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2. Simulation research framework 

For this thesis, a simulation approach is used as opposed to analytical 
models or empirical methods such as survey or archival data. This chapter 
pursues three goals: Laying a common understanding of simulations, 
discussing the adequateness of the approach in the field of management 
accounting research and introducing a research framework to conduct 
simulation based experiments. 

2.1 A basic introduction to simulations 

This thesis follows the simulation definition by Kleijnen (2015), defining a 
simulation model as “a mathematical model that is solved by means of 
experimentation” and further relates to simulations solved by means of 
computer algorithms.9 Hence, a simulation experiment in the scope of this 
definition can be synonymously seen as a computer experiment. Kleijnen 
(2015) further differentiates between deterministic vs. random and static vs. 
dynamic experiments. In contrast to deterministic models, random models 
incorporate variables based on probability functions. Dynamic models differ 
from static simulations in modelling time as an independent variable. Both 
characteristics can be mixed, e.g. a random, static or a deterministic, static 
model. The term random needs to be explained in detail. Since computer 
algorithms are deterministic, they are incapable of creating random 
numbers.10 Therefore, the terms pseudo random numbers and pseudo 
random number-generators (PRN) are used. Without laying down the 
concrete methodology of PRNs, a “good” quality of a PRN is measured upon 
its capability to generate, firstly uniform, i.e. equally probable and secondly 

                                              
9  Kleijnen (2015), p. 4. 
10 It should be noted that by the usage of externally applied devices, e.g. measuring radioactive 

decay, true random number series could be used. The problems are the partially unknown 
and most-probably not fitting probability distributions, as well as the time to create a fitting 
series of random numbers, since many of these appliances create random events only by 
several years. See Niederreiter (2003), p. 2. 
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independent numbers, meaning that there is “no” relation between drawn 
values. There exist various generators fitting both prerequisites.11 

Even deterministic simulations may incorporate (pseudo-)random 
components and underlie random effects.12 While the underlying 
optimization function itself includes only non-random inputs at the time of 
optimization, the used solver and the input itself can lead to uncertain 
results. This is the case, when the solution can only be found by approximate 
procedures and/or the inputs are generated by PRNs.13  

A simulation is usually embedded in a decision context. Schneeweiß (1992) 
abstractly models such a decision context, distinguishing between a real 
world problem, an abstracted real model and a decision generator.14 A real 
world problem could be a planning context of a firm. A real model would 
abstract from this complex problem, e.g. uncertain effects would be modelled 
by PRNs. The underlying probability distributions of such generators and 
further simplifications would be evaluated by empirical tests against the real 
world problem. Since the real model is most likely still not solvable by 
quantitative measures, a further relaxation – in other words a second 
simplification – leads to the decision generator. Such a relaxation could be 
the usage of opportunity costs instead of modelling capacity constraints.15 
Such a decision generator could be implemented as a simulation, solving e.g. 
an optimization problem. The simulation itself follows an input-process-
output model.16 The simulation input usually consists of parameters to steer 
the simulation variables, e.g. environmental conditions as firm size, 
inflation, product range etc. The parameters control hereby the sampling of 
values from a prior defined distribution function. The process stage is the 
execution of the simulation yielding the simulation output. It encompasses 
the relaxed model, which in this case could be based upon a quadratic 

                                              
11 See Gentle (2003), p. 63. 
12 See Picheny et al. (2013), p. 3. 
13 See Kleijnen (2015), p. 4. 
14 See also Schneeweiss (2003) for an example of an abstract decision model. 
15 See Homburg (2001b), pp. 51 and 52. 
16 See Hocke, Meyer and Lorscheid (2015), p. 141. 
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optimization function and a suitable solver. For a given combination of 
parameters, the underlying model is then subsequently solved. In the 
introduced planning context, a relaxed model could be a firm’s portfolio and 
pricing decision based on opportunity cost. The decision could be whether 
to produce, out of two products (a, b), both or only one product (a or b) 
and the respective quantities based on a given product price. The yielded 
output would be the profit for each portfolio combination. According to a 
set of environmental parameters, one is now able to take a decision on the 
portfolio question, i.e. take the portfolio with the highest profit. The decision 
would subsequently be validated against the real model. Referring to the 
relaxation example of using opportunity costs instead of capacity 
restrictions, it needs to be checked whether the underlying firm has the 
capacity and the resources needed to produce the portfolio and the 
respective quantities.  

Figure 1: Abstract simulation model  

 

Based on Schneeweiß (1992), p. 4 and Hocke, Meyer and Lorscheid (2015), p. 141. 
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In addition, the prices set in the simulations could be challenged against 
market prices, to ensure that such prices would be accepted by customers. 

Figure 1 illustrates the previously defined abstract model of a simulation in 
a decision context. The illustration of the decision generator will be used as 
a template for the simulation models in chapters 3 and 4.  

2.2 On the adequacy of simulations in management accounting 
research 

A comprehensive overview and an analysis of the impact of simulation 
research in management journals is provided by Harrison et al. (2007) or 
Reiss (2011). On one hand, both surveys indicate that on average over 10 
years only up to 8 percent of the published articles in the evaluated 
management journals are based on simulations.17 Labro (2015) critically 
states that an important factor of the low usage of simulations in 
management accounting literature, is the general “unfamiliarity of the 
readership (and of journal editors, and sometimes even referees) with 
simulation methods”.18 

On the other hand (Balakrishnan and Sivaramakrishnan (2002); Harrison et 
al. (2007); Reiss (2011); Labro (2015)) highlight the benefits of simulations, 
especially “because organizations are complex systems and many of their 
characteristics and behaviors are often inaccessible to researchers, especially 
over time, simulation can be a particularly useful research tool for 
management theorists”.19 In regard to this thesis, Labro's (2015) argument, 
that particularly by lacking internal information of a company, simulations 
offer a valuable research alternative, weighs the most: Cost allocation and 
internal cost data are not as accessible as e.g. external accounting figures 

                                              
17 See Reiss (2011), p. 246: The proportion of publications using “simulation” or “simulate” 

either in title or abstract in the field of economic literature for 2005 was less than 3%. 
18 Labro (2015), p. 5. 
19 Harrison et al. (2007), p. 1243. 
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provided by various databases such as COMPUSTAT20 or I/B/E/S21.  

In addition, Balakrishnan and Penno (2014) discuss the role of analytical 
models and the advantages of numerical experiments. They also conclude 
that simulations belong to the managerial research toolkit, enabling research 
where analytical approaches are limited. They stress that this might be more 
useful than a literature based analysis of reality. The biggest advantage they 
see is that simulation and numerical computation are able to scale: They 
show that the number of models grow exponentially with the amount of 
model factors.22 Hence, given a certain degree of complexity only 
computational solutions are applicable. 

At the same time, this complexity seems to be one of the root causes for the 
low leverage of simulations. The complexity of such models (numbers of 
input parameters / variables, justification of variable manifestations, i.e. 
variable values, statistical distributions, etc.) and the vast output of data 
tends to mislead research: Labro (2015) states that research tends to go for 
trees instead of the wood. Each step (input, process, and output) needs to 
be planned, documented and objectified. Shortcomings in these activities 
may lead to misunderstandings or rejection of the research method.23  

There exist various different frameworks (e.g. Sacks et al. (1989); Santner, 
Williams and Notz (2003); Lorscheid, Heine and Meyer (2012); Kleijnen 
(2015)). A central method discussed in all approaches is the design of 
experiments (DOE) framework, which was introduced for farming 
experiments in the early 20th by Ronald Aylmer Fisher.24 It typically consists 
of planning, designing, conducting and analyzing phases to structure 

                                              
20 Standard & Poor’s COMPUSTAT contains financial and price data for active and inactive 

publicly traded companies. 
21 The Institutional Brokers' Estimate System (I/B/E/S) by Thomson Reuters encompasses 

mostly (earnings) forecasts.  
22 See Balakrishnan and Penno (2014), p. 532. 
23 See Labro (2015), pp. 3–4. 
24 Fisher documented his approach in his book “The Design of Experiments”, see Fisher (1935). 
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experiments, thereby trying to ensure the quality of experimental data.25 
Whereas Kleijnen (2015) argues that physical experiments differ essentially 
from computer experiments and calls for a new approach, Sacks et al. (1989) 
argue that DOE can be applied to computer experiments for two reasons. 
First, the choice of simulation input is a design question comparable to 
DOE. Second, the statistical methods applied to physical experiments are 
also applicable to computer experiments.26 Lorscheid, Heine and Meyer 
(2012) extend DOE for computational experiments. Their approach has 
been chosen deliberately, since the most influential and related research 
articles leading to this thesis can be structured and thus compared on the 
basis of the their extended DOE process.27  

The preceding discussion underlines the necessity to use a standardized and 
structured approach to enable easier access to the research method and a 
sound understanding of the simulation process. The discussion revealed that 
by using DOE the drawbacks of simulations can be mastered and the 
research method is applicable.  

2.3 The underlying research framework 

Lorscheid, Heine and Meyer (2012) consider simulations as a state of the art 
methodology. As introduced in the last section, they develop a methodology 
to overcome these obstacles based on the systematic design of experiments. 
Their abstract framework is the subject of this chapter and will be used 
subsequently in the research chapters (3 & 4).  

In general Lorscheid, Heine and Meyer (2012) follow the typical DOE setup 
but additionally in their approach, each step is linked to either a central 
objective, which the respective simulation approach can be benchmarked 

                                              
25 See Antony (2014), p. 40. 
26 Sacks et al. (1989), p. 411. 
27 See Hocke, Meyer and Lorscheid (2015), evaluating among others Labro and Vanhoucke 

(2007) and Balakrishnan, Hansen and Labro (2011). 



 13 

against or it is linked to a (statistical) method, used to objectify the 
experimenter’s considerations.  

Figure 2: DOE design process  

 

Based on Lorscheid, Heine and Meyer (2012), p. 30. 

In this thesis the approach is, as introduced in the previous chapter, 
embedded into the decision generator model by Schneeweiß (1992). The 
adjusted DOE design by Lorscheid, Heine and Meyer (2012) as illustrated 
in Figure 2 consists of the following: 
(1) The process of abstraction and relaxation of the real model by 

Schneeweiß (1992) already takes into account a considerable feedback 
mechanism to align the decision generator or more precisely enable the 
simulation to solve the given problem. In addition, Lorscheid, Heine 
and Meyer (2012) consider theoretical model behaviors such as 
performance and possible model configurations in their first process 
step. As stated before, the variety of parameters is positively correlated 
with the complexity of the model. Hence, the research should focus 
only on reduced and value creating parameter sets. For the illustration 
of the adjusted DOE process, let us come back to our portfolio 
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optimization problem. As illustrated in Figure 1, firm size is such a 
possible parameter. It needs to be decided if this is a parameter for the 
simulation, or if it can be neglected because it does not add any insights 
to the subsequent analysis.  

(2) In line with Field and Hole (2003), Lorscheid, Heine and Meyer (2012) 
see a major advantage in the clustering of variables into dependent, 
independent and control variables. The dependent variables are the 
variables of interest. The whole purpose of the simulation is to measure 
these variables, hence they represent the simulation output. The 
independent variables should drive the relevant effect on the dependent 
variables, whereas control variables rather have minor or no effect at 
all. Additionally control variables are usually not linked to the research 
question. Independent and control variables are steered via the input 
parameters of the simulation. To continue with the previously 
introduced market variable example, consider a parameter, by which 
the experimenter is able to switch between an initial market size of 
small, medium and large markets. 

(3) The third step includes the transformation of dependent and control 
variables into factor levels, depending on how the respective variable 
was modelled in step 2. A possible example could be a market maturity 
variable, which could be transformed into two factor levels for 
saturated and growing markets.  

(4) The factorial design reflects the possible factor level combinations with 
the simulation, taking into account also interactional effects between 
factors.28 Following Box, Hunter and Hunter (1978) factorial design 
can be separated in full and fractional. A fractional design limits the 
degree of interaction between factors. Usually main effects outweigh 
two-factor effects, and subsequently two-factor effects outweigh three-
factor effects and so forth. The idea therefore is to focus only on the 
important effects.29 Lorscheid, Heine and Meyer (2012) propose that 

                                              
28 The term „factorial design“ originates back to Fisher (1935), arguing that experimenters 

should focus on isolated, elementary factors in an experiment and laying out a structured 
approach to design experiments. 

29 See Box, Hunter and Hunter (1978), p. 374. 
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the experimenter should use design points – a minimum set of factor 
levels – for each factor defined in step 3.30  
A full-factorial experimental design can be coded as l levels to the 
power of k factors. 31 A common approach is to indicate a high level of 
a factor as “+” and his low level as “−“respectively. If more than two 
levels are used, additional levels are subsequently coded as “+ +“ or 
“− −”. If the number of parameters is uneven, “∘” indicates the level 
between “-” and “+“. The signs do not necessarily indicate an order of 
levels, but an indicator of levels, to better separate the levels. 
By limiting these factors the model complexity can be reduced, also 
aiding the runtime of the simulation, because each level combination 
equals at least one simulation run.  
Each iteration to solve the underlying model is also referred to as a 
“run”. Assuming each run is very time consuming (e.g. 30 minutes), a 
design resulting in a total of e.g. 6 factors each having 2 levels would 
accumulate to a total of at least 2 to the power of 6 combinations, 
taking aside multiple runs of the same combination to control for 
stochastic effects. This would mean the complete simulation would last 
for at least 32 days.32 Interaction effects between factors would increase 
the complexity exponentially.33 Usually a 2-factor design is a good 
starting point to obtain a first data-set. From this sparse data-set one 
is able to decide whether factors are important or if they could possibly 
be neglected. Computational power is a curse and a savior at the same 
time. Even if a computer-based simulation can handle high varieties of 
input factors and model parameters, the size of resulting datasets may 
become a problem (datasets easily exceed many gigabytes limiting 
statistical analysis). Additionally, the vast numbers of possible data 
slices and subsets may add more confusion, than understanding, of the 
underlying problem.34 

                                              
30 See Lorscheid, Heine and Meyer (2012), pp. 32–33. 
31 See Antony (2014), p. 63. 
32 32 days = 26 combinations * 30 minutes. See Kleijnen et al. (2005), p. 274 for further 

considerations on efficiency of simulations. 
33 See Sacks et al. (1989), p. 418, stressing that the high cardinality of input factors and 

interactions needs to be addressed to achieve efficient design and analysis.   
34 Labro (2015), p. 4. 
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(5) This step aims at measuring the design error: As stated earlier the 
usage of PRNs and approximate solutions may lead to an unwanted 
variance in results. To control for this effect, multiple runs by stable 
inputs need to be conducted. Together with the initial 2-factor design, 
this leads to a first idea of necessary total simulation runs. A metric to 
identify the best tradeoff between variance and simulation runs, is 
considered to be the coefficient of variance.  

 𝐶𝑉 = 𝑠𝜇 (1)
The CV, calculated by dividing the standard deviation (s) by the mean 
of the simulation results (𝜇), is measured for a small set of simulation 
runs. Subsequently the number of runs is raised until the CV 
stabilizes.35  

(6) Having defined design points in the former steps and chosen a fitting 
number of simulation runs to control for experimental variance, step 6 
considers conducting the simulation, where each design point equals a 
separate experiment.   

(7) The final step is the analysis, incorporating sensitivity tests of input 
parameters. This is achieved by comparing the yielded data for each 
design point to choose a final set of factors for the experiment and to 
illustrate the sensitive behavior of the simulation itself. Lorscheid, 
Heine and Meyer (2012) focus on the application of analysis of variance 
(ANOVA)  for this task. 36 
Based on these findings, adjustments of the model could lead to an 
iterative procedure of adjusting level choices in step 4. This would also 
include, adjusting the 2-factor design to a multi-factor design. Coming 
back to the planning example it could be beneficial to control for more 
than two levels of market maturity. Santner, Williams and Notz (2003) 
lay special focus on the analytical methods and robustness tests. The 

                                              
35 See Lorscheid, Heine and Meyer (2012), pp. 33. They also discuss the downsides of the CV 

application.  
36 See Lorscheid, Heine and Meyer (2012), p. 35. 
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authors suggest using descriptive tests and regression modelling next 
to ANOVA.37 This thesis will focus on the first two methods. 

2.4 Relevant simulation models in management accounting –  
A theory review 

Whereas DOE lays the foundation for a sound understanding of the 
methodical approach, the understanding is best supported by non-abstract 
‘real-life' examples. As a counterpart to the methodical introduction of the 
last chapter, the proceeding discussion of selected simulation approaches 
should foster the understanding of the implementation of simulations.    

In a way the fundament for state of the art simulations in the field of 
management accounting has been laid by Balakrishnan and 
Sivaramakrishnan (2002). The authors investigate a basis model upon which 
future research can build its simulations and formulate research questions 
taken up by Balakrishnan, Hansen and Labro (2011); Anand, Balakrishnan 
and Labro (2013) and this thesis respectively. Since these articles also create 
the foundation for the developed model in chapter 3 & 4, they are presented 
subsequently in detail. 

2.4.1 The Grand Model 

Balakrishnan and Sivaramakrishnan (2002) analytically deduct their ‘grand 
model’ for a joint decision upon optimal prices and capacity in an iterative 
approach. In short, with each iteration they extend a basic profit 
optimization model. The starting point is a simple one-period model, only 
adjusting the produced quantity based on given prices and variable costs 
and within the constraints of a given demand and a given capacity. The 
next extension replaces the given demand, by a demand function dependent 
on price and price-elasticity. The third extension introduces capacity on a 
need basis, hence in addition to the given capacity, more expensive flexible 
capacity can be purchased. The fourth extension enables planning for a 

                                              
37 See Santner, Williams and Notz (2003), pp. 199. 
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multi-period instead of a one-period setting. While all prior extensions used 
a deterministic optimization function, the grand model adds a stochastic 
demand, therefore implementing imperfect information on market 
behavior.38  

The grand model derivation by Balakrishnan and Sivaramakrishnan (2002) 
in detail: In this thesis the indexes i, j and t will be used consistently to 
indicate products (𝑖 ∈ 𝐼), resources (𝑗 ∈ 𝐽) and time (𝑡 ∈ 𝑇), capital letters 
indicating the total of units. 

The fundament for all succeeding models is model 1: Prices (𝑃𝑖 ) are 
dictated by the market thus the firm is focused on optimizing production 
output (𝑄𝑖), given a positive marginal income (𝑃𝑖 − 𝑣𝑖), 𝑣𝑖 beeing the 
variable costs per product: 

max𝑄𝑖
∑(𝑃𝑖 − 𝑣𝑖)𝐼
𝑖=1

𝑄𝑖 (2) 
subject to ∑𝑚𝑖𝑗𝑄𝑖

𝐼
𝑖=1

≤ 𝐿𝑗 ∀ 𝑗   
 0 ≤ 𝑄𝑖 ≤ 𝐷𝑖    ∀ 𝑖  
See Balakrishnan and Sivaramakrishnan (2002), p. 9. 

Setting focus on modelling demand and capacity: In this model, the 
simplest way to implement demand (𝐷𝑖) and capacity (𝐿𝑗) has been chosen, 
both being fixed. Obviously, a company’s production output (𝑄𝑖), is only 
limited by demand and supplied capacity.39 The link between quantity and 
capacity is modeled by the resource consumption matrix (𝑚𝑖𝑗), which maps 

                                              
38 See Balakrishnan and Sivaramakrishnan (2002), p. 13. 
39 Presuming an absence of stock keeping of inventories.  
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the needed resources j for a product i. The needed resources 𝑄𝑖𝑚𝑖𝑗 must 
not exceed supplied resources 𝐿𝑗.  

𝐷𝑖 = 𝐴𝑖 − 𝑏𝑖𝑃𝑖  (3) 
By focusing on a monopolistic setting, the given company becomes a price 
setter and is thus able to adjust the demand (𝐷𝑖): As illustrated in eq. (3) 
the demand is now modeled as a function of market size (𝐴𝑖), price elasticity (𝑏𝑖) and price (𝑃𝑖 ).40 Price elasticity is the responsiveness of demand on 
price changes. In this thesis only non-luxury goods are considered, hence an 
increase in prices directly decreases the demand.41 

By modeling the demand as time-dependent (𝐴𝑖𝑡) the question arises, 
whether the firm has complete knowledge of the demand throughout the 
planning horizon. The final evolution of the demand function is therefore to 
incorporate demand uncertainty, expressed by an error term 𝜀𝑖𝑡. The error 
term offsets the expectations of the firm per product and period (see Table 
1).  

Capacity (𝐿𝑗) – being the resources supplied – has been neglected as a 
decision variable so far. Taking a multi-period setting into account 
Balakrishnan and Sivaramakrishnan (2002) further distinguish between two 
terms of capacity: long-term capacity (𝐿𝑗) and capacity on a need basis (𝑅𝑗𝑡). Long-term capacity is available throughout the complete planning 
horizon (T-periods), whereas short term capacity is only build up and 
available for period t.  

  

                                              
40 See Balakrishnan and Sivaramakrishnan (2002), p. 10. 
41 See Mankiw and Taylor (2006), p. 88. 
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Table 1: Evolution of models (cont’d) 

Evolution steps Demand Capacity  

Initial model max𝑄𝑖
∑(𝑃𝑖 − 𝑣𝑖)𝐼
𝑖=1

𝑄𝑖 ∑𝑚𝑖𝑗𝑄𝑖
𝐼

𝑖=1
≤ 𝐿𝑗     ∀ 𝑗  

• Translates 
from quantity 
to demand 

• Demand 
depends on 
prices 

⇒ 𝐷𝑖 = 𝐴𝑖 − 𝑏𝑖𝑃𝑖    

• Time-
dependency 

• Resource costs 
• Differentiate 

between long- 
and short-term 
capacity 

⇒ 𝐷𝑖𝑡 = 𝐴𝑖𝑡 − 𝑏𝑖𝑃𝑖𝑡  𝐿𝑗 ↗↘
𝑇∑𝑐𝑗𝐿𝑗

𝐽
𝑗=1

∑∑ 𝑐𝑗𝜙𝑗𝑅𝑗𝑡
𝐽

𝑗=1
𝑇

𝑡=1
  

• Demand 
uncertainty 

⇒ 𝐷𝑖𝑡 = 𝐴𝑖 + 𝜀𝑖𝑡− 𝑏𝑖𝑃𝑖𝑡  
 
 

 

⇒ Grand Model:  

 max𝑃𝑖𝑡,𝑅𝑗𝑡,𝐿𝑗
𝐸[∑(∑(𝑃𝑖𝑡 − 𝑣𝑖)(𝐴𝑖 + 𝜀𝑖𝑡 − 𝑏𝑖𝑃𝑖𝑡 ) − ∑𝜙𝑗𝑐𝑗𝑅𝑗𝑡

𝐽
𝑗=1

𝐼
𝑖=1

)𝑇
𝑡=1

]
− 𝑇∑𝑐𝑗𝐿𝑗

𝐽
𝑗=1

 (4) 

 subject to  ∑ 𝑚𝑖𝑗(𝐴𝑖 + 𝜀𝑖𝑡 − 𝑏𝑖𝑃𝑖𝑡 ) − 𝑅𝑗𝑡 −𝐼
𝑖=1

𝐿𝑗 ≤ 0 ∀𝑗, 𝑡  
  (𝐴𝑖 + 𝜀𝑖𝑡 − 𝑏𝑖𝑃𝑖𝑡 ) ≥ 0 ∀𝑖, 𝑡 (5) 
  𝑃𝑖𝑡 ≥ 0 ∀𝑖, 𝑡.  
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Table 1: Evolution of models (cont’d) 

Decision variables: Non-decision variables:  

 𝑃𝑖𝑡  Price for product i in period 
t  

𝐴𝑖 Market size per product i 
and period t  

  𝐷𝑖/(𝐷𝑖𝑡) Demand per product i (and 
period t)  

  𝑄𝑖/(𝑄𝑖𝑡) Quantity per product i (and 
period t)  

𝐿𝑗 
Initial long-term capacity 
for resource j (available 
every period) 

𝜀𝑖𝑡 Error term per product i and 
period t  

𝑅𝑗𝑡 Flexible short-term capacity 
for resource j and period t 

𝑏𝑖 Price elasticity of product i  

  𝑣𝑖 Variable cost of product i  

  𝑐𝑗 Resource costs of resource j  

  𝜙𝑗 Premium price for one 
capacity of unit j  

  𝑚𝑖𝑗 Resource consumption matrix 
for product i and resource j  

See Balakrishnan and Sivaramakrishnan (2002), p. 13. 

In this setting both resources become decision variables, since an optimal 
trade-off between initial setup of resources, in other words the capital 
employed over the planning horizon and short term investments, due to a 
heterogeneous demand needs to be found. Now being part of the decision 
context, capacity costs are no longer sunk. 

Therefor resources (j) need to be valued by a cost-price of 𝑐𝑗, identical for 
short- and long-term resources. Since short-term capacity needs to be 
purchased on a need basis, a cost-price premium of 𝜙𝑗 > 1 needs to be paid. 
The premium reflects additional costs, such as higher rates for interim 
staffing or renting/leasing of production facilities over time. Additionally, a 
lack of price premium or a premium factor of one, would lead to investments 
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only in short-term capacity.42 The grand model (see eq. (4)), in comparison 
to its deterministic predecessors, no longer maximizes the profit itself, but 
its expectation.43 Table 1 illustrates the evolution steps from initial to grand 
model.   

The advantage of the grand model is that it can be decomposed into 
different models and planning scenarios. This is leveraged by Balakrishnan 
and Sivaramakrishnan (2002) to analytically identify the economic loss of 
simplified planning approaches in comparison to the grand model. They 
address simplifications such as separating capacity and price planning, using 
full costing for capacity approximation, and modeling either hard- or soft-
capacity constraints. They also indicate that simulations may enrich the 
understanding of open research questions such as the influence of cost-pool 
and cost-allocation design on capacity and pricing issues.  

2.4.2 Cost Model 

Balakrishnan, Hansen and Labro (2011) take up the idea of investigating 
the influence of cost-system design on the error of reported costs. The basic 
idea is to compare a company having full information on cost-consumption 
with entities only using approximations of the real cost-consumption by 
products.  

In general, full costs of a product can be calculated as the sum of variable 
costs (𝑣𝑖) and the costs of consumed capacity (∑ 𝑚𝑖𝑗𝑐𝑗)𝐽𝑗=1 .44 In the context 

of Balakrishnan, Hansen and Labro (2011), the central variables are the 
resource consumption matrix (𝑚𝑖𝑗) and the corresponding cost vector (𝑐𝑗). 
In the following, variable costs are neglected. Therefore, following 
Balakrishnan, Hansen and Labro (2011) the term product cost (PC) is used. 

                                              
42 See Banker and Hughes (1994), p. 481. 
43 See Balakrishnan and Sivaramakrishnan (2002), p. 13.  
44 See Balakrishnan and Sivaramakrishnan (2002), p. 14. 
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In an ideal world, a company has full information on resource consumption 
and resource costs. In reality both information are biased (see Table 2, as 
indicated by the index bias for 𝑚𝑖𝑗𝑏𝑖𝑎𝑠/ 𝑐𝑗𝑏𝑖𝑎𝑠). The impact of partial and/or 
biased information on cost reporting, in theory, the delta between both 
product costs, unbiased (BM) and biased, indicates the quality of an 
implemented cost system design (see eq. (6) in Table 2). 

Where does the bias come from? Naturally, cost systems lack complete 
information on resource consumption and therefore use algorithms to apply 
(activity) costs to products. Hence, the resulting product costs are only 
approximate. In other words, inherit sources of erroneous cost allocation. 
Cost systems classically use two stage cost allocation processes: on the first 
stage, costs are allocated to cost pools. On the second stage, the costs 
accumulated on these pools are allocated to products. The effectiveness of 
such cost systems is limited by aggregation, measurement and specification 
errors while pooling and allocating costs.45  

Aggregation errors usually originate from failures on first layer, i.e. pooling 
wrong resources into the same cost pools. Specification errors occur on both 
levels, based on cost driver rates not reflecting the consumption pattern of 
resources. That could for example be the usage of the labor cost rates for 
energy overhead, when both are possibly not interrelated. Measurement 
error – as the last error group – is straightforward: while setting up rates 
for cost allocation, wrong assumptions of the amount of resource/activity 
usages are made. E.g. storing inventory lasts not 10 but 15 minutes. If the 
allocation of overhead costs was based on these time assumptions, the 
reflected costs would not meet actual process usage.46 

There exist different basic cost system designs (volume based costing, 
activity based costing, resource based costing, etc.).47 

  

                                              
45 See Datar and Gupta (1994), p. 568. 
46 See Labro and Vanhoucke (2007), p. 941. 
47 See Balakrishnan, Labro and Sivaramakrishnan (2012a), p. 4. 
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Table 2: Derivation of the BHL48 simulation model  

benchmark model biased model  

1) full information 
on resource 
consumption and 
resource costs 

∑ 𝑚𝑖𝑗𝐵𝑀𝑐𝑗𝐵𝑀𝐽
𝑗=1= 𝑃𝐶𝑖𝐵𝑀 

∑ 𝑚𝑖𝑗𝑏𝑖𝑎𝑠𝑐𝑗𝑏𝑖𝑎𝑠𝐽
𝑗=1= 𝑃𝐶𝑖𝑏𝑖𝑎𝑠 

2) biased 
information 
on resource 
consumption 
and resource 
costs 

 

 ⟹ Δ𝑃𝐶𝑖 = 𝑃𝐶𝑖𝐵𝑀 − 𝑃𝐶𝑖𝑏𝑖𝑎𝑠  (6) 
noisy model  

𝑐𝑗 ℎ1→ 𝐴𝐶𝑃𝑘 3) transformation of resource costs 
into activity cost pools 

(7) 
𝑚𝑖𝑗 ℎ2→𝑎𝑑𝑘𝑖 4) transformation of resource into 

activity consumption 
(8) 

∑ 𝑎𝑑𝑘𝑖𝐴𝐶𝑃𝑘 = 𝑃𝐶𝑖𝑁𝑀𝐾
𝑘=1

5) product costs based on activity 
based costing 

(9) 
⟹ Δ𝑃𝐶𝑖 = 𝑃𝐶𝑖𝐵𝑀 − 𝑃𝐶𝑖𝑁𝑀 (10) 

ℎ1 
heuristic 1: set of algorithms 
to transform the cost vector of 
size j into k-activity cost pools

ℎ2
heuristic 2: set of algorithms 
to transform the resource 
consumption matrix of size 
i,j into a matrix mapping 
activities (k) to products (i) 

 

𝐴𝐶𝑃𝑘 activity cost pool: costs to 
perform an activity (k)  

𝑎𝑑𝑘𝑖
activity driver: maps the 
costs of activity (k) to a 
product (i) 

 

                                              
48 The abbreviation BHL identifies in the following the paper Balakrishnan, Hansen and Labro 

(2011). See also Homburg, Nasev and Plank (2013) p. 9ff. 
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As already discussed in the introduction, activity based costing is considered 
one of the best performing alternatives.49  

Instead of using an abstract “bias” to model the information deficit of cost 
system designs (see “biased model” in Table 2), Balakrishnan, Hansen and 
Labro (2011) implement a comparable approach to activity based costing.  

The “noisy model” (NM) (see Table 2) simplifies the allocation process in 
contrast to the “benchmark model” (BM). While the BM allocates resource-
costs to products directly, the NM first pools the resource costs on k activity 
cost pools (𝐴𝐶𝑃𝑘). Hence, only aggregated costs need to be allocated 
successively in the second step. The second step accordingly facilitates the 
allocation process: while the BM has a maximum of I times J allocation 
rules, the NM only has I times K. It can be expected that the amount of 
activity cost pools is notably lower than the total resources (J) available. 
By analogy with eq. (6) the impact of the non-optimal allocation process 
can be expressed by the delta between BM and NM product costs (see 
eq.(10)) 

As introduced in Table 2 the pooling and allocation rules follow specified 
algorithms. The pooling is defined by heuristic 1 (see eq. (7)), already 
indicating that the process is only approximate. Likewise, the cost-allocation 
step is defined by heuristic 2 (see eq. (8)). In the following, the abstract 
heuristics are illustrated. 

2.4.2.1 First-stage heuristics 

In detail, the first stage heuristics encompass the following five heuristics:50 
The random method (−−) randomly assigns resources to cost pools. This 

                                              
49 For a comprehensive comparison of different cost-systems and ABC evolutions see 

Balakrishnan, Labro and Sivaramakrishnan (2012b), p. 24. 
50 See Balakrishnan, Hansen and Labro (2011), p. 527 and also Homburg, Nasev and Plank 

(2013) in the appendix section p. 26. 
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method represents the simplest method because it needs information neither 
about resource costs nor about resource consumption patterns. 

In a cost system with, e.g., six activity cost pools, the size random 
method (−) first assigns the six largest resources (in terms of per unit 
resource costs) to the six cost pools. Subsequently, the remaining resources 
are randomly assigned to the six cost pools. 

In a cost system with six activity cost pools, the size misc method (∘) 
assigns the five largest resources (in terms of unit resource costs) to five of 
the six cost pools. The remaining resources are lumped in the sixth cost 
pool. 

The correlation random method (+) groups resources with similar 
consumption patterns into one cost pool. First, one resource – the base 
resource - is randomly assigned to each activity cost pool. Then the 
remaining resources are assigned to activity cost pools based on their 
correlation with the base resource. The number of resources per cost pool is 
chosen such that every cost pool has approximately the same number of 
resources. As this method requires data on consumption patterns, it is 
informational demanding. 

While the correlation random method randomly chooses the base resource, 
the correlation size method (++) chooses the largest resource (in terms 
of per unit resource costs 𝑐𝑗) as the base resource. The remaining resources 
are assigned to the cost pools based on their correlation with the base 
resource. The advantage of this method is the combination of size-based and 
correlation-based criteria to assign resources to cost pools. It is also 
informational demanding. 
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2.4.2.2 Second-stage heuristics 

The second-stage heuristics encompass the following four heuristics:51 
According to the Big Pool Method (−) the activity driver of a cost pool 
is the resource consumption coefficient of the largest resource (in terms of 
per unit resource costs) in the cost pool. The advantage of this method is 
that it is simple and that the costs of the largest resources are accurately 
assigned to the products. The disadvantage is that the remaining resources 
are inaccurately assigned.  

For the Average Method (+ +) the activity driver of a cost pool is the 
average of the resource consumption coefficients of all resources in the cost 
pool. Compared to the big pool method, this method leads to more accurate 
product costs because it considers more resource consumption information. 
Nevertheless, the method is associated with relatively high information 
costs. 

The Intermediate Methods Num(2) (−) to Num(4) (+) set the activity 
driver of a cost pool as the average of the resource consumption coefficients 
of the largest resources in the cost pool. For example, the activity driver 
according to the Num(4) method is the average of the consumption patterns 
of the four largest resources (in terms of per unit resource costs) of a cost 
pool. While intermediate methods require more information than the big 
pool method – resource consumption of a single resource vs. resource 
consumptions of four resources – they require less information than the 
average method which requires consumption patterns of all resources in a 
cost pool.  

2.4.2.3 Simulation approach 

This chapter discusses the general design layout by Balakrishnan, Hansen 
and Labro (2011). The central research question is the accuracy loss of 
product costs, by using approximate cost-system designs. Eq. (10) expresses 
                                              
51 See Balakrishnan, Hansen and Labro (2011), p. 528 also Homburg, Nasev and Plank (2013) 

in the appendix section p. 27. 
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this loss per product, in terms of the delta of product costs Δ𝑃𝐶𝑖 between 
the benchmark and the noisy model. 

To measure the total reported error of such a system, Homburg (2001a) and 
Balakrishnan, Hansen and Labro (2011) use the Euclidean Distance 
(𝐸𝑈𝐶𝐷𝑠), as displayed in eq. (11). The subscript s indicates the identifier 
of the corresponding simulation run. The simulation embeds a catalogue of 
different environments. Each environment defines the simulation input. In 
total three parameters (resource cost variation, density of the consumption 
matrix and correlation of resource consumption) form 48 different 
environments.  
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Table 3: BHL simulation process 

𝐸𝑈𝐶𝐷𝑠 = √(Δ𝑃𝐶𝑖)2   𝑠 ∈ 𝑆 (simulation runs) 𝑖 ∈ 𝐼 (products) 
 (11) 

Si
m

ul
at

io
n 

Input 
(environment) 

Process Output 

 

 

1. Resource cost 
variation (RCV, 3 
level) 

2. Density of the 
consumption 
matrix (DENS, 4 
level) 

3. Correlation of 
resource 
consumption 
(COR, 4 level) 
⇒ 48 
environments 

1. Calculate product 
costs in the 
benchmark model 
⇒ 20 samples 

⇒ 𝐸𝑈𝐶𝐷𝑠 𝑆 = 345,600 

 

2. For each BM 
calculate product 
costs in the noisy 
model for a 
combination of 
a. Heuristic 1 (5 level) 
b. Heuristic 2 (4 level)
c. ACP (6 level) 
d. Measurement error 

(ME) (3 level) 
⇒ 360 samples 

 

Ex
am

pl
e 

ru
n 

(s
=

1)
 

1. Low dispersion 
(−) 

2. High sharing (+) 
3. Similar 

consumption 
pattern (+) 

1. Calculate 𝑃𝐶𝐵𝑀
2. Calculate 𝑃𝐶𝑁𝑀 for 

a. Random (− −)  
b. Big Pool (−) 
c. 2 ACP (− −) 
d. ME at 50% (+ + +)

 
 

⇒𝐸𝑈𝐶𝐷1 
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To cope with the stochastic effect of random number generation, 20 samples 
of each environment leading to a total number of 960 benchmark models are 
drawn.52 A noisy model definition consists out of four parameters (heuristics 
1 & 2 combination, the number of activity cost pools, a systematic cost 
system error and the measurement error) leading to a total number of 360 
noisy models, for each BM. The simulation process is summarized in Table 
3. 

The following paragraph explains the introduced (see Table 3) input 
parameters used to build the environment. In accordance to the factorial 
design, the levels for each factor are coded to better visualize the state of 
the respective factor.53 The generic design of the parameters works as 
follows: For each input factor, a distribution function is modeled. The factor 
level is used as a parameter to steer the distribution, e.g. the boundaries, 
skewness, etc. Subsequently from this adjusted distribution, a set of random 
numbers is drawn.    

In case of the resource cost variation, a uniform distribution is applied. The 
level of resource sharing changes the boundaries of the distribution. A low 
level of cost dispersion limits e.g. the possible drawn random numbers to a 
corridor of 0 to 0.2 instead of 0 to 1 of the standard uniform distribution. 
The drawn random numbers are considered the proportion of used costs by 
each resource of total resource costs. Hence the biggest spread in a low 
dispersion setting is 20%, in other words each resource will consume 
approximately the same portion of total resource costs. In a final step, the 
drawn numbers are normalized. Obviously, only 100% of resource costs are 
allocable.54 Table 4 summarizes the interaction between parameters, factors 
and variables.  

  

                                              
52 See DOE design step 6 on page 16 and Lorscheid, Heine and Meyer (2012), pp. 33. 
53 See also step 3 in the DOE process on page 14. 
54 This is an arbitrary example. For the exact algorithm, see the working paper version of BHL, 

Balakrishnan et al. (2009).  
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Table 4: BHL Input factors for variables 

Factor Levels & Coding Functionality Variable 
RCV: 
Resource 
cost 
variation 

- Low dispersion The resource cost 
variation defines how 
disperse the total 
resource costs are 
distributed over 
resources. A low 
dispersion equals a 
setting where the total 
resource costs are almost 
equally distributed. At 
high dispersion, a small 
set of resources accounts 
for a majority of 
resource costs. 

𝑐𝑗  

0 Med dispersion

+ High dispersion

DENS: 
Density of 
the 
consumption 
matrix 

- Little sharing Despite from the 
complex naming the 
density parameter is 
straightforward: The 
resource consumption 
matrix is adjusted in a 
way that settings from 
little to very high 
resource sharing are 
controllable. The most 
extreme “little sharing“ 
outcome would be a 1:1 
mapping between 
resources and products. 
On the other side a very 
high sharing could lead 
to completely filled 
matrix 𝑚𝑖𝑗 , where each 

𝑚𝑖𝑗  

0 Medium sharing

+ High sharing

+
+ 

Very high 
sharing 
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Table 4: BHL Input factors for variables 

Factor Levels & Coding Functionality Variable 

product consumes each 
resource.  

COR: 
Correlation 
of resource 
consumption 

+ Similar 
consumption 

The most complex 
parameter. It also 
adjusts the resource 
consumption matrix. In 
simple terms, it steers 
how resource 
consumption of product 
i=1 correlates with 
product i=2. Where 
DENS steers if two 
products consume the 
same resource j (binary 
condition), COR steers 
if both consume the 
same amount of j, in 
respect to the chosen 
level (e.g. similar +).      

𝑚𝑖𝑗  

0 Intermediate 
consumption 

- Dissimilar 
consumption 

-- Very dissimilar 
consumption 

See Balakrishnan, Hansen and Labro (2011), p. 525. 

2.4.2.4 Results 

As proposed in the DOE framework by Lorscheid, Heine and Meyer (2012), 
Balakrishnan, Hansen and Labro (2011) use an ANOVA regression to 
analyze the results. In general, the results suggest that more sophisticated 

(cont’d)
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allocation methods yield product costs closer to the benchmark, than less 
advanced methods:55 

The number of activity cost pools has a marginal effect on the error of 
product costs. Using more than a moderate number of cost pools only adds 
a small added value in terms of product cost accuracy. One of the main 
contradictory findings is, that the more the resource consumption of 
products varies (i.e. factor COR levels “−“ or “− −“, see Table 4), the more 
correlation based methods outperform size based methods.56  

Important findings, in regard to this thesis, are the influences of cost 
structure on the performance of the noisy model: for one, even a small 
reduction of specification errors result in significantly lower reporting errors. 
For the other, the highest environmental effect originates from the 
distribution of resource costs.57   

2.4.3 Margin Model 

The cost model simulation disconnects from the synchronous profit and 
capacity optimization problem of the grand model, by focusing on optimal 
product cost determination. Nevertheless, it does not only shed light on one 
of the research proposals by Balakrishnan and Sivaramakrishnan (2002), 
identifying the criticality of cost pool design, but also lays the fundament 
for the margin model. 

As discussed, a central requirement of cost reporting is the accordance of 
reported and realized costs. According to Anand, Balakrishnan and Labro 
(2013), a reporting system is tidy if both figures equal. Obviously, profit-
planning tools are only fully reliable by being based on tidy costs. 
Considering that cost systems are approximations of true cost consumption, 
in practice cost systems are seldom completely tidy. A central objective of 
management accounting divisions is therefore to review planned costs based 

                                              
55 See Balakrishnan, Hansen and Labro (2011), p. 540. 
56 See Balakrishnan, Hansen and Labro (2011), p. 537. 
57 See Balakrishnan, Hansen and Labro (2011), p. 541 and the results of this thesis on page 66. 
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on true cost consumption on a regular basis and to adjust allocation methods 
to close the existing gap.  

Leveraging a numerical example / simulation approach Anand, 
Balakrishnan and Labro (2013) review the heuristics introduced by 
Balakrishnan, Hansen and Labro (2011) on their capability of yielding tidy 
costs and the time frame needed to align reported and realized product costs. 
The underlying model implements a product margin-optimizing firm, given 
predetermined, static capacity. Different to Balakrishnan and 
Sivaramakrishnan (2002) and this thesis, the respective optimized company 
therefore is a price taker and not a (monopolistic) price setter. Price 
optimization is therefore neglected, as is respectively the quantity 
produced.58  

2.4.3.1 Simulation approach  

The used profit functions are illustrated in eq. (12) & (16) in Table 5. There 
is no optimization process because all required variables are known prior to 
planning. Additionally, the planning process is sequential. This means that 
at first the product mix is defined and, based on this decision, the capacity 𝐿𝑗𝐵𝑀 is set.  

As input for the simulation, environmental parameters are used comparative 
to the cost model. Therefore, only the two new parameters for steering 
markup and quantity are discussed: Anand, Balakrishnan and Labro (2013) 
calculate the respective product margin (𝜇𝑖) leveraging a random number 
generator using the parameters “average markup” and “variance in 
markup”. The steering concept of the first parameter is straightforward: for 
the given set of i-products, it models the average margin over the portfolio. 
Comparable to the cost variance parameter (RCV), the variance in markup 
triggers portfolios with heterogeneous or homogeneous products. For both, 
2-levels (high/low) are defined. Quantities (𝑄𝑖) are drawn from a uniform 

                                              
58 See Anand, Balakrishnan and Labro (2013), p. 7, 
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distribution.59 Table 6 illustrates the complete process, while Table 5 
describes in detail the underlying model. 

Table 5: ABL Margin model definition60 

B
M

 

𝑃𝑟𝑜𝑓𝑖𝑡𝐵𝑀 = ∑𝜇𝑖𝜆𝑖𝑁𝑀𝑄𝑖
𝐼

𝑖=1
− ∑ 𝑐𝑗𝐿𝑗𝐵𝑀𝐽

𝑗=1
 (12) 

𝐿𝑗𝐵𝑀 = ∑𝑚𝑖𝑗𝜆𝑖𝑁𝑀𝑄𝑖
𝐼

𝑖=1
∀𝑗

𝜆𝑖𝑁𝑀 = {1 𝜇𝑖 > 00 𝜇𝑖 ≤ 0       ∀𝑖 
𝑃𝐶𝑖𝐵𝑀 = ∑𝑚𝑖𝑗𝑐𝑗

𝐽
𝑗=1

∀𝑖 

𝑇𝐶𝐵𝑀 = ∑ 𝑐𝑗𝐿𝑗𝐵𝑀𝐽
𝑗=1

 
 

 Initial period61  Succeeding periods   

N
M

 

𝑇𝐶𝐵𝑀 ℎ1→ 𝐴𝐶𝑃𝑘 𝑡𝑜𝑡𝑎𝑙 

𝑚𝑖𝑗 ℎ2→ 𝑎𝑑𝑘𝑖 
𝐴𝐶𝑃𝑘 𝑡𝑜𝑡𝑎𝑙

𝐿𝑗𝐵𝑀 = 𝐴𝐶𝑃𝑘 𝑝𝑙    𝑗 ⊆ 𝐽

(13)

(14)

(15)

𝑇𝐶𝑁𝑀 ℎ1→ 𝐴𝐶𝑃𝑘𝑡𝑜𝑡𝑎𝑙

𝐴𝐶𝑃𝑘 𝑡𝑜𝑡𝑎𝑙
𝐿𝑗𝑁𝑀 = 𝐴𝐶𝑃𝑘 𝑝𝑙   𝑗 ⊆ 𝐽 

𝑎𝑑𝑘𝑖 𝑖𝑠 𝑖𝑑𝑒𝑛𝑡𝑖𝑐𝑎𝑙  
𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑒𝑟𝑖𝑜𝑑𝑠  

 

𝑃𝐶𝑖𝑁𝑀 = ∑𝑎𝑑𝑘𝑖𝐴𝐶𝑃𝑘 𝑝𝑙𝐾
𝑘=1𝑃𝑖𝑁𝑀 = (1 + 𝜇𝑖)𝑃𝐶𝑖𝑁𝑀 

 

𝜆𝑖𝑁𝑀 = {1 𝑃𝑖𝑁𝑀 > 𝑃𝐶𝑖𝑁𝑀
0 𝑃𝑖𝑁𝑀 ≤ 𝑃𝐶𝑖𝑁𝑀 ∀𝑖 

𝑇𝐶𝑁𝑀 = ∑ 𝑃𝐶𝑖𝑁𝑀𝜆𝑖𝑁𝑀𝑄𝑖
𝐼

𝑖=1
       ∀𝑗  

𝑃𝑟𝑜𝑓𝑖𝑡𝑁𝑀 = ∑ 𝜇𝑖𝜆𝑖𝑁𝑀𝑄𝑖
𝐼

𝑖=1
− 𝑇𝐶𝑁𝑀 (16) 

                                              
59 See Anand, Balakrishnan and Labro (2013), p. 11. 
60 The model is not illustrated straight away in Anand, Balakrishnan and Labro (2013), but is 

derived from various information given in the paper, especially out of the Appendix. ABL 
will be used as an abbreviation for Anand, Balakrishnan and Labro (2013). 

61 For simplification reasons the time index is neglected. 
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In the following, both views on the paper are combined: Having used the 
described inputs, in the process stage firstly the BM profit (𝑃𝑟𝑜𝑓𝑖𝑡𝐵𝑀), and 
secondly the noisy model profit (𝑃𝑟𝑜𝑓𝑖𝑡𝑁𝑀) are calculated. This is achieved 
by initially taking over information from the benchmark model into the 
noisy model: based on benchmark portfolio (𝜆𝑖𝐵𝑀) and benchmark capacity 
(𝑇𝐶𝐵𝑀) heuristics taken over from the cost model are used to allocate costs. 
62 Next, building upon these product costs (𝑃𝐶𝑖𝑁𝑀) the noisy model portfolio 
(𝜆𝑖𝑁𝑀) is derived. Corresponding to this new portfolio, the total costs of the 
NM are calculated.   

If the total costs (𝑇𝐶𝑁𝑀) of the noisy model equal total costs (𝑇𝐶𝐵𝑀) of 
the benchmark model, i.e. the cost system is tidy, finally the noisy model 
profit 𝑃𝑟𝑜𝑓𝑖𝑡𝑁𝑀 is derived, as illustrated in eq. (16).63  If 𝑇𝐶𝑁𝑀 ≠ 𝑇𝐶𝐵𝑀, 
in other words the cost system is untidy, then for t periods, the product 
costs are refined until either both costs equal or a maximum of T periods is 
reached.64  

As metrics for the research (see Table 6, output), the profit efficiency 
(𝑃𝐹 𝑒𝑓𝑓, eq. (17)) and mean product cost error (𝑃𝐶𝐸‾‾‾‾‾‾‾‾‾‾‾‾‾, eq. (18)) are used. The 
former being the quality of the noisy model profit estimation, measured 
upon its relative closeness to the benchmark model. The latter, measuring 
the mean fit of NM product costs in regard to the benchmark product costs. 

    
                                              
62 A subset of heuristics from Balakrishnan, Hansen and Labro (2011) is used.  
63 Different from Balakrishnan, Hansen and Labro (2011) the decision context by Anand, 

Balakrishnan and Labro (2013) is on product and not on portfolio level. This becomes 
relevant especially while calculating 𝑃𝑟𝑜𝑓𝑖𝑡𝑁𝑀: As illustrated in Table 5, corresponding to 
the cost model (see eq. (7) & (9)), the sum of all costs pooled in the activity cost pools 
(𝐴𝐶𝑃𝑘 𝑡𝑜𝑡𝑎𝑙) initially equal the total costs (𝑇𝐶𝐵𝑀) of the benchmark model. Since the margin 
model assesses product costs on item level, the activity costs need to be brought down to 
this level as well. Eq. (15) documents this process: The total activity costs (𝐴𝐶𝑃𝑘 𝑡𝑜𝑡𝑎𝑙) are 
divided by the total amount of resources j, i.e. the capacity 𝐿𝑗𝐵𝑀 of resources j assigned to 
activity cost pool k. Therefore, the costs 𝐴𝐶𝑃𝑘 𝑝𝑙 are applicable on product level, expressed 
by the superscript pl. 

64 The „break condition“ has been simplified in this summary. For details refer to the appendix 
of Anand, Balakrishnan and Labro (2013)  
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Table 6: ABL simulation process 

Input  Process Output  

1. 𝜇𝑖 – For each 
product, a 
random  

2. markup is 
generated. (2𝑥2 𝑙𝑒𝑣𝑒𝑙𝑠) 

3. 𝑄𝑖 – For each 
product a 
maximum 
production 
quantity is 
drawn.  

Benchmark Model
1) Corresponding to the 

given quantity and 
markup, capacity 𝐿𝑗𝐵𝑀 

and 𝑃𝑟𝑜𝑓𝑖𝑡𝐵𝑀 are 

calculated. In each 
period, the benchmark 
profit is constant. ⇒ 
1,000 samples 

𝑃𝐹𝑠 𝑒𝑓𝑓 = 𝑃𝑟𝑜𝑓𝑖𝑡𝑁𝑀
𝑃𝑟𝑜𝑓𝑖𝑡𝐵𝑀 

𝑃𝐶𝐸𝑠‾‾‾‾‾‾‾‾‾‾‾‾‾ = 
1𝐼 ∑|𝑃𝐶𝑖𝐵𝑀 − 𝑃𝐶𝑖𝑁𝑀|𝑃𝐶𝑖𝐵𝑀

𝐼
𝑖=1

 

(17) 

(18) 

4. The 
environmental 
parameter and 
factors equal the 
cost model and 
are neglected in 
this synopsis. 
They are only 
used to build 
the simulation, 
but are not used 
as independent 
or control 
variables. ⇒  

4 environments 

Noisy Model
2) Initial period 

a) To calculate period 
one noisy 
model 𝑃𝑟𝑜𝑓𝑖𝑡𝐵𝑀, as 

an initial 
information the 
noisy model is 
calculated based on 
the benchmark 
portfolio (𝜆𝑖𝐵𝑀) and 
the benchmark 
capacity (𝑇𝐶𝐵𝑀).  

b) Calculate difference 
between  
𝑇𝐶𝐵𝑀 and 𝑇𝐶𝑁𝑀. 

 

𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑟𝑎𝑡𝑒(𝐶𝑅𝑠) = 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑁𝑀, 𝑤ℎ𝑒𝑟𝑒 𝑇𝐶𝐵𝑀~𝑇𝐶𝑁𝑀 
 
 

S = 32,000 

(19) 
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Additionally for each simulation run, i.e. the combination of input 
parameters and cost system designs, the rate and time of convergence of 
total costs between noisy and benchmark model is measured. Hereby the t 
periods needed until 𝑇𝐶𝑁𝑀 equals 𝑇𝐶𝐵𝑀 are determined. If a given time 
barrier is hit or a level of accuracy is met, the cost system refinement is 
aborted (𝐶𝑅𝑆, eq. (19)). 

The simulation consists out of S = 32,000 simulation runs. For each market 
setting (markup average/variance) 1,000 samples are drawn, resulting in 
4,000 BM. In line with the cost model, one set of NM is mapped to exact 
one BM. In the margin model, this leads to 8 NM samples. Instead of using 
all heuristics known from the cost model Anand, Balakrishnan and Labro 
(2013) only focus on heuristics on the second stage. For these they reduce 
the heuristics variation to the big-pool and NUM(2) methods. The number 
of cost pools is varied by 4 levels (1, 3, 6 and 10).65   

2.4.3.2 Results 

In general Anand, Balakrishnan and Labro (2013) find that the approximate 
cost-systems (NM) perform quite well in comparison to the BM: They show 
that on average a convergence rate (𝐶𝑅𝑠) of approximately 30% to 55% can 
be reached and that profit efficiency levels 𝑃𝐹𝑠 𝑒𝑓𝑓 of almost 70% are 
possible.66 

Counterintuitive is the outperformance of big-pool method compared with 
the NUM(2) method in 1-pool scenarios. Raising the number of cost-pools 
leads to a more intuitive result, that superior cost-system design yields 
better results.67 Anand, Balakrishnan and Labro (2013) explain this behavior 
by aggregation errors offsetting specification errors. This explanation is not 
based on model behavior, but on the findings by Datar and Gupta (1994). 
This finding can be challenged by reviewing the model characteristics: Big-

                                              
65 See Anand, Balakrishnan and Labro (2013), p. 12 and 14. 
66 For the definition of the CR see eq. (19). The range of convergence depends on the accuracy 

level requested. See Anand, Balakrishnan and Labro (2013), pp. 15–16. 
67 See panel A by Anand, Balakrishnan and Labro (2013), p. 26. 
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pool and NUM(2) are almost equal. Both select allocation rates based on 
the biggest and on the average of the two biggest resources in the cost-pool 
respectively. Considering environments where the total spread of total 
resource costs is low and the resource sharing equals between products, both 
methods should lead to identical decisions. Both, the spread in total resource 
costs (RCV) and the density (DENS) only vary by 30 percentage-points.68 
Hence, one would assume that both methods would yield comparable results. 
A detailed analysis on DENS and RCV is not given by Anand, Balakrishnan 
and Labro (2013). 

The mean product cost error (𝑃𝐶𝐸𝑠‾‾‾‾‾‾‾‾‾‾‾‾‾‾) is reported to be rather high 
throughout all scenarios: Intuitively, higher markups lead to lower product 
cost errors and vice-versa. High variance leads to lower product cost errors. 
69 While being reported, this finding is not further explained. In light of the 
markup variable being constructed out of two parameters (variance and 
average) it is questionable to separate the effects from each other.   

Further the markup, following Anand, Balakrishnan and Labro (2013), 
matters more than cost system design. This is supported by the ANOVA 
regression. Here, the markup explains more than 30% of mean profit 

efficiency 𝑃𝐹  𝑒𝑓𝑓‾‾‾‾‾‾‾‾‾‾‾‾‾
, whereas the cost system design (ACP + Heuristic2) only 

amounts for approximately 16%.  

  

                                              
68 See Anand, Balakrishnan and Labro (2013), p. 29. 
69 See Anand, Balakrishnan and Labro (2013), p. 17. 
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