
A Phase-wise Review of Software
Security Metrics

Syed Anas Ansar, Alka and Raees Ahmad Khan

Abstract Integrating security at each phase of the software Development Life
cycle (SDLC) has become an urgent need. Moreover, security must not be over-
looked at early phases of SDLC. This helps to minimize cost and efforts for later
phase of the life cycle. In addition, software security metrics are the tools to judge
level of security of software. Without the use of the metrics, no one can ensure the
usefulness of any approach which claims to improve security of the software. The
paper presents a phase-wise review of security metrics and the issues in their
adaptation. Though there are security metrics available for each phase of the
software development life cycle, their usefulness in the software industry or in
research is in question without their validation. In addition, a concrete research is
needed to develop security metrics at early phases of software development life
cycle.

Keywords Software security ⋅ Security metrics ⋅ Software development life
cycle

1 Introduction

Security refers to ensuring confidentiality, integrity, authenticity, availability,
non-repudiation etc. [1]. It protects the system from unauthorized use, access,
disclosure, and modification [2]. Nowadays news headlines are frightening us about
data and information theft. This raises question about the status of security of data

S.A. Ansar (✉) ⋅ Alka ⋅ R.A. Khan
Department of IT, Babasaheb Bhimrao Ambedkar University,
Vidya Vihar, Raebareli Road, Lucknow 226025, India
e-mail: syed000anas@gmail.com

Alka
e-mail: alka_cs@jmuyahoo.co.in

R.A. Khan
e-mail: khanraees@yahoo.com

© Springer Nature Singapore Pte Ltd. 2018
G.M. Perez et al. (eds.), Networking Communication and Data Knowledge
Engineering, Lecture Notes on Data Engineering and Communications
Technologies 4, https://doi.org/10.1007/978-981-10-4600-1_2

15



stored, processed through computers, and shared through Internet. The
hackers/attackers cannot only be blamed for these incidences, designers and
developers of the software are equally responsible. Even after so many life
threatening security incidents, it is still treated as an afterthought while developing
the software. Security features are often sprayed on the completely developed
software [1, 3]. As a result, ensuring software security has become a battle.
A hacker tries to find and exploit security holes present in the software. He does not
create security holes on his own. Hence, presence of even single security hole may
be responsible to exploit the software’s security completely. The irony is that the
security practitioners can never be confident that they have found and patched all
the security holes. Hence, security has become a great challenge.

Instead of spraying security features on the security holes found during pene-
tration, security must be addressed during each phase of software development life
cycle (SDLC) [1]. Addressing security at each phase of SDLC is termed as software
security. Hence, it is the idea of developing software so that it can provide the
required function even when it is attacked [3]. In addition, while improving security
of the software under development, it is very important but difficult to judge the
level of security. Now, the role of security metrics comes into the picture. Without
the help of the good security metrics and systematic approaches, it is difficult to
assure security level of software. Metrics is a measurement standard which defines
what is to be measured and how and helps the security practitioners to manage the
product efficiently [4]. Security metrics is the powerful tool that helps security
practitioners to integrate security features into their system [5–7]. Nowadays met-
rics are gaining much consideration because with the help of the data obtained from
them decision can be taken accordingly. They assist practitioners to meet their goal
for secure software development [1, 7, 8]. Rest of the paper is organized as: next
section discusses about the related work in the area. Section 3 presents phase-wise
systematic review of security metrics. Section 4 discusses about major findings, and
finally, the paper is concluded at Sect. 5.

2 Related Work

The research in the area of software security has been going on worldwide. Fol-
lowing is some pertinent research work in the area. B. M. Alshammari et al.
(2016) have reviewed different procedures for building more secure systems. They
have firstly reviewed various design principles. The authors have also explained
some of the existing work on software quality including software security metrics
and have also compared different security metrics for building secure systems.
Finally, they have discussed about refactoring and its influence on security with the
demonstration showing that the refactoring is used for enhancing the quality of
program. In addition, they have suggested that these all can be used as components
of secure system architecture. This study may be used as guidance for building and
recognizing secure software [9].

16 S.A. Ansar et al.



D-E. Lim and T-S. Kim (2014) have modelled the discovery and removal of
software vulnerability based on queuing theory. Vulnerability has been classified
into groups on the basis of their severity calculated by Common Vulnerability
Scoring System (CVSS). In this approach, three parameters have been used. For
each class, the queuing model has been used for obtaining waiting time and number
of vulnerabilities present in a queue. They applied the Takagi equation for obtaining
average waiting time of an arbitrary vulnerability, and then, they finally applied
Little’s Law to Takagi equation for obtaining the number of unfixed vulnerabilities.
The system risk is measured by counting the number of unfixed vulnerabilities [10].
A. A. Abdulrazeg et al. (2012) have developed security metrics to improve misuse
case model for discovering and fixing defects and vulnerabilities. The proposed
security metrics indicates the possibility of security defects. The metrics have been
developed using goal question metric approach (GQM). The presented metrics
consist of two main goals. For achieving first and second goal, they have developed
security metrics on the basis of anti-pattern and web application security risk
OWSAP top 10-2010 respectively. The proposed work is significant to remove
modelling defects and to improve security use cases before these defects move to
the next stage of development life cycle [11].

S. Islam and P. Falcarin (2011) have identified security requirements for mea-
suring software security goals with the help of risk management process. They
evaluated these software security requirements for measuring software security on
the basis of GQM approach. GQM approach is a procedure that confers a frame-
work for defining and explaining metrics. The approach includes: purpose (Why),
object, issue, perspective, viewpoint, environment (context), and when. They par-
tially followed security quality requirement engineering (SQUARE) methodology
for identifying requirements. SQUARE methodology provides a means of eliciting,
classifying, and emphasizing security requirements for information technology
system and application. They followed ISO 17799:2005 standard as a baseline for
developing the metrics [2]. H. C. Joh and Y. K. Malaiya (2010) proposed a
framework in which they combine stochastic model (as vulnerability life cycle) and
Common Vulnerability Scoring System (CVSS) metrics for the evaluation of risk.
They defined risk from the point of view of the vulnerability life cycle, considering
the probabilities, exploitation of software vulnerability in a system, and the impact
of its exploitation. They have first considered the evaluation of the risk induced by a
single vulnerability. They have also generalized the approach to include all the
potential vulnerabilities in software [12].

R. M. Savola (2009) introduced a modern method for the development of
security metrics based on threat, security requirements, and decomposition of
security goals. In the proposed method, he has used some process for security
metric development. Firstly, threat and vulnerability analysis has been carried out,
and then, prioritized security requirements have been declared. By identifying basic
measurable components (BMC), the author has generated measurement architecture

A Phase-wise Review of Software Security Metrics 17



and had selected the BMCs to be used as the basis for detailed metrics. Finally, he
validated the security metrics. The core activity of the proposed method is to
decompose the security requirements [13]. J. A. Wang et al. (2009) developed
security metrics on the basis of representative weaknesses of the software [14].
M. A. Hadvi et al. (2008) proposed a method for early mitigation of software
vulnerabilities for the secure software development. They have selected the most
common 23 vulnerabilities and defined them. They have analyzed reasons for their
presence in a phase. They provided countermeasures for their avoidance and mit-
igation through design level activities (13 design activities) as well as implemen-
tation level activities (19 activities). They finally mapped these vulnerabilities to the
given activities. The mapping would mitigate the specific vulnerabilities and would
provide a better insight of introduction of vulnerabilities. This may help security
practitioners to develop secure software [15].

Shirley C. Payne (2007) has worked on developing a security metrics program
and has proposed a seven-step methodology that may guide development of simple
metrics programs. They have advised managers to take help from existing easy,
cheap, and fast measures. The important thing they have concluded is that the
metrics generated should be useful enough to make advancement in the overall
security program. The purpose of this guide is to provide an overview of the current
state of security metrics [16]. O.H. Alhazmi et al. (2007) have proposed a new
metric called vulnerability density. It can be used to compare the software systems.
They have defined vulnerability density metric as the number of vulnerabilities per
unit size of code. By using vulnerability density as a parent metric, they have
coined a set of metrics called as known vulnerability density, residual vulnerability
density. They defined known vulnerability density as the number of known vul-
nerabilities in the unit size of code and the residual vulnerability density metric as
the vulnerabilities density minus the known vulnerabilities density [17].

3 Phase-wise Security Metrics

The field of security metric is comparatively new [18]. Many software industries,
researchers, and practitioners have developed security metrics. These metrics are
related to different phases of the software development life cycle. This paper pre-
sents a systematic review of the security metrics available for different phases of
software development life cycle. The research has performed phase-wise review of
available security metrics. The security metrics for requirement Phase, design
phase, coding/implementation phase, testing phase, and maintenance phase are
presented in the Tables 1, 2, 3, 4, and 5, respectively.

18 S.A. Ansar et al.



Table 1 Security metrics for requirement phase

Security metrics Definition/purpose

Security Requirements
Recorded Deviations (SRRD)

This metric is used to provide the number of deviations
from security requirements [19]

Security Requirements stage
Security Errors (SRSE)

It provides the number of security errors that are the result
of incomplete or incorrect security requirements [19]

Security Requirements
gathering Indicators (SRI)

It provides indicators on requirements gathering and
analysis phase, which explains the impact of security
requirements on the number of security breaches/violations
[19]

Total number of security
requirement (Nsr)

It aims to measure the number of security requirements
identified/found during analysis phase [20]

Ratio of security requirements
(Rsr)

This provides the ratio of requirement which has direct
impact on security to the total number of requirement.
Rsr =

SRj j
Rj j

Where SR is the set of security requirement and R is the set
of all the requirement of the system [20]

Number of omitted security
requirements (Nosr)

It measures the number of security requirement that has
been not considered during the analysis phase [20]

Table 2 Security metrics for design phase

Security metrics Definition/purpose

Vulnerable Association of an
Object Oriented Design(VA_OOD)

It is calculated as the ratio of summation of vulnerable
association of each class to the total number of vulnerable
classes in the design [21]
VA OOD= ∑VulnerableAssociation of EachClass

Total Number of VulnerableClasses in theDesign

Security Requirements Statistics (SRs) If NSRD is number of security requirements considered for
design, then SRs is given as
SRs = NSRD

NSRG
Where NSRG is the number of security requirement
gathered in that design [19]

Number of Design stage Security
Errors (NDSE)

It calculates the number of security errors due to the design
stage [19]

Composite-Part Critical Classes
(CPCC)

CPCCðDÞ=1 − CP
CC

�
�

�
�

� �

Where CC is critical classes in design D and CP is
composed-part critical classes in the same design [22]

Critical Class Coupling (CCC) It is calculated as the ratio of the number of all classes’
linked with classified attributes to the total number of
possible links with classified attributes in a given design
[22].

CCCðDÞ= ∑ca
j=1 αðCAjÞ

ð Cj j − 1Þ × CAj j
Critical Class Extensibility (CCE) It can be calculated as the ratio of the number of

non-finalized classes in a design to the critical classes in that
design [22].
CCEðDÞ= ECCj j

CCj j
(continued)

A Phase-wise Review of Software Security Metrics 19



Table 2 (continued)

Security metrics Definition/purpose

Classified Methods Extensibility
(CME)

It is the ratio of the number of non-finalized classified
method to the total number of classified methods in a design
[22].
CMEðDÞ= ECMj j

CMj j
Critical Super-classes Proportion
(CSP)

It measures the ratio of the number of critical super classes
to the total number of critical classes in an inheritance
hierarchy [22].
CSPðHÞ= CSCj j

CCj j
Classified Methods Inheritance (CMI) This aims to measure the ratio of the number of classified

methods which can be inherited in a hierarchy to the total
number of classified methods in that hierarchy [22].
CMIðHÞ= MIj j

CMj j
Critical Design Proportion (CDP) It is calculated as the ratio of the number of critical classes to

the total number of classes in a design [22].
CDPðDÞ= CCj j

Cj j
Coupling Induced Vulnerability
Propagation Factor(CIVPF)

It is defined as the summation of induced vulnerability
propagation from a root vulnerable class to others in a
design to the total number of classes in that design.

CIVPF= ∑p
i=1 Li
N

Where N is the total number of classes, and Li (i=1,…..p) is
the total number of coupling induced vulnerability
propagation from a root vulnerable class Ci to the others
[23]

Classified Instance Data Accessibility
(CIDA)

It is the ratio of the number of classified instance public
attributes to the total number of classified attributes in a class
[24].
CIDAðCÞ= CIPAj j

CAj j
Classified Class Data Accessibility
(CCDA)

It is computed as the ratio of the number of the classified
class public attributes to the number of classified attributes
in a class [24]
CCDAðCÞ= CCPAj j

CAj j
Classified Operational Accessibility
(COA)

It is defined as the ratio of the number of classified public
methods to the number of classified method in a class [24].
COAðCÞ= CPMj j

CMj j
Classified Methods Weight (CMW) It is calculated as the ratio of the number of classified

methods to the total number of methods in a given class
[24].
CMWðCÞ= CMj j

Mj j
Number of design decisions related to
security (Ndd)

It aims to measure the number of design decisions that
describes security requirements of the system [20]

Ratio of design decisions (Rdd) This can be computed as the ratio of design decisions related
to security to the total number of design decisions [20].
Rdd= Ndd

Nd

20 S.A. Ansar et al.



Table 3 Security metrics for coding/ implementation phase

Security metrics Definition/purpose

Percent of Security Coding Aspects
(PSCA)

This indicates the percentage of security aspects
considered during coding according to design [19]

Percent use of Coding Standard (PCS) It indicates the use of coding standards for secured
development and shall be supported in identifying
the consideration of security standards during code
implementation [19]

Number of Security Errors (NSE) This metric is used to indicate the flaws expressed
as the sum of coding errors and also the errors from
other library code [19]

Stall Ratio (SR) This metric aims to measure the ratio of the number
of lines of non-progressive statements in the loop to
the total number of lines in a loop [25]
SR= Lines of non − progressive statements in a loop

Total lines in the loop

Coupling Corruption Propagation
(CCP)

It is defined as the number of child methods called
with the parameter(s) that are based on the
parameter(s) of the original invocation [25]

Critical Element Ratio (CER) This aims to provide the ratio of critical data
elements in an object to the total number of
elements in the object. It measures the ways a
program can be infected by malicious inputs [25].
CER= CriticaData Elements in theObject

Total Number of Elements in theObject

Precision It relates the true defective components to the total
number of components predicted as defective.
Precission= TP

TP + FP
Where TP is true positive and FP is false positive
[26]

Recall It is defined as the ratio of true defective
components to the total number of defective
components.
Recall= TP

TP + FN
Where TP is true positive and FN is false negative
[26]

F-measure It is used to combine the precision and recall as a
harmonic mean [26].
F − measure = 2 × Recall × Precision

Recall + Precision

Accuracy It is used to measure the overall accuracy of the
prediction [26].
Acc= TP + TN

TP + TN + FP + FN

Ratio of implementation errors that
have direct impact on security(Rserr)

This provides the ratio of the number of errors that
have a direct impact on security to the total number
of errors in the implementation of the security [20].
Rserr = Nserr

Nerr

A Phase-wise Review of Software Security Metrics 21



4 Major Findings

A literature survey of software security metrics indicates the immaturity of the area.
Following are some finding obtained during the survey:

• It is found that no comprehensive evaluation scheme is devised for these
metrics.

• Most of the metrics developed for the early phases of SDLC are vague in nature.
Hence, there is a need to develop security metrics for successful implementation
of security in those phases.

• Almost all the metrics have been implemented only on small data sets.
• There is need to conduct more experiments to extract concrete conclusion about

the implication of the proposed metric values.

Table 4 Security metrics for testing phase

Security metrics Definition/purpose

Security Requirements
Considered for Testing (SRT)

It can be indicated by the ratio of the security requirement
tested, and the number of security requirement gathered
(NSRG) [19]

Process Effectiveness (PE) It can be represented by the ratio of number of security
vulnerability discovered (NVD) to the number of modules
undergone security testing (MST) [19].
PE= NVD

MST

Security Testing Ratio (STR) This indicates the ratio of modules undergone security
testing to the total number of modules [19].
STR= MST

M

Ratio of security test cases that
fail (Rtcp)

This aims to provide the ratio of numbers of test cases that
fails to detect implementation errors to the number of test
cases specially designed to detect the security issues [20].
Rtcp= TFj j

TPj j + TFj j

Table 5 Security metrics for maintenance phase

Security metrics Definition/purpose

Mean Time to Complete Security
Changes (MTCSC)

It is estimated by the number of security failures and
mean time taken to repair the flaws [19].
MTCSC = MTTSF + MTTR

Percent of Changes with Security
Exceptions (PCSE)

It is measured by the ratio of counts of completed
changes with security exceptions and completed
changes multiplied by 100 [19]

Ratio of patches issued to address
security vulnerability (Rp)

This aims to provide the ratio of a number of patches
that are released to address security vulnerability to the
total number of patches of the system [20].
Rp= Nsp

Np

Number of security incidents
reported (Nsr)

It aims to measure the number of incidents that are
concerned with security [20]

22 S.A. Ansar et al.



• Proper validation of most of these metrics has not been done.
• There is no real-life implementation of these metrics.
• There is a need to examine the role of CASE tools while using these metrics.
• Proper evaluation of usefulness of these security metrics is also required.
• There is a need to develop a security metric development framework for unified

development and evaluation of metrics.

In SDLC, design phase is the most convenient phase for consolidating security
decisions. Unfortunately, there is no efficient methodology or tool exists to address
security issues at this phase. Almost negligible work has been reported to address
security at this phase. So there is need to develop an appropriate framework for
metric development at this phase. The framework may assist in developing and
validating security metric.

5 Conclusion

Rapid development in issues related to security has facilitated the development of
security metrics. Today, software security measurements have become a genuine
demand in software industry. Metric is a measurement standard which defines what
is to measure and how and helps the security practitioners to manage product
efficiently. It also provides quantitative as well as objective basis for security
assurance. The metrics are supposed to be the foundation of secure development of
software. In this paper, a number of software security metrics for different phases of
SDLC have been reviewed. The developers of the metrics have claimed that the
metrics not only allow the security practitioners to ensure security of the software,
but also indicate where the security issue or vulnerability occurs. The available
approaches also ensure security hole-free software design and coding. Overall,
actual usefulness of the metrics is always in question until it is validated or
implemented on industrial data. In absence of a pertinent ready to use framework
for development of security metrics to be used in early stage of software devel-
opment life cycle, there is need to develop a security development framework to
guide the development of a minimal set of the metrics or integrated metrics.

Acknowledgements This work is sponsored by UGC-MRP, New Delhi, India under F.
No. 43-391/ 2014 (SR)

References

1. McGraw, G.: “Software Security”:Building Security In. (Addison-Wesly, 2006)
2. Islam, S. Falcarin, P.: Measuring Security Requirements for Software Security. In 10th

International Conference on Cybernetic Intelligent Systems (CIS), ISBN 978-1-4673-0687-4,
DOI 10.1109/CIS.2011.6169137, pp. 70-75, IEEE, (2011)

A Phase-wise Review of Software Security Metrics 23

http://dx.doi.org/10.1109/CIS.2011.6169137


3. McGraw, G., Potter, B.: Software Security Testing [J]. IEEE Security & Privacy, 2(5):81–85,
(2004)

4. Herrmann, D.S.: Complete Guide to Security And Privacy Metrics. Auerbach Publications,
ISBN: 0-8493-5402-1. (2007)

5. Swanson, M., Bartol, N., Sabato, J., Hash, J., and Graffo, L.: Security Metrics Guide For
Information Technology Systems. NIST Special Publication 800–55, National Institute Of
Standards And Technology, (2003)

6. Chaula, J. A., Yngstrom, L., and Kowalski, S.: Security Metrics And Evolution Of
Information Systems Security. In Proc. of the 4th Annual Conference on Information Security
For South Africa, (2004)

7. Payne, S. C.: A guide To Security Metrics. (2001)
8. Goodman, P.: Software Metrics: Best Practices For Successful IT Management. (2004)
9. Alshammari, B., Fridge, C., Corney, D.: “Developing Secure System: A Comparative Study

of Existing Methodologies”. Lecture Notes on Software Engineering, vol.2, no.2, may 2016,
pp: 139–146, doi: 10.7763/LNSE.2016.V4.239

10. Lim, DE., Kim, TS.: Modelling Discovery and Removal of Security Vulnerabilities in
Software System Using Priority Queuing Models. Journal of Computer Virology and Hacking
Techniques, Springer, 10: 109–114,DOI 10.1007/s11416-014-0205-z, (2014)

11. Abdulrazeg, A. A., Norwani, N. Md., Basir, N.: Security Metrics to Improve Misuse Case
Model. International conference on Cyber Security, Cyber Warfare and Digital Forensic,
ISBN 978-1-4673-1425-1, Doi 10.1109/CyberSec.2012.6246129, pp. 94–99, IEEE, (2012)

12. Joh, HC., Malaiya, Y. K.: A Framework for Software Security Risk Evaluation Using the
Vulnerability Lifecycle And CVSS Metrics. Proc. International Workshop on Risk and Trust
in Extended Enterprises, pp. 430–434 (2010)

13. Savola, R. M.: A security Metrics Development Method for Software Intensive Systems.
Advances in Information Security and its Application, Communications in Computer and
Information Science, 2009, Volume 36, pp. 11-16,Springer, (2009)

14. Wang, J. A., Wang, H., Guo, M., Xia, M.: Security Metrics for Software Systems. In the Proc.
Of ACMSE, March 19–21, Clemson, SC, USA, (2009)

15. Hadvi, M. A., Sangchi, H. M., Hamishagi, V. S., Shirazi, H.: Software Security; A
Vulnerability-Activity Revisit. Third International conference on Availability, Reliability, and
Security, ISBN 978-0-7695-3102-1, Doi10.1109/ARES.2008.200 IEEE, (2008)

16. Payne, S. C.: “A Guide to Security Metrics”. SANS Institute 2007. Available at: www.sans.
org/reading_room/whitepapers/auditing/55.php. Last visit Aug. 22 2016.

17. Alhazmi, O. H., Malaiya, Y. K., Ray, I.: Measuring, Analysing, and Predicting Security
Vulnerabilities in Software Systems. Computers and Security Journals, pp. 219–228, (2007)

18. Manadhata, P. K and Wing, J. M.: An Attack Surface Metric. Technical Report. School of
Computer Science, Carnegie Mellon University (CMU). CMU-CS-05-155, (2005)

19. Jain, S., Ingle, M.: Security Metrics and Software Development Progression. Journal of
Engineering Research and Applications, ISSN: 2248–9622, Vol. 4, Issue 5 (Version 7),
pp. 161–167, (2014)

20. Sultan, K., En-Nouaary, A., H-Lhadj, A.: Catalog for Assessing Risks of Software
Throughout the Software Development Life Cycle. In the Proc. of International Conference
on Information Security and Assurance, pp. 461–465, IEEE, (2008)

21. Agarwal, A., Khan, R. A.: Assessing Impact of Cohesion on Security- An object Oriented
Design Perspective. vol 76, No. 2, pp. 144–155, Pensee Journal, (2014)

22. Alshammari, B., Fridge, C., Corney, D.: Security Metrics for Object-Oriented Designs. Proc.
21st Australian software Engineering Conference, IEEE Press, pp. 55–64, Doi:ieeecomput-
ersociety.org/10.1109/ASWE(2010)

23. Agarwal, A., Khan, R. A.: Role of Coupling in Vulnerability Propagation Object Oriented
Design Perspective. Software Engineering: An International Journal (SEIJ), Vol. 2, No. 1,
pp. 60–68, (2012)

24 S.A. Ansar et al.

http://dx.doi.org/10.7763/LNSE.2016.V4.239
http://dx.doi.org/10.1007/s11416-014-0205-z
http://dx.doi.org/10.1109/CyberSec.2012.6246129
http://www.sans.org/reading_room/whitepapers/auditing/55.php
http://www.sans.org/reading_room/whitepapers/auditing/55.php
http://dx.doi.org/10.1109/ASWE


24. Alshammari, B., Fridge, C., Corney, D.: Security Metrics for Object-Oriented Class Designs.
In proceedings of the Ninth International Conference on Quality software (QSIC), IEEE,
(2009)

25. Chowdhury, I., Chan, B., Zulkerine, M.: Security Metrics for Source Code Structures. In
Proceedings of the Fourth International Workshop on Software Engineering For Secure
Systems, ACM, pp. 57–64. (2008)

26. Nguyen, V. H., Tran, L.M.S.: Predicting Vulnerable Software Components with Dependency
Graphs.In Proceedings of the 6th International Workshop on Security Measurements and
Metrics, ISBN: 978-1-4503-0340-8, Doi: 10.1145/1853919.1853923, (2010)

A Phase-wise Review of Software Security Metrics 25

http://dx.doi.org/10.1145/1853919.1853923


http://www.springer.com/978-981-10-4599-8


	2 A Phase-wise Review of Software Security Metrics
	Abstract
	1 Introduction
	2 Related Work
	3 Phase-wise Security Metrics
	4 Major Findings
	5 Conclusion
	Acknowledgements
	References


