
Chapter 2
Pinning Control Strategies
for Synchronization of CRDNNs

2.1 Introduction

As one of the most significant and interesting dynamical properties of the complex
networks, synchronization has been extensively studied by the researchers [41, 42,
45, 47, 53, 57, 63, 66, 119–121]. To our knowledge, in most existing works on the
synchronization of complex networks, three kinds of coupling forms (named respec-
tively state coupling, output coupling and derivative coupling) were considered in
network models. So far, a great many important results on synchronization have been
obtained for various complex networks with state coupling, see ([41, 45, 47, 53, 66,
119] and relevant references therein). In [57], Chen proposed a complex dynamical
network model, in which nodes are connected by measured outputs experiencing the
random sensor delay. Synchronization in the proposed network model was analyzed
by the stochastic stability theory. Considering that the node state in complex networks
is difficult to be observed or measured, some researchers investigated the output syn-
chronization of complex delayed dynamical networks with output coupling [42, 63].
In [120, 121], the synchronization was studied for complex dynamical networks with
non-derivative and derivative coupling.

It should be noticed that the above mentioned works are based on the network
models with time-varying state variables. However, in reality, the node state is not
only dependent on the time, but also intensively dependent on space variable in many
circumstances. As a special class of complex networks, coupled neural networks have
attracted much attention in recent years. Especially, the synchronization problem
of coupled neural networks has stirred much research interest due to its fruitful
applications in various fields [76–79]. It is well known that the diffusion phenomena
can not be ignored in neural networks and electric circuits once electrons transport
in a nonuniform electromagnetic field [28–30]. Therefore, we must consider the
diffusion effects in neural networks. Obviously, in CRDNNs, the state variable of
node is seriously dependent on the time and space.

More recently, researchers have investigated the synchronization problem of cou-
pled neural networks with reaction-diffusion terms, and some interesting results
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have also been established, e.g., see also [97–99, 101]. Yang et al. [101] studied
the global exponential synchronization of a class of CRDNNs with time-varying
delay by adding impulsive controller to a small fraction of nodes. In [99], Wang
et al. respectively investigated the synchronization problem of two kinds of linearly
coupled neural networks with reaction-diffusion terms using edge-based adaptive
strategy. Unfortunately, most of the existing results of synchronization for CRDNNs
are concerned about state coupling. But, in reaction-diffusion networks, different
diffusion of node may cause different changes of other nodes [122]. For example, as
is well known, different diffusion of species may cause different movements of other
species in food webs [123, 124]. Therefore, it is also interesting to study the cou-
pled neural networks with reaction-diffusion terms and spatial diffusion coupling.
To our knowledge, very few researchers have investigated the synchronization of
CRDNNs with spatial diffusion coupling [100]. In [100], the authors proposed a
general model of an array of N linearly coupled RDNNs with spatial diffusion cou-
pling, and respectively investigated the synchronization andH∞ synchronization of
the proposed network model.

Motivated by the above discussions, in this chapter, we propose two kinds of
CRDNNs. In the first one, the nodes are coupled through their states. In the second
one, the nodes are coupled through the spatial diffusion terms. In many circum-
stances, CRDNNs can not be synchronized by themselves, thus some control strate-
gies should be adopted to achieve synchronization. Considering that it is difficult
to apply control actions to all nodes in a large-scale network, some authors devel-
oped several pinning control schemes for complex networks [125–127]. For instance,
Tang et al. [125] investigated the pinning distributed synchronization problem of a
class of nonlinear dynamical networks with multiple stochastic disturbances using
fixed pinning and switching pinning schemes. In [126], distributed robust pinning
synchronization was investigated for a class of complex networks with parameter
uncertainties and stochastic coupling. In these existing works [125–127], the node
state is only dependent on the time. Obviously, it is also beneficial to apply the pin-
ning control technique to study the synchronization problem of the CRDNNs. To
our knowledge, very few researchers have investigated the pinning control of the
CRDNNs [97, 101]. Therefore, the objective of this chapter is to design some pin-
ning control strategies such that all nodes in the CRDNNs can synchronize onto a
desired state. It is well known that the topological structure and the coupling strength
are two key factors impacting the synchronization in CRDNNs. Therefore, it is nat-
ural to raise the following problem: Does the coupling form play an important role
in the synchronization of the CRDNNs? This chapter also analyzes the relationship
among pinning synchronization, the coupling form, the coupling strength, and the
topological structure in CRDNNs.

The main contributions of this chapter are as follows. First, several sufficient
conditions are established to guarantee the synchronization of the CRDNNs with
state coupling by using the designed pinning controllers. Second, an effective adap-
tive strategy to adjust the coupling strength of the CRDNNs with state coupling is
designed. Third, a sufficient condition ensuring synchronization of the CRDNNs
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with spatial diffusion coupling is obtained by using the designed pinning controllers,
and an adaptive strategy is proposed to obtain appropriate pinning feedback gains
for achieving network synchronization.

2.2 Pinning Control of CRDNNs with State Coupling

In this section, we consider a CRDNNs consisting of N identical nodes with state
coupling, in which each node is an n-dimensional reaction-diffusion neural network.
By using Lyapunov functionalmethod and pinning control technique, some sufficient
conditions are established to ensure that the CRDNNs is synchronized. In addition,
an adaptive strategy to tune the coupling strength is proposed, and a general criterion
for synchronization is obtained by using the designed adaptive law.

2.2.1 Network Model

To facilitate the readers, the CRDNNs model is presented in a step-by-step format.
A single reaction-diffusion neural network with Dirichlet boundary conditions is

described by the following PDEs:

∂wi (x, t)

∂t
= di�wi (x, t) − aiwi (x, t) + Ji +

n∑

j=1

bi j f j (w j (x, t)), (2.1)

where i = 1, 2, . . . , n, n is the number of neurons in the network; x = (x1, x2,
. . . , xq)T ∈ Ω ⊂ R

q ; wi (x, t) ∈ R is the state of the i th neuron at time t and in
space x ; � = ∑q

k=1
∂2

∂x2k
is the Laplace diffusion operator on Ω; di > 0 represents

the transmission diffusion coefficient along the i th neuron; ai > 0 represents the rate
withwhich the i th neuronwill reset its potential to the resting statewhendisconnected
from the network and external input; bi j denotes the strength of the j th neuron on the
i th neuron; f j (·) denotes the activation function of the j th neuron; Ji is a constant
external input.

The initial value and boundary value conditions associated with system (2.1) are
given in the form

wi (x, 0) = φi (x), x ∈ Ω, (2.2)

wi (x, t) = 0, (x, t) ∈ ∂Ω × [0,+∞), (2.3)

where φi (x)(i = 1, 2, . . . , n) is bounded and continuous on Ω .
We can rewrite system (2.1) in a compact form as follows:

∂w(x, t)

∂t
= D�w(x, t) − Aw(x, t) + J + B f (w(x, t)), (2.4)
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where D = diag(d1, d2, . . . , dn), B = (bi j )n×n, J = (J1, J2, . . . , Jn)T , A =
diag(a1, a2, . . . , an), f (w(x, t))=( f1(w1(x, t)), f2(w2(x, t)), . . . , fn(wn(x, t)))T ,

w(x, t) = (w1(x, t), w2(x, t), . . . , wn(x, t))T .

N mutually coupled RDNNs (2.4) can result in a CRDNNs, which is described
by

∂zi (x, t)

∂t
= D�zi (x, t) − Azi (x, t) + J + B f (zi (x, t))

+ c
N∑

j=1

Gi jΓ z j (x, t), (2.5)

where i = 1, 2, . . . , N , N is the number of nodes in the network; zi (x, t) =
(zi1(x, t), zi2(x, t), . . . , zin(x, t))T ∈ R

n is the state vector of node i ; c is a pos-
itive real number, which represents the overall coupling strength; Γ ∈ R

n×n > 0 is
inner couplingmatrix;G = (Gi j )N×N is the coupling configurationmatrix represent-
ing the topological structure of the network, where Gi j is defined as follows: if there
exists a connection from node i to node j , then Gi j > 0; otherwise, Gi j = 0(i �= j);
and the diagonal elements of matrix G are defined by

Gii = −
N∑

j=1
j �=i

Gi j , i = 1, 2, . . . , N .

In this section, we always assume that CRDNNs (2.5) is strongly connected. The
initial value and boundary value conditions associated with network (2.5) are given
in the form

zi (x, 0) = Φi (x) ∈ R
n, x ∈ Ω, (2.6)

zi (x, t) = 0, (x, t) ∈ ∂Ω × [0,+∞), (2.7)

where Φi (x) is bounded and continuous on Ω .
Suppose w∗(x, t) = (w∗

1(x, t), w
∗
2(x, t), . . . , w

∗
n(x, t))

T is an arbitrary desired
solution of the system (2.1), then it satisfies (2.3) and

∂w∗(x, t)
∂t

= D�w∗(x, t) − Aw∗(x, t) + J + B f (w∗(x, t)). (2.8)

The objective of this section is to design some pinning control strategies such that
the solution of the controlled network (2.5) can achieve synchronization in the sense
that

lim
t→+∞ ‖zi (·, t) − w∗(·, t)‖2 = 0, i = 1, 2, . . . , N .
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2.2.2 Pinning Synchronization of CRDNNs

Without loss of generality, rearrange the order of all nodes and let the first l(1 �
l < N ) nodes be selected to be pinned. Thus, the pinning controlled network can be
described by

∂zi (x, t)

∂t
= D�zi (x, t) − Azi (x, t) + J + B f (zi (x, t)) + c

N∑

j=1

Gi jΓ z j (x, t)

+ ui , i = 1, 2, . . . , l,

∂zi (x, t)

∂t
= D�zi (x, t) − Azi (x, t) + J + B f (zi (x, t)) + c

N∑

j=1

Gi jΓ z j (x, t),

i = l + 1, . . . , N , (2.9)

where

ui = −ckiΓ (zi (x, t) − w∗(x, t)), i = 1, 2, . . . , l (2.10)

are n-dimensional linear feedback controllers with all the control gains ki > 0.
Defining ei (x, t) = zi (x, t)−w∗(x, t), then the dynamics of the error vector ei (x, t)
is governed by the following equation:

∂ei (x, t)

∂t
= D�ei (x, t) − Aei (x, t) + B f (zi (x, t)) − B f (w∗(x, t))

+ c
N∑

j=1

Gi jΓ e j (x, t) − ckiΓ ei (x, t), (2.11)

where i = 1, 2, . . . , N , and ki = 0 for i = l + 1, l + 2, . . . , N .

For the convenience, we denote

D̃ =
q∑

k=1

D

l2k
, Θ = diag(ρ21, ρ

2
2, . . . , ρ

2
n),

K = diag(k1, k2, . . . , kN ),

Υ = −D̃ − A + Θ

2
+ BBT

2
.

Theorem 2.1 If there exists a positive definite diagonal matrix Ξ = diag(η1, η2,
. . . , ηN ) ∈ R

N×N such that

Ξ ⊗ Υ − c[(ΞK ) ⊗ Γ ] + c

(
ΞG + GTΞ

2
⊗ Γ

)
< 0, (2.12)
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then the pinning controlled network (2.9) is synchronized.

Proof Define the following Lyapunov functional for the system (2.11):

V1(t) = 1

2

N∑

i=1

ηi

∫

Ω

eTi (x, t)ei (x, t)dx . (2.13)

In the following, we calculate the time derivative V̇1(t) along the trajectory of
system (2.11)

V̇1(t) =
N∑

i=1

ηi

∫

Ω

eTi (x, t)
∂ei (x, t)

∂t
dx

=
N∑

i=1

∫

Ω

ηi e
T
i (x, t)

(
D�ei (x, t) − Aei (x, t) + B f (zi (x, t))

+ c
N∑

j=1

Gi jΓ e j (x, t) − B f (w∗(x, t)) − ckiΓ ei (x, t)
)
dx . (2.14)

From Green’s formula and the boundary condition, we have

∫

Ω

eis(x, t)�eis(x, t)dx = −
q∑

k=1

∫

Ω

(
∂eis(x, t)

∂xk

)2

dx,

where ei (x, t) = (ei1(x, t), ei2(x, t), . . . , ein(x, t))T , s = 1, 2, . . . , n. According to
Lemma 1.22, we can obtain

∫

Ω

eTi (x, t)D�ei (x, t)dx =
n∑

s=1

∫

Ω

dseis(x, t)�eis(x, t)dx

= −
q∑

k=1

n∑

s=1

∫

Ω

ds

(
∂eis(x, t)

∂xk

)2

dx

� −
q∑

k=1

1

l2k

n∑

s=1

∫

Ω

dse
2
is(x, t)dx

= −
∫

Ω

eTi (x, t)D̃ei (x, t)dx . (2.15)

Furthermore, we can easily derive

eTi (x, t)B[ f (zi (x, t)) − f (w∗(x, t))]
� 1

2
eTi (x, t)BBT ei (x, t) + 1

2
eTi (x, t)Θei (x, t). (2.16)

http://dx.doi.org/10.1007/978-981-10-4907-1_1
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It follows from (2.14) to (2.16) that

V̇1(t) �
N∑

i=1

∫

Ω

ηi e
T
i (x, t)(−D̃ − A + BBT

2
+ Θ

2
− ckiΓ )ei (x, t)dx

+ c
N∑

i=1

N∑

j=1

∫

Ω

ηiGi j e
T
i (x, t)Γ e j (x, t)dx

=
∫

Ω

eT (x, t)

[
Ξ ⊗ Υ + c

(
ΞG + GTΞ

2
⊗ Γ

)
− c((ΞK ) ⊗ Γ )

]
e(x, t)dx

� γ1‖e(·, t)‖22, (2.17)

where e(x, t) = (eT1 (x, t), eT2 (x, t), . . . , eTN (x, t))T , γ1 = λM(Ξ⊗Υ +c(ΞG+GT Ξ
2 ⊗

Γ ) − c(ΞK ⊗ Γ )) < 0. By the definition of V1(t), we have

γ2‖e(·, t)‖22 � V1(t) � γ3‖e(·, t)‖22, (2.18)

where γ2 = mini=1,2,...,N { ηi
2 }, γ3 = maxi=1,2,...,N { ηi

2 }. Thus, by (2.17) and (2.18),
we can get

V̇1(t) � γ1

γ3
V1(t). (2.19)

Then, we can derive from (2.18) and (2.19) that

‖e(·, t)‖2 �
√

γ3

γ2
e

γ1
2γ3

t‖e(·, 0)‖2.

Obviously, the pinning controlled network (2.9) is synchronized. The proof is com-
pleted.

According toLemmas1.11, 1.16 and1.19, there obviously exists a positive definite
diagonal matrix Ξ = diag(η1, η2, . . . , ηN ) such that

c

(
ΞG + GTΞ

2
⊗ Γ

)
� 0. (2.20)

When Υ < 0, we can derive from (2.20) that

Ξ ⊗ Υ + c

(
ΞG + GTΞ

2
⊗ Γ

)
< 0.

From Theorem 2.1, CRDNNs (2.5) can synchronize by itself. Therefore, in this
section, we always assume λM(Υ ) � 0.

http://dx.doi.org/10.1007/978-981-10-4907-1_1
http://dx.doi.org/10.1007/978-981-10-4907-1_1
http://dx.doi.org/10.1007/978-981-10-4907-1_1
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By applying Theorem 2.1, we can easily obtain the following conclusion.

Corollary 2.2 If there exists a positive definite diagonal matrix Ξ = diag(η1, η2,
. . . , ηN ) ∈ R

N×N such that

c >
−λM(Ξ ⊗ Υ )

λM

(
Ξ(G−K )+(G−K )T Ξ

2 ⊗ Γ
) , (2.21)

where Ξ(G − K ) + (G − K )TΞ < 0, then the pinning controlled network (2.9) is
synchronized.

Remark 2.3 According to Corollary 2.2, there exists a critical coupling strength c∗
for givenΞ such that the pinning controlled network (2.9) will synchronize if c > c∗.
Therefore, if

Ξ(G − K ) + (G − K )TΞ < 0

is satisfied, then the pinning controlled network (2.9) can synchronize as long as the
coupling strength c is large enough.

Remark 2.4 From Lemma 1.19, there is a positive definite diagonal matrix Ξ =
diag(η1, η2, . . . , ηN ) ∈ R

N×N such that the sum of the entries in each row of matrix
ΞG +GTΞ is zero. In addition, it is obvious that matrix ΞG +GTΞ is symmetric
and irreducible. Then, by utilizing Lemma 1.16, we can easily obtain the eigenvalues
of ΞG + GTΞ are real-valued and strictly negative except an eigenvalue 0 with
multiplicity 1. Thus, we have that for any y = (y1, y2, . . . , yN )T �= 0 ∈ R

N ,

yT (ΞG + GTΞ)y = 0 ⇐⇒ y1 = y2 = · · · = yN �= 0.

Then, we can get

yT [Ξ(G − K ) + (G − K )TΞ ]y < 0

for any y = (y1, y2, . . . , yN )T �= 0 ∈ R
N , namely,

Ξ(G − K ) + (G − K )TΞ < 0.

Therefore, for any given matrices G and K , we can always find the positive definite
diagonal matrix Ξ satisfying

Ξ(G − K ) + (G − K )TΞ < 0.

http://dx.doi.org/10.1007/978-981-10-4907-1_1
http://dx.doi.org/10.1007/978-981-10-4907-1_1
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2.2.3 Pinning Synchronization of CRDNNs with Adaptive
Coupling Strength

The coupling strength c given in (2.21) is very conservative, usually much larger
than the needed value. Therefore, an adaptive strategy to tune the coupling strength
c is designed in this subsection.

The pinning controlled network (2.9) with adaptive coupling strength can be
described by

∂zi (x, t)

∂t
= D�zi (x, t) − Azi (x, t) + J + B f (zi (x, t)) + c(t)

N∑

j=1

Gi jΓ z j (x, t)

+ ui , i = 1, 2, . . . , l,

∂zi (x, t)

∂t
= D�zi (x, t) − Azi (x, t) + J + B f (zi (x, t)) + c(t)

N∑

j=1

Gi jΓ z j (x, t),

i = l + 1, . . . , N , (2.22)

where

ui = −c(t)kiΓ (zi (x, t) − w∗(x, t)), i = 1, 2, . . . , l (2.23)

are n-dimensional linear feedback controllers with all the control gains ki > 0.
Let ei (x, t) = (ei1(x, t), ei2(x, t), . . . , ein(x, t))T = zi (x, t) − w∗(x, t). Then, the
dynamics of the error vector ei (x, t) is governed by the following equation:

∂ei (x, t)

∂t
= D�ei (x, t) − Aei (x, t) + B f (zi (x, t)) − B f (w∗(x, t))

+ c(t)
N∑

j=1

Gi jΓ e j (x, t) − c(t)kiΓ ei (x, t), (2.24)

where i = 1, 2, . . . , N , and ki = 0 for i = l + 1, l + 2, . . . , N .

Theorem 2.5 If there exists a positive definite diagonalmatrixΞ = diag(η1, η2, . . . ,
ηN ) ∈ R

N×N such that

Ξ(G − K ) + (G − K )TΞ < 0, (2.25)

where K = diag(k1, k2, . . . , kN ), then the pinning controlled network (2.9) is syn-
chronized under the following adaptive law:

ċ(t) = β

N∑

i=1

ηi

∫

Ω

(zi (x, t) − w∗(x, t))TΓ (zi (x, t) − w∗(x, t))dx, (2.26)

where c(0) > 0,β is a positive real number.



22 2 Pinning Control Strategies for Synchronization of CRDNNs

Proof Firstly, according to (2.25), there obviously exists a positive constant r1 such
that

Ξ(G − K ) + (G − K )TΞ + 2r1Ξ < 0.

Construct a Lyapunov functional for the system (2.24) as follows:

V2(t) = 1

2

N∑

i=1

ηi

∫

Ω

eTi (x, t)ei (x, t)dx + r1
2β

(c(t) − c̃)2, (2.27)

where c̃ is a positive real number.
Calculating the time derivative of V2(t) along the trajectory of system (2.24), we

can get

V̇2(t) =
N∑

i=1

ηi

∫

Ω

eTi (x, t)
∂ei (x, t)

∂t
dx+r1(c(t) − c̃)

N∑

i=1

ηi

∫

Ω

eTi (x, t)Γ ei (x, t)dx

=
N∑

i=1

∫

Ω

ηi e
T
i (x, t)

[
D�ei (x, t) − Aei (x, t) + B f (zi (x, t))

+ c(t)
N∑

j=1

Gi jΓ e j (x, t) − B f (w∗(x, t)) − c(t)kiΓ ei (x, t)
]
dx

+ r1(c(t) − c̃)
N∑

i=1

ηi

∫

Ω

eTi (x, t)Γ ei (x, t)dx

�
∫

Ω

eT (x, t)[Ξ ⊗ (−D̃ − A + BBT

2
+ Θ

2
− r1c̃Γ )]e(x, t)dx

+ c(t)

2

∫

Ω

eT (x, t)
{[

Ξ(G − K ) + (G − K )TΞ

+ 2r1Ξ
]⊗ Γ

}
e(x, t)dx

�
∫

Ω

eT (x, t)
[
Ξ ⊗ (−D̃ − A + BBT

2
+ Θ

2
− r1c̃Γ )

]
e(x, t)dx, (2.28)

where e(x, t) = (eT1 (x, t), eT2 (x, t), . . . , eTN (x, t))T ,Θ = diag(ρ21, ρ
2
2, . . . , ρ

2
n),

D̃ =∑q
k=1

D
l2k
.

By selecting c̃ sufficiently large such that

−D̃ − A + BBT

2
+ Θ

2
− r1c̃Γ < 0,

one obtains
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V̇2(t) � −	‖e(·, t)‖22, (2.29)

where 	 = λm(Ξ ⊗ (D̃ + A − BBT

2 − Θ
2 + r1c̃Γ )) > 0.

Obviously, V2(t) is non-increasing, and each term of V2(t) is bounded. Conse-
quently, c(t) is bounded, and limt→+∞ V2(t) exists and is a non-negative real number.
Since c(t) is monotonically increasing, one can conclude that c(t) asymptotically
converges to a finite positive value. Therefore, by the definition of V2(t), we can
derive that

lim
t→+∞

N∑

i=1

ηi

∫

Ω

eTi (x, t)ei (x, t)dx

exists and is a non-negative real number. In what follows, we shall prove that

lim
t→+∞

N∑

i=1

ηi

∫

Ω

eTi (x, t)ei (x, t)dx = 0.

If this is not true, we have

lim
t→+∞

N∑

i=1

ηi

∫

Ω

eTi (x, t)ei (x, t)dx = μ > 0.

Then, there obviously exists a real number M > 0 such that

N∑

i=1

ηi

∫

Ω

eTi (x, t)ei (x, t)dx >
μ

2

for t � M. Therefore,

‖e(·, t)‖22 >
μ

2δ
, t � M, (2.30)

where δ = maxi=1,2,...,N {ηi }. From (2.29) and (2.30), we can get

V̇2(t) < −	μ

2δ
, t � M. (2.31)

By integrating (2.31) with respect to t over the time period M to +∞, we can obtain

−V2(M) � V2(+∞) − V2(M) =
∫ +∞

M
V̇2(t)dt

< −
∫ +∞

M

	μ

2δ
dt

= −∞.
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This yields a contradiction, and so

lim
t→+∞

N∑

i=1

ηi

∫

Ω

eTi (x, t)ei (x, t)dx = 0.

Then, we can easily obtain

lim
t→+∞ ‖e(·, t)‖2 = 0.

Therefore, the pinning controlled network (2.9) is synchronized under the designed
adaptive law. The proof is completed.

Remark 2.6 To our knowledge, in many real-world networks, the coupling strength
is adaptively adjusted according to changes in the environment or the network itself
(for instance, wireless sensor networks, biological networks, neural networks) [128].
Therefore, it is important and interesting to study the pinning synchronization of
CRDNNs with adaptive coupling strength. In Theorem 2.5, a sufficient condition is
obtained to guarantee the synchronization of the pinning controlled network (2.9)
by using the designed adaptive law.

Remark 2.7 Obviously, for any given matrices G and K , we can always find the
positive definite diagonal matrix Ξ satisfying

Ξ(G − K ) + (G − K )TΞ < 0.

Therefore, the CRDNNs (2.5) can realize synchronization under any pinning con-
trollers in the form of (2.10) if the coupling strength c is adjusted according to the
designed adaptive law.

Remark 2.8 It follows from Corollary 2.2 that the CRDNNs (2.5) can realize syn-
chronization by controlling only one node. But it requires a very large coupling
strength c, which may not be very practical [47]. According to Theorem 2.5, the
CRDNNs (2.5) is synchronized by pinning only one node if the coupling strength
is adjusted according to the adaptive law (2.26). In this case, c(t) may also con-
verge to a very large positive real number. Therefore, we need to find a good balance
between the number of pinned nodes and the coupling strength such that they are
as small as possible and acceptable for practical use. Obviously, this is an important
and interesting problem and will become our future investigative direction.

2.3 Pinning Control of CRDNNs with Spatial Diffusion
Coupling

In this section, we consider a CRDNNs consisting of N identical nodes with spa-
tial diffusion coupling, in which each node is an n-dimensional reaction-diffusion
neural network. Based on the Lyapunov functional method and the pinning con-
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trol technique, a sufficient condition is obtained to guarantee the synchronization of
the CRDNNs. In addition, we also investigate the pinning adaptive synchronization
of the CRDNNs, and a general criterion for ensuring network synchronization is
established.

2.3.1 Network Model

In this section, we consider a CRDNNs consisting of N identical RDNNs (2.4) with
spatial diffusion coupling. Themathematicalmodel of theCRDNNs can be described
as follows:

∂zi (x, t)

∂t
= D�zi (x, t) − Azi (x, t) + J + B f (zi (x, t))

+ ĉ
N∑

j=1

Ĝi j Γ̂ �z j (x, t), (2.32)

where i = 1, 2, . . . , N , N is the number of nodes in the network; zi (x, t) =
(zi1(x, t), zi2(x, t), . . . , zin(x, t))T ∈ R

n is the state vector of node i ; ĉ is a pos-
itive real number, which represents the overall coupling strength; Γ̂ = (Γ̂i j )n×n ∈
R

n×n > 0 is inner coupling matrix; Ĝ = (Ĝi j )N×N is the coupling configuration
matrix representing the topological structure of the network, where Ĝi j is defined as
follows: if there exists a connection from node i to node j , then Ĝi j > 0; otherwise,
Ĝi j = 0(i �= j); and the diagonal elements of matrix Ĝ are defined by

Ĝii = −
N∑

j=1
j �=i

Ĝi j , i = 1, 2, . . . , N .

In this section, we always assume that CRDNNs (2.32) is strongly connected. The
initial value and boundary value conditions associated with network (2.32) are given
in the form

zi (x, 0) = Φ̂i (x) ∈ R
n, x ∈ Ω, (2.33)

zi (x, t) = 0, (x, t) ∈ ∂Ω × [0,+∞), (2.34)

where Φ̂i (x) is bounded and continuous on Ω .
The objective of this section is to design some pinning control strategies such

that the solutions of the controlled network (2.32) can achieve synchronization in the
sense that
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lim
t→+∞ ‖zi (·, t) − w∗(·, t)‖2 = 0, i = 1, 2, . . . , N ,

where w∗(x, t) = (w∗
1(x, t), w

∗
2(x, t), . . . , w

∗
n(x, t))

T is an arbitrary desired solu-
tion of the system (2.1).

2.3.2 Pinning Synchronization of CRDNNs

Without loss of generality, rearrange the order of all nodes and let the first l(1 �
l < N ) nodes be selected to be pinned. Thus, the pinning controlled network can be
described by

∂zi (x, t)

∂t
= D�zi (x, t) − Azi (x, t) + J + B f (zi (x, t)) + ĉ

N∑

j=1

Ĝi j Γ̂ �z j (x, t)

+ ui , i = 1, 2, . . . , l,

∂zi (x, t)

∂t
= D�zi (x, t) − Azi (x, t) + J + B f (zi (x, t)) + ĉ

N∑

j=1

Ĝi j Γ̂ �z j (x, t),

i = l + 1, . . . , N , (2.35)

where

ui = −ĉki Γ̂ (zi (x, t) − w∗(x, t)), i = 1, 2, . . . , l (2.36)

are n-dimensional linear feedback controllers with all the control gains ki > 0.
Defining ei (x, t) = zi (x, t)−w∗(x, t), then the dynamics of the error vector ei (x, t)
is governed by the following equation:

∂ei (x, t)

∂t
= D�ei (x, t) − Aei (x, t) + B f (zi (x, t)) − B f (w∗(x, t))

+ ĉ
N∑

j=1

Ĝi j Γ̂ �e j (x, t) − ĉki Γ̂ ei (x, t), (2.37)

where i = 1, 2, . . . , N , and ki = 0 for i = l + 1, l + 2, . . . , N .

For the convenience, we denote

D̃ =
q∑

k=1

D

l2k
,Θ = diag(ρ21, ρ

2
2, . . . , ρ

2
n),

K = diag(k1, k2, . . . , kN ),

Υ = −D̃ − A + Θ

2
+ BBT

2
.
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Theorem 2.9 If there exists a positive definite diagonal matrix Ξ = diag(η1, η2,
. . . , ηN ) ∈ R

N×N such that

Ξ ⊗ D + ĉΞ Ĝ + ĉĜTΞ

2
⊗ Γ̂ � 0, (2.38)

Ξ ⊗ Υ − (ĉΞK ) ⊗ Γ̂ −
q∑

k=1

ĉ

l2k

(
Ξ Ĝ + ĜTΞ

2
⊗ Γ̂

)
< 0, (2.39)

then the pinning controlled network (2.35) is synchronized.

Proof Take the same Lyapunov functional V1(t) as in Theorem 2.1, that is,

V1(t) = 1

2

N∑

i=1

ηi

∫

Ω

eTi (x, t)ei (x, t)dx .

In the following, we calculate the time derivative V̇1(t) along the trajectory of system
(2.37)

V̇1(t) =
N∑

i=1

ηi

∫

Ω

eTi (x, t)
∂ei (x, t)

∂t
dx

=
N∑

i=1

ηi

∫

Ω

eTi (x, t)
(
D�ei (x, t) − Aei (x, t) + B f (zi (x, t)) − B f (w∗(x, t))

− ĉki Γ̂ ei (x, t) + ĉ
N∑

j=1

Ĝi j Γ̂ �e j (x, t)
)
dx

�
∫

Ω

eT (x, t)[Ξ ⊗ D + (ĉΞ Ĝ) ⊗ Γ̂ ]�e(x, t)dx

+
∫

Ω

eT (x, t)

[
Ξ ⊗

(
−A + Θ

2
+ BBT

2

)
− (ĉΞK ) ⊗ Γ̂

]
e(x, t)dx,

where e(x, t) = (eT1 (x, t), eT2 (x, t), . . . , eTN (x, t))T .

From Green’s formula and the boundary condition, we then have

∫

Ω

eT (x, t)(Ξ ⊗ D)�e(x, t)dx

=
N∑

i=1

ηi

∫

Ω

eTi (x, t)D�ei (x, t)dx

=
N∑

i=1

ηi

n∑

l=1

dl

∫

Ω

eil(x, t)�eil(x, t)dx
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= −
q∑

k=1

N∑

i=1

ηi

n∑

l=1

dl

∫

Ω

(
∂eil(x, t)

∂xk

)2

dx

= −
q∑

k=1

∫

Ω

(
∂e(x, t)

∂xk

)T

(Ξ ⊗ D)
∂e(x, t)

∂xk
dx,

∫

Ω

eT (x, t)[(ĉΞ Ĝ) ⊗ Γ̂ ]�e(x, t)dx

=
N∑

i=1

N∑

j=1

ĉηi Ĝi j

∫

Ω

eTi (x, t)Γ̂ �e j (x, t)dx

=
N∑

i=1

N∑

j=1

ĉηi Ĝi j

n∑

l=1

n∑

s=1

Γ̂ls

∫

Ω

eil(x, t)�e js(x, t)dx

= −
q∑

k=1

N∑

i=1

N∑

j=1

ĉηi Ĝi j

n∑

l=1

n∑

s=1

Γ̂ls

∫

Ω

∂eil(x, t)

∂xk

∂e js(x, t)

∂xk
dx

= −
q∑

k=1

∫

Ω

(
∂e(x, t)

∂xk

)T

[(ĉΞ Ĝ) ⊗ Γ̂ ]∂e(x, t)
∂xk

dx,

∫

Ω

(�e(x, t))T [(ĉĜTΞ) ⊗ Γ̂ ]e(x, t)dx

=
N∑

i=1

N∑

j=1

ĉη j Ĝ ji

∫

Ω

(�ei (x, t))
T Γ̂ e j (x, t)dx

=
N∑

i=1

N∑

j=1

ĉη j Ĝ ji

n∑

l=1

n∑

s=1

Γ̂ls

∫

Ω

�eil(x, t)e js(x, t)dx

= −
q∑

k=1

∫

Ω

(
∂e(x, t)

∂xk

)T

[(ĉĜTΞ) ⊗ Γ̂ ]∂e(x, t)
∂xk

dx . (2.40)

By (2.40), we can get

∫

Ω

eT (x, t)[Ξ ⊗ D + (ĉΞ Ĝ) ⊗ Γ̂ ]�e(x, t)dx

=
∫

Ω

eT (x, t)

(
Ξ ⊗ D + ĉΞ Ĝ

2
⊗ Γ̂

)
�e(x, t)dx

+
∫

Ω

(�e(x, t))T
(
ĉĜTΞ

2
⊗ Γ̂

)
e(x, t)dx

= −
q∑

k=1

∫

Ω

(
∂e(x, t)

∂xk

)T
(

Ξ ⊗ D + ĉΞ Ĝ + ĉĜTΞ

2
⊗ Γ̂

)
∂e(x, t)

∂xk
dx .
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According to (2.38), there exists a real square matrix Q such that

Ξ ⊗ D + ĉΞ Ĝ + ĉĜTΞ

2
⊗ Γ̂ = QT Q.

Then, we can easily derive

(
∂e(x, t)

∂xk

)T
(

Ξ ⊗ D + ĉΞ Ĝ + ĉĜTΞ

2
⊗ Γ̂

)
∂e(x, t)

∂xk

=
(

∂(Qe(x, t))

∂xk

)T ∂(Qe(x, t))

∂xk
.

Let y(x, t) = Qe(x, t), for (x, t) ∈ ∂Ω × [0,+∞) from the boundary condition
(2.34), we have y(x, t) = Qe(x, t) = 0. In view of Lemma 1.22, one has

q∑

k=1

∫

Ω

(
∂y(x, t)

∂xk

)T ∂y(x, t)

∂xk
dx

�
q∑

k=1

1

l2k

∫

Ω

eT (x, t)

(
Ξ ⊗ D + ĉΞ Ĝ + ĉĜTΞ

2
⊗ Γ̂

)
e(x, t)dx . (2.41)

Therefore,

V̇1(t)�
∫

Ω

eT (x, t)

[
Ξ⊗Υ −

q∑

k=1

ĉ

l2k

(
Ξ Ĝ + ĜTΞ

2
⊗Γ̂

)
−(ĉΞK )⊗Γ̂

]
e(x, t)dx .

Then, following similar arguments as in the proof of Theorem 2.1, we can obtain the
desired result immediately.

Remark 2.10 By using the properties of Kronecker product, we can get

Ξ ⊗ D + ĉΞ Ĝ + ĉĜTΞ

2
⊗ Γ̂ <

(
κΞ + ĉΞ Ĝ + ĉĜTΞ

2

)
⊗ Γ̂ ,

where κ = 2λM (D)

λm (Γ̂ )
. When ĉ > maxi=1,2,...,N

{
κ

|Ĝii |
}
, the diagonal elements of matrix

κΞ + ĉΞ Ĝ+ĉĜT Ξ
2 are strictly negative. In this case, κΞ + ĉΞ Ĝ+ĉĜT Ξ

2 has at least one
negative eigenvalue. Therefore, if

ĉ > max
i=1,2,...,N

{
κ

|Ĝii |
}

,

Ξ ⊗ D + ĉΞ Ĝ+ĉĜT Ξ
2 ⊗ Γ̂ always has a negative eigenvalue for any matrix Ξ .

http://dx.doi.org/10.1007/978-981-10-4907-1_1
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Remark 2.11 In the past few years, some pinning control schemes for the CRDNNs
with state coupling have been developed [97, 101]. Obviously, it is also beneficial to
apply the pinning control technique to study the synchronization of theCRDNNswith
spatial diffusion coupling. To the best of our knowledge, this is the first to consider
the pinning control problem of the CRDNNs with spatial diffusion coupling, which
is a very important and challenging problem.

Remark 2.12 In Sect. 2.2, we consider a CRDNNs consisting of N identical RDNNs
(2.4) with state coupling, and prove that the CRDNNs (2.5) under the pinning con-
trollers (2.10) can synchronize as long as the coupling strength c is large enough
[see Corollary 2.2]. In this section, we investigate the pinning synchronization of a
CRDNNs with spatial diffusion coupling, and a criterion for reaching synchroniza-
tion is established by using the designed pinning controllers (2.36) [see Theorem
2.9]. If the coupling strength ĉ is very large, it is impossible to find matrix Ξ to
satisfy the condition (2.38) in Theorem 2.9 [see Remark 2.10]. In such a case, the
CRDNNs (2.32) under the pinning controllers (2.36)may not be synchronized. These
results show that coupling form has a strong influence on the dynamic behavior of
the CRDNNs.

2.3.3 Pinning Adaptive Synchronization of CRDNNs

Obviously, it is desirable to make the pinning feedback gains ki (i = 1, 2, . . . , l) as
small as possible. Therefore, an effective adaptive strategy to tune the feedback gains
ki is designed in this subsection.

The pinning controlled network (2.35) with adaptive feedback gains can be
described by

∂zi (x, t)

∂t
= D�zi (x, t) − Azi (x, t) + J + B f (zi (x, t)) + ĉ

N∑

j=1

Ĝi j Γ̂ �z j (x, t)

− ĉki (t)Γ̂ (zi (x, t) − w∗(x, t)), i = 1, 2, . . . , l,

∂zi (x, t)

∂t
= D�zi (x, t) − Azi (x, t) + J + B f (zi (x, t)) + ĉ

N∑

j=1

Ĝi j Γ̂ �z j (x, t),

i = l + 1, . . . , N , (2.42)

k̇i (t) = β̂i

∫

Ω

(zi (x, t) − w∗(x, t))T Γ̂ (zi (x, t) − w∗(x, t))dx,

i = 1, 2, . . . , l, (2.43)

where β̂i and ki (0) are positive constants. Let ei (x, t) = zi (x, t) − w∗(x, t). Then,
the dynamics of the error vector ei (x, t) is governed by the following equation:
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∂ei (x, t)

∂t
= D�ei (x, t) − Aei (x, t) + B f (zi (x, t)) − B f (w∗(x, t))

+ ĉ
N∑

j=1

Ĝi j Γ̂ �e j (x, t) − ĉki (t)Γ̂ ei (x, t),

k̇i (t) = β̂i

∫

Ω

eTi (x, t)Γ̂ ei (x, t)dx, i = 1, . . . , l, (2.44)

where i = 1, 2, . . . , N , and ki (t) ≡ 0 for i = l + 1, l + 2, . . . , N .

Theorem 2.13 If there exist matrices Ξ = diag(η1, η2, . . . , ηN ) ∈ R
N×N > 0 and

K̂ = diag(k̂1, k̂2, . . . , k̂l ,︸ ︷︷ ︸
l

0, . . . , 0︸ ︷︷ ︸
N−l

) ∈ R
N×N such that

Ξ ⊗ D + ĉΞ Ĝ + ĉĜTΞ

2
⊗ Γ̂ � 0, (2.45)

Ξ ⊗ Υ − (ĉΞ K̂ ) ⊗ Γ̂ −
q∑

k=1

ĉ

l2k

(
Ξ Ĝ + ĜTΞ

2
⊗ Γ̂

)
< 0, (2.46)

where k̂i > 0, i = 1, 2, . . . , l, D̃ = ∑q
k=1

D
l2k

,Θ = diag(ρ21, ρ
2
2, . . . , ρ

2
n), Υ =

−D̃ − A + Θ
2 + BBT

2 , then the controlled network (2.42) is synchronized under the
adaptive law (2.43).

Proof Construct a Lyapunov functional for the system (2.44) as follows:

V3(t) = 1

2

N∑

i=1

ηi

∫

Ω

eTi (x, t)ei (x, t)dx +
l∑

i=1

ĉηi

2β̂i

(ki (t) − k̂i )
2. (2.47)

Calculating the time derivative of V3(t) along the trajectory of system (2.44), we can
get

V̇3(t) =
N∑

i=1

ηi

∫

Ω

eTi (x, t)
∂ei (x, t)

∂t
dx

+
l∑

i=1

ĉηi (ki (t) − k̂i )
∫

Ω

eTi (x, t)Γ̂ ei (x, t)dx

=
N∑

i=1

ηi

∫

Ω

eTi (x, t)
[
D�ei (x, t) − Aei (x, t) − ĉki (t)Γ̂ ei (x, t)

+ B f (zi (x, t)) − B f (w∗(x, t)) + ĉ
N∑

j=1

Ĝi j Γ̂ �e j (x, t)
]
dx
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+
l∑

i=1

ĉηi (ki (t) − k̂i )
∫

Ω

eTi (x, t)Γ̂ ei (x, t)dx

�
∫

Ω

eT (x, t)
[
Ξ ⊗ D + (ĉΞ Ĝ) ⊗ Γ̂

]�e(x, t)dx

+
∫

Ω

eT (x, t)

[
Ξ ⊗

(
−A + BBT

2
+ Θ

2

)
− (ĉΞ K̂ ) ⊗ Γ̂

]
e(x, t)dx

�
∫

Ω

eT (x, t)

[
Ξ ⊗

(
−D̃ − A + BBT

2
+ Θ

2

)
− (ĉΞ K̂ ) ⊗ Γ̂

−
q∑

k=1

ĉ

l2k

(
Ξ Ĝ + ĜTΞ

2
⊗ Γ̂

)]
e(x, t)dx

� 	̂‖e(·, t)‖22, (2.48)

where e(x, t) = (eT1 (x, t), eT2 (x, t), . . . , eTN (x, t))T , 	̂ = λM(Ξ ⊗ Υ − (ĉΞ K̂ ) ⊗
Γ̂ −∑q

k=1
ĉ
l2k

(Ξ Ĝ+ĜT Ξ
2 ⊗ Γ̂ )) < 0.

Obviously, V3(t) is non-increasing, and each term of V3(t) is bounded. Therefore,
ki (t), i = 1, 2, . . . , l, are bounded, and limt→+∞ V3(t) exists and is a non-negative
real number. Because ki (t) is monotonically increasing [see (2.43)], one can con-
clude that ki (t)(i = 1, 2, . . . , l) asymptotically converges to a finite positive value.
Therefore, by the definition of V3(t), we can derive that

lim
t→+∞

N∑

i=1

ηi

∫

Ω

eTi (x, t)ei (x, t)dx

exists and is a non-negative real number. Then, by the similar proof of Theorem 2.5,
we can obtain

lim
t→+∞ ‖e(·, t)‖2 = 0.

Therefore, the controlled network (2.42) is synchronized under the adaptive law
(2.43). The proof is completed.

Remark 2.14 To our knowledge, very few researchers have discussed the adaptive
synchronization of the CRDNNs [98–100]. In [98], adaptive method was applied to
design controller feedback gains, and some sufficient conditions for adaptive syn-
chronization were obtained. It should be noticed that a network model with state
coupling was considered in [98]. In [99, 100], the authors investigated the synchro-
nization problem of the CRDNNs using edge-based adaptive strategy, and some
adaptive strategies to tune all (or a small fraction of) the coupling weights were
designed. In this subsection, we study the synchronization of the CRDNNs with
spatial diffusion coupling by pinning a small fraction of nodes with adaptive feed-
back controllers, and a criterion is obtained to guarantee the synchronization of the
network (2.32).
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Remark 2.15 In this chapter, some adaptive strategies to tune the coupling strength
c and pinning feedback gains ki are designed [see (2.26) and (2.43)]. Adaptive tech-
nique is a very effective method to tune the coupling strength and pinning feedback
gains. Firstly, coupling strength and pinning feedback gains can be adjusted very
quickly by utilizing the adaptive laws defined by the synchronization errors. Another
important advantage of adaptive technique is to adjust coupling strength and pinning
feedback gains for achieving suitable values in practice [129].

2.4 Numerical Examples

As an application of the above obtained theoretical results, two representative exam-
ples are given in this section.

Example 2.16 Consider the following 3-dimensional reaction-diffusion neural net-
work

∂wi (x, t)

∂t
= di

∂2wi (x, t)

∂x2
− aiwi (x, t) + Ji +

3∑

j=1

bi j f j (w j (x, t)),

wi (x, t) = 0, (x, t) ∈ ∂Ω × [0,+∞), (2.49)

where i = 1, 2, 3,Ω = {x | −0.5 < x < 0.5}, f j (ξ) = |ξ+1|−|ξ−1|
2 , d1 = 0.2, d2 =

0.2, d3 = 0.3, a1 = 0.3, a2 = 0.2, a3 = 0.3, J1 = J2 = J3 = 0, and the matrix
B = (bi j )3×3 is chosen as

B =
⎛

⎝
2 −0.3 −0.2

−2.5 3 −0.6
−3 −2 4

⎞

⎠ .

Obviously, (0, 0, 0)T ∈ R
3 is an equilibrium solution of the network (2.49), and

f j (·)( j = 1, 2, 3) satisfies the Lipschitz condition with ρ j = 1.
Now we consider a CRDNNs consisting of five linearly coupled identical model

(2.49) with state coupling. The state equations of the entire network are

∂zi (x, t)

∂t
= D

∂2zi (x, t)

∂x2
− Azi (x, t) + B f (zi (x, t)) + c

5∑

j=1

Gi jΓ z j (x, t),

i = 1, 2, . . . , 5, (2.50)

where
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Fig. 2.1 The change processes of ‖zi (·, t)‖2, i = 1, 2, . . . , 5(‖z1(·, 0)‖2 = 1.1336, ‖z2(·, 0)‖2 =
0.3873, ‖z3(·, 0)‖2 = 0.6819, ‖z4(·, 0)‖2 = 1.4933, ‖z5(·, 0)‖2 = 2.3335)

Γ = diag(0.6, 0.8, 0.5),

G =

⎛

⎜⎜⎜⎜⎝

−0.2 0 0.2 0 0
0 −0.6 0 0.6 0
0 0 −0.4 0.4 0
0.3 0 0 −0.6 0.3
0 0.5 0 0 −0.5

⎞

⎟⎟⎟⎟⎠
.

The control objective here is to design appropriate control strategies such that all
nodes in the CRDNNs (2.50) can synchronize onto (0, 0, 0)T ∈ R

3.
We choose the node 1 as pinned node. Select the parameters as follows: k1 =

0.3, η1 = 0.3, η2 = 0.1, η3 = 0.15, η4 = 0.2, η5 = 0.12. It is easy to verify that the
condition (2.25) in Theorem 2.5 is satisfied. According to Theorem 2.5, the CRDNNs
(2.50) under pinning control and adaptive law is synchronized. The simulation results
are shown in Figs. 2.1 and 2.2.

Example 2.17 Consider the following 3-dimensional reaction-diffusion neural net-
work

∂wi (x, t)

∂t
= di

∂2wi (x, t)

∂x2
− aiwi (x, t) + Ji +

3∑

j=1

bi j f j (w j (x, t)),

wi (x, t) = 0, (x, t) ∈ ∂Ω × [0,+∞), (2.51)
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Fig. 2.2 Adaptive coupling strength (c(0) = 0.1)

where i = 1, 2, 3,Ω = {x | −0.5 < x < 0.5}, f j (ξ) = |ξ+1|−|ξ−1|
2 , d1 = 0.6, d2 =

0.7, d3 = 0.5, a1 = 0.6, a2 = 0.8, a3 = 0.4, J1 = J2 = J3 = 0, and the matrix
B = (bi j )3×3 is chosen as

B =

⎛

⎜⎜⎝

0.7 0.3 0.4

0.6 0.4 0.2

0.5 0.6 0.3

⎞

⎟⎟⎠ .

Obviously, (0, 0, 0)T ∈ R
3 is an equilibrium solution of the network (2.51), and

f j (·)( j = 1, 2, 3) satisfies the Lipschitz condition with ρ j = 1.
Now we consider a CRDNNs consisting of five linearly coupled identical model

(2.51) with spatial diffusion coupling. The state equations of the entire network are

∂zi (x, t)

∂t
= D

∂2zi (x, t)

∂x2
− Azi (x, t) + B f (zi (x, t)) + ĉ

5∑

j=1

Ĝi j Γ̂
∂2z j (x, t)

∂x2
,

i = 1, 2, . . . , 5, (2.52)

where



36 2 Pinning Control Strategies for Synchronization of CRDNNs

Γ̂ = diag(0.5, 0.7, 0.6), ĉ = 0.5,

Ĝ =

⎛

⎜⎜⎜⎜⎝

−0.1 0 0 0.1 0
0.2 −0.2 0 0 0
0 0.3 −0.5 0 0.2
0 0 0.4 −0.4 0
0.1 0 0 0 −0.1

⎞

⎟⎟⎟⎟⎠
.

The control objective here is to design appropriate pinning adaptive controllers
such that all nodes in the CRDNNs (2.52) can synchronize onto (0, 0, 0)T ∈ R

3.
We can find the following matrices

K̂ = diag(0.6, 0.7, 0, 0, 0.6),

Ξ = diag(0.4, 0.3, 0.5, 0.6, 0.4)

satisfying (2.45) and (2.46). That is, we only need to control the nodes 1, 2 and
5 for realizing network synchronization. From Theorem 2.13, the CRDNNs (2.52)
can realize synchronization by using the designed pinning adaptive controllers. The
simulation results are shown in Figs. 2.3 and 2.4.

According to the change processes of ‖zi (·, t)‖2, i = 1, 2, . . . , 5, in Figs. 2.1 and
2.3,we clearly see that theCRDNNs is synchronized. Figures2.2 and2.4 visualize the
change processes of c(t) and ki (t)(i = 1, 2, 5) in time interval [0, 10]. The numerical
results clearly show that c(t) and ki (t)(i = 1, 2, 5) asymptotically converge to some
positive real numbers.

Remark 2.18 Finite-difference method [130], as an effective numerical method, in
the past ten years, has been widely used to simulate the reaction-diffusion systems.
In this section, we plot the curves of the synchronization errors, adaptive coupling
strength and adaptive feedback gains by employing the finite difference method.
For instance, by utilizing the finite-difference method, ∂2zi (x,t)

∂x2 and ∂zi (x,t)
∂t can be

approximated by

∂2zi (xk, t j )

∂x2
≈

zi (xk, t j ) − 2zi (xk−1, t j ) + zi (xk−2, t j )

x2sample

,

∂zi (xk, t j )

∂t
≈

zi (xk, t j ) − zi (xk, t j−1)

tsample
,

where x0 = −0.5, xNx = 0.5, t0 = 0, tNt = 10, k ∈ Nx , j ∈ Nt , xk − xk−1 =
xsample = xNx −x0

Nx
,Nx = {0, 1, . . . , Nx }, t j − t j−1 = tsample = tNt −t0

Nt
,Nt =

{0, 1, . . . , Nt }. Similarly, ċ(t) and k̇i (t) can be discretized.
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Fig. 2.3 The change processes of ‖zi (·, t)‖2, i = 1, 2, . . . , 5(‖z1(·, 0)‖2 = 1.1336, ‖z2(·, 0)‖2 =
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Fig. 2.4 Adaptive feedback gains (k1(0) = 0.3, k2(0) = 0.1, k5(0) = 0.1)
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2.5 Conclusions

Two kinds of linearly coupled neural networks with reaction-diffusion terms have
been introduced, which have different coupling forms. We have investigated the
pinning synchronization of the proposed networkmodels. Some sufficient conditions
have been established to ensure that the proposed network models are synchronized.
It has been shown that, if the network is strongly connected, then the CRDNNs (2.5)
under any pinning controllers in the form of (2.10) can synchronize as long as the
coupling strength is large enough. On the other hand, when the coupling strength
is very large, the CRDNNs (2.32) under the pinning controllers (2.36) may not be
synchronized. Finally, two numerical examples have been provided to verify the
correctness and effectiveness of the obtained results.

This chapter is only a first step toward the pinning control of the CRDNNs with
state coupling and spatial diffusion coupling, and there are still some interesting and
challenging problems deserving further investigation. For example, (1) what kind
of nodes should be pinned? (2) how many nodes are needed to be pinned? In this
chapter, some sufficient conditions ensuring the synchronization of the CRDNNs
with spatial diffusion coupling have been established by pinning a small fraction
of nodes with state feedback controllers. Practically, it may be more interesting to
consider the case that the external control ui be defined also by spatial diffusion
coupling.
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