
Multivariate Public Key Cryptosystems

Yasufumi Hashimoto

Abstract This paper presents a survey on the multivariate public key cryptosystem
(MPKC), which is a public key cryptosystemwhose public key is a set of multivariate
quadratic forms over a finite field.
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1 Introduction

AMultivariate Public Key Cryptosystem (MPKC) is a public key cryptosystemwhose
public key is a set of multivariate quadratic forms

f1(x1, . . . , xn) =
∑

1≤i≤ j≤n

a(1)
i j xi x j +

∑

1≤i≤n

b(1)
i xi + c(1),

...

fm(x1, . . . , xn) =
∑

1≤i≤ j≤n

a(m)
i j xi x j +

∑

1≤i≤n

b(m)
i xi + c(m)

(1)

over a finite field. It is known that MPKCs have advantage that the encryption
(or signature verification) is faster than RSA and ECC [22]. Furthermore, since the
problem of solving a system of multivariate nonlinear polynomial equations over a
finite field of order 2 is NP-hard [48, 49], it has been expected that a secure cryp-
tosystem can be constructed by a set of multivariate polynomials. Especially, after
Shor [95] proposed polynomial time quantum algorithms for factoring integers and
solving discrete logarithm problems,MPKCs have been considered as one of leading
candidates of Post-Quantum Cryptography as well as the lattice-based cryptography,
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the code-based cryptography and the isogeny-based cryptography. In fact, MPKC is
included in NIST’s proposals of standardization of post-quantum cryptography [24,
72, 76].

This paper presents a survey on MPKC. In Sect. 2, we describe two early MPKCs
called the Matsumoto–Imai cryptosystem (MI, C∗) [69] and the Moon Letter cryp-
tosystem (ML, TsuKIFM) [105] proposed in 1980s and the general construction of
MPKCs. While these early MPKCs were already broken [29, 52, 79], the construc-
tion of maps

F = T ◦ G ◦ S (2)

has been used in most MPKCs, where S, T are secret invertible affine maps, G is a
quadratic map to be feasibly inverted and F is a public quadratic map. The central
map G essentially characterizes the corresponding MPKC. The security and the
speed of decryption highly depend on G. Unfortunately, at the present time, there
are few works on the security proof of MPKCs. On the other hand, there are various
attacks on proposed MPKCs. Such works greatly help to build secure MPKCs by
pointing out which properties of G yield vulnerabilities. In Sect. 3, we give outlines
of major attacks on MPKCs to explain which properties of G yield vulnerabilities of
the correspondingMPKC. In Sect. 4, we describe several famousMPKCs and discuss
their security based on the descriptions in Sect. 3. Finally in Sect. 5, we conclude this
paper by listing open problems on MPKCs for future developments.

2 Early MPKCs and General Construction

2.1 Early MPKCs

In this subsection, we describe two earlyMPKCs, theMatsumoto–Imai cryptosystem
[69] and the Moon Letter cryptosystem [105].

Matsumoto–Imai’s cryptosystem (MI, C∗ [69]).

Let n ≥ 1 be an integer, k a finite field of even characteristic, q := #k, K an n-
extension of k and {θ1, . . . , θn} ⊂ K a basis of K over k. Choose an integer i ≥ 1
such that gcd(qn − 1, qi + 1) = 1 and define the map G : K → K by

G (X) = X1+qi
. (3)

The secret key of this scheme is a pair of two invertible affine maps S, T : kn → kn

and the public key is

F := T ◦ φ−1 ◦ G ◦ φ ◦ S : kn → kn, (4)
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where φ : kn → K is a one-to-one map, e.g., φ(x1, . . . , xn) = x1θ1 + · · · + xnθn for
(x1, . . . , xn)

t ∈ kn . Since it holds

Xqi = (x1θ1 + · · · + xnθn)
qi = x1θ

qi

1 + · · · + xnθ
qi

n

for X := x1θ1 + · · · + xnθn ∈ K , φ−1(Xqi
) is a set of linear forms of x1, . . . , xn over

k and then the public key F is quadratic over k. For a given plaintext x ∈ kn , the
ciphertext is y = F(x) ∈ kn. To decrypt y, first calculate Z := φ(T −1(y)) ∈ K and
compute W := Zl ∈ K where the integer l satisfies (1 + qi )l ≡ 1 mod qn − 1. The
plaintext is x = S−1(φ−1(W )).

Moon Letter cryptosystem (ML, TsuKIFM [105]).

Let n ≥ 1 be an integer, k a finite field and g1(x), . . . , gn(x) the quadratic forms of
x = (x1, . . . , xn)

t over k given by

g1(x) = (linear form of x1),

g2(x) = x2 · (linear form of x1) + (quadratic form of x1),

g3(x) = x3 · (linear form of x1, x2) + (quadratic form of x1, x2),

...

gn(x) = xn · (linear form of x1, . . . , xn−1) + (quadratic form of x1, . . . , xn−1).
(5)

The secret key is a pair of two invertible affine maps S, T : kn → kn and the
quadratic map G : kn → kn given by G(x) = (g1(x), . . . , gn(x))t . The public key is
the quadratic map

F := T ◦ G ◦ S : kn → kn. (6)

For a given plaintext x ′ ∈ kn , the ciphertext is y = F(x ′) ∈ kn . To decrypt the cipher
y ∈ kn , first compute z = (z1, . . . , zn)

t := T −1(y) and find x1 ∈ k such that g1(x) =
z1. Since g1(x) is a linear form of x1, x ′

1 is recovered easily. Next find x2 ∈ k such
that g2(x) = z2. Since g2(x) is a linear form of x2 for a fixed x1, x2 is recovered
easily. Similarly, we can recover x3, . . . , xn ∈ k such that g3(x) = z3, . . . , gn(x) =
zn recursively. The plaintext is x ′ = S−1(x1, . . . , xn)

t .
Unfortunately, ML had not been known well since it was proposed on the paper

[105] written in Japanese at 1986. Instead, Shamir’s birational signature scheme
[93] presented at Crypto 1993 has been well known. These two schemes are quite
similar. In fact, the map G in Shamir’s scheme is given by m = n − 1 and G(x) =
(g2(x), . . . , gn(x))t .
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2.2 General Construction of MPKCs

Similar toMI andML,mostMPKCs have the structure F := T ◦ G ◦ S.We describe
the general construction of MPKCs in this subsection.

Let n, m ≥ 1 be integers, k a finite field and q := #k. The secret key is a tuple of
three maps (S, G, T ), where S : kn → kn , T : km → km are invertible affine maps
and G : kn → km is a quadratic map that is inverted feasibly. The public key F is the
convolution of these three maps S, G, T :

F : kn S−→ kn G−→ km T−→ km .

For a given plaintext x ∈ kn , the ciphertext y ∈ km is computed by y = F(x). To
decrypt y, find z ∈ kn such that G(z) = T −1(y). Then the plaintext is x = S−1(z).
Since G is inverted feasibly, one can decrypt y efficiently.

Efficiency.

One of remarkable advantage of MPKCs is the speed of encryption (or signature
verification).Under the naive implementation, the ciphertext y = (y1, . . . , ym)t ∈ km

of a plaintext x = (x1, . . . , xn)
t ∈ kn is computed by

yi = fi (x) = x1 ·
(

a(i)
11 · x1 + a(i)

12 · x2 + · · · + a(i)
1n · xn + b(i)

1

)

+ x2 ·
(

a(i)
22 · x2 + · · · + a(i)

2n · xn + b(i)
2

)

+ · · ·
+ xn · (

a(i)
nn · xn + b(i)

n

) + ci , (1 ≤ i ≤ m).

It is clear that the numbers of multiplications and additions in this computation for
each 1 ≤ i ≤ m are � 1

2n2. Such a computation is not best possible. In fact, there
have been ideas to reduce the number of operations for several MPKCs by reducing
the number of parameters in the public key [43, 85, 86]. Furthermore, the average
speed of encryption can be improved if several plaintexts are encrypted simultane-
ously. As an example, we now study the situation that one encrypts n + 1 plaintexts
p1, . . . , pn+1 ∈ kn . For x = (x1, . . . , xn)

t ∈ kn , let x̄ := (x1, . . . , xn, 1)t ∈ kn+1 and
denote by Ai an (n + 1) × (n + 1) matrix with

fi (x) = x̄ t Ai x̄,

for 1 ≤ i ≤ m. Then we see that

⎛

⎜⎝
fi (p1)

...

fi (pn+1)

⎞

⎟⎠ =
⎛

⎜⎝
p̄t
1 · (Ai · P)1

...

p̄t
n+1 · (Ai · P)n+1

⎞

⎟⎠ (7)
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where P := ( p̄1, . . . , p̄n+1) is the (n + 1) × (n + 1) matrix and (∗) j is the j-th
column vector. The Eq. (7) means that ( fi (p1), . . . , fi (pn+1))

t is computed by one
multiplication Ai · P of (n + 1) × (n + 1)matrices and n + 1 inner products of (n +
1)-vectors. Thus the number of operations for encrypting n + 1 plaintexts is �(n +
1)wm, where 2 ≤ w ≤ 3 is the exponent of the matrix multiplication algorithms (see
e.g., [14, 28, 66, 98],w = 2.3728 · · · is the presently best estimate [66]). It is smaller
than the number of operations O(n3m) by the naive computations.

On the other hand, the size of a public key of MPKC is, in general, relatively
larger than other cryptosystems. In fact, the number of coefficients of the quadratic
forms in F is about 1

2n2m, which means that, if n, m are around one hundred, the key
size of public key is over several hundreds kilo bites under naive implementations.
Then reducing key size is an important problem for MPKCs. Note that approaches
to reduce the key size for several MPKCs are given in [43, 85, 86].

Security.

Since F = T ◦ G ◦ S, the quadratic forms in the public key F are given by

F(x) =
⎛

⎜⎝
f1(x)

...

fm(x)

⎞

⎟⎠ = T

⎛

⎜⎝
g1(S(x))

...

gm(S(x))

⎞

⎟⎠ . (8)

The roles of the secret affine maps S, T are to transform the map G inverted fea-
sibly into the map F not inverted feasibly. Remark that, for most MPKCs, there
are nontrivial S, T such that F can be inverted efficiently. For example, on ML, if

S =
( ∗ ∗

. . .
0 ∗

)
and T =

( ∗ 0

. . .
∗ ∗

)
, the quadratic forms f1(x), . . . , fm(x) are also in

the form (5), which are inverted recursively. We call such a bad pair (S, T ) a weak
key, and call a pair (S1, T1) an equivalent key if (SS−1

1 , T −1
1 T ) is a weak key. It is

important to study which kind of (S, T ) is weak, not to choose such weak keys as a
secret key.

We also remark that several MPKCs are known to be insecure at all for arbitrary
(S, T ). In fact, two early MPKCs were already broken [29, 52, 79]. We describe
how to break them in the next subsection.

2.3 Attacks on Early MPKCs

Patarin’s attack on MI [79].

For a plaintext x = (x1, . . . , xn)
t ∈ kn and the corresponding ciphertext y = (y1, . . . ,

yn)
t ∈ kn , let X := φ(S−1(x)) and Y := φ(T −1(y)) = X1+qi

. It is easy to see that

Y Xq2i = Y qi
X

(
= X1+qi +q2i

)
. (9)
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Since φ−1(Y ), φ−1(Y qi
) are sets of linear forms of y and φ−1(X), φ−1(Xq2i

) are
those of x , there exist polynomials over k in the form

L(x, y) :=
∑

1≤i, j≤n

αi j xi y j +
∑

1≤i≤n

βi xi +
∑

1≤ j≤n

γ j y j + δ (10)

such that L(x, y) = 0 holds for arbitrary plaintext–ciphertext pairs (x, y). To deter-
mine the coefficients αi j , βi , γ j , δ ∈ k, prepare sufficiently many pairs (x, y) of the
plaintext and ciphertext, substitute them into (10) to generate a system of linear equa-
tions of variables αi j , βi , γ j , δ and solve its system. Once the attacker finds polyno-
mials in the form (10), he/she can get candidates of the plaintext x = (x1, . . . , xn)

t

by solving a system of linear equations derived from (10). It is known that the number
of candidates of x given by this attack is qgcd(i,n) ≤ qn/3, which is much smaller than
#kn = qn . �

Hasegawa–Kaneko’s attack on ML [29, 52].

Let G1, . . . , Gn be the coefficient matrices of g1(x), . . . , gn(x), namely gi (x) =
xt Gi x + (linear form). By the construction of gi ’s, we see that

Gn =
(∗

n−1
∗

∗ 0

)
, Gn−1 =

(∗
n−1

0
0 0

)
, . . . .

Since the coefficientmatrices F1, . . . , Fn of the public polynomials f1(x), . . . , fn(x)

are given by

⎛

⎜⎝
F1
...

Fn

⎞

⎟⎠ = T

⎛

⎜⎝
St G1S

...

St Gn S

⎞

⎟⎠ ,

there exist constants α1, . . . , αn−1 ∈ k such that

rank(Fi − αi Fn) ≤ n − 1, i.e. det(Fi − αi Fn) = 0

for 1 ≤ i ≤ n − 1. Then the attacker can find such αi ’s by solving univariate poly-
nomial equations. It is easy to see that such αi ’s are partial information of T , which
means that, once α’s are recovered, the attacker can recover partial information of S
easily. Further information of S, T can be recovered recursively. �


3 Major Attacks

Section2.3 describes attacks on the early MPKCs based on the property of G. Now
wewant to know what kinds of G construct secure MPKCs. Unfortunately, we do not
have complete answers; there are noMPKCs with security proofs at the present time.
On the other hand, there have been various works on cryptanalysis against proposed
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MPKCs. These works give answers for what kinds of G construct insecure MPKCs,
which are quite helpful to build secure MPKCs. In this section, we describe outlines
of major attacks on MPKCs.

3.1 Direct Attacks

The direct attack is to find a common solution of multivariate quadratic equations

f1(x1, . . . , xn) = y1, . . . , fm(x1, . . . , xn) = ym (11)

to recover the plaintext x = (x1, . . . , xn)
t ∈ kn of a ciphertext y = (y1, . . . , ym)t ∈

km . The most naive approach is the exhaustive search, whose complexity is heuristi-
cally O(qmin (m,n) · (polyn.)). It is too heavy in general, and then the attacker requires
better algorithms. Note that a faster algorithm was proposed in [16] for q = 2.

One of standard approaches for direct attacks is by computing the Gröbner basis
of the polynomial system { f1(x) − y1, . . . , fm(x) − ym}. While the complexity of
the original Gröbner basis algorithm by Buchberger [17] is O

(
22

n )
, there have been

improved algorithms such like the F4- and F5-algorithms [5, 10, 44, 45]. It is known
that the complexities of these algorithms depend on the degree of regularity dreg
of the corresponding polynomial system, in fact, the complexity of F5 algorithm is
�m

(n+dreg−1
dreg

)w
. When the polynomial system is over-defined (m > n) and is semi-

regular, dreg coincides with the smallest degree of the non-positive coefficients of the

polynomial (1−t2)m

(1−t)n [5]. This means that, if m is sufficiently larger than n, dreg is small

enough. Especially, when m � 1
2n2, this algorithm is in polynomial time. When the

difference m − n is small, one can reduce the complexity by mixing the exhaustive
searchwith theGröbner basis algorithm. This approach is called the hybrid approach.
According to [10], its complexity is O(2m(3.31−3.62/ log2 q)) for n = m.

For under-defined systems (n > m), there are improved algorithms. When n ≥
1
2m(m + 1), Cheng et al. [25] (see also [53, 65, 70]) proposed a polynomial time
algorithm to find a solution x by reducing the problem of solving { f1(x) = y1, . . . ,
fm(x) = ym} to the problem of finding a solution of

(quadratic form of x1) = 0,

(quadratic form of x1, x2) = 0,

...

(quadratic form of x1, . . . , xm) = 0.

(12)

It is clear that (12) can be solved recursively. Even if n < 1
2m(m + 1), relatively

efficient algorithms are proposed in [25, 104]. For example, if n ≥ 1
2m(m + 1) −

1
2 l(l + 1) (1 ≤ l < m), one can reduce the corresponding problem to the problem of
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finding a solution of the system of l quadratic equations of l variables, which can be
solved by the Gröbner basis algorithm more efficiently than the original system of
quadratic equations.

In April 2015, the MQ Challenge [113] started. It is a challenge to solve a given
system of multivariate quadratic equations chosen randomly for m = 2n, n ∼ 1.5m
and q = 2, 28, 31. The records of this challenge have been renewed frequently, which
shows that the algorithms for the direct attack have been developing quickly.

3.2 Rank Attacks

The rank attack is to recover T partially when the coefficient matrices of quadratic
forms have special conditions on their ranks. LetG1, . . . , Gm be the coefficientmatri-
ces of the quadratic forms g1(x), . . . , gm(x) in the central map G, and F1, . . . , Fm

those of f1(x), . . . , fm(x) in the public key F . Due to (8), we have

Fj = St

(
∑

1≤i≤m

ti j Gi

)
S, (1 ≤ j ≤ m), (13)

where ti j ’s are the entries in T . Then the rank of Fj coincides with the rank of∑
i ti j Gi . This means that, if there exist constants c1, . . . , cm ∈ k such that the rank

of
∑

i ci Gi is r(< n), there exist constants c′
1, . . . , c′

m ∈ k such that the rank of∑
i c′

i Fi is (at most) r . The rank attack recovers such constants c′
1, . . . , c′

m .
For example, on ML (Sects. 2.1, 2.3), Gn is of rank n and arbitrary linear sums

of G1, . . . , Gn−1 are of rank n − 1. Then there exist α1, . . . , αn−1 ∈ k such that the
rank of Fi − αi Fn (1 ≤ i ≤ n − 1) is at most n − 1 and the attacker can recover T
partially by these constants α1, . . . , αn−1.

There are two kinds of rank attacks. One is the min-rank attack, which is available
if there exist β1, . . . , βm ∈ k such that the rank r of

∑
1≤i≤m βi Gi is small. The other

is the high-rank attack, which is available if there exists a small integer 1 ≤ l < m,
elements β1, . . . , βm−l ∈ k and a series {i1, . . . , im−l} ⊂ {1, . . . , m} such that the
rank of

∑
1≤ j≤m−l β j Gi j is smaller than n.

When q is small, the rank attacks include exhaustive searches and their complexi-
ties are known to be O(qr� m

n � · (polyn.)) for the min-rank attack and O(ql · (polyn.))
for the high-rank attack [108]. On the other hand, when q is large, the attacker of
the min-rank attack tries to find a solution of the system of polynomial equations of
(α1, . . . , αm)derived from the condition rank(

∑
1≤i≤m αi Fi ) ≤ r . Since rank(A) ≤ r

is equivalent that the determinants of all (r + 1) × (r + 1) minor matrices in A are
zero, the corresponding equations are of degree (at most) r + 1. While solving a
system of high degree equations is difficult in general, it can be done effectively by
the Gröbner basis algorithm if r is small enough since the number of equations are
much larger than the number of equations, In fact, its complexity is known to be
O(

(n+r+1
r+1

)w
) for n = m under several good conditions (see [11, 64]).
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3.3 Conjugation Attacks

Let H1, H2 be linear sums of F1, . . . , Fm . Due to (13), we see that

H−1
1 H2 = S−1(Q−1

1 Q2)S,

where Q1, Q2 are linear sums of G1, . . . , Gm . If Q−1
1 Q2 has special properties for

conjugation, the attacker can recover S partially.
For example, the coefficientmatricesG1, . . . , Gm on the oil and vinegar signature

scheme (OV) (Sect. 4.1.1, [81]) are expressed by
(

0m ∗
∗ ∗m

)
, which means

H−1
1 H2 = S−1

(
0m ∗
∗ ∗m

)(∗m ∗
∗ 0m

)
S = S−1

(∗m ∗
0 ∗m

)
S.

By using the equation above, Kipnis and Shamir [63] proposed a polynomial time

algorithm to recover S1 such that SS1 =
(

∗m ∗
0m ∗m

)
. Since S =

(
∗m ∗
0 ∗m

)
is a weak

key, Kipnis–Shamir’s attack breaks OV.
This attack is also available on the signature scheme YTS (Sect. 4.3.2, [55, 111])

and on MPKCs derived from a quadratic map over an extension field (Sect. 4.2.4,
[23, 59, 107]), since the coefficient matrices Fi ’s are respectively expressed by

St (G ′
i ⊗ Ir )S with smaller matrix G ′

i and S̃t

( ∗N

. . .
∗N

)
S̃ with a divisor N | n and

a matrix S̃ over an extension field including the secret key S.
Remark that this attack cannot be used directly when the field is of even character-

istic. When k is of even characteristic, the coefficient matrix H cannot be symmetric.
Then, instead of H , the attacker will use the matrix Ĥ := H + H t . Since Ĥ is
skew-symmetric (Ĥ + Ĥ t = 0), Ĥ is not invertible when n is odd and the charac-
teristic polynomial of Ĥ−1

1 Ĥ2 is a square of a smaller degree polynomial when n is
even (see e.g., [20, 40, 101]). Thus more delicate discussions are required for even
characteristic cases.

3.4 Linearization Attacks

Recall that Patarin’s attack on MI (Sect. 2.3, [79]) recovers polynomials in the form

L(x, y) :=
∑

1≤i, j≤n

αi j xi y j +
∑

1≤i≤n

βi xi +
∑

1≤ j≤n

γ j y j + δ (14)

satisfying L(x, y) = 0 for arbitrary plaintext–ciphertext pairs (x, y). The lineariza-
tion attack is to recover such polynomials if there exist. Once the attacker obtains
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such polynomials, he/she will get (candidates of) the plaintexts x of given
ciphertexts y.

The basic approach to determine L is as follows. First, prepare sufficiently many
plaintext–ciphertext pairs (x, y). Next, generate a system of linear equations of the
coefficients in L by the pairs (x, y). Finally, solve the linear equations to determine the
coefficients of L . The complexity of this attack depends on the number of monomials
in L . For example, on MI, the complexity of the linearization attack is O(n2w) since
the number of monomials in (14) is (n + 1)2.

Such an attack is extended to MFE [37, 107] and the simple matrix encryption
scheme [99]. On MFE, there exist quadratic polynomials h1(y), . . . , hn+1(y) such
that

L(x, y) :=
∑

1≤i≤n

xi · hi (y) + hn+1(y) (15)

satisfies L(x, y) = 0 for any plaintext–ciphertext pairs (x, y). Then the complexity
of the linearization attack on MFE is not large. On the simple matrix encryption
scheme, the complexity is sub-exponential time since the degrees of the polynomials
corresponding to h1(y), . . . , hn+1(y) are

√
n.

Remark that there are two ways to generate plaintext–ciphertext pairs (x, y). One
is by encrypting chosen plaintexts x ∈ kn , and the other is by decrypting chosen
ciphertexts y ∈ km . The former is a chosen plaintext attack (CPA) and the latter is a
chosen ciphertext attack (CCA).OnMI andMFE,CPA is available.On the other hand,
if the decryption map Ψ : km → kn is not an inversion of F , namely Ψ (F(x)) = x
for x ∈ kn but F(Ψ (y)) �= y for sufficiently many y ∈ km , there is a possibility
that CCA is available. In fact, CCA helps to recover the decryption map of ZHFE
(Sect. 4.2.4, [60, 89]). Furthermore, if hidden information is used in the decryption
algorithm, CCA might be able to recover such hidden information. Actually, the
additional polynomials in Zhang–Tan’s variant [114, 115] can be recovered by CCA
[57].

3.5 Differential Attacks

The differential attack is based on a symmetric property of the difference

D f (x, a) := f (x + a) − f (x) − f (a) + f (0),

for the polynomial map f associated with the corresponding MPKC. For example,
Dubois et al. [41] proposed the differential attack on Sflash [1] (a variant of MI) by
using the following symmetric relation:

DG (αX, a) + DG (X, αa) = (αqi + α)DG (X, a), (16)
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whereG (X) := Xqi +1 is the central map ofMI. It is known that the differential attack
is also available on l-IC and the internal perturbations of MI, HFE [42, 46, 47]. On
the other hand, the security of HFE and its variations have been studied in [19, 32]
and it was proved that HFEv- is secure against the differential attack.

3.6 Physical Attacks

Physical attacks, e.g., the side channel attacks and the fault attacks, have been studied
for RSA [15, 62], ECC [13, 27, 30], Pairing [78], lattice- and code-based cryptosys-
tems [2, 21, 71]. Also for MPKCs, there are several works on physical attacks.

Okeya et al. [77] proposed a side channel attack on Sflash [1] before Sflash was
broken by the differential attack [41]. This attack can recover the random seed used
for hashing in the process of signature generation. Furthermore, fault attacks on
MPKCs was proposed at PQCryoto 2011 [61]. By comparing plaintext–ciphertext
pairs given by a faulty map and those by the unfaulty (original) map, the attacker can
recover the secret key S, T partially. It is known that the fault attack is available on
most MPKCs under naive implementations. These works imply that MPKCs must
be implemented carefully, not to be broken by physical attacks.

4 Proposed MPKCs

Until now, various MPKCs have been proposed. In this section, we describe famous
MPKCs and discuss their security based on the descriptions of Sect. 3.

4.1 Stepwise Triangular Type

Recall that the central map G of ML (Sect. 2.1, [105]) is inverted recursively. While
ML itself was already broken [52], the idea decrypting step-by-step is used in several
MPKCs. We now give examples of MPKCs having the step-by-step structure.

4.1.1 Oil and Vinegar Signature Scheme

In the Oil and Vinegar signature scheme (OV) proposed by Patarin [81], n = 2m and
the quadratic map G is defined by
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g j (x) =
∑

1≤i≤m

xi · (linear form of xm+1, . . . , xn)

+ (quadratic form of xm+1, . . . , xn),

(17)

for 1 ≤ j ≤ m. Remark that the affine map T is not necessary in OV since the
polynomials in T ◦ G is also in the form (17). This scheme signs a message y ∈ km

as follows. First, choose u1, . . . , um ∈ k randomly and find z1, . . . , zm ∈ k such that

g1(z1, . . . , zm, u1, . . . , um) = y1,

...

gm(z1, . . . , zm, u1, . . . , um) = ym .

(18)

The signature of y is x = S−1(z1, . . . , zm, u1, . . . , um)t ∈ kn . By the definition of G,
we see that (z1, . . . , zm) is given as a solution of m linear equations of m variables.

As already given in Sect. 3.3, an equivalent secret key of OV is recovered in
polynomial time by Kipnis–Shamir’s attack [63] since the coefficient matrices

of g1, . . . , gm are in the form

(
0m ∗
∗ ∗m

)
and

(
0m ∗
∗ ∗m

)−1 (
0m ∗
∗ ∗m

)
=

( ∗m ∗
0 ∗m

)
. To

enhance its security, Kipnis–Patarin–Goubin [65] proposed an arrangement of OV
called the Unbalanced Oil and Vinegar signature scheme (UOV). On this scheme,
n > 2m (v := n − 2m) and G is given as (17) for 1 ≤ j ≤ m. The signature gener-

ation is almost same to the original OV. It is easy to see that S =
(

∗m ∗
0 ∗m+v

)
is a

weak key of UOV.
Different to the original OV, Kipnis–Shamir’s attack is not available on UOV

directly since the coefficient matrices are in the form
(

0m ∗
∗ ∗m+v

)
but

(
0m ∗
∗ ∗m+v

)−1 ·
(

0m ∗
∗ ∗m+v

)
�=

( ∗ ∗
0 ∗

)
. Kipnis–Patarin–Goubin [65] also arrange

Kipnis–Shamir’s attack to be available onUOVwith the complexity O(qv · (polyn.)).
The advantage of UOV is that the signature generation is elementary and the

security seems enough for v ∼ m (n ∼ 3m). However, the key size is relatively larger
than other MPKCs. We then need to reduce the key size of this scheme.

4.1.2 Rainbow

Rainbow [35] is the multi-layer version of UOV. For integers o1, . . . , ol , v ≥ 1, put
m := o1 + · · · + ol , n := m + v and define G as follows:
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g1(x), . . . , go1(x) =
∑

1≤i≤o1

xi · (linear form of xo1+1, . . . , xn)

+ (quadratic form of xo1+1, . . . , xn),

go1+1(x), . . . , go1+o2(x) =
∑

o1+1≤i≤o1+o2

xi · (linear form of xo1+o2+1, . . . , xn)

+ (quadratic form of xo1+o2+1, . . . , xn),

...

go1+···+ol−1+1(x), . . . , gm(x) =
∑

o1+···+ol−1+1≤i≤m

xi · (linear form of xm+1, . . . , xn)

+ (quadratic form of xm+1, . . . , xn).

It is a generalization of ML and (U)OV. In fact, Rainbow with l = n, o1 = · · · =
on = 1 and v = 0 is almost same to ML and Rainbow with l = 1 is just the (U)OV.

To generate a signature, first choose u1, . . . , uv ∈ k randomly and find
xo1+···+ol−1+1, . . . , xm ∈ k such that

go1+···+ol−1+1(x1, . . . , xm, u1, . . . , uv) = yo1+···+ol−1+1,

...

gm(x1, . . . , xm, u1, . . . , uv) = ym .

(19)

By the definition of G, the elements xo1+···+ol−1+1, . . . , xm are given as a solution of a
system of ol linear equations of ol variables. Other parameters x1, . . . , xo1+···+ol−1+1

can be found recursively.
The coefficient matrices of g1(x), . . . , gm(x) are expressed by

G1, . . . , Go1 =
(
0o1 ∗
∗ ∗n−o1

)
,

Go1+1, . . . , Go1+o2 =
(
0o1 0 0
0 0o2 ∗
0 ∗ ∗n−o1−o2

)
,

...

Go1+···+ol−1+1, . . . , Gm =
(
0o1+···+ol−1 0 0
0 0ol ∗
0 ∗ ∗v

)
.

(20)

Then we see that a pair of S =
⎛

⎜⎜⎝

∗o1 ∗
. . .

0 ∗v

⎞

⎟⎟⎠ and T =
⎛

⎜⎜⎝

∗o1 ∗
. . .

0 ∗ol

⎞

⎟⎟⎠ is a weak key of

Rainbow. Due to (20), we see that the security against the high-rank attack is
O(qo1 · (polyn.)), and the security against the min-rank attack is O(qol+v · (polyn.)).
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Furthermore, since arbitrary linear sums of G1, . . . , Gm are in the form
(
0o1 ∗
∗ ∗n−o1

)
,

(arranged) Kipnis–Shamir’s attack is available also on Rainbow and its complexity
is O(qn−2o1 · (polyn.)).

The parameters of Rainbow are usually chosen by l = 2 and o1 ∼ o2 ∼ v. In this
case, n ∼ 1.5m and the security against the rank attacks and Kipnis–Shamir’s attack
is about O(qo1 · (polyn.)). Then Rainbow is considered to be secure enough under a
suitable parameter selection and the key size is much less than UOV.

Note that there have been arrangements of Rainbow to reduce the key size. In TTS
[108] and NC-Rainbow [109, 110, 112], the number of parameters in G is less than
the original Rainbow and the signature generation is faster. In Cyclic Rainbow [85,
86], the number of parameters in F is less than the original Rainbow and the signature
verification is faster. However, we should study the security of such arrangements
carefully. For example, it is known that the security of Quaternion Rainbow over
even characteristic field is almost 1/4 of the original Rainbow of similar size [54].

4.2 Extension Field Type

The central map of MI (Sect. 2.1, [69]) is constructed by a univariate monomial over
an extension field. While MI was already broken, the idea generating G over an
extension field is used for several MPKCs. The central map G : kn → km of such an
MPKC is generally described as follows.

Let r ≥ 1 be a common divisor of n and m, N := n/r , M := m/r , K an r -
extension of k and {θ1, . . . , θr } ⊂ K is a basis of K over k. Denote by φN : kn →
K N is a one-to-one map, e.g. φN (x1, . . . , xn) = (x1θ1 + · · · + xrθr , . . . , xn−r+1θ1 +
· · · + xnθr ) for x1, . . . , xn ∈ k, and define a polynomial map G : K N → K M to be
inverted feasibly. The central map G is constructed by G := φ−1

M ◦ G ◦ φN .

G : kn φN−→ K N G−→ K M φ−1
M−−→ km .

It is known that the polynomials g1(x), . . . , gm(x) in G(x) are quadratic forms
of x = (x1, . . . , xn)

t ∈ kn over k if and only if the polynomials G1(X), . . . ,GM(X)

in G (X) are quadratic forms of X̄ :=
(

X1, . . . , X N , Xq
1 , . . . , . . . , Xqr−1

N

)t
over K . It

is because the one-to-one map φN is given by the matrix ΘN :=
(
θ

qi−1

j · IN

)

1≤i, j≤r

where IN is the identity matrix of size N . In fact, if X = (X1, . . . , X N )t := (x1θ1 +
· · · + xrθr , . . . , xn−r+1θ1 + · · · + xnθr )

t , it holds

ΘN x = X̄ .

Then F and G have the relation
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F(x) = (T ◦ Θ−1
M ) ·

(
G1(φN (S(x))), . . . ,GN (φN (S(x))),

G1(φN (S(x)))q , . . . ,GN (φN (S(x)))qr−1
)t

,

and Gi (φN (S(x)))q j
is written by

Gi (φN (S(x)))q j = X̄ t (ΘN SΘ−1
N )t G(q j )

i (ΘN SΘ−1
N )X̄ + (linear form of X̄)

for some n × n matrix G(q j )

i with K -entries. The matrix G(q j )

i is important for the
security of the extension field type MPKCs.

In this subsection, we describe several examples of such MPKCs.

4.2.1 Hidden Field Equation (HFE)

Hidden Field Equation (HFE) proposed by Patarin [79] is constructed with n = m =
r (namely N = M = 1) and

G (X) =
∑

0≤i≤ j≤d

αi j Xqi +q j +
∑

0≤i≤d

βi Xqi + γ,

where 1 ≤ d � n is an integer andαi j , βi , γ ∈ K . The decryption ofHFE is obtained
by solving a univariate polynomial equation G (X) − Y = 0 of degree D ≤ 2qd . Its
complexity is O(D3 + nD2 log q) by the Berlekamp algorithm [8, 9].

For the security of HFE, it has been reported that F ofHFEwith small d is inverted
efficiently by the Gröbner basis attack [45]. It is known that the degree of regularity
of the corresponding polynomial system is bounded by 1

2 (q − 1)�logq(2qd − 1) +
1� + 2 [34, 50]. Furthermore, since the coefficient matrix of G as a quadratic form
of X̄ is in the form ( ∗d+1 ), the min-rank attack is also available on HFE and its
complexity is

(n+d+2
d+2

)w � n(d+2)w [11, 64].
From these facts, we see that both the decryption speed and the security of HFE

are exponential of d, namely HFE has a serious trade-off between efficiency and
security. Thus HFE itself has been considered to be impractical. In Sect. 4.2.2, we
describe arrangements of MI and HFE to enhance the security.

4.2.2 Variants of MI and HFE

The minus (−) variant is to hide several polynomials in G, namely, for G :
kn → km with G(x) = (g1(x), . . . , gm(x))t , the minus G− : kn → km−l (1 ≤ l <

m) is defined by G−(x) := (g1(x), . . . , gm−l(x)). This is mainly used for signature
schemes. To generate the signature, choose u1, . . . , ul ∈ k randomly and find x ∈ kn

such thatG(x) = (y1, . . . , ym−l , u1, . . . , ul)
t . Sflash [1], selected byNESSIE project
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[90], is a minus variant of MI. Unfortunately, the differential attack can recover the
hidden polynomials of Sflash [41, 46].

The plus (+) variant is to add several polynomials, namely the central map
of plus is G+ = (g1(x), . . . , gm(x), h1(x), . . . , hl(x)) where l ≥ 1 is an integer
and hi ’s are quadratic forms chosen randomly. To decrypt ỹ = (y1, . . . , ym+l)

t ∈
km+l , one finds x ∈ kn such that G(x) = y = (y1, . . . , ym)t and verifies whether
(h1(x), . . . , hl(x)) = (ym+1, . . . , ym+l). When m ≥ n, the decryption of the plus
variant is (probably) not too slower than the original scheme since the number of
solutions of G(x) = y is not many. On the other hand, when n > m, it is much slower
since the equation G(x) = y will have many solutions. See [82] for the security of
MI± (the plus variant of MI−).

The vinegar (v) variant is to add several variables. When the quadratic forms in
G(x) := (g1(x), . . . , gm(x))t are given by

gl(x) :=
∑

1≤i≤ j≤n

a(l)
i j xi x j +

∑

1≤i≤n

b(l)
i xi + c(l),

the quadratic forms in a vinegar variant Gv(x) := (ĝ1(x̃), . . . , ĝm(x̃)) are defined by

ĝl(x̃) :=
∑

1≤i≤ j≤n

a(l)
i j xi x j +

∑

1≤i≤n

v(l)
i (xn+1, . . . , xn+l)xi + w(l)(xn+1, . . . , xn+r ),

where r ≥ 1 is an integer, xn+1, . . . , xn+r are additional variables, x̃ := (x1, . . . ,
xn+r )

t , v(l)
i is a linear form andw(l) is a quadratic form such that for any (u1, . . . , ur ) ∈

kr , {ĝl(x1, . . . , xn, u1, . . . , ur )}1≤l≤m is equivalent to the original G. HFEv- is the
vinegar variant of HFE-, and has been considered to be secure enough under suitable
parameter selections (e.g., Quartz, Gui [31, 65, 80, 83, 87, 102]). Recently, Zhang
and Tan proposed a new variant similar to the vinegar [114, 115]. However, the
vinegar terms can be recovered easily by a chosen ciphertext attack [57].

The projection (p) is to reduce several variables from the quadratic forms.
When the original G is given by {gl(x1, . . . , xn)}1≤l≤m , the projection G p is
{gl(x1, . . . , xn−r , u1, . . . , ur )}1≤l≤m with constants u1, . . . , ur ∈ k. It is known that
the differential attack is not available on the projection ofMI- (called PFLASH) [96],
despite the signature generation is slower than Sflash.

The internal perturbation (IP) [33] and the piece in hand (PH) [106] are ran-
domizations of G. It is known that these variants improve the security against the
Gröbner basis attack [36, 106]. However, their security should be studied carefully.
In fact, the differential attack removes the perturbation on PMI (IP of MI) [46] and
the linearization attack recovers additional polynomials in the 2-layer version of PH
[74].
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4.2.3 ZHFE

ZHFE [89] is an encryption scheme with (N , M) = (1, 2). The simplest version is
as follows. Let D ≥ 1 be an integer, G1(X),G2(X) quadratic forms of X̄ such that

Ψ (X) := X · G1(X) + Xq · G2(X)

is of degree at most D and G : K → K 2 the map with G (X) := (G1(X),G2(X)). To
find X ∈ K with G1(X) = Y1 and G2(X) = Y2 in the decryption process, one solves
the univariate equation

Ψ (X, (Y1, Y2)) := Ψ (X) − XY1 − XqY2

= X · (G1(X) − Y1) + Xq · (G2(X) − Y2) = 0
(21)

of degree at most D. Similar to HFE, the complexity of the decryption is O(D3 +
nD2 log q) by the Berlekamp algorithm.

The security of ZHFE against the attacks available on HFE has been studied in
[84, 89, 116]. These works claimed that ZHFE is more secure than HFE against the
direct attacks, the min-rank attacks and the differential attack. However, a chosen
ciphertext attack can reduce the security of ZHFE to the security of HFE against the
min-rank attack [60]. This means that, similar to HFE, ZHFE has a serious trade-off
between efficiency and security.

4.2.4 Multivariate (N > 1) Version

The maps G for MI, HFE, and ZHFE are given by univariate polynomials, namely
N = 1. Other than these scheme, there are MPKCs with N > 1. For example, MFE
[107] is an extension field type MPKC with (N , M) = (12, 15) and G has a special
structure to be inverted feasibly. In multi-HFE [23], N (= M) is small and the poly-
nomials in G are quadratic forms chosen randomly. The map G for l-IC [38] is a set
of multivariate higher degree monomials similar to MI.

Unfortunately, theseMPKCsare known tobe impractical. In fact,MFEwasbroken
by the linearization attack [37] and the l-IC was broken by the differential attack
[47]. Formulti-HFE, sinceGi (X) = X̄ t ( ∗N ) X̄ + (linear form), themin-rank attack

[11] is available and its complexity is O
((n+N+1

N+1

)ω
)

= O
(
r (N+1)w

)
. Furthermore,

the extension field type MPKCs with quadratic G and odd q are broken by the
conjugation attack [59] since the public quadratic forms are in the form fi (x) =
xt (ΘN S)t

( ∗N

. . .

∗N

)
(ΘN S)x + (linear form).
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4.2.5 Noncommutative Version

In Sects. 3.2.1–4, we describe MPKCs whose central maps are derived from poly-
nomial maps over extension fields. Such constructions can be generalized to rings,
not necessarily fields. In fact, there have been several MPKCs constructed on non-
commutative rings [54, 103, 109, 110, 112]. However, we cannot recommend such
constructions strongly since the following theorem is well-known (see e.g. [6]).

The Artin–Wedderburn theorem. A ring R is a semi-simple if and only if there
exist integers n1, . . . , nl ≥ 1 and division rings K1, . . . , Kl such that

R � Mn1(K1) ⊕ · · · ⊕ Mnl (Kl),

where Mn(K ) is the ring of n × n matrices of K -entries.
Furthermore, due to Wedderburn’s theorem, we see that, if a semi-simple ringR

is finite, then the rings K1, . . . , Kl are commutative. For example, let

R := {a1σ1 + · · · + a5σ5 | a1, . . . , a5 ∈ k}

be a ring over k with q ≡ 1 mod 3 and σ1 :=
(

1
1
1

)
, σ2 :=

(
1
1

1

)
, σ3 :=

(
1

1
1

)
,

σ4 :=
(

1
1

1

)
, σ5 :=

(
1

1
1

)
. Define δ1, . . . , δ5 ∈ R by

⎛

⎜⎜⎜⎝

δ1
δ2
δ3
δ4
δ5

⎞

⎟⎟⎟⎠ := 3−1

⎛

⎜⎜⎜⎜⎝

1 1 1
1 α α2

1 α2 α

−1 −1 −1 α − 1 α2 − 1
−1 −1 −1 α2 − 1 α − 1

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

σ1
σ2
σ3
σ4
σ5

⎞

⎟⎟⎟⎠ ,

where α ∈ R satisfies α �= 1, α3 = 1. It is easy to see that the elements δ1, . . . , δ5
have the following multiplicative relations:

δ1δ1 =δ1, δ1δ2 =0, δ1δ3 =0, δ1δ4 =0, δ1δ5 =0,

δ2δ1 =0, δ2δ2 =δ3, δ2δ3 =0, δ2δ4 =δ4, δ2δ5 =0,

δ3δ1 =0, δ3δ2 =0, δ3δ3 =δ2, δ3δ4 =0, δ3δ5 =δ5,

δ4δ1 =0, δ4δ2 =0, δ4δ3 =δ5, δ4δ4 =0, δ4δ5 =δ2,

δ5δ1 =0, δ5δ2 =δ4, δ5δ3 =0, δ5δ4 =δ3, δ5δ5 =0.

This means thatR � k ⊕ M2(k) and, if one generates G from quadratic forms over
R, the corresponding MPKC has a risk to be broken by rank attacks or conjugation
attacks.
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4.3 Other MPKCs

In this subsection, we describe two MPKCs as examples not classified in neither the
stepwise type nor the extension field type.

4.3.1 ABC Encryption Scheme

In the ABC (or Simple Matrix) encryption scheme proposed by Tao et al. [99], the
central map G is generated by products among three matrices A, B, C . It is gen-
eralized as follows. Let n, m ≥ 1 be integers with m := 2n, R a ring over k with
[R : k] = n and {ξ1, . . . , ξn} ⊂ R is a basis ofR over k. Denote byφ : kn → R,φ2 :
km → R2 one-to-one maps, e.g. φ(x1, . . . , xn) = x1ξ1 + · · · + xnξn and φ2(y1, . . . ,
ym) = (y1ξ1 + · · · + ynξn, yn+1ξ1 + · · · + ymξn) for x1, . . . , xn, y1, . . . , ym ∈ k, and
B,C : kn → kn linear maps. For x ∈ kn , put A = A(x) := φ(x), B = B(x) :=
φ(B(x)),C = C(x) := φ(C (x)), E1 = E1(x) := A · B, E2 = E2(x) := A · C and
E(x) := (E1(x), E2(x)). The central map G : kn → km is defined by

G := φ−1
2 ◦ E ◦ φ.

For Y1, Y2 ∈ R, one finds x ∈ kn with E1(x) = Y1 and E2(x) = Y2 by solving a
system of linear equations derived from C(x) = B(x)Y −1

1 Y2 or B(x) = C(x)Y −1
2 Y1.

It is easy to see that the original ABC encryption scheme [99] is just same to the
case that R = Mr (k) with r2 = n, and the extension field cancelation (EFC) [97]
is essentially expressed as an ABC encryption scheme in the case that R is an n
extension field of k.

The decryption of this scheme is simple and quite efficient. However, the decryp-
tion fails when A is not invertible. Especially, the probability of decryption failure
for the original ABC encryption scheme [99] is about q−1, which is not negligible.
To reduce the probability of decryption failure, several arrangements have been pro-
posed, e.g., taking q large, using rectangular matrices instead of A, B, C et al. [100],
using a tensor type matrix as S [88]. However, the security for such arrangements
should be studied carefully. It was shown that the tensor type S is a weak key [56].

For the security, it is known that the min-rank attack and the linearization attack
are available on this encryption scheme. For the original ABC [99], the complexi-
ties of these attacks are O(q2r · (polyn.)) and O((m

(n+r
r

)
)w) respectively. Further-

more, Moody et al. [73] proposed another attack on this scheme with the complexity
O(qr+4 · (polyn.)). Then this encryption scheme (presently) has a sub-exponential
time security of n. For EFC, it is known that the linearization attack can recover
plaintexts easily. To prevent it, the authors of [97] recommended to use the minus
and the projection of EFC. In [39], the cubic version of ABCwas proposed; the poly-
nomials in A are quadratic and then those in F, G are cubic. Though the security
against the direct attack is improved, the security against the linearization attack is
almost same to the original ABC.
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4.3.2 YTS

YTS is a signature scheme proposed by Yasuda–Takagi–Sakurai [111] over a finite
field of odd characteristic and by Zhang–Tan [115] over a field of even characteristic.
We now describe the odd characteristic version.

Let r ≥ 1be an integer,n := r2 andm := r(r + 1)/2.Denote byφ : kn → Mr (k),
ψ : km → SMr (k) one-to-one maps, where SMr (k) is the set of r × r symmetric
matrices over k. Define two maps G1,G2 : Mr (k) → SMr (k) by G1(X) := Xt X and

G2(X) := Xt Bt

(
Ir−1

δ

)
B X , where δ ∈ k is not a square of any elements in k and

B ∈ Mr (k) is an invertible matrix. The central maps G1, G2 : kn → km are given by

Gi := ψ−1 ◦ Gi ◦ φ, (i = 1, 2).

The public key is two maps F1, F2 : kn → km with Fi := T ◦ Gi ◦ S and the sig-
nature x ∈ kn for a message y ∈ km is verified if either F1(x) = y1 or F2(x) = y2
holds. It is known that, for any Y ∈ SMr (k), there exists X ∈ Mr (k) such that either

Xt X = Y, Xt

(
Ir−1

δ

)
X = Y holds and such X can be found feasibly [68]. This

fact is used for signature generation. While the signature generation is fast, the secu-
rity is not enough. Since the quadratic forms in Gi are quite sparse, an equivalent
secret key can be recovered in sub-exponential time by the min-rank attack [111]
and in polynomial time by the conjugation attack [55].

5 Open Problems

We conclude this paper by giving several open problems on MPKC.
1. Are there MPKCs with security proofs?
There have been several works on provable security of MPKCs [18, 92]. However,
they seem still far from the security proof of proposed MPKCs. We expect that, if
such an MPKC would be proposed, it could help future developments of MPKCs.
2. Which schemes are polynomial systems suitable for?
It has been considered that there are good multivariate signature schemes, which
seem secure and efficient enough under suitable parameter selections. For example,
Rainbow is one of them despite the key size is relatively large. On the other hand,
there seem to be few good encryption schemes, except the schemes proposed recently
and not yet analyzed enough. That is (maybe) because constructing a good one-to-one
map by nonlinear polynomial systems is not easy. Other than signature schemes and
encryption schemes, a multi-receiver signcryption scheme [67], an identity-based
signature scheme [94], a public key identification schemes [91] and a stream cipher
[7] were proposed. We consider that we should analyze more to use them in practice.
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3. Why quadratic? How about higher (≥ 3) degree polynomials?
For most MPKCs, F and G are sets of quadratic forms. One of the reasons that
quadratic forms are mainly used in MPKCs is that higher degree polynomials have
much more coefficients, which lacks efficiency. On the other hand, there have been
several MPKCs with cubic F and G (e.g., [39, 65, 75]). It has been considered
that one of the advantage of “cubic” construction is to avoid attacks based on the
properties of coefficient matrices. However, the attacker can get a quadratic map by
taking a differenceΔC F(x) := F(x + C) − F(x) = T ◦ ΔC G ◦ S, and he/she may
be able to find vulnerabilities in the coefficient matrices in ΔC F(x). For example, in
the cubic version of UOV described in Sect. 9 of [65], we can easily check that ΔC F
is equivalent to a public key of the original UOV, which means that the security of
cubic version UOV is almost same to the security against the key recovery attack
on the original UOV. Furthermore, another cubic version of UOV [75] was broken
easily [58]. We thus consider that, to construct a cubic version of MPKC, one should
study the security and efficiency carefully.
4. Are MPKCs really “Post-Quantum”?
MPKCs have been expected to be secure against quantum attacks. However, the pro-
posed attacks onMPKCs are only by the classical computers and there are fewworks
on the security against quantum attacks. The complexities of the proposed attacks
might be improved if the attacker could implement such attacks on the quantum
computers. For example, by using Grover’s algorithm [51], the attacker will reduce
the complexities of the attacks including the exhaustive search, e.g., the high-rank
attacks on small fields. Furthermore, it is known that, on the isogeny-based cryp-
tosystem, the security against the quantum attacks is less than the security against
the attacks by the classical computers [12, 26]. We consider that (the possibility of)
quantum attacks on MPKCs must be studied in near future.
5. How about relations with other NP-complete/-hard problems.
It is known that the problem of finding a solution of a system ofmultivariate nonlinear
polynomial equations over a finite field of order 2 is NP-hard, and the correspondence
between this problem and the SAT problem is given by xy ↔ x ∧ y, xy + x + y ↔
x ∨ y and x + 1 ↔ ¬x [48, 49]. By using this correspondence, Bard et al. [3, 4]
proposed an algorithm to solve a system of multivariate quadratic equations by the
SAT-solver. We consider that studying the security of MPKCs in the view of other
NP-complete/-hard problems is quite interesting.
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