers around Gothenburg. The testers will drive in normal traffic
with a limited speed of 30 [mph] during autonomous mode.
Besides passenger cars, the automation of trucks is another interesting area of research,
since they cover long distances, drive relatively slowly and are involved in heavy accidents
often caused by tired drivers [31]. Mercedes has presented an autonomously driving truck
called Mercedes-Benz Future Truck 2025 at the IAA 2014 [40]. The same technique called
‘Highway Pilot’ is used in the Freightliner Inspiration Truck 2.14 that drives since 2015
autonomously through Nevada [12].
For completeness it must be mentioned that besides the large car manufacturers and

technology companies research institutions still pursue independent projects in the field
of autonomous driving. For example, the VisLab of the University of Parma attracted a
lot of attention with the Vislab Autonomous International Challenge in 2010, in which
a convoy of two electric vehicles drove partially autonomous 13000 [km] from Parma to
the World Expo in Shanghai [54]. The leading vehicles was driven autonomously when
possible and the following vehicle tried to locate the leader and follow it. If this was
not possible the second vehicle planned its way according to a provided GPS way-point
list. Furthermore, in 2013 VisLab demonstrated autonomous driving in downtown Parma
within the PROUD (Public ROad Urban Driverless-Car) project [52]. Undoubtedly, the
ability of driving autonomously will be part of future vehicles. However, more daring
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Figure 2.15: Mercedes F-015 Luxury in Motion [42]

concept cars like the Mercedes ‘F 015 Luxury in Motion’ - see Figure 2.15 - are indicating
that future cars are not like today’s vehicles with just the ability to drive autonomously.
This very ability enables a new usage for vehicles not as a mere transportation utility but
as a “mobile living space” [42]. This prototype is also remarkable, as it is one of the first
concept car that was developed fully for autonomous driving. Even though the research
of autonomous driving has gained momentum since the DARPA Urban challenge, there is
still long way to go for the fully autonomous vehicle, to which the concept of an artificial
instinct could contribute.

Although remarkable results have been achieved, so far no vehicle is able to act au-
tonomously in nearly all situations. Moreover, none of them is pursuing a reactive instinc-
tive approach. Most of the vehicles are conventional series cars (the vast majority uses
combustion engines) that have been adapted for autonomous driving by integrating addi-
tional sensors and actuators. However recently, a few different projects like the Mercedes
F015 concept [42] were initiated to build a car explicitly with the purpose of autonomous
driving, even though it is not known and rather questionable if the de-centralized systems
architectures used in current vehicles was rethought. Most important, all the introduced
vehicles have the motion dynamics of a conventional car, and therefore do not fulfill the
requirements of a highly maneuverable vehicle. Consequently, from an actuator point of
view the current autonomous vehicles are not perfectly suitable for reactive instinctive
approaches.

2.2 Sensors for Autonomous Vehicle

It is not in the scope of this thesis to develop or design a new sensor for autonomous
vehicles, but a sensor shall be selected that supports reactive behavior for autonomous
vehicles. This section first provides a survey of common sensors for autonomous driving
and then gives an overview which sensor classes were used for the different vehicles through
the decades.
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2.2.1 Overview of Sensor Classes

We discuss now different sensor classes that are used for autonomous driving. Even though
a great variety within single sensor classes exists and major evolutions were made during
the last 30 years (considering e.g. the available resolution of cameras), the basic underlying
principle of a sensor class is always the same. The following sensor types are only briefly
introduced, while a more detailed description can be found e.g. in [264, 226, 306].

• Odometry: Odometry denotes the general principle of measuring wheel speeds and
integrating them to estimate the relative position change over time. The word has
its origin from odos (Greek - ‘route’) and metron (Greek - ‘measure’).

• SONAR: The SOund Navigation And Ranging sensor actively transmits electro-
magnetic waves in the spectrum fro 16 [kHz] to 1 [GHz] and calculates the distance
to reflecting objects.

• RADAR: The class of RAdio Detection And Ranging (RADAR) sensors transmits
microwaves (1 [GHz] - 300 [GHz]), which reflect from objects and are then detected
by the receiver of the radar system to estimate distance and velocity.

• LIDAR: LIght Detection And Ranging (LIDAR) is closely related to RADAR sys-
tems, but uses laser beams instead of radio waves.

• Monocular Camera: A camera is a passive sensor system that projects the visible
light (and other parts of the electromagnetic spektrum) on an electronic sensor plane
to record an image of the environment.

• Infrared Camera: An infrared or thermographic camera is very similar to a con-
ventional camera, but instead of visible light it detects infrared radiation. Therefore,
it is able to visualize the surface temperatures of objects.

• Stereo Camera: A pair of cameras is able to reconstruct depth form two concur-
rently captured images using triangulation. Usually, such a configuration requires
additional synchronization and calibration.

• IMU: An Inertial Measurement Unit combines an accelerometer and a gyroscopes
for each spatial axis to measure accelerations and rotations.

• GNSS: A Global Navigation Satellite System (GNSS) like the Global Positioning
System (GPS) is a network of satellites, which transmit time signals so that a
receiver can determine its position on earth by receiving at least 4 satellites. Often
a correction signal like the Differential GPS [219] from an earth-bound station is
used to refine the position.

From now on the SONAR sensor is omitted, as its relevance for autonomous driving
is minor due to the short range and resolution. Though, it is still used for automatic
parking assistance systems [146]. Furthermore, infrared cameras are only rarely used, as
in [257] or[231], for applications in the context of autonomous vehicles and therefore not
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considered explicitly anymore.
Table 2.1 gives an overview which measurement from the list in Section 1.3 can be sensed
by which system. Different measures like odor, taste, and tactile sensing are not included
as being considered not practical, whereas acoustics is only left out due to its rare use
in automotive applications until now. Nevertheless, sound-based localization [110] and
control is used in mobile robotics [202], and a human driver also observes acoustic signals.

Sensor
Acceler-

ations
Velocities Depth Color Texture Geometry Position

Odometry - x - - - (x) (x)

Radar - x x - - - -

Lidar - x x - - - -

Monocular Cam. - - - x x x (x)

Stereo Camera - - x x x x (x)

IMU x x - - - - -

GNSS - - x - - - x

Table 2.1: Overview of Sensors and what they could measure

It is already obvious that cameras tend to be good sensors, as a great variety of
information can be acquired. Although, stereo cameras have the advantage of the depth
determination, they require a high computational effort [128], additional calibration and
have a limited range in context of autonomous driving.

2.2.2 Usage of Sensors

This subsection provides an overview how the different sensor types were used in exem-
plary autonomous vehicles of the last 30 years. Table 2.2 is in chronological order, while
the border between two era’s, in accordance with the preceding section, is denoted by a
double horizontal line. It can be seen on the first glance that two sensor types are common
to all autonomous vehicles of that table: Odometry and (monocular) cameras. This is also
the minimal sensor equipment which was used e.g. for the VaMoRs vehicles. Moreover,
it is also an intuitive choice, since the vehicle’s control relies normally on the odometry
feedback and cameras provide a rich variety of data from the environment, while roads
are designed for humans relying mostly on their eyes.
Until the DARPA challenges cameras were the dominant environment sensor, but then
new RADAR and LIDAR systems provided depth measurements without the high com-
putational effort of e.g. stereo cameras. Since the autonomous vehicles left the well-
structured highway environment, the environment was modeled by a combination of LI-
DAR and RADAR to detect near and far objects, and was fused with a global map
containing GPS way-points [294]. A deciding factor for the success were the Simultane-
ous Localization And Mapping (SLAM) algorithms for the local environment [282] and the
DGPS/IMU combinations that provide high accuracy information for global localization
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Autonomous

Vehicle

Odo-

metry
Radar Lidar

Mono.

Camera

Stereo

Camera
IMU GNSS Year

VaMoRs x - - x - - - 1985

Navlab x - x x - - - 1986

VaMoRs-P x - - x - - - 1992

ARGO x - - x x - - 1999

TerraMax x - x x x x x 2004

Stanley x x x x - x x 2004

Sandstorm x x x x - x x 2004

Boss x x x x - x x 2007

Junior x x x x - x x 2007

Bertha x x - x x x x 2013

Google Car x x x x x x x 2014

Jack x x x x x x x 2014

Future Truck x x - x x x x 2014

Table 2.2: Sensor equipment of the autonomous vehicles through the decades

[47]. Besides a few exceptions like TerraMax [51], cameras were only used for detecting
drivable regions [282] or lane markings [293].
Nowadays, due to dense and real-time capable 3D reconstruction algorithms like [159],
stereo cameras are used in autonomous vehicles together with LIDAR and RADAR. Al-
though, the use of different sensor types provides robustness by redundancy or compli-
menting properties [160], not all combinations are yet suitable for mass production due
to high costs. An extreme example is the $70,000 Velodyne 64-beam LIDAR used e.g.
by the Google Car [151] or Junior [220]. Automotive suppliers and manufacturers are
working on solutions that are closer to series-production like in the Mercedes autonomous
vehicle Bertha or in the autonomous future truck.
In conclusion, cameras have been an essential sensor for autonomous vehicles through
the decades due to the variety of information they can provide and computer vision be-
ing a large field of research. After all, living creatures also navigate mainly with their
eyes. Cameras are a very promising sensor for realizing a reactive behavior. This thesis
is supported by the next section that gives an overview over the state of art of reactive
algorithms.

2.3 Types of Planning

The core element to realize a reactive behavior is the algorithmic part that connects
the sensory part with the actuator hardware. The term reactive algorithm or reactive
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planning was often used for a rule-based decision making, or also called Situated Control
Rules [108], in order to cope with uncertainties [259] or limited computational power,
which is one of the reason why those algorithms were popular in the late 1980s and 1990s.
The main field of application of those reactive planning approaches is robotics like in [35],
where structured reactive plans determine the responses of a robotic system to sensor
changes. Furthermore, this “reactive school” [23] was often closely related to a task-based
architecture [235] as proposed by Brooks [56].
Those reactive planning algorithms are only partially in accordance with the postulated
properties of a reactive instinctive behavior. The rule-based response to sensor signals
is similar to the reflex definition of Chapter 1. Since a task is executed by a sequence
consisting of a set of rules, this class of algorithms is a series of reflexes. The representation
interfacing the sensor space to the actuator space is limited to almost binary decisions and
therefore, graphs or finite state machines, which are not necessarily deterministic [169],
are used to model and cause the desired behavior of the system.

Exemplary Classification of Planning Types: In the context of autonomous vehi-
cles, [200] proposes a classification of motion planning/ navigation algorithms into global,
reactive and guided navigation.
The global navigation is characterized by a trajectory planner that uses a metric represen-
tation of the environment (map). An autonomous vehicle will then track the computed
trajectory [305]. This form of navigation pursues a clear hierarchical architecture, where
no sensor-actuator coupling exists because of the map-building step. In contrast, the
reactive navigation couples directly navigation to perception. Additionally, an object
recognition ability is postulated to notice when reaching a goal state. The tentacle ap-
proach [299], where motion primitives are evaluated on an occupancy grid, is named as
an example for a reactive navigation. Furthermore, a third type, namely the guided nav-
igation that is settled in between the global and reactive navigation, is proposed. This
type avoids metric planning and causes no random motion patterns, which is stated as
an attribute of the reactive navigation. Platooning is given as an example application for
guided navigation [213].
Figure 2.16 visualizes the different navigation types by using characteristic values of the
amount of information required and cycle times. Global navigation is definitely different
to a reactive instinctive behavior e.g. due to the decoupled sensor-actuator-relation, but
the definition of a reactive navigation in [200] is too restrictive. Another example provided
for reactive navigation is a robot that bounces off when hitting a border. This random
motion is not very constructive and would not be considered as instinctive navigation. In
the best case, the bouncing could be seen as a reflex. Moreover, they state that trans-
ferred to autonomous vehicles those boundaries would be e.g. curbs. On the other hand
road following is given as an example for guided navigation. This leads to the question
why road following is so much different to navigate in a polygon spanned by curbs etc.
If their reason for this distinction is the sensor-actuator coupling, since a curb can be
directly detected by the LIDAR that they use and road boundaries not in all cases, then
probably the wrong sensor is used.
Nevertheless, using little additional knowledge is still in conformity with intuition and
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Figure 2.16: The classification of Wuensche [200] into reactive, guided, and global naviga-

tion is visualized here according to the required amount of information and the cycle time.

An exemplary algorithm for each class is drawn at its respective position.

the postulations from the initial chapter. In [24] Arkin also proposes the use of “world
knowledge” to extend the reactive algorithm class described at the beginning of this sec-
tion. Therefore, the algorithms that realize a reactive instinctive behavior are covering
both the guided and the reactive navigation.

The remainder of this section discusses algorithms that comply at least partially with
the postulated properties of a reactive algorithm in the first chapter. Recalling the task-
based architecture of Brooks [56], a reactive instinctive behavior is realizable on the
lowest levels. Therefore, the approaches presented in this related work section are ordered
according to the task they fulfill, while the sensor or the system they run on is subordinate.
The following task-based structure is pursued and depicted by Figure 2.17 even more
detailed:

1. Obstacle avoidance.

2. Relative position to static or moving target poses is called navigation.

3. Combined obstacle avoidance and navigation.
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Figure 2.17: Overview of the structure of Section 2.3

2.3.1 Reactive Obstacle Avoidance

Obstacle avoidance is the most basic task for autonomous vehicles and mobile robots as
seen for example in Figure 1.3. A large variety of different active and passive sensors were
applied to fulfill that task during more than 40 years of mobile robotics [264].
In context of autonomous vehicles and Advanced Driver Assistance System (ADAS), this
variety is limited mainly to the sensors listed in the preceding section, namely RADAR
[97], LIDAR [155], stereo cameras [51, 311], and combinations of those [71].
A collision-free motion requires a fast response time and robustness for obstacle detec-
tion even in cases where the calibration of the system changes due to external factors
like vibrations. Therefore, obstacle avoidance is the dominant task in literature that is
solved by reactive approaches, whereas not all fulfill the postulations from the first chap-
ter. However, the algorithms described in this section do not rely on data abstraction but
try to couple the response directly to a sensor input. Moreover, it is important to detect
collisions as early as possible and especially with dynamic obstacle.

Tentacle Approach: The first algorithm is the Tentacle approach introduced in
[299]. An occupancy grid map is generated from LIDAR depth measurements and motion
primitives that dependent on the current velocity and wheel angles are projected in this
metric map to identify collision free paths. The tentacle obstacle avoidance is named as
an example for a reactive algorithm in [200], but a critical point is the data accumulation.
The accuracy of the occupancy map is directly dependent on the number of measurements,
and different methods like [280], which uses a probabilistic approach, were developed to
increase the accuracy. Therefore, there is a conflict of objectives between accuracy and
preserving the reactive character. Nevertheless, this approach was successfully applied
in off-road scenarios like the ELROB challenge [158] or by Team Annieway [171] in the
DARPA Urban Challenge.

Physically inspired obstacle avoidance: Many reactive collision avoidance meth-
ods are inspired by physical principles like the popular potential field approach introduced
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by Khatib [176]. The basic idea is that the environment is considered as a potential field,
like a gravitational or electric potential, and an imaginary force is repelling the mobile
robot from obstacles, whereas the goal position is attracting it. The motion of the robot
is then caused by the sum of all forces. Various improvements were developed to avoid
for example local minima by using harmonic potential functions [177] or circular fields
[265]. However, the environment representation is often a metric one like the occupancy
grid map or a similar form, so that the problem of data accumulation holds. Considering
explicitly the goal position, the potential field approach is not used as reactive algorithm,
but as a path planner.
The dynamic window approach [121] takes the dynamics of the robot into consideration to
apply only feasible velocities. With this knowledge, an objective function is maximized to
ensure a fast translational motion and keeping a safe distance to obstacles. Although the
algorithmic layer is closely coupled with the hardware, the sensor properties are neglected
by this algorithm.

For completeness it should be mentioned that reactive obstacle avoidance is also of-
ten used in the field of robot manipulators. Exemplary approaches are based on forces
[148], settled in the Cartesian space [228], or in the operational space [49]. One impor-
tant difference is that the configuration space has a significant higher dimension than for
ground-based mobile robots or autonomous vehicles [48], which leads to a higher compu-
tational effort, but can also provide more feasible solutions.
There is a large number of different approaches in literature that are described as reac-
tive, see for example [187], where reactive planning is called feedback planning, but very
often the sensor-actuator-coupling is neglected or intense data accumulation is required.
In what follows, we will focus more on vision-based obstacle avoidance, since promising
reactive obstacle avoidance approaches have been developed in the last 25 years using
cameras.

2.3.1.1 Vision-Based Obstacle Avoidance

Cameras, in monocular or stereo configuration, are a popular sensor for obstacle avoidance
for autonomous vehicles and mobile robots by providing a rich variety of information. A
detailed discussion about the pros and cons of cameras is made in Chapter 3.1.1. The
main information provided by the sensors used in the approaches above is metric depth,
which is in contrast to many biological systems that rely on different sources of depth
cues [60]. A good overview of potential depth cues used by biological systems is given in
[225], where also a main distinction is made into the categories:

• Motion Parallax: the angle to closer objects changes faster than for distant objects
when the camera is moved.

• Monocular Cues: like for example perspectives (vanishing point), relative sizes,
known object sizes, occlusions.

• Stereo Vision: the depth is determined via triangulation.

Since stereo cameras, if calibrated, inherently provide depth information, they are often
used very similarly to range sensors like RADAR or LIDAR, and data is accumulated to
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generate maps. For example: a potential field approach with terrain classification is
applied for a mobile robot in an outdoor scenario in [147], while the occupancy grid map
is generated from stereo vision.
Before focusing on the category of motion parallax (mainly optical flow), an overview over
approaches based on monocular cues is given.

Monocular Cues: Different monocular obstacle detection approaches have been pro-
posed for mobile robots in the last three decades. In [195], the motor commands (turn-
angle and forward speed) for a mobile robot are directly derived from object boundaries
that are extracted from camera images using an edge detector and RGB/HSV filter. Hor-
izontal boundaries indicate the relative distance and the direction of the motion is derived
by turning toward the most distant border. In a similar manner, a pixel-wise classification
of ground and obstacles is carried out in [290] based only on color. A monocular camera
is also used in [73] to identify obstacles first by its shape and then calculate the angles to
the object boundaries. Considering those, a new navigation target point is determined,
which leads to a new turning angle. The work of [192] describes a different approach,
where ground plane features are identified by using the homography principle (explained
in Chapter 3.1.4). After that the detected ground plane is projected into an occupancy
grid map via an inverse perspective transformation. In those ground-based cases, the
depth cue is derived from the respective image row of the pixels.
An approach based on relative sizes is presented in [225], where a monocular camera on
a UAV is used to observe the expansion of objects to detect and avoid collisions. Here,
SURF features are used to extract the expanding key points in combination with tem-
plate matching to determine the ratio of expansion. Therefore, no depth information
is required, which cannot be provided by the monocular camera. This approach has a
strong reactive character, since the sensor properties are taking into consideration, data is
not accumulated and the motion response is directly derived from the detected expansion
rate, which is strongly related to the time-to-collision that is explained in the following.

Time-to-Contact/Collision: A very important principle regarding monocular obsta-
cle avoidance is the calculation of the Time-to-Contact/Collision (TTC). Basically, the
TTC denotes: how many frames does it take until an object contacts the camera plane.
A comparison of different approaches for measuring the time-to-collision is provided in
[18]. The huge advantage of the TTC calculation is that a monocular camera is sufficient
and no calibration or no depth estimation is necessary. Lee claimed already in 1976 [188]
that a human driver could benefit from a TTC information that tells him when to brake
to avoid collisions. Closely related to the TTC is the optical flow, that belongs to the
category of motion parallax depth cues.

2.3.1.2 Obstacle Avoidance based on Optical Flow

The shift of an image point between two consecutive images is called optical flow, while
the first algorithms for computing it were already developed in the early 1980s [162, 199].
Using this principle, motions could be sensed with a monocular camera. Two types of
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optical flows can be determined:

1. Dense optical flow: the flow vectors are evenly distributed over the entire image
like in [309].

2. Sparse optical flow: significant feature points are detected and matched between
consecutive images.

It must be mentioned that dense optical flow is computationally expensive [234] and is
still a challenging problem for moving cameras [227]. A comparison and performance
evaluation of the early optical flow techniques can be found in [28]. Since then a number
of improvements have been introduced to tackle problems like occlusions [21], respecting
motion boundaries [250], and the preservation of discontinuities [96, 156].Warping strate-
gies are introduced in [57] to increase the accuracy. Moreover, the fusion of the optical
flow from a standard camera with the flow from an infrared camera is suggested in [231]
for an increased robustness in urban areas.
The feature-based techniques, which provide sparse optical flow, need less computational
time then the dense approaches and have no aperture problem [70]. Sparse optical flow
is discussed in more detail in the context with image features in Chapter 3.1.3.
Already in 1989, Nelson proposed a method that makes use of the flow field divergence in
order to avoid obstacles [229]. Despite the very limited computational power the approach
could be verified with basic obstacle detection tests. Since then, the optical flow has been
the basis for different reactive obstacle avoidance approaches.
Some of them use the TTC for obstacle detection like, e.g., in [65], where regions with
similar flow are clustered and the TTC is estimated to identify dangerous regions for a
collision-free flight of an UAV.

Approaches inspired from Biology: Early real time approaches used the time to
contact to perceive obstacles along the central motion direction, while balancing peripheral
flows to follow a corridor. This principle was inspired by biology, as insects are a rich
source of inspiration for vision-based collision avoidance. They manage complex tasks
based on visual motion information [270] despite being equipped with simply evolved
eyes and brains and lagging stereo vision. Fruit flies detect emerging obstacles by their
visual expansion with different motion strategies being elicited by the kind of expansion
[276]. Honey bees fly collision free through narrow passages by balancing image speeds
on two sides and even use image motion to estimate covered distances of several hundred
meters [271]. Ground-based robots using this principle were build in the early 90s [256]
and a mobile robot in [81] was able to move in a static environment collision free for up
to 20 minutes with an average speed of 30 [cm/s]. Simple strategies were pursued due
to very limited computational power. For example, a few approaches use only the full
resolution at the center region and lower at peripheral regions [27, 283]. Therefore, the
amount of data is decreased without the loss of necessary information.
Nowadays, insect strategies are used especially in small flying vehicles that even have
sizes comparable to insects or birds [241], and therefore they are not able to carry fast
and heavy computing devices. One of those micro air vehicle (MAV) achieves good results
by avoiding regions with high optical flow [144].
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Structure-from-motion: Methods similar to structure from motion (an introduction
can be found e.g. in [201]) are utilized to overcome the missing depth information. One
example is described in [268], where the motion direction is determined based on a depth
histogram. The depth measurements are derived from optical flow in combination with
the wheel speeds, which provide the metric scale. If the flow is not caused exclusively
by the ego-motion of the camera, only the TTC is determined, which is the case for a
dynamic obstacle.
A similar approach is described in [197], where a mobile robot creates an angular depth
map from optical flow and wheel speeds. This representation is then compared to maps
from sonar and laser data with the result that the depths from motion algorithm per-
forms only slightly worse than the LIDAR method. More sophisticated approaches are
introduced, e.g., in [255] for a UAV equipped with an IMU and a monocular camera, or
in [149] for a self-driving car using a fish-eye camera and wheel odometry.

General Shortcomings of Optical Flow: A few shortcomings have to be taken into
consideration, when using optical flow for collision avoidance. Rotations between suc-
cessive frames are a typical problem [81] and have to be compensated. An often chosen
possible solution is the use of an additional sensor like an IMU [78, 165], but the detection
of rotations can also be handled visually with, e.g., the Zinf ego-motion estimation from
[207]. Frontal objects are also problematic, as the main motion component is along the
optical axis of the camera and therefore, the observable motion is small. Approaches
based on monocular cues like [225] explicitly tackle this problem.
A further closely related shortcoming of the optical flow is the requirement of motion in
general. The observed motion must have a certain magnitude to provide a useful signal
to noise ratio. Combining optical flow with stereo vision [159] could solve this problem.
Those approaches complement each other for autonomous vehicles, since the range of
stereo vision is limited by the base distance between the cameras, but perform well in
close ranges, whereas the optical flow benefits from large velocities, where the detection
range of obstacles must be larger. Very good results were achieved in this way, e.g., in
[245].
Dynamic obstacles denote a special case for optical flow-based approaches, as the rela-
tive motion between object and camera is observed. Except the TTC, all approaches
mentioned until now require adaptations, when dynamic obstacles are present.

2.3.1.3 Dynamic Obstacles

All the previously named methods, using cameras or not, lack the ability to cope explicitly
with dynamic obstacles. Therefore, different extensions were introduced like, e.g., in
[135], where the potential field method does not only consider the relative position of
an obstacle to create the repelling force but also the relative velocities. This additional
information weakens further the direct sensor-actuator-coupling, since a sensor is required
that concurrently measures distances to and velocities of objects and would provide metric
sizes in the best case. In [122] inevitable collision states are introduced that are used in
motion planning or for navigation to describe the dynamics of both the robotic system
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and the obstacles. This requires an extensive knowledge about the environment and its
dynamics. The same holds for methods that are settled in the velocity space [118, 232]
of the system to take the actuator dynamics into account, whereas the sensor type and
properties are completely neglected. The concept of Probabilistic Velocity Obstacles,
which considers circular objects and their velocities together with uncertainties [179], are
used in combination with a dynamic occupancy grid [83] for, according to the authors, “a
reactive algorithm to perform obstacle avoidance” [132]. The dynamic occupancy grid,
which is the input for the algorithm, is generated from LIDAR data and uses Bayesian
filter techniques to establish a prediction functionality. Speaking of reactive algorithms,
at least the problem of data accumulation arises here. Another approach with prediction
ability using an occupancy grid map is described in [262]. It is stated as reactive, since
a dynamic window approach adaptation is used to avoid local obstacles. Although the
actuator properties are well integrated in this representation, it neglects the sensor and
assumes that the velocity vector and motion heading for each moving cell is known.
A popular approach to identify dynamic objects is the fusion of depth information from
stereo-vision with motion information from optical flow [126]. The work of [29] uses
additionally a vehicle dynamics model to identify the state of moving vehicles and predict
their driving paths. Nevertheless, it also cannot be considered as reactive approach and
is mentioned here as typical example how dynamic objects are handled in the state of the
art. A detailed overview of vehicle detection techniques can be found in [226].
It is difficult to find an approach in literature that is able to avoid collisions with several
dynamic objects concurrently and that is designed, at least to a large extend, in accordance
with the described properties of a reactive instinctive behavior.

2.3.2 Vision-Based Control and Navigation

Navigation denotes a robot’s task to come (collision-free) from one configuration/state to
another one [77]. In the case of mobile robots or autonomous vehicles the question refines
to: how should the robot be moved such that a goal configuration is reached.
Regarding the horizontal scheme of Figure 1.3, the navigation task is settled above the
obstacle avoidance. Furthermore a distinction is made between local and global goals [86].
Recalling the initial part of this section, local goals are mainly interesting for reactive in-
stinctive algorithms. A global goal or plan can consist of a sequence of local goal states.
In comparison to obstacle avoidance additional information must be available to be capa-
ble of two sub-tasks:

1. The minimum requirement: a system is aware of being at the goal state, when it
reaches it.

2. The current state and the goal state should be located in the used representation.

To fulfill the first requirement, a description of the goal state, which could be compared
to the current state, must be available. This could be realized via feature points [68] or
via GPS coordinates, like in the DARPA challenges [282]. For the second requirement,
the system must either be able to localize itself in a global representation or map [281],
or it can localize itself in relation to the goal state [45]. Regarding the characteristics of
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reactive approaches, the latter case is more suitable and very similar to navigation tasks
that can be performed by a human driver without reasoning. Therefore, this kind of
navigation is considered as instinctive/intuitive and can be seen as a relative positioning
task:

• Relative to an abstract property like, e.g., lane-keeping. Even though only the
lateral control is a positioning task.

• Relative to a target pose like, e.g., parking in a well-known environment (the
garage at home).

• Relative to a moving target pose like, e.g., following a preceding vehicle, where
in addition to the lane-keeping case also the longitudinal control (keeping a safe
distance) is a relative positioning task.

The navigation principle where a robot positions itself in relation to an abstract property
is used, e.g., in wall following approaches [298]. Due to simplicity this class of reactive
navigation algorithms is not further considered in this work, while the focus is laid on the
latter two.

2.3.2.1 Reactive Navigation with Fuzzy Logic

Fuzzy or neuro-fuzzy techniques are designed for problems where the non-linear dynam-
ics or properties are not known or can only be modeled with high efforts, but can be
described by a set of heuristic rules. An approach for autonomous parking is proposed
in [87] that uses fuzzy logic to cope with uncertain and dynamic environments. More-
over, the algorithm tries to take the dynamics and limitations of the car-like robot into
account, as well as uncertainties and capabilities of the sensor. In [269] a heuristic fuzzy-
neuro network is developed to map ultrasonic data to robot velocities for navigating in an
unknown environment. Furthermore, the work of [307] proposes a fuzzy logic controller
with local target switching, which helps to avoid limit cycle paths, for reactive navigation
of a mobile robot. At first sight, those approaches based on methods from computational
intelligence are designed in accordance with the postulations from Section 1.1. The fuzzy
controller can be considered as “an efficient representation of task-relevant information”
and also data accumulation is avoided. However, it is debatable if the extensive use of
heuristic rules coincides with “the use of only limited pre-knowledge or assumptions” or
if the sensor and actuator space are really covered by the representation. Furthermore,
the fuzzification decouples the sensor from the actuator - not in a way that the action
cannot be directly derived from the sensor input, but the actual physical properties or
measures are disregarded. The abstraction level is too high and the tuning effort for the
rules limits its applicability.
Vision-based approaches are more promising since they are not heuristics-driven and in-
teresting reactive navigation algorithms can be found in literature, as can be seen in the
next subsection.
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2.3.2.2 Visual Servoing

The underlying principle of vision-based control is the use of visual information in the
feedback loop to complete positioning or navigation tasks [76].
For over 40 years [164] vision-based control techniques have been a crossover research
topic between image processing and control theory. Hence, the characteristics of the visual
sensor and of the robot have to be taken concurrently into consideration when designing
the vision based control scheme. This fact makes those approaches very convenient for
designing algorithms for reactive instinctive behavior.
Detailed survey papers about vision-based control or also called visual servo control or
visual servoing are, e.g., [164], [68], and [69]. Basically, a distinction is made between two
basic classes of visual servoing schemes and a hybrid one:

• 3D / position-based visual servoing

• 2D / image-based visual servoing

• 2.5D visual servoing

The first category, the position-based visual servoing (PBVS) or 3D visual servoing, for-
mulates the control task in Cartesian coordinates, like [277]. Further subcategories are
model-based and model-free 3D visual servoing [208] with the distinction that model-free
techniques have no 3D information of the target [30].
The second category, the image-based visual servoing (IBVS) or 2D visual servoing, is the
most interesting class of those three for reactive algorithms. The control task is settled
directly in the image space with the advantage of an increased robustness against calibra-
tion errors [113] and requiring no target model. Therefore, the control law is designed in
dependence of image properties like for example 2D feature points. However, also other
image features or properties like straight lines [114], eigenimages [95], or image moments
[67, 275] have been utilized.
Additionally, combinations of image-based and position-based visual servoing (2.5D vi-
sual servoing) were proposed, e.g., in [211]. The task function contains variables in the
Cartesian space as well as in the image space to overcome shortcomings, like the possibil-
ity that in IBVS approaches features might leave the field of view of the camera, and use
strengths of both visual servoing types, like the robustness of IBVS against calibration
errors [210]. Furthermore, approaches exist, where the system switches between a IBVS
and a PBVS controller [134].
A great variety of extensions has been developed for all visual servo classes regarding
online parameter estimation, decoupling translations from rotations [82, 274], or optimal
control [84, 19].
For 3D visual servoing, the epipolar geometry, see [201], is exploited like in [30] where the
current pose is estimated by the essential matrix. If the target is planar or the motion
between two images is a pure rotation, the homography principle, see Section 3.1.4, has
to be utilized like in [116].
In the case of IBVS, the depth distribution can be estimated by structure from motion
or by exploiting the epipolar geometry (if a 3D target model is available) [69]. Moreover,
parameters of the interaction matrix, which is also called feature Jacobian as it maps the
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robot’s velocities into the image space, are approximated [209] or estimated numerically
[186], by Broyden’s method [167] or by neural networks [304].
Another interesting but exploratory work should be mentioned for completeness: kernel-
based visual servoing tries to combine the usually separated tracking and control [170].

IBVS for Mobile Robots: Among a great variety of applications for vision-based
control ranging from industrial to medical robotics [182], the most interesting field of
application for this work is vision-based navigation for ground-based mobile robots or
autonomous vehicles.
Since especially the IBVS class coincides with the requirements to a reactive instinctive
behavior, the main task now is to derive motion commands from an up-to-scale repre-
sentation, as no metric measurements are possible with a monocular camera without any
assumptions or further knowledge, see Section 3.1.1 for more information. Different (more
or less elegant) methods and strategies can be found in literature. However, it is not pos-
sible to cover all proposed methods and results, so that only a few (recent) approaches
are presented in the following to give an idea of the diversity.
A reactive indoor navigation approach for a ground-based mobile robot using only a
monocular camera is presented in [64]. Natural landmarks are first used to teach the
mobile robot a path, so that it can then re-drive the taught route autonomously using
motion commands directly derived from the image features via a Jacobian. The problem
of the missing depth is overcome by reformulating the problem so that only the metric
heights of the feature points above the ground have to be estimated during the training
phase.
The work of [249] also utilizes an image memory to navigate, but in contrast to the previ-
ous work the goal is not to follow an exact path. A sequence of views describes a series of
areas (with certain boundaries) the robot has to visit during its way to the goal position.
Since the control objective is not an exact positioning, the authors denote this approach as
a “qualitative visual servoing”. Therefore, an exact determination of the scale is avoided,
respectively, not necessary during the qualitative navigation.
In [104] a visual-path-following framework is evaluated in different urban outdoor envi-
ronments. The path is again represented by a series of target images that are tracked
by a monocular camera. Tests show that the scheme can successfully navigate also in
environments with changing lighting conditions and is not disturbed by moving objects.
However, the mainly reactive scheme uses a feature prediction technique based on local
3D geometry estimation to deal with tracking errors. The work in [20] presents a model
predictive trajectory tracking approach for mobile robots that formulates the task as non-
linear optimization problem in the image plane. This enables the explicit consideration
of constraints. Moreover, the system model that is used for the prediction consists of a
model for the camera and a model for the robot and therefore the sensor-actuator cou-
pling is fulfilled. However, a huge drawback is the necessity to measure or approximate
the depth of the feature points, which is not directly possible with the sensory equipment.
The problem of measuring the distance to feature points does not exist for appearance-
based approaches. The work of [88] tries to utilize the information of an image (as
defined by Shannon) directly in a visual servoing scheme. Therefore, an optimization
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task is designed to maximize the mutual information between the current image and the
goal image. This further results in an increased robustness against occlusions and illumi-
nation changes. The application of this mutual information visual servoing approach to
path following is described in [89]. Real-world tests are described, where a non-holonomic
vehicle follows a path that is defined by a sequence of images. However, only the angular
control, for which an optimizer determines the steering angle by maximizing the mutual
information, can be established by this approach.
A comparison of an IBVS and a PBVS scheme for path tracking and path reaching for a
mobile robot is made in [75]. The IBVS controller performs better when the calibration
is incorrect and is generally more accurate, but it does not work in all test applications.
Large initial error are problematic due to the missing curvature feedback in the control
law. The paper suggests that the pose-based controller is used for path reaching and the
image-based for path tracking.

Vision based control techniques have a lot of potential to be used for designing reactive
instinctive algorithms, as the relative position to the target state is measured directly
without building an environment map by data accumulation. Unfortunately, the control
law of the standard IBVS approach requires the depth values of the features, which
impairs the direct use of the sensor. An elegant solution to insert scale information to the
control scheme without constantly measuring a metric size is the use of epipolar geometry
exploiting techniques like the homography principle.

2.3.2.3 Homography-based Techniques

One solution for a vision-based control scheme without estimating or measuring metric
sizes is the use of a homography matrix [38], which is explained in detail in Chapter 3.1.4.
The only requirements are that the target view must be known and the feature points
have to lie on a planar surface [201]. Often the homography matrix is decomposed to
determine the relative rotation and translation from the current camera position to the
target position in Cartesian coordinates. This principle is used in [72] for a mobile robot
that autonomously tracks a path described by a sequence of images.
One shortcoming of the decomposition is that it results in two physically feasible solu-
tions from which one has to be chosen. A further drawback is that the transformation
to Cartesian space impairs a direct use of the image data, which would be in accordance
with properties of a reactive scheme. Moreover, a Cartesian representation requires ad-
ditional processing with error prone parameters and increases the computational costs.
An approach to avoid the decomposition is suggested in [194], where the motion of a
unicycle robot is decomposed to three motion primitives. A controller is designed to exe-
cute those motion primitives by utilizing the entries of the homography matrix. However,
the decomposition still has to be carried out for certain motions. A similar approach is
described in [191], where two steps are used to first drive the mobile robot to the goal
position and then to correct the orientation. Although the authors claim to be able to
deal with uncalibrated cameras, they do not support it with experimental evidence.
A different concept is described in [38] which enables a decomposition-free visual servoing
control for a 6-DOF robot by abiding by restrictions regarding the relative position of the
goal pose to the plane of the image features. The same principle is utilized in [163] for a
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relative positioning task of an underwater vehicle.
A navigation task - in the sense of a relative positioning - is definitely suitable to be
executed via a reactive instinctive behavior. Vision-based control algorithm are a very
promising concept for this, but the challenge then is to find an elegant and robust way to
insert a metric size into the system for deriving an absolute motion command. Moreover,
a suitable goal state description has to be designed that describes the target pose uniquely
and that can easily be set in relation to the current pose.

2.3.3 Vision-Based Platooning

A special category of robot navigation tasks is characterized by a dynamic target pose.
An example can be found in [135], where the potential field approach is extended to deal
explicitly with a moving goal position.
A practical application of this navigation category is vehicle following or also called pla-
tooning - surveys can be found in [173, 43]. Another example is the VisLab Intercontinen-
tal Autonomous Challenge from 2010 [54], where a convoy of two vehicles drove mostly
autonomously from Parma to the Shanghai World Expo 2010. The leading vehicle was
controlled autonomously only on parts of the 16000 kilometer long route, whereas the
following vehicle operated autonomously along the whole route by tracking the leader’s
path [53]. The path tracking was established by either GPS way-points, or vision-based
pose estimation supported by LIDAR.
In [39] vision-based car platooning is realized by tracking the back of a leading vehicle.
A homography matrix is calculated by comparing the current view of the tracked pattern
to a target image. After that the homography matrix is decomposed to determine the
relative translation and rotation, which is then the input for a path planner. Therefore,
the control task itself is described by a Cartesian reference frame spanned by the preced-
ing vehicle. Another example can be found in [92], where a homography decomposition
is utilized for estimating the leading vehicle’s position and also the velocity.

2.3.4 Concurrent Reactive Obstacle Avoidance and Navigation

Map-based motion planning for mobile robots combines both obstacle avoidance and navi-
gation. Although a Cartesian map is often used as the preferred representation, on which
the planner works, few reactive approaches exist that can tackle concurrently obstacle
avoidance and navigation. One possibility is to extend a reactive obstacle avoidance algo-
rithms like [299] by an additional constraint that for instance prefers one evasion direction.
The popular potential field approach can also be extended to consider a target pose ex-
plicitly [135]. Another classic example is the vector field histogramm [46] that uses a
polar histogramm representation, which denotes the distances to the surrounding objects
together with the angular direction. In [272] the motion of a wheeled robot is planned
in the velocity space using the dynamic window approach [121], while the distances to
the target and to obstacles are measured with a laser scanner. A further approach for
a unicycle robot is introduced in [185], where an odometry-based path tracking task is
performed while Deformable Virtual Zones are created for reactive obstacle avoidance.
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The static obstacles are detected by infrared proximity sensors so that both tasks could
be combined in a Cartesian representation.
More challenging are environments that contain also moving obstacles. Already in [123]
from 1994, a state-time graph is proposed as representation for a car-like robot moving
in an environment with dynamic obstacles. However, neither a method nor a sensor are
proposed from which this representation can be generated. Deriving a combined obstacle
avoidance and navigation approach that is reactive and considers explicitly dynamic ob-
stacles is very difficult, as the navigation requires a certain planning horizon, for which the
behavior of the dynamic obstacles has to be predicted. Usually, a motion model for the
objects is generated from observations over several time-steps, which impairs the reactive
principles. When dealing with dynamic objects, it is at first crucial to identify them as
such and then to check whether a collision is about to happen, but for planning it is also
necessary to determine the speed of dynamic objects to react in an appropriate way or to
consider them within the motion planning. A good survey can be found in [267], which
provides an overview of sensors and approaches for object detection, velocity estimation
and vehicle tracking.
An often used approach to handle dynamic objects is to combine stereo-vision with op-
tical flow, like in the 6D Vision approach of Daimler [245]. The combination of image
motions with 3D data is also often utilized for model-based tracking [91, 178] or to build
map representations like occupancy grids [234]. Those representations could be then used
to track moving objects, e.g. by particle filters [90], while the velocity is derived from
the particles. However, those approaches lack the reactive character. It is hard to find
reactive velocity estimation methods for dynamic objects, but different visual ego-motion
estimation techniques meet the reactive requirements. Here, a monocular camera is, e.g.,
used to estimate the ego-rotation by observing distant image points [205]. However, the
ego-velocity can only be determined up-to-scale. Hence, different approaches exist that
determine the absolute ego velocity from a combination of stereo cameras with either
sparse [238] or dense optical flow [161]. The theory of binocular image flows was already
examined theoretically in 1986 by Waxman [301]. Methods based on this principle have
the drawback that they are computationally expensive and rely heavily on the disparity
determination. One of them is described in [218], while only object tracking results are
presented but no estimates of the object velocities.

2.4 Contributions

After having reviewed the state of the art, the scope and goals for this thesis can be iden-
tified. Recalling the basic ‘Perception-to-Action’ principle (see Figure 1.1), the three core
elements that have to be considered when implementing reactive instinctive behaviors
are the sensor, planning and actuation part. This thesis aims neither to develop a new
actuator/vehicle nor to conceptualize a new type of sensor, but evaluates existing ones.
None of the reviewed autonomous vehicles of Section 2.1 fulfills the requirements postu-
lated in Section 1.2, but the ROboMObil that is introduced in Chapter 4 does. For this
reason, the ROboMObil is the ideal test-platform for the validation of reactive instinctive
approaches in Chapter 5.
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From the wide range of sensor types listed in Section 2.2, cameras are identified as the
most suitable sensor regarding the postulations of Section 1.3. However, the variety of
camera configurations is large, so that the influence of different camera parameters is
discussed and suitable configurations for reactive instinctive approaches are proposed in
this thesis.
Furthermore, the planning part is identified as the most important element when im-
plementing a reactive instinctive behavior. However, the obstacle evasion and planning
algorithms reviewed in Section 2.3 coincide only partially with the postulations of Section
1.1 and very often lack the capability to explicitly consider dynamic elements. There-
fore, this thesis develops efficient representations that comply with the postulations, e.g.
a minimal data accumulation or a strong sensor-actuator coupling, in order to gain the
advantages of reactive instinctive approaches, such as an increased robustness. Suitable
tasks that can be fulfilled by reactive instinctive approaches are listed in Chapter 1.4 and,
thus, a representation for each is proposed and evaluated:

• Obstacle evasion: an approach is developed that is capable of avoiding multiple
dynamic obstacles concurrently without depth reconstruction to preserve a reactive
character.

• Relative positioning: a reactive instinctive approach is presented that controls
the relative position to a static or dynamic target pose (compare platooning), while
requiring only a monocular camera.

• Navigation: a suitable representation for concurrent obstacle avoidance and nav-
igation is proposed together with a reactive motion planner. This representation
is not based on a Cartesian map and considers explicitly dynamic targets, while
obeying the postulations for a reactive instinctive approach.

The realization of those tasks requires additional functionalities that lead to additional
contributions of this thesis. First, a principle is introduced that enables the estimation of
the Time-To-Collision for a single image point. Second, a method is proposed to estimate
the relative pose to and the velocity of target object from a monocular camera. Third,
a velocity estimation approach is developed that provides absolute velocity values for
dynamic objects without relying on depth reconstruction.
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