Chapter 2

Cost-Effectiveness and Manageability
Based Prioritisation of Supply Chain
Risk Mitigation Strategies

Abroon Qazi, John Quigley and Alex Dickson

Abstract Risk treatment is an important stage of the risk management process
involving selection of appropriate strategies for mitigating critical risks. Limited
studies have considered evaluating such strategies within a setting of interdependent
supply chain risks and risk mitigation strategies. However, the selection of strate-
gies has not been explored from the perspective of manageability-the ease of
implementing and managing a strategy. We introduce a new method of prioritising
strategies on the basis of associated cost, effectiveness and manageability within a
theoretically grounded framework of Bayesian Belief Networks and demonstrate its
application through a simulation study. The proposed approach can help managers
select an optimal combination of strategies taking into account the effort involved in
implementing and managing such strategies. The results clearly reveal the impor-
tance of considering manageability in addition to cost-effectiveness within a deci-
sion problem of ranking supply chain risk mitigation strategies.

2.1 Introduction

Risk management involves important stages of risk identification, risk analysis, risk
evaluation, risk treatment and risk monitoring (SA 2009). Supply chain risk manage-
ment (SCRM) is gaining an increasing interest both from the researchers and practi-
tioners (Sodhi et al. 2012). Complex interactions between supply chain risks ranging
across the entire spectrum of a supply network make it a challenging task to identify,
assess and manage key risks. Limited studies have focused on exploring causal
interactions between supply chain risks (Badurdeen et al. 2014; Garvey et al. 2015)
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and integrating the impact of risk mitigation strategies on associated risks within the
modelling framework (Aqglan and Lam 2015). However, to the best of our
knowledge, no attempt has been made to capture the manageability associated with
implementing a mitigation strategy within the modelling framework. Manageability
relates to the concept of ease involved in managing a strategy. Besides capturing the
manageability of risks (effectiveness of strategies) representing the potential for
reducing the risk (Aven et al. 2007), we propose integrating the cost and man-
ageability of mitigation strategies within a theoretically grounded framework of
Bayesian Belief Networks (BBNs) encompassing complex interactions between
risks and strategies.

BBN is a directed acyclic graph comprising nodes representing uncertain vari-
ables and arcs indicating causal relationships between variables whereas the
strength of dependency is represented by the conditional probability values. BBNs
offer a unique feature of modelling risks combining both the statistical data and
subjective judgment in case of non-availability of data (Qazi et al. 2014). In the last
years, BBNs have also started gaining the interest of researchers in modelling
supply chain risks (Badurdeen et al. 2014).

In this chapter, we aim to address the decision problem of prioritising risk
mitigation strategies considering the cost, effectiveness and manageability of such
strategies within an interconnected network of interacting supply chain risks and
strategies. The proposed method is deemed as contribution to the literature on Risk
Management in general and SCRM in particular. Existing models focusing on
cost-effectiveness of strategies assume the same level of manageability for all
strategies.

The remainder of the chapter is organised as follows: A brief review of the
relevant literature is presented in Sect. 2.2. The modelling approach of prioritising
risk mitigation strategies is described in Sect. 2.3 and demonstrated through a
simulation study in Sect. 2.4. Results and managerial implications are also
described in Sect. 2.4. Finally, key findings and future research agenda are pre-
sented in Sect. 2.5.

2.2 Literature Review

SCRM is gaining interest of researchers and practitioners because of the occurrence
of major supply chain disruptions (Sodhi et al. 2012). Global sourcing and lean
operations are the main drivers of supply chain disruptions (Son and Orchard 2013).
The likelihood of the occurrence of an (undesirable) event, and the negative
implications of the event are the two common measures of risk (Bogataj and
Bogataj 2007). Risk mitigation strategies are implemented in order to reduce the
likelihood of occurrence and/or negative impact of risks (Tang and Tomlin 2008).
Robust strategies must be developed in order to help firms reduce cost and/or
improve customer satisfaction under normal conditions and to enable firms sustain
operations during and after a disruption (Tang 2006).
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According to Johnson (2001), capacity risks can be reduced by outsourcing and
building a flexible web of partners whereas operational hedging can help in
reducing currency and political risks. Christopher and Lee (2004) proposed a
number of strategies including information accuracy, visibility, accessibility and
responsive corrective actions. Zsidisin et al. (2004) recommended implementation
of supplier improvement programs and mitigation of supply disruptions through
creating business interruption plans, developing demand forecasts and modelling
supply processes.

Using the interpretive structural modelling, Faisal et al. (2006) introduced an
approach of understanding dynamics between different enablers of risk mitigation.
A similar concept of establishing cause and effect relationships between the enablers
of risk mitigation was explored in the Electronic supply chain in order to determine
the main drivers (Rajesh and Ravi 2015). Using a multi-method approach, Speier
etal. (2011) introduced a framework to examine the threat of potential disruptions on
supply chain processes and identified suitable potential mitigation strategies under
different conditions. Christopher et al. (2011) used a multiple case study approach in
several industries to understand how managers assess and mitigate global sourcing
risks across the entire supply chain. They proposed four generic strategies including
network re-engineering, collaboration, agility and risk management culture for
managing global sourcing risk. Son and Orchard (2013) developed an analytical
model for examining the effectiveness of two inventory based policies for mitigating
the impact of supply-side disruptions in a supply chain.

The main limitation of existing studies is their limited focus on capturing
interdependency between supply chain risks and mitigation strategies. Keeping in
view the significance of modelling systemic risks and capturing non-linear complex
interactions (Ackermann et al. 2014), researchers have started modelling interde-
pendency between supply chain risks (Badurdeen et al. 2014; Garvey et al. 2015).
However, to the best of our knowledge, interdependency between risks and risk
mitigation strategies has not been explored within a probabilistic network setting
including cost, effectiveness and manageability of strategies. Qazi et al. (2015b)
introduced a model for prioritising strategies within a probabilistic network of
interacting risks and strategies. In order to capture the risk appetite of a decision
maker, Qazi et al. (2015¢) proposed an expected utility based method to select
optimal strategies. In this chapter, we integrate cost, effectiveness and manage-
ability of strategies within a single model and focus on a different problem where
the main purpose is to prioritise specific number of strategies instead of optimising
a portfolio of strategies subject to a budget constraint.

BBNs present a useful technique for capturing interaction between risk events
and performance measures (Badurdeen et al. 2014). Another advantage of using
BBNSs for modelling supply chain risks is their ability of back propagation that
helps in determining the probability of an event that may not be observed directly.
BBNs also provide a clear graphical structure that most people find intuitive to
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understand. Besides, it becomes possible to conduct flexible inference based on
partial observations, which allows for reasoning (Onisko 2008). Another important
feature of using BBNs is to conduct what-if scenarios (Blodgett and Anderson
2000). There are certain problems associated with the use of BBNs: along with the
increase in number of nodes representing supply chain risks, a considerable amount
of data is required in populating the network with (conditional) probability values;
similarly, there are also computational challenges associated with the increase in
number of nodes.

2.3 Proposed Modelling Approach

Based on the efficacy of BBNs in capturing interdependencies between risks, we
consider BBN based modelling of a supply network as an effective approach. Such
a modelling technique can help managers visualise interaction between supply
chain risks and take effective mitigation strategies (Qazi et al. 2014, 2015a). BBNs
have already been explored in the literature on SCRM, however, the proposed
approach is unique in terms of integrating the cost, effectiveness and manageability
of risk mitigation strategies within the network setting of interacting supply chain
risks and strategies.

2.3.1 BBNs

BBN is a graphical framework for modelling uncertainty. BBNs have their back-
ground in statistics and artificial intelligence and were first introduced in the 1980s
for dealing with uncertainty in knowledge-based systems (Sigurdsson et al. 2001).
BBNs have been successfully used in addressing problems related to a number of
diverse specialties including reliability modelling, medical diagnosis, geographical
information systems, and aviation safety management among others. For under-
standing the mechanics and modelling of BBNs, interested readers may consult
Charniak (1991), Sigurdsson et al. (2001), Nadkarni and Shenoy (2001), Nadkarni
and Shenoy (2004), Jensen and Nielsen (2007), and Kjaerulff and Anders (2008).
A BBN consists of following elements:

e A set of variables (each having a finite set of mutually exclusive events) and a
set of directed edges between variables forming a directed acyclic graph; a
directed graph is acyclic if there is no directed path Ay — --- — A, so that
A = A, furthermore, the directed edges represent statistical relations if the
BBN is constructed from the data whereas they represent causal relations if they
have been gathered from experts’ opinion,

e A conditional probability table P(X|Yy,...,Y,) attached to each variable X with
parents Yi,..., Y,.
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2.3.1.1 Chain Rule for BBNs

Let a Bayesian Network be specified over A = {Ay,...,A,}, the chain rule of
probability theory allows factoring joint probabilities resulting in the calculations
made under certain probability states. The structure of a BBN implies that the value
of a particular node is conditional only on the values of its parent nodes. Therefore,
the unique joint probability distribution P(A) representing the product of all con-
ditional probability tables is given as follows:

P(4) = [ [ PlAipatan), 1)
i=1

where pa(A;) are the parents of A;.

2.3.2 Assumptions

Our model is based on following assumptions:

1. Supply chain risks and corresponding sources are known and these can be
modelled as a directed acyclic graph.

2. All random variables and risk mitigation strategies are represented by binary
states.

3. Conditional probability values for the risks and associated losses can be elicited
from stakeholders and the resulting network represents close approximation to
the actual perceived risks and associated interdependency.

4. Cost and manageability associated with each potential risk mitigation strategy
are known.

5. All stakeholders within the supply chain are willing to share information about
key risks, loss values and effort involved in implementing potential strategies.

2.3.3 Supply Chain Risk Network

A discrete supply chain risk network RN = (X,G,P,L,U,C,C,,) is a seven-tuple
consisting of [adapted from Kjaerulff and Anders (2008)]:

e a directed acyclic graph (DAG),G = (V,E), with nodes (V) representing dis-
crete risks and risk sources (Xg), discrete risk mitigation strategies (Xg), loss
functions (L), utility functions (U), cost functions (C), manageability weighted
cost functions (C,,) and directed links (E) encoding dependence relations,

e a set of conditional probability distributions (P) containing a distribution,
P(Xg,|Xpa(r,))> for each risk and risk source (Xg,),
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e aset of loss functions (L) containing one loss function, l(Xpa(V)), for each node v
in the subset V; € V of loss nodes,

e a set of utility functions (U) containing one utility function, (X)), for each
node v in the subset V, € V of utility nodes,

e aset of cost functions (C) containing one cost function, c(Xpa
v in the subset V,.€V of cost nodes,

e a set of manageability weighted cost functions (C,,) containing one manage-

ability weighted cost function, c,,(Xpq(v)), for each node v in the subset V,,, € V

of manageability weighted cost nodes.

(v))7 for each node

Risk network expected loss, RNEL(X), is given as follows (Qazi et al. 2015b):

RNEL(X) = H P(XV X]m(v)) Z l(XPa(w)) (22)

X, €Xg wevVy

Risk network expected utility for loss, RNEU(X), is given as follows (Qazi et al.
2015¢):

RNEU(X) = H P(lexpa(v)) Z M(Xpa(w)) (23)

X, €Xr weVy

2.3.3.1 An Illustrative Example of a Simple BBN

We present a very simple BBN comprising three risks; R1, R2 and R3 as shown in
Fig. 2.1. Each risk is assumed to have two states: True (T) or False (F). R3 is the
parent node influencing two child nodes ‘R1’ and ‘R2’ which are the leaf nodes.
The (conditional) probability values of the risks are given in Table 2.1. The updated
probability value of R1 and R2 can be calculated using Eq. (2.4). One of the
benefits of BBNs relates to the revision of beliefs once any evidence is propagated
across a variable or set of variables. The posterior belief about R3 can be calculated
using Eq. (2.5) once the evidence is instantiated at R1 or R2. The updated prob-
abilities of R1 and R2 are 0.44 and 0.544, respectively as shown in Egs. (2.6) and
(2.7). Similarly, the posterior probabilities of R3 are 0.82 and 0.99 corresponding to
the realisation of R1 and R2, respectively as shown in Egs. (2.8) and (2.9).

Fig. 2.1 A BBN comprising
three variables o °
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Table 2.1 (Conditional) Parent P(Risk\Parent)
probability values for the RI R2
three nodes
R3 T F T F
T (0.6) 0.6 0.4 0.9 0.1
F (0.4) 0.2 0.8 0.01 0.99

P(Ri=T)=P(Ri=T|R3=T) * P(R3=T)+P(Ri = T|R3 = F) * P(R3 = F)

(2.4)
= [ = [ = = * =
PR3 =TIRi = T) = P(R3=T,Ri=T) P(Ri=TIR3=T)* PR3 =T)
P(Ri=T) P(Ri=T)

(2.5)

P(R1=T) = (0.6 * 0.6) + (0.2 * 0.4) = 0.44 (2.6)

P(R2=T) = (0.9 * 0.6) + (0.01 * 0.4) = 0.544 (2.7)
0.6 * 0.6

PR3 =T|RL =T) = === 0.82 (2.8)
0.9 * 0.6

P(R3 = T|R2 = T) = = /== 0.99 (2.9)

In order to calculate RNEL(X) and RNEU(X), we assume the loss and utility
values corresponding to different states of risks as shown in Table 2.2 where utility
function is considered as u(loss) = —(loss * loss). Using Egs. (2.10) and (2.11),
the expected loss and expected utility values are calculated as 537 and -461428,

respectively.

RNEL(X) =P(Rl =T,R2=T,R3=T)x (Rl =T,R2=T,R3=T)

+P( l
+P(R1=T,R2=F,R3=F) (Rl
+P(Rl =F,R2=T,R3=F) * (Rl
+P(R1=F,R2=T,R3=T) * (Rl
+P(Rl=F,R2=F,R3=T) (Rl
+P(R1=F,R2=F,R3=F) (Rl

=537

+P(RI=T,R2=F,R3=T)*I(RI=T,R2=F,R3 =T)
Rl=T,R2=T,R3=F)«I(Rl =T,R2=T,R3 =F)

=T,R2=F,R3=F)
=F,R2=T,R3=F)
—F,R2=T,R3=T)
—F,R2=F,R3=T)
=F,R2=F,R3=F)

(2.10)



30 A. Qazi et al.

T*:ble ?-2 d]féss a?dtuttﬂityf Risk Loss (/) (monetary Utility (u)
I\./izl:lses or dirferent states o R1 ‘ R2 | R3 unlts) (103)
State
T |T |T |1000 -1000
T |F |T 750 —562.5
T |T |F 550 -302.5
T |F |F 300 -90
F |T |F 200 —40
F |T |T 700 —490
F |F |T 400 ~160
F |F |F 0 0

RNEU(X)=P(R1 =T,R2=T,R3=T) «u(Rl =T,R2 =T,R3 =T)
+P(RI=T,R2=F,R3=T)*u(Rl =T,R2=F,R3 =T)
+P(RI=T,R2=T,R3=F)«u(Rl =T,R2=T,R3 = F)

+P(R1=T,R2=F,R3=F)«u(Rl =T,R2=F,R3 = F)

+P(Rl=F,R2=T,R3=F)«u(Rl =F,R2=T,R3 = F)

+P(RI=F,R2=T,R3=T)*u(Rl =F,R2=T,R3=T)

+P(R1=F,R2=F,R3=T)*u(Rl =F,R2=F,R3=T)
+P(R1=F,R2=F,R3=F)*u(Rl =F,R2=F,R3=F)

= —461428

(2.11)

2.3.4 Problem Statement

Given different options of implementing risk mitigation strategies within a proba-
bilistic network of interconnected supply chain risks and strategies, how do we
prioritise these strategies keeping in view the cost, effectiveness and manageability
of strategies?

2.3.5 Objective Function

In this chapter, we aim to prioritise risk mitigation strategies yielding maximum
weighted summation of normalised expected utility for loss and normalised utility
for manageability weighted mitigation cost.
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max w* RNEU(X, )+ (1 —w)«U(Cy, ),
Tay EVxg ‘ o (2.12)
s.t.0<n<N

where

Vx, 18 a set of all possible orderings of different states of n mitigation strategies
(%5, X X5y X oL X Xy,),

RNEU(X) is the normalised expected utility for loss,

w is the relative importance weighting of normalised expected utility for loss,
ﬁ(Cm”‘_ ) is the normalised utility for manageability weighted cost of implementing
Vx, combination of mitigation strategies,

n is the number of strategies considered for implementation,

N is the maximum number of potential strategies.

In the case of a risk-neutral decision maker (assumed in the simulation study),
the objective function transforms as follows:

max w* U(RNEL(X, )+ (1 —w) x U(Cy. ),
max e DRNELX, )+ (1 =)+ T(C, ) o)
st.0<n<N

where U(RNEL(X)) is the normalised utility for risk network expected loss.
In order to assign manageability score to the strategies, we propose using the
ordinal scale (1-10) shown in Table 2.3.

2.3.6 Modelling Process

The following steps must be followed in developing the proposed network of
interacting supply chain risks and mitigation strategies:

1. Define the boundaries of the supply network and identify stakeholders.

2. Identify key risks and potential risk mitigation strategies on the basis of input
received from each stakeholder through interviews and/or focus group sessions.

3. Refine the qualitative structure of the resulting network involving all
stakeholders.

Table 2.3 Manageability scale for ranking of risk mitigation strategies

Manageability scale Ease of managing risk mitigation strategy
1-2 Very easy

34 Easy

5-6 Neither easy nor difficult

7-8 Difficult

9-10 Very difficult
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4. Determine (conditional) probability values, loss values resulting from risks and
cost and manageability score associated with implementing each potential
mitigation strategy and populate the BBN with all parameters.

5. Run the model for each combination of strategies and determine the expected
utility (loss) value.

6. Analyse the results and prioritise risk mitigation strategies on the basis of rel-
ative importance of normalised expected utility for loss and normalised utility
for manageability weighted cost of strategies.

7. Validate the model output involving stakeholders.

2.4 Simulation Study

We demonstrate the application of our proposed approach through a simple supply
network (Garvey et al. 2015) as shown in Fig. 2.2. The model was developed in
GeNIe 2.0 (2015). The supply network comprises a raw material source (RM),
two manufacturers (M1 and M2), a warehouse (W) and a retailer (R). We also
consider a transportation link between the warehouse and retailer (W-R). Risks are
represented by nodes comprising bar charts whereas resulting losses and mitigation
strategies are represented by diamond and rectangular shaped nodes, respectively.
Though each domain of the supply network may comprise a number of risks and
corresponding sources, we consider limited risks for the sake of simplicity.
Although the presented model represents the process flow of the supply chain, the

RM RM
©  Delay in shipment O  Contamination
T S0% [ [T oI ! .
F 50%|10 = F 60% | =
& m M1 / \ M2 M2 8

\ @  Machine Failure O Delay in shipment © Delay in shipment O  Machine faiure A
@ T30%[ L] i 720l i
F 7o I8 d el o oo o e

w »
[ Overburdened empl

Control 5

a0 [
w w F 60% [ =
&)

LT
L

© Delay in shipment © damage to inventory w
(] i . Flood
F 63% |l = F 67%| =

T20%|[]
Ry WR &

g%
=
9
®
2

@ O Inventory shortage ©  Truck accident 4
BE__ SR )
F 49% |l [m F 60% |0 [=

Fig. 2.2 Bayesian network based model of a supply network developed in GeNle 2.0 (2015)
(adapted from Garvey et al. (2015))
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Table 2.4 Loss values for different risks

Supply chain element Risk Loss (monetary units)
Raw material source Contamination (R1) 200
Delay in shipment (R2) 400
Manufacturer-I Machine failure (R4) 200
Delay in shipment (R5) 400
Manufacturer-II Machine failure (R3) 200
Delay in shipment (R6) 400
‘Warehouse Overburdened employee (R7) -
Damage to inventory (R8) 500
Delay in shipment (R9) 600
Flood (R12) -
Warehouse to retailer Truck accident (R10) 500
Retailer Inventory shortage (R11) 800

proposed approach is not strictly limited to capturing the network configuration of a
supply chain as it might not be feasible to model a huge supply network. Therefore,
we focus on modelling the risk network instead of mapping the entire supply
network.

Each risk and mitigation strategy is represented by binary states of “True (T)’ or
‘False (F)’ and “Yes’ or ‘No’, respectively. Assumed loss values associated with the
risks are shown in Table 2.4. The strength of interdependency between risks and
the impact of strategies on related risks are represented by (conditional) probability
values as shown in Table 2.5. As R1 does not have a parent node, its probability
value is not contingent on any node. The italicised value represents the reduced
probability of a risk after implementation of the related strategy. The conditional
probability value of R2 (being True) is 0.8 given that its parent node ‘R1’ is in
“True’ state. Implementation of each mitigation strategy is assumed to incur a cost
of 100 units. The assumed manageability scores are shown in Table 2.6. All
parameters specific to a real case study can be elicited from experts through
interviews and focus group sessions.

2.4.1 Results and Analysis

After populating the model with assumed parameters, it was updated and the array
of values corresponding to different combinations of mitigation strategies was
exported to a Microsoft Excel worksheet. We evaluated the potential strategies with
respect to the cost-effectiveness based ranking scheme followed by the prioritisation
of strategies considering both manageability and cost-effectiveness. The results
provided an important insight into realising the significance of incorporating
manageability aspect into the model and prioritising strategies through the proposed
approach.
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Table 2.5 (Conditional) probability values [P(risk = F|parents) = 1 — P(risk = T|parents)]

Parents P(risk = T|parents)
R1 R2 R3 R4 R1 R2 R3 R4 R5 R6
0.4
0.1
T 0.8
F 0.3
0.2
0.1
0.3
0.2
T T 0.7
T F 0.4
F T 0.6
F F 0.1
T T 0.9
T F 0.6
F T 0.5
F F 0.2
Parents P(risk = T|parents)
R5 R6 |R7 |R8 |R9 |RIO |RI12 |R7 R8 R9 R10 R11 R12
0.4
0.3
T T 0.8
0.5
T F 0.3
0.15
F T 0.6
04
F F 0.2
0.15
T T T 0.9
T T F 0.5
T F T 0.6
T F F 0.3
F T T 0.4
F T F 0.3
F F T 0.3
F F F 0.2
0.4
0.15
T T 0.9

(continued)
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Table 2.5 (continued)

Parents P(risk = T|parents)
R5 |R6 |R7 |R8 |R9 |R10 |R12 |R7 |RS8 R9 |R10 |R11 |RI2
T F 0.7
F T 0.6
F F 0.2
0.2
Table 2.6 Manageability scores assigned to the risk mitigation strategies
Risk mitigation strategy Strategy Impact Manageability
(control) ID on risk score
1 Quality assurance program R1 10
2 Scheduled maintenance R3 1
program
3 Scheduled maintenance R4 2
program
4 Scheduling software and R7 6
monitoring program
5 Early warning system R8 5
6 Training on simulator R10

2.4.1.1 Cost-Effectiveness Based Prioritisation of Strategies

We evaluated the cost-effectiveness of strategies and prioritised these through the
lens of risk network expected loss as shown in Fig. 2.3. Each point represents one
of the 64 different combinations of six mitigation strategies whereas the corre-
sponding value was calculated using Eq. (2.2) for the specific combination of
strategies applied to the risk network shown in Fig. 2.2. As each strategy was
assumed to incur 100 units of mitigation cost, the strategies represented by the
lowest points corresponding to each number of strategies are also the cost-effective
strategies. Considering the cost-benefit analysis, strategies resulting in maximum
improvement in the risk network expected loss (less mitigation cost) must be
selected. Such strategies are represented by the peak points appearing in Fig. 2.4.

It is interesting to note that there is only one cost-effective combination of 5
strategies, however, implementation of all 6 strategies does not result in achieving the
net gain. Moreover, the value of net improvement increases up to 2 strategies and
declines beyond that point. Optimal strategies are shown in Table 2.7. Strategy 4 is
not a feasible strategy except once all the potential strategies need to be implemented.
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Fig. 2.4 Variation of cost-effectiveness of risk mitigation strategies with respect to the number of
strategies

This is mainly because of the fact that the strategy is linked to R7 with no loss value
associated with the risk (Table 2.4). Furthermore, R7 does not appear to be a major
source of disruption across the entire risk network and even if all 6 strategies are
implemented (including Strategy 4), the risk network expected loss is not reduced
substantially (Fig. 2.3). That is why, when all 6 strategies are selected, the total cost
outweighs the associated benefit.
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Table 2.7 Cost-effectiveness based prioritisation of strategies

Number of risk mitigation strategies Prioritised strategies
1 6
2 1 and 6
3 1,5 and 6
4 1,3,5and 6
5 All except 4
6 All
3500
f . °
s 3000
= 0
= 8 o
E 2500 9 8 R
2 o § ’
5o 2000 R 3 N
3 o S 3
=< 1500 8 8
> o
= [}
= o o
E 1000 g s .
5 3 ’
< o o
§ 500 o
o]
09 <
0 1 2 3 4 5 6

Number of Mitigation Strategies

Fig. 2.5 Variation of manageability weighted mitigation cost with respect to the number of
strategies

2.4.1.2 Manageability and Cost-Effectiveness Based Prioritisation
of Strategies

We prioritised the strategies on the basis of associated manageability, cost and
effectiveness. Values of manageability weighted cost corresponding to different
combinations of strategies are depicted in Fig. 2.5. As each strategy was assumed to
incur a cost of 100 units, the manageability weighted cost directly reflects the
manageability score assigned to each strategy. The lowest points corresponding to
the number of strategies are the optimal combinations keeping in view the factors of
cost and manageability; however, these may not necessarily achieve the maximum
improvement in the risk network expected loss.

As we assumed the decision maker as risk-neutral, the utility for risk network
expected loss could be substituted for the expected utility for loss. Utility for
manageability weighted mitigation cost was assumed as a decreasing linear func-
tion. Variation of both the normalised utility functions considering maximum
values with the number of strategies is shown in Fig. 2.6. Normalised utility for the
manageability weighted cost attains the maximum value once no strategy is selected
and reduces to the minimum value in case of selecting all 6 strategies and vice versa
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number of strategies

in case of normalised expected utility for loss. The two points corresponding to
each number of strategies represent optimal combinations of strategies with respect
to the two utility functions that might comprise different strategies. It is also
important to realise the non-linear trend of utility functions.

Considering equal weights assigned to the two normalised utility functions, we
analysed the behavior of the resulting function as shown in Fig. 2.7. It can clearly
be observed that a risk-neutral decision maker will prefer implementing 4 strategies.
Implementing all 6 strategies yields the minimum utility to the decision maker.
Points appearing in red colour are the optimal combinations of strategies corre-
sponding to the specific number of strategies.

We also conducted the sensitivity analysis through varying the weightings for
normalised utility functions as shown in Fig. 2.8. Optimal strategies considering
critical factors of cost, effectiveness, manageability and importance weighting of
each normalised utility function are given in Table 2.8. The optimal strategies vary
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Table 2.8 Cost-effectiveness and manageability based prioritisation of strategies

Number of risk mitigation Prioritised strategies based on different weighting schemes [risk
strategies network expected loss (w), manageability weighted cost
1 —=w)
0.9,0.1) [(0.7,03) |[(0.5,05) |(0.3,0.7) [(0.1,0.9)
1 6 6 6 2 2
2 1 and 6 1 and 6 2 and 6 2 and 3 2 and 3
3 1,5 and 1,5 and 1, 2 and 2,3 and 2,3 and
6 6 6 5 5
4 1,3,5 1,3,5 1,2,3 2,3,5 2,3, 4
and 6 and 6 and 6 and 6 and 5
5 All All All All All
except 4 except 4 except 4 except 4 except 1

in relation to different weighting schemes. Strategy 4 appears to be the least
important strategy in all weighting schemes except the one in which minimum
importance is given to normalised expected utility for loss (w = 0.1). For the
weighting schemes considering relative importance of normalised expected utility
for loss as w = 0.9,0.7,0.5, it is always optimal to implement the same combi-
nation of 5 strategies. The sensitivity analysis also helped in verifying the validity
of our simulation model. Weighting schemes assigning substantial importance to
the normalised utility for manageability weighted cost (w = 01,0.3) result in
implementing no strategy.

Evaluation of risk mitigation strategies through the proposed approach results in
prioritisation of strategies considering holistic interaction of supply chain risks and
strategies, and integrating important factors of cost, effectiveness and manageability
of strategies within the modelling framework. As the approach is grounded in the
theoretical framework of BBNs the resulting solution can be considered as viable.



40 A. Qazi et al.

However, it is assumed that all stakeholders would be willing to share their
information and furthermore, elicited values would truly reflect the real-time risk
scenario. Furthermore, modelling the risk attitude of a decision maker and assigning
the relative importance weights to each utility function are challenging tasks.

2.4.2 Managerial Implications

The proposed modelling approach can help supply chain managers prioritise risk
mitigation strategies taking into account the cost, effectiveness and manageability of
strategies. Based on the risk attitude of a decision maker, optimal strategies can
easily be prioritised. The approach is equally beneficial for managers dealing with
complex supply chains as the development of a risk network does not necessarily
follow the process flow of a supply chain. Causal mapping (qualitative modelling of
BBNSs) is beneficial to managers in identifying important risks and understanding
dynamics between these risks.

2.5 Conclusions

SCRM is an active area of research focusing on effective management of risks
ranging across the entire supply network. A number of models have been proposed
to identify and assess risks. Similarly, researchers have also proposed appropriate
strategies to mitigate specific risks. Limited studies have considered evaluating
supply chain risk mitigation strategies within an interdependent setting of inter-
acting supply chain risks and strategies. However, the evaluation of such strategies
within a probabilistic network model capturing cost, effectiveness and manage-
ability of potential strategies has not been addressed in the literature. Besides
considering cost of implementing a strategy, it is also important to model the
associated manageability-ease of implementing and managing a strategy.

In this chapter, we have proposed a modelling process of prioritising risk mit-
igation strategies on the basis of relative cost, effectiveness and manageability
within a theoretically grounded framework of BBNs and demonstrated its appli-
cation through a simulation study. Although we have assumed the decision maker
as risk-neutral in the study, the proposed modelling process can be adapted to
capture specific risk appetite of a decision maker which is represented by the unique
utility function for loss and the relative importance of cost for implementing
strategies.

In models ignoring manageability of strategies, it is assumed that all strategies
are equally manageable. However, strategies differ in terms of manageability and
such an assumption undermines the efficacy of models in evaluating strategies. The
proposed process helps in determining optimal strategies for a given number of
potential strategies. As the optimal strategies are different for cost-effectiveness and



2 Cost-Effectiveness and Manageability Based Prioritisation ... 41

cost-effectiveness cum manageability based prioritisation schemes, we consider it
important to model the manageability of strategies without which a decision maker
would select and implement sub-optimal strategies.

We have represented risks and mitigation strategies by binary states. In future,
risks can be modelled as continuous variables whereas strategies can be represented
by a continuum of control levels. The proposed method is a first step towards
modelling manageability of strategies within a framework of interdependent risks
and strategies. It is important to consider the practical implications of adopting such
an approach within a real case study. Another interesting and related theme is to
model the adaptability of strategies and to explore the control levels of existing
strategies yielding maximum net improvement in the expected loss less cost.
Furthermore, less labour intensive elicitation methods may be developed and
evaluated to help practitioners implement the process.
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