2. Simulation research framework

For this thesis, a simulation approach is used as opposed to analytical
models or empirical methods such as survey or archival data. This chapter
pursues three goals: Laying a common understanding of simulations,
discussing the adequateness of the approach in the field of management
accounting research and introducing a research framework to conduct

simulation based experiments.

2.1 A basic introduction to simulations

This thesis follows the simulation definition by Kleijnen (2015), defining a
simulation model as “a mathematical model that is solved by means of
experimentation” and further relates to simulations solved by means of
computer algorithms.” Hence, a simulation experiment in the scope of this
definition can be synonymously seen as a computer experiment. Kleijnen
(2015) further differentiates between deterministic vs. random and static vs.
dynamic experiments. In contrast to deterministic models, random models
incorporate variables based on probability functions. Dynamic models differ
from static simulations in modelling time as an independent variable. Both
characteristics can be mixed, e.g. a random, static or a deterministic, static
model. The term random needs to be explained in detail. Since computer
algorithms are deterministic, they are incapable of creating random

10" Therefore, the terms pseudo random numbers and pseudo

numbers.
random number-generators (PRN) are used. Without laying down the
concrete methodology of PRNs, a “good” quality of a PRN is measured upon

its capability to generate, firstly uniform, i.e. equally probable and secondly

¢ Kleijnen (2015), p. 4.

1" Tt should be noted that by the usage of externally applied devices, e.g. measuring radioactive
decay, true random number series could be used. The problems are the partially unknown
and most-probably not fitting probability distributions, as well as the time to create a fitting
series of random numbers, since many of these appliances create random events only by
several years. See Niederreiter (2003), p. 2.
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independent numbers, meaning that there is “no” relation between drawn
values. There exist various generators fitting both prerequisites.'!

Even deterministic simulations may incorporate (pseudo-)random
components and underlie random effects.”> While the underlying
optimization function itself includes only non-random inputs at the time of
optimization, the used solver and the input itself can lead to uncertain
results. This is the case, when the solution can only be found by approximate
procedures and/or the inputs are generated by PRNs."

A simulation is usually embedded in a decision context. Schneeweify (1992)
abstractly models such a decision context, distinguishing between a real
world problem, an abstracted real model and a decision generator.'* A real
world problem could be a planning context of a firm. A real model would
abstract from this complex problem, e.g. uncertain effects would be modelled
by PRNs. The underlying probability distributions of such generators and
further simplifications would be evaluated by empirical tests against the real
world problem. Since the real model is most likely still not solvable by
quantitative measures, a further relaxation — in other words a second
simplification — leads to the decision generator. Such a relaxation could be
the usage of opportunity costs instead of modelling capacity constraints.'
Such a decision generator could be implemented as a simulation, solving e.g.
an optimization problem. The simulation itself follows an input-process-
output model.! The simulation input usually consists of parameters to steer
the simulation variables, e.g. environmental conditions as firm size,
inflation, product range etc. The parameters control hereby the sampling of
values from a prior defined distribution function. The process stage is the
execution of the simulation yielding the simulation output. It encompasses
the relaxed model, which in this case could be based upon a quadratic

' See Gentle (2003), p. 63.

2 See Picheny et al. (2013), p. 3.
3 See Kleijnen (2015), p. 4.

1 See also Schneeweiss (2003) for an example of an abstract decision model.
% See Homburg (2001b), pp. 51 and 52.

16 See Hocke, Meyer and Lorscheid (2015), p. 141.



optimization function and a suitable solver. For a given combination of
parameters, the underlying model is then subsequently solved. In the
introduced planning context, a relaxed model could be a firm’s portfolio and
pricing decision based on opportunity cost. The decision could be whether
to produce, out of two products (a, b), both or only one product (a or b)
and the respective quantities based on a given product price. The yielded
output would be the profit for each portfolio combination. According to a
set of environmental parameters, one is now able to take a decision on the
portfolio question, i.e. take the portfolio with the highest profit. The decision
would subsequently be validated against the real model. Referring to the
relaxation example of using opportunity costs instead of capacity
restrictions, it needs to be checked whether the underlying firm has the
capacity and the resources needed to produce the portfolio and the
respective quantities.

Figure 1: Abstract simulation model

Real world problem

abstraction empirical
validation
Real model
decision
validation )
relaxation
Decision generator (simulation)
input process output
parameters execution measure
1 firm size 1 optimization model 1 ke}.’ “g"mH
as profit, sales, ete.
2 products 2 solver type ]
2 (th-;l]ll',H measures
) .. D .. as euclidean dist., ...

Based on Schneeweifl (1992), p. 4 and Hocke, Meyer and Lorscheid (2015), p. 141.



In addition, the prices set in the simulations could be challenged against
market prices, to ensure that such prices would be accepted by customers.

Figure 1 illustrates the previously defined abstract model of a simulation in
a decision context. The illustration of the decision generator will be used as
a template for the simulation models in chapters 3 and 4.

2.2 On the adequacy of simulations in management accounting
research

A comprehensive overview and an analysis of the impact of simulation
research in management journals is provided by Harrison et al. (2007) or
Reiss (2011). On one hand, both surveys indicate that on average over 10
years only up to 8 percent of the published articles in the evaluated
management journals are based on simulations.'” Labro (2015) critically
states that an important factor of the low usage of simulations in
management accounting literature, is the general “unfamiliarity of the
readership (and of journal editors, and sometimes even referees) with

simulation methods”.'®

On the other hand (Balakrishnan and Sivaramakrishnan (2002); Harrison et
al. (2007); Reiss (2011); Labro (2015)) highlight the benefits of simulations,
especially “because organizations are complex systems and many of their
characteristics and behaviors are often inaccessible to researchers, especially
over time, simulation can be a particularly useful research tool for

management theorists”.!?

In regard to this thesis, Labro's (2015) argument,
that particularly by lacking internal information of a company, simulations
offer a valuable research alternative, weighs the most: Cost allocation and

internal cost data are not as accessible as e.g. external accounting figures

T See Reiss (2011), p. 246: The proportion of publications using “simulation” or “simulate”
either in title or abstract in the field of economic literature for 2005 was less than 3%.

8 Labro (2015), p. 5.

9 Harrison et al. (2007), p. 1243.
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provided by various databases such as COMPUSTAT® or I/B/E/S*.

In addition, Balakrishnan and Penno (2014) discuss the role of analytical
models and the advantages of numerical experiments. They also conclude
that simulations belong to the managerial research toolkit, enabling research
where analytical approaches are limited. They stress that this might be more
useful than a literature based analysis of reality. The biggest advantage they
see is that simulation and numerical computation are able to scale: They
show that the number of models grow exponentially with the amount of

2

model factors.”? Hence, given a certain degree of complexity only

computational solutions are applicable.

At the same time, this complexity seems to be one of the root causes for the
low leverage of simulations. The complexity of such models (numbers of
input parameters / variables, justification of variable manifestations, i.e.
variable values, statistical distributions, etc.) and the vast output of data
tends to mislead research: Labro (2015) states that research tends to go for
trees instead of the wood. Each step (input, process, and output) needs to
be planned, documented and objectified. Shortcomings in these activities
may lead to misunderstandings or rejection of the research method.?

There exist various different frameworks (e.g. Sacks et al. (1989); Santner,
Williams and Notz (2003); Lorscheid, Heine and Meyer (2012); Kleijnen
(2015)). A central method discussed in all approaches is the design of
experiments (DOE) framework, which was introduced for farming
experiments in the early 20" by Ronald Aylmer Fisher.? It typically consists
of planning, designing, conducting and analyzing phases to structure

% Standard & Poor’'s COMPUSTAT contains financial and price data for active and inactive

publicly traded companies.
! The Institutional Brokers' Estimate System (I/B/E/S) by Thomson Reuters encompasses
mostly (earnings) forecasts.
* See Balakrishnan and Penno (2014), p. 532.
# See Labro (2015), pp. 3-4.

' Fisher documented his approach in his book “The Design of Experiments”, see Fisher (1935).
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experiments, thereby trying to ensure the quality of experimental data.?
Whereas Kleijnen (2015) argues that physical experiments differ essentially
from computer experiments and calls for a new approach, Sacks et al. (1989)
argue that DOE can be applied to computer experiments for two reasons.
First, the choice of simulation input is a design question comparable to
DOE. Second, the statistical methods applied to physical experiments are
also applicable to computer experiments.?® Lorscheid, Heine and Meyer
(2012) extend DOE for computational experiments. Their approach has
been chosen deliberately, since the most influential and related research
articles leading to this thesis can be structured and thus compared on the
basis of the their extended DOE process.*”

The preceding discussion underlines the necessity to use a standardized and
structured approach to enable easier access to the research method and a
sound understanding of the simulation process. The discussion revealed that
by using DOE the drawbacks of simulations can be mastered and the
research method is applicable.

2.3 The underlying research framework

Lorscheid, Heine and Meyer (2012) consider simulations as a state of the art
methodology. As introduced in the last section, they develop a methodology
to overcome these obstacles based on the systematic design of experiments.
Their abstract framework is the subject of this chapter and will be used
subsequently in the research chapters (3 & 4).

In general Lorscheid, Heine and Meyer (2012) follow the typical DOE setup
but additionally in their approach, each step is linked to either a central
objective, which the respective simulation approach can be benchmarked

» See Antony (2014), p. 40.

% Sacks et al. (1989), p. 411.

T See Hocke, Meyer and Lorscheid (2015), evaluating among others Labro and Vanhoucke
(2007) and Balakrishnan, Hansen and Labro (2011).
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against or it is linked to a (statistical) method, used to objectify the

experimenter’s considerations.

Figure 2: DOE design process

» Objective of simulation deducted from real model
« Classification of variables

« Define response variables and factors

« Select. appropriate factorial design

« Estimation of experimental design error variance
e Conduct simulation

« Analysis phase & sensivity analysis

Based on Lorscheid, Heine and Meyer (2012), p. 30.

In this thesis the approach is, as introduced in the previous chapter,

embedded into the decision generator model by Schneeweil (1992). The

adjusted DOE design by Lorscheid, Heine and Meyer (2012) as illustrated
in Figure 2 consists of the following:

(1) The process of abstraction and relaxation of the real model by
Schneeweifl (1992) already takes into account a considerable feedback
mechanism to align the decision generator or more precisely enable the
simulation to solve the given problem. In addition, Lorscheid, Heine
and Meyer (2012) consider theoretical model behaviors such as
performance and possible model configurations in their first process
step. As stated before, the variety of parameters is positively correlated
with the complexity of the model. Hence, the research should focus
only on reduced and value creating parameter sets. For the illustration
of the adjusted DOE process, let us come back to our portfolio
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optimization problem. As illustrated in Figure 1, firm size is such a
possible parameter. It needs to be decided if this is a parameter for the
simulation, or if it can be neglected because it does not add any insights
to the subsequent analysis.

(2) In line with Field and Hole (2003), Lorscheid, Heine and Meyer (2012)
see a major advantage in the clustering of variables into dependent,
independent and control variables. The dependent variables are the
variables of interest. The whole purpose of the simulation is to measure
these variables, hence they represent the simulation output. The
independent variables should drive the relevant effect on the dependent
variables, whereas control variables rather have minor or no effect at
all. Additionally control variables are usually not linked to the research
question. Independent and control variables are steered via the input
parameters of the simulation. To continue with the previously
introduced market variable example, consider a parameter, by which
the experimenter is able to switch between an initial market size of
small, medium and large markets.

(3) The third step includes the transformation of dependent and control
variables into factor levels, depending on how the respective variable
was modelled in step 2. A possible example could be a market maturity
variable, which could be transformed into two factor levels for
saturated and growing markets.

(4) The factorial design reflects the possible factor level combinations with
the simulation, taking into account also interactional effects between
factors.® Following Box, Hunter and Hunter (1978) factorial design
can be separated in full and fractional. A fractional design limits the
degree of interaction between factors. Usually main effects outweigh
two-factor effects, and subsequently two-factor effects outweigh three-
factor effects and so forth. The idea therefore is to focus only on the
important effects.” Lorscheid, Heine and Meyer (2012) propose that

% The term ,factorial design® originates back to Fisher (1935), arguing that experimenters
should focus on isolated, elementary factors in an experiment and laying out a structured
approach to design experiments.

% See Box, Hunter and Hunter (1978), p. 374.
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the experimenter should use design points — a minimum set of factor
levels — for each factor defined in step 3.

A full-factorial experimental design can be coded as [ levels to the
power of k factors. ® A common approach is to indicate a high level of
a factor as “+7 and his low level as “—“respectively. If more than two
levels are used, additional levels are subsequently coded as “4 +“ or

[43 [P

— =7, If the number of parameters is uneven, “o” indicates the level
between “-”7 and “+“. The signs do not necessarily indicate an order of
levels, but an indicator of levels, to better separate the levels.

By limiting these factors the model complexity can be reduced, also
aiding the runtime of the simulation, because each level combination
equals at least one simulation run.

Each iteration to solve the underlying model is also referred to as a
“run”. Assuming each run is very time consuming (e.g. 30 minutes), a
design resulting in a total of e.g. 6 factors each having 2 levels would
accumulate to a total of at least 2 to the power of 6 combinations,
taking aside multiple runs of the same combination to control for
stochastic effects. This would mean the complete simulation would last
for at least 32 days.*? Interaction effects between factors would increase
the complexity exponentially.®® Usually a 2-factor design is a good
starting point to obtain a first data-set. From this sparse data-set one
is able to decide whether factors are important or if they could possibly
be neglected. Computational power is a curse and a savior at the same
time. Even if a computer-based simulation can handle high varieties of
input factors and model parameters, the size of resulting datasets may
become a problem (datasets easily exceed many gigabytes limiting
statistical analysis). Additionally, the vast numbers of possible data
slices and subsets may add more confusion, than understanding, of the
underlying problem.*

See Lorscheid, Heine and Meyer (2012), pp. 32-33.

See Antony (2014), p. 63.

? 32 days = 25 combinations * 30 minutes. See Kleijnen et al. (2005), p. 274 for further
considerations on efficiency of simulations.

See Sacks et al. (1989), p. 418, stressing that the high cardinality of input factors and
interactions needs to be addressed to achieve efficient design and analysis.

Labro (2015), p. 4.
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(5) This step aims at measuring the design error: As stated earlier the
usage of PRNs and approximate solutions may lead to an unwanted
variance in results. To control for this effect, multiple runs by stable
inputs need to be conducted. Together with the initial 2-factor design,
this leads to a first idea of necessary total simulation runs. A metric to
identify the best tradeoff between variance and simulation runs, is
considered to be the coefficient of variance.

av=> (1)
The CV, calculated by dividing the standard deviation (s) by the mean
of the simulation results (u), is measured for a small set of simulation
runs. Subsequently the number of runs is raised until the CV
stabilizes.®

(6) Having defined design points in the former steps and chosen a fitting
number of simulation runs to control for experimental variance, step 6
considers conducting the simulation, where each design point equals a
separate experiment.

(7) The final step is the analysis, incorporating sensitivity tests of input
parameters. This is achieved by comparing the yielded data for each
design point to choose a final set of factors for the experiment and to
illustrate the sensitive behavior of the simulation itself. Lorscheid,
Heine and Meyer (2012) focus on the application of analysis of variance
(ANOVA) for this task. *

Based on these findings, adjustments of the model could lead to an
iterative procedure of adjusting level choices in step 4. This would also
include, adjusting the 2-factor design to a multi-factor design. Coming
back to the planning example it could be beneficial to control for more
than two levels of market maturity. Santner, Williams and Notz (2003)
lay special focus on the analytical methods and robustness tests. The

% See Lorscheid, Heine and Meyer (2012), pp. 33. They also discuss the downsides of the CV
application.
% See Lorscheid, Heine and Meyer (2012), p. 35.
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authors suggest using descriptive tests and regression modelling next
to ANOVA 3" This thesis will focus on the first two methods.

2.4 Relevant simulation models in management accounting —

A theory review

Whereas DOE lays the foundation for a sound understanding of the
methodical approach, the understanding is best supported by non-abstract
‘real-life" examples. As a counterpart to the methodical introduction of the
last chapter, the proceeding discussion of selected simulation approaches
should foster the understanding of the implementation of simulations.

In a way the fundament for state of the art simulations in the field of
management accounting has been laid by Balakrishnan and
Sivaramakrishnan (2002). The authors investigate a basis model upon which
future research can build its simulations and formulate research questions
taken up by Balakrishnan, Hansen and Labro (2011); Anand, Balakrishnan
and Labro (2013) and this thesis respectively. Since these articles also create
the foundation for the developed model in chapter 3 & 4, they are presented
subsequently in detail.

2.4.1 The Grand Model

Balakrishnan and Sivaramakrishnan (2002) analytically deduct their ‘grand
model’ for a joint decision upon optimal prices and capacity in an iterative
approach. In short, with each iteration they extend a basic profit
optimization model. The starting point is a simple one-period model, only
adjusting the produced quantity based on given prices and variable costs
and within the constraints of a given demand and a given capacity. The
next extension replaces the given demand, by a demand function dependent
on price and price-elasticity. The third extension introduces capacity on a
need basis, hence in addition to the given capacity, more expensive flexible
capacity can be purchased. The fourth extension enables planning for a

7 See Santner, Williams and Notz (2003), pp. 199.
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multi-period instead of a one-period setting. While all prior extensions used
a deterministic optimization function, the grand model adds a stochastic
demand, therefore implementing imperfect information on market
behavior.*

The grand model derivation by Balakrishnan and Sivaramakrishnan (2002)
in detail: In this thesis the indexes 7, j and ¢ will be used consistently to
indicate products (i € I), resources (j € J) and time (¢ € T), capital letters
indicating the total of units.

The fundament for all succeeding models is model 1: Prices (P, ) are
dictated by the market thus the firm is focused on optimizing production
output (Q;), given a positive marginal income (P, —v;), v; beeing the

variable costs per product:

I
max P —v,)Q, 2
g ) (B )@ @)
subject to & )
D miQis L ¥
i=1

0<Q,<D, Vi

See Balakrishnan and Sivaramakrishnan (2002), p. 9.

Setting focus on modelling demand and capacity: In this model, the
simplest way to implement demand (D;) and capacity (L;) has been chosen,
both being fixed. Obviously, a company’s production output (Q,), is only
limited by demand and supplied capacity.?* The link between quantity and
capacity is modeled by the resource consumption matrix (ml—j), which maps

% See Balakrishnan and Sivaramakrishnan (2002), p. 13.
¥ Presuming an absence of stock keeping of inventories.
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the needed resources j for a product i. The needed resources @;m;; must

not exceed supplied resources L.

D; = A; —b;P, (3)

By focusing on a monopolistic setting, the given company becomes a price
setter and is thus able to adjust the demand (D,): As illustrated in eq. (3)
the demand is now modeled as a function of market size (A4;), price elasticity
(b;) and price (P, ). Price elasticity is the responsiveness of demand on
price changes. In this thesis only non-luxury goods are considered, hence an
increase in prices directly decreases the demand.*

By modeling the demand as time-dependent (A;;) the question arises,
whether the firm has complete knowledge of the demand throughout the
planning horizon. The final evolution of the demand function is therefore to
incorporate demand uncertainty, expressed by an error term ¢,,. The error
term offsets the expectations of the firm per product and period (see Table

1).

Capacity (Lj) — being the resources supplied — has been neglected as a
decision variable so far. Taking a multi-period setting into account
Balakrishnan and Sivaramakrishnan (2002) further distinguish between two
terms of capacity: long-term capacity (L;) and capacity on a need basis
(Rjt). Long-term capacity is available throughout the complete planning
horizon (T-periods), whereas short term capacity is only build up and
available for period .

40" See Balakrishnan and Sivaramakrishnan (2002), p. 10.
11 See Mankiw and Taylor (2006), p. 88.
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Table 1: Evolution of models (cont’d)

Evolution steps Demand Capacity

I
Initial model max Z(Pi —v;) Q; Z m;Q; < L; Vj

e Translates

e Demand

from quantity

to demand

(2

depends on

prices

e Time-

J
e Resource costs TZ c.L;

dependency

e Differentiate = Dy = Ay =P, L < .

17 gt p T J
between long- Z Z ol
and short-term

capacity

e Demand =D, =A; +¢;

20

uncertainty - 0P it

= Grand Model:

T /1
max F [Z (Z A +eu—0,P;) Z¢JCJ Jt>

PR, L; — —
it TVt t=1 1=1
) (4)
—TE ¢;L;
J=1
I

subject to .

17t

«
Il
-

(A +e;, —bP,) 2 0Vi,t (5)

K3

P, >0 Vi,t.



Table 1: Evolution of models (cont’d)

Decision variables: Non-decision variables:
Price for product 7 in period A Market size per product i
oy ! and period ¢
Demand per product i (and
D,/(D,) P ‘
period t)
Quantity per product 7 (and
Qi/(Qir) .
period t)
Initial long-term capacit
I & ) . pacity Error term per product ¢ and
j  for resource j (available Eit .
. period ¢
every period)
Flexible short-term capacit
R . .p Y b; Price elasticity of product ¢
for resource j and period ¢
v; Variable cost of product ¢
¢ Resource costs of resource j
Premium price for one
; : o
capacity of unit j
m Resource consumption matrix

for product 7 and resource j

See Balakrishnan and Sivaramakrishnan (2002), p. 13.

In this setting both resources become decision variables, since an optimal
trade-off between initial setup of resources, in other words the capital
employed over the planning horizon and short term investments, due to a
heterogeneous demand needs to be found. Now being part of the decision
context, capacity costs are no longer sunk.

Therefor resources (j) need to be valued by a cost-price of ¢;, identical for
short- and long-term resources. Since short-term capacity needs to be
purchased on a need basis, a cost-price premium of ¢, > 1 needs to be paid.
The premium reflects additional costs, such as higher rates for interim
staffing or renting/leasing of production facilities over time. Additionally, a
lack of price premium or a premium factor of one, would lead to investments
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only in short-term capacity.”? The grand model (see eq. (4)), in comparison
to its deterministic predecessors, no longer maximizes the profit itself, but
its expectation.®® Table 1 illustrates the evolution steps from initial to grand
model.

The advantage of the grand model is that it can be decomposed into
different models and planning scenarios. This is leveraged by Balakrishnan
and Sivaramakrishnan (2002) to analytically identify the economic loss of
simplified planning approaches in comparison to the grand model. They
address simplifications such as separating capacity and price planning, using
full costing for capacity approximation, and modeling either hard- or soft-
capacity constraints. They also indicate that simulations may enrich the
understanding of open research questions such as the influence of cost-pool
and cost-allocation design on capacity and pricing issues.

2.4.2 Cost Model

Balakrishnan, Hansen and Labro (2011) take up the idea of investigating
the influence of cost-system design on the error of reported costs. The basic
idea is to compare a company having full information on cost-consumption
with entities only using approximations of the real cost-consumption by
products.

In general, full costs of a product can be calculated as the sum of variable

costs (v;) and the costs of consumed capacity (Zj: L my;c;)." In the context

of Balakrishnan, Hansen and Labro (2011), the central variables are the
resource consumption matrix (mij) and the corresponding cost vector (cj).
In the following, variable costs are neglected. Therefore, following
Balakrishnan, Hansen and Labro (2011) the term product cost (PC) is used.

2 See Banker and Hughes (1994), p. 481.
¥ See Balakrishnan and Sivaramakrishnan (2002), p. 13.
™ See Balakrishnan and Sivaramakrishnan (2002), p. 14.
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In an ideal world, a company has full information on resource consumption
and resource costs. In reality both information are biased (see Table 2, as
indicated by the index bias for mf;as

biased information on cost reporting, in theory, the delta between both

/ c?ms). The impact of partial and/or

product costs, unbiased (BM) and biased, indicates the quality of an
implemented cost system design (see eq. (6) in Table 2).

Where does the bias come from? Naturally, cost systems lack complete
information on resource consumption and therefore use algorithms to apply
(activity) costs to products. Hence, the resulting product costs are only
approximate. In other words, inherit sources of erroneous cost allocation.
Cost systems classically use two stage cost allocation processes: on the first
stage, costs are allocated to cost pools. On the second stage, the costs
accumulated on these pools are allocated to products. The effectiveness of
such cost systems is limited by aggregation, measurement and specification
errors while pooling and allocating costs.*

Aggregation errors usually originate from failures on first layer, i.e. pooling
wrong resources into the same cost pools. Specification errors occur on both
levels, based on cost driver rates not reflecting the consumption pattern of
resources. That could for example be the usage of the labor cost rates for
energy overhead, when both are possibly not interrelated. Measurement
error — as the last error group — is straightforward: while setting up rates
for cost allocation, wrong assumptions of the amount of resource/activity
usages are made. E.g. storing inventory lasts not 10 but 15 minutes. If the
allocation of overhead costs was based on these time assumptions, the
reflected costs would not meet actual process usage.*

There exist different basic cost system designs (volume based costing,
activity based costing, resource based costing, etc.)."

¥ See Datar and Gupta (1994), p. 568.
40 See Labro and Vanhoucke (2007), p. 941.
7 See Balakrishnan, Labro and Sivaramakrishnan (2012a), p. 4.
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Table 2: Derivation of the BHL*® simulation model

benchmark model biased model
1) full information 2) biased
on resource information
consumption and g mBM BM E mbms bms on resource
resource costs consumption
BM _ bias
= PC’Z- = PCZ» ) o
and resource
costs
= APC; = PCPM — pCYes (6)

noisy model

c. h_1> ACP, 3) transformation of resource costs
J

into activity cost pools

ho 4) transformation of resource into
m,. — ady,; o i (8)
" activity consumption
K .
5) product costs based on activity
> ady ACP, = PCNM ) . 9)
— based costing
k=1
= APC; = PCBM — pcMM (10)
heuristic 2: set of algorithms
heuristic 1: set of algorithms to transform the resource

h1l  to transform the cost vector of h2 consumption matrix of size
size j into k-activity cost pools 7,7 into a matrix mapping
activities (k) to products (1)
tivit ; | (st activity driver: maps the
activity cost pool: costs to
ACP, Y p- ) ady,; costs of activity (k) to a
perform an activity (k) .
product ()

8 The abbreviation BHL identifies in the following the paper Balakrishnan, Hansen and Labro
(2011). See also Homburg, Nasev and Plank (2013) p. 9ff.
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As already discussed in the introduction, activity based costing is considered
one of the best performing alternatives.*

Instead of using an abstract “bias” to model the information deficit of cost
system designs (see “biased model” in Table 2), Balakrishnan, Hansen and
Labro (2011) implement a comparable approach to activity based costing.

The “noisy model” (NM) (see Table 2) simplifies the allocation process in
contrast to the “benchmark model” (BM). While the BM allocates resource-
costs to products directly, the NM first pools the resource costs on & activity
cost pools (ACP,). Hence, only aggregated costs need to be allocated
successively in the second step. The second step accordingly facilitates the
allocation process: while the BM has a maximum of [ times J allocation
rules, the NM only has [ times K. It can be expected that the amount of
activity cost pools is notably lower than the total resources (J) available.
By analogy with eq. (6) the impact of the non-optimal allocation process
can be expressed by the delta between BM and NM product costs (see

eq.(10))

As introduced in Table 2 the pooling and allocation rules follow specified
algorithms. The pooling is defined by heuristic 1 (see eq. (7)), already
indicating that the process is only approximate. Likewise, the cost-allocation
step is defined by heuristic 2 (see eq. (8)). In the following, the abstract
heuristics are illustrated.

2.4.2.1 First-stage heuristics

In detail, the first stage heuristics encompass the following five heuristics:*
The random method (——) randomly assigns resources to cost pools. This

¥ For a comprehensive comparison of different cost-systems and ABC evolutions see
Balakrishnan, Labro and Sivaramakrishnan (2012b), p. 24.

%" See Balakrishnan, Hansen and Labro (2011), p. 527 and also Homburg, Nasev and Plank
(2013) in the appendix section p. 26.
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method represents the simplest method because it needs information neither
about resource costs nor about resource consumption patterns.

In a cost system with, e.g., six activity cost pools, the size random
method (—) first assigns the six largest resources (in terms of per unit
resource costs) to the six cost pools. Subsequently, the remaining resources
are randomly assigned to the six cost pools.

In a cost system with six activity cost pools, the size misc method (o)
assigns the five largest resources (in terms of unit resource costs) to five of
the six cost pools. The remaining resources are lumped in the sixth cost
pool.

The correlation random method (+) groups resources with similar
consumption patterns into one cost pool. First, one resource — the base
resource - is randomly assigned to each activity cost pool. Then the
remaining resources are assigned to activity cost pools based on their
correlation with the base resource. The number of resources per cost pool is
chosen such that every cost pool has approximately the same number of
resources. As this method requires data on consumption patterns, it is

informational demanding.

While the correlation random method randomly chooses the base resource,
the correlation size method (++) chooses the largest resource (in terms
of per unit resource costs cj) as the base resource. The remaining resources
are assigned to the cost pools based on their correlation with the base
resource. The advantage of this method is the combination of size-based and
correlation-based criteria to assign resources to cost pools. It is also

informational demanding.
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2.4.2.2 Second-stage heuristics

The second-stage heuristics encompass the following four heuristics:*!
According to the Big Pool Method (—) the activity driver of a cost pool
is the resource consumption coefficient of the largest resource (in terms of
per unit resource costs) in the cost pool. The advantage of this method is
that it is simple and that the costs of the largest resources are accurately
assigned to the products. The disadvantage is that the remaining resources
are inaccurately assigned.

For the Average Method (4 +) the activity driver of a cost pool is the
average of the resource consumption coefficients of all resources in the cost
pool. Compared to the big pool method, this method leads to more accurate
product costs because it considers more resource consumption information.
Nevertheless, the method is associated with relatively high information
costs.

The Intermediate Methods Num(2) (—) to Num(4) (4) set the activity
driver of a cost pool as the average of the resource consumption coefficients
of the largest resources in the cost pool. For example, the activity driver
according to the Num(4) method is the average of the consumption patterns
of the four largest resources (in terms of per unit resource costs) of a cost
pool. While intermediate methods require more information than the big
pool method — resource consumption of a single resource vs. resource
consumptions of four resources — they require less information than the
average method which requires consumption patterns of all resources in a
cost pool.

2.4.2.3 Simulation approach
This chapter discusses the general design layout by Balakrishnan, Hansen

and Labro (2011). The central research question is the accuracy loss of
product costs, by using approximate cost-system designs. Eq. (10) expresses

! See Balakrishnan, Hansen and Labro (2011), p. 528 also Homburg, Nasev and Plank (2013)
in the appendix section p. 27.
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this loss per product, in terms of the delta of product costs APC; between
the benchmark and the noisy model.

To measure the total reported error of such a system, Homburg (2001a) and
Balakrishnan, Hansen and Labro (2011) use the Euclidean Distance
(EUCD,), as displayed in eq. (11). The subscript s indicates the identifier
of the corresponding simulation run. The simulation embeds a catalogue of
different environments. Each environment defines the simulation input. In
total three parameters (resource cost variation, density of the consumption
matrix and correlation of resource consumption) form 48 different

environments.
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Table 3: BHL simulation process
EUCD, = /(APC;)?

s € S (simulation runs) (11)
i € I (products)

Input
(environment) Process Output
1. Resource cost 1. Calculate product
variation (RCV, 3 costs in the
level) benchmark model
2. Density of the = 20 samples
consumption 2. For each BM
E matrix (DENS, 4 calculate product
é level) costs in the noisy =
&% 3. Correlation of model for a ngDS
resource combination of 345,600
consumption a. Heuristic 1 (5 level)
(COR, 4 level) b.Heuristic 2 (4 level)
= 48 c. ACP (6 level)
environments d.Measurement error
(ME) (3 level)
= 360 samples
1. Low dispersion 1. Calculate PCBM =
EUCD
= (-) 2. Calculate PCNM for !
jl'l_a/ 2. High sharing (+) a. Random (— —)
5 3. Similar ' b.Big Pool (—)
; consumption .
2 pattern (+) .2 ACP (—-)
g d.ME at 50% (+ + +)
=
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To cope with the stochastic effect of random number generation, 20 samples
of each environment leading to a total number of 960 benchmark models are
drawn.” A noisy model definition consists out of four parameters (heuristics
1 & 2 combination, the number of activity cost pools, a systematic cost
system error and the measurement error) leading to a total number of 360
noisy models, for each BM. The simulation process is summarized in Table
3.

The following paragraph explains the introduced (see Table 3) input
parameters used to build the environment. In accordance to the factorial
design, the levels for each factor are coded to better visualize the state of
the respective factor.”® The generic design of the parameters works as
follows: For each input factor, a distribution function is modeled. The factor
level is used as a parameter to steer the distribution, e.g. the boundaries,
skewness, etc. Subsequently from this adjusted distribution, a set of random
numbers is drawn.

In case of the resource cost variation, a uniform distribution is applied. The
level of resource sharing changes the boundaries of the distribution. A low
level of cost dispersion limits e.g. the possible drawn random numbers to a
corridor of 0 to 0.2 instead of 0 to 1 of the standard uniform distribution.
The drawn random numbers are considered the proportion of used costs by
each resource of total resource costs. Hence the biggest spread in a low
dispersion setting is 20%, in other words each resource will consume
approximately the same portion of total resource costs. In a final step, the
drawn numbers are normalized. Obviously, only 100% of resource costs are
allocable.” Table 4 summarizes the interaction between parameters, factors
and variables.

2 See DOE design step 6 on page 16 and Lorscheid, Heine and Meyer (2012), pp. 33.

 See also step 3 in the DOE process on page 14.

' This is an arbitrary example. For the exact algorithm, see the working paper version of BHL,
Balakrishnan et al. (2009).
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Table 4: BHL Input factors for variables

Factor

RCV:
Resource
cost

variation

DENS:
Density of
the
consumption

matrix

Levels & Coding

0

+

o

Low dispersion
Med dispersion

High dispersion

Little sharing

Medium sharing
High sharing

Very high
sharing

Functionality Variable

The resource cost
variation defines how
disperse the total
resource costs are
distributed over
resources. A low
dispersion equals a
setting where the total
resource costs are almost
equally distributed. At
high dispersion, a small
set of resources accounts
for a majority of
resource costs.

Despite from the
complex naming the
density parameter is
straightforward: The
resource consumption
matrix is adjusted in a
way that settings from
little to very high
resource sharing are
controllable. The most i
extreme “little sharing*
outcome would be a 1:1
mapping between

resources and products.

On the other side a very

high sharing could lead

to completely filled

matrix m, where each
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Table 4: BHL Input factors for variables (cont’d)

Factor Levels & Coding Functionality Variable
product consumes each
resource.
COR: + Similar The most complex
Correlation consumption parameter. It also
of resource 0 Intermediate adjusts the resource
consumption consumption consumption matrix. In
- Dissimilar simple terms, it steers
consumption how resource
-- Very dissimilar ~ consumption of product
consumption i=1 correlates with
product i=2. Where
DENS steers if two i

products consume the
same resource j (binary
condition), COR steers
if both consume the
same amount of 7, in
respect to the chosen
level (e.g. similar +).

See Balakrishnan, Hansen and Labro (2011), p. 525.

2.4.2.4 Results

As proposed in the DOE framework by Lorscheid, Heine and Meyer (2012),
Balakrishnan, Hansen and Labro (2011) use an ANOVA regression to
analyze the results. In general, the results suggest that more sophisticated
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allocation methods yield product costs closer to the benchmark, than less
advanced methods:%

The number of activity cost pools has a marginal effect on the error of
product costs. Using more than a moderate number of cost pools only adds
a small added value in terms of product cost accuracy. One of the main
contradictory findings is, that the more the resource consumption of
products varies (i.e. factor COR levels “—* or “— —* see Table 4), the more

56

correlation based methods outperform size based methods.

Important findings, in regard to this thesis, are the influences of cost
structure on the performance of the noisy model: for one, even a small
reduction of specification errors result in significantly lower reporting errors.
For the other, the highest environmental effect originates from the
distribution of resource costs.””

2.4.3 Margin Model

The cost model simulation disconnects from the synchronous profit and
capacity optimization problem of the grand model, by focusing on optimal
product cost determination. Nevertheless, it does not only shed light on one
of the research proposals by Balakrishnan and Sivaramakrishnan (2002),
identifying the criticality of cost pool design, but also lays the fundament
for the margin model.

As discussed, a central requirement of cost reporting is the accordance of
reported and realized costs. According to Anand, Balakrishnan and Labro
(2013), a reporting system is tidy if both figures equal. Obviously, profit-
planning tools are only fully reliable by being based on tidy costs.
Considering that cost systems are approximations of true cost consumption,
in practice cost systems are seldom completely tidy. A central objective of
management accounting divisions is therefore to review planned costs based

% See Balakrishnan, Hansen and Labro (2011), p. 540.
% See Balakrishnan, Hansen and Labro (2011), p. 537.
T See Balakrishnan, Hansen and Labro (2011), p. 541 and the results of this thesis on page 66.
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on true cost consumption on a regular basis and to adjust allocation methods
to close the existing gap.

Leveraging a numerical example / simulation approach Anand,
Balakrishnan and Labro (2013) review the heuristics introduced by
Balakrishnan, Hansen and Labro (2011) on their capability of yielding tidy
costs and the time frame needed to align reported and realized product costs.
The underlying model implements a product margin-optimizing firm, given
predetermined, static capacity. Different to Balakrishnan and
Sivaramakrishnan (2002) and this thesis, the respective optimized company
therefore is a price taker and not a (monopolistic) price setter. Price
optimization is therefore neglected, as is respectively the quantity
produced.®

2.4.3.1 Simulation approach

The used profit functions are illustrated in eq. (12) & (16) in Table 5. There
is no optimization process because all required variables are known prior to
planning. Additionally, the planning process is sequential. This means that
at first the product mix is defined and, based on this decision, the capacity

LfM is set.

As input for the simulation, environmental parameters are used comparative
to the cost model. Therefore, only the two new parameters for steering
markup and quantity are discussed: Anand, Balakrishnan and Labro (2013)
calculate the respective product margin (p;) leveraging a random number
generator using the parameters “average markup” and “variance in
markup”. The steering concept of the first parameter is straightforward: for
the given set of #products, it models the average margin over the portfolio.
Comparable to the cost variance parameter (RCV), the variance in markup
triggers portfolios with heterogeneous or homogeneous products. For both,
2-levels (high/low) are defined. Quantities (Q

;) are drawn from a uniform

 See Anand, Balakrishnan and Labro (2013), p. 7,
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distribution.” Table 6 illustrates the complete process, while Table 5
describes in detail the underlying model.

Table 5: ABL Margin model definition®

I
ProfitPM = Zui/\ZNM Zc LEM (12)

= J

77N
j=1
1 w; >0 J
ANM — { ‘ v, BM BM
0 4 <0 TCBM =N "¢,
j=1
Initial period® Succeeding periods
TOPM I ACpota! (13)  TCNM I gCpetel
h2 total
g , 14) ACP, :
m; — ady; (14) W: ACPkpl icJ
J
ACPtotal . ) 15
IBM ACPT jCJ (15) ady,; is identical
J

for all periods
=
Z K 1 P¥M > pcNM
POYM = ZadkiAC’PPl AT = {O PZNM < P0§VM Vi

P (1 ) PONM -

ProfitNM = Z ANMQ, — TONM (16)

i=1

% See Anand, Balakrishnan and Labro (2013), p. 11.

% The model is not illustrated straight away in Anand, Balakrishnan and Labro (2013), but is
derived from various information given in the paper, especially out of the Appendix. ABL
will be used as an abbreviation for Anand, Balakrishnan and Labro (2013).

1 For simplification reasons the time index is neglected.
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In the following, both views on the paper are combined: Having used the
described inputs, in the process stage firstly the BM profit (Profit?M), and
secondly the noisy model profit (Profit™) are calculated. This is achieved
by initially taking over information from the benchmark model into the
noisy model: based on benchmark portfolio (A?M) and benchmark capacity
(TCBM) heuristics taken over from the cost model are used to allocate costs.
62 Next, building upon these product costs (PCN) the noisy model portfolio
(ANM) is derived. Corresponding to this new portfolio, the total costs of the
NM are calculated.

If the total costs (TCNM) of the noisy model equal total costs (TCEM) of
the benchmark model, i.e. the cost system is tidy, finally the noisy model
profit ProfitN™ is derived, as illustrated in eq. (16).% If TONM #£ TCBM,
in other words the cost system is untidy, then for ¢ periods, the product

costs are refined until either both costs equal or a maximum of T periods is
reached.%

As metrics for the research (see Table 6, output), the profit efficiency
(PF 7 eq. (17)) and mean product cost error (PCE, eq. (18)) are used. The
former being the quality of the noisy model profit estimation, measured

upon its relative closeness to the benchmark model. The latter, measuring
the mean fit of NM product costs in regard to the benchmark product costs.

62" A subset of heuristics from Balakrishnan, Hansen and Labro (2011) is used.

5 Different from Balakrishnan, Hansen and Labro (2011) the decision context by Anand,
Balakrishnan and Labro (2013) is on product and not on portfolio level. This becomes
relevant especially while calculating Profit™™™: As illustrated in Table 5, corresponding to
the cost model (see eq. (7) & (9)), the sum of all costs pooled in the activity cost pools
(ACPEtal) initially equal the total costs (TCPM) of the benchmark model. Since the margin
model assesses product costs on item level, the activity costs need to be brought down to
this level as well. Eq. (15) documents this process: The total activity costs (ACP°') are
divided by the total amount of resources j, i.e. the capacity LfM of resources j assigned to
activity cost pool k. Therefore, the costs ACP,f " are applicable on product level, expressed
by the superscript pl.

% The ,break condition“ has been simplified in this summary. For details refer to the appendix

of Anand, Balakrishnan and Labro (2013)
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Table 6: ABL simulation process

Input

1. p; — For each
product, a
random

2. markup is

generated.
(222 levels)

3. @, — For each
product a
maximum
production
quantity is

drawn.

4. The
environmental
parameter and
factors equal the
cost model and
are neglected in
this synopsis.
They are only
used to build
the simulation,
but are not used
as independent
or control
variables.

=

4 environments

Process

Benchmark Model
1)  Corresponding to the

given quantity and

markup, capacity LfM

and Profit®™ are
calculated. In each
period, the benchmark
profit is constant. =

1,000 samples

Noisy Model
2) Initial period
a) To calculate period
one noisy
model Profit®M as
an initial
information the
noisy model is
calculated based on
the benchmark
portfolio (APM) and
the benchmark
capacity (TCPM).
b) Calculate difference
between
TCBM and TCNM,

Output

pReff Profit"M
s _W

PCE, =

s

1 S| PCPM — pCNM|
I+ PCEM

i=1

convergence rate
(CR,) =

percentage of NM,
where TCBM-TCNM

S = 32,000

(17)

(18)

(19)
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Additionally for each simulation run, i.e. the combination of input
parameters and cost system designs, the rate and time of convergence of
total costs between noisy and benchmark model is measured. Hereby the ¢
periods needed until TCV™ equals TCPM are determined. If a given time

barrier is hit or a level of accuracy is met, the cost system refinement is
aborted (CRg, eq. (19)).

The simulation consists out of S = 32,000 simulation runs. For each market
setting (markup average/variance) 1,000 samples are drawn, resulting in
4,000 BM. In line with the cost model, one set of NM is mapped to exact
one BM. In the margin model, this leads to 8 NM samples. Instead of using
all heuristics known from the cost model Anand, Balakrishnan and Labro
(2013) only focus on heuristics on the second stage. For these they reduce
the heuristics variation to the big-pool and NUM(2) methods. The number
of cost pools is varied by 4 levels (1, 3, 6 and 10).%

2.4.3.2 Results

In general Anand, Balakrishnan and Labro (2013) find that the approximate
cost-systems (NM) perform quite well in comparison to the BM: They show
that on average a convergence rate (CR,) of approximately 30% to 55% can
be reached and that profit efficiency levels PFSef T of almost 70% are
possible.%

Counterintuitive is the outperformance of big-pool method compared with
the NUM(2) method in 1-pool scenarios. Raising the number of cost-pools
leads to a more intuitive result, that superior cost-system design yields
better results.”” Anand, Balakrishnan and Labro (2013) explain this behavior
by aggregation errors offsetting specification errors. This explanation is not
based on model behavior, but on the findings by Datar and Gupta (1994).
This finding can be challenged by reviewing the model characteristics: Big-

% See Anand, Balakrishnan and Labro (2013), p. 12 and 14.

% For the definition of the CR see eq. (19). The range of convergence depends on the accuracy
level requested. See Anand, Balakrishnan and Labro (2013), pp. 15-16.

57 See panel A by Anand, Balakrishnan and Labro (2013), p. 26.
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pool and NUM(2) are almost equal. Both select allocation rates based on
the biggest and on the average of the two biggest resources in the cost-pool
respectively. Considering environments where the total spread of total
resource costs is low and the resource sharing equals between products, both
methods should lead to identical decisions. Both, the spread in total resource
costs (RCV) and the density (DENS) only vary by 30 percentage-points.®
Hence, one would assume that both methods would yield comparable results.
A detailed analysis on DENS and RCV is not given by Anand, Balakrishnan
and Labro (2013).

The mean product cost error (PCE,) is reported to be rather high
throughout all scenarios: Intuitively, higher markups lead to lower product
cost errors and vice-versa. High variance leads to lower product cost errors.
9 While being reported, this finding is not further explained. In light of the
markup variable being constructed out of two parameters (variance and
average) it is questionable to separate the effects from each other.

Further the markup, following Anand, Balakrishnan and Labro (2013),
matters more than cost system design. This is supported by the ANOVA
regression. Here, the markup explains more than 30% of mean profit

efficiency PF* 11 , whereas the cost system design (ACP + Heuristic2) only

amounts for approximately 16%.

% See Anand, Balakrishnan and Labro (2013), p. 29.
% See Anand, Balakrishnan and Labro (2013), p. 17.
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