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Decision Tree for Manual Material
Handling Tasks Using WEKA
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Abstract Manual material handling (MMH) is one of the most physically
demanding operations where workers are exposed to repetitive movements, awk-
ward postures, contact stresses, and forceful exertions. MMH results in biome-
chanical and physiological strain on material handlers. Numerous observational and
direct methods are used for assessing MMH tasks. In industrial settings, observa-
tional methods are best suited for ergonomic assessments of MMH tasks. But issues
such as unclear classification levels, need of expertise, obstructive and invasive
nature of data collection procedures, and time and cost requirements create diffi-
culty for safety and ergonomic engineers in using observational methods. The
objective of the study is to propose a decision aid to help safety and ergonomic
engineers in making an easy ergonomic assessment of MMH tasks for the case
study plant in West Bengal. In the current study, WEKA is used to classify the
MMH tasks using J48 algorithm. The input data for this study is obtained from our
previous work on the development of Cube model-2 (Rajesh et al. in IIE Trans
Occup Ergon Human Factors, 2(1):39–51, 2014), in which a field survey of MMH
tasks is conducted and classified the MMH tasks into three categories. The output
MMH task classifications in WEKA are also classified into three levels. Overall
true-positive rate of 0.813, false-positive rate of 0.170, and ROC value of 0.851 are
obtained. The weighted Kappa statistic is 0.715. The results from WEKA are
encouraging and enable us to use the simple decision tree to judge the physical
demands of material handlers. The practical relevance of the study is that the
decision tree is helpful for industry practitioners in assessing the MMH tasks
therein.
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2.1 Introduction

Manual material handling (MMH) is an integral part of many industrial activities
and is a major contributor of musculoskeletal disorders. MMH activities involve
high physical demands, awkward postures, contact stresses, and forceful exertions,
the contents of which vary significantly depending on the work situations and
industrial sectors. MMH jobs previously composed of a high percentage of lift–
lower–carry operations have gradually been replaced by pushing–pulling opera-
tions. The evolving nature of MMH exposure calls for not only better exposure
measurement and assessment strategies, but also for methods that are easy use and
implement.

Worksystem factors relevant for MMH exposure include worker characteristics,
material characteristics, Task/workplace characteristics, and
environment/organizational characteristics (Rajesh et al. 2014; Rajesh 2016). The
physiological and biomechanical responses need to be examined to quantify the
physical load and strain arising from the MMH exposure. For undertaking inter-
ventions to address ergonomic issues in workplaces engineers and Ergonomists
resort to observational and direct measurement tools to quantify these responses
(Takala et al. 2010). Ergonomic observational tools for assessing combined MMH
tasks that are suitable for the on-field industrial environment are scarce, and newer
tools are needed to be explored toward making ergonomic evaluations easier and
simpler. For safety and health practitioners the current need is to make quick and
easy qualitative ergonomic assessment of the work activity. These must comple-
ment the observational and quantitative ergonomic methods that are in place in the
industries.

The objective of this paper is to highlight a decision tree devised for a case study
plant. The methods section of the paper gives a brief description of the case study
plant and description of ergonomic evaluation done by existing ergonomic tools. In
the next section, the performance of decision tree with respect to the ergonomic
tools is presented. Finally, conclusion section presents the performance summary,
its limitation, and scope for future work.

2.2 Method

2.2.1 Dataset

The study was conducted in a bearing manufacturing plant in India. Ball bearing
and roller bearings are the main products produced by the manufacturing plant. The
plant has a diverse material handling system catering to the specific needs of
different sections. The material handling system configuration coupled with
worksite (i.e., location) layout, task–workplace characteristics shall produce dif-
ferent physical exposure doses on the material handlers. The work sampling study
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was conducted over 19 locations in Store section of the plant. At the completion of
the study, 143 MMH tasks and 262 task elements were observed. Each of these
MMH tasks was composed of multiple MMH task elements, consisting of lifting–
lowering, carrying, and pushing–pulling activities. For each of the MMH tasks
observed from the observational study, a biomechanical analysis is undertaken.
Biomechanical analysis was done using digital human models in CATIA software
(Version 5, Dassault Systems, and France). The most frequent posture observed for
a particular activity was used for the analysis. Biomechanical analysis of postural
activities was carried out for the starting and ending postures for each task element,
and was limited to lower back and shoulder joints. To account for the time
dimension, the cumulative loading concept (Callaghan et al. 2001) was applied over
the representative static postures of the task elements. Details of the biomechanical
analysis in Cube Model-2 can be found in Rajesh et al. (2014). Based on the
instantaneous loads and the cumulative dose the exertion level for each task is
classified into ‘low’, ‘medium’, or ‘high’ as per the biomechanical criteria (Rajesh
et al. 2014). The exertion level ‘low’ implies that biomechanical load does not
cause physical strain on the material handler and is acceptable. The exertion level
‘medium’ implies that the biomechanical load could cause physical strain when
done continuously. Therefore, the task needs to be accepted conditionally. The
exertion level ‘high’ implies that there is a high biomechanical load that would
cause physical strain to the material handler, and hence is unacceptable. The data
set so obtained from the biomechanical analysis forms the basis of this study.
Details of the dataset are given in Table 2.1.

2.2.2 Decision Tree

A decision tree is a decision-modeling tool that graphically displays the classifi-
cation process of a given input for given output class labels. The decision tree
mechanism is transparent and allows one to follow the tree structure easily to see
how the decision is made. A decision tree is a tree structure consisting of internal
and external nodes connected by branches. An internal node is a decision-making
unit that evaluates a decision function to determine which child node to visit next.
The external node, on the other hand, has no child nodes and is associated with a
label or value that characterizes the given data. A decision tree is a top-down
induction method of classification that has three main steps. First, the root node at
the top node of the tree considers all samples and passes through the samples
information in the second node called ‘branch node’. The branch node generates
rules for a group of samples by considering all attribute values and finalizes the
decision rule by pruning. After fixing the best rule, the branch nodes send the final
target value in the last node called the ‘leaf node’. Finally, it chooses the attribute
that offers rules with minimum error and constructs the final decision tree. Decision
tree classifier techniques have been used successfully for a wide range of classifi-
cation problems, but none so far in MMH application. Software used in his study is
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Waikato Environment for Knowledge Analysis (WEKA). WEKA has implemented
data mining algorithms using the JAVA language. It is open-source software and
contains tools for data preprocessing, classification, regression, clustering, associ-
ation rules, and visualization.

2.2.3 Performance Measures

There are several terms that are used for estimating the performance measure. They
are true-positive (TP), true-negative (TN), false-negative (FN), and false-positive
(FP). The performance of the predictive model is calculated based on the precision,
recall values of classification matrix. Precision is the fraction of retrieved instances
that are relevant. Recall is a fraction of relevant instances that are retrieved.

Table 2.1 Details about dataset

Attributes Description Type
(unit)

Descriptive

Load Total material moved
manually between
locations

Numeric
(kg)

Min 5 to max 2625 kg.
Mean 405 & Std Dev 454

Unit weight Unit material handled
manually

Numeric
(kg)

Min 1 to max 1044 kg.
Mean 155 & Std Dev 235

MMH Type of MMH task, i.e.,
lifting or lowering,
carrying, pushing or
pulling

Nominal
(no)

Lift–lower (n = 125), Carry
(36), Push–pull (101)

Worker no Number of workers
undertaking the MMH
task

Numeric
(no)

Min 1 to max 4.
Mean 1.447 & Std Dev 0.669

Working_height Working height at which
material is handled

Nominal
(no)

Floor to shoulder height
(n = 6), shoulder height (22),
floor height (18), floor to waist
height (97), waist to shoulder
height (69), waist height (50)

Distance Horizontal distance
moved during MMH
task

Numeric
(m)

Min 0 to max 200 m.
Mean 20.782 & Std Dev 40.824

Repetition Number of times MMH
activities are repeated

Numeric
(no)

Min 1 to max 480.
Mean 21.836 & Std Dev 44.818

Duration Duration of the
continuous MMH
activity

Numeric
(minutes)

Min 1 to max 32 min.
Mean 7.378 & Std Dev 7.406

Exertion Workers exertion level
due to MMH task

Nominal
(no)

Low (n = 72), Medium(147),
High(43)
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True-positive rate:

TPR ¼ TP
TPþ FNð Þ : ð2:1Þ

True-negative rate:

FPR ¼ FP
FPþTNð Þ ð2:2Þ

Precision ¼ TP
TPþ FPð Þ ð2:3Þ

Recall ¼ TP
TPþ FNð Þ : ð2:4Þ

Other performance measures obtained from WEKA include Receiver operating
characteristic (ROC) and Kappa statistic and root-mean-square error (RMSE). ROC
provides comparison between predicted and actual target values in a classification.
It describes the performance of a model with a complete range of classification
thresholds. ROC area varies between 0 and 1 intervals. An increasing value indi-
cates better classification, with an area of one representing perfect classification.
The Kappa Statistic can be defined as measuring the degree of agreement between
two sets of categorized data. Kappa statistic varies between 0 and 1 intervals; the
higher the value, the stronger the agreement (Sim and Wright 2005).
Root-mean-square error is defined as the square root of the sum of squares error
divided by a number of predictions. It measures the differences between values
predicted by a model and the values actually observed. The smaller the RMSE, the
better the accuracy of the model. The performance of the learning techniques is
dependent on the nature of the training data.

The current study is classified into three classes. For the multiclass problem,
sok09 has presented a number of performance measures. The classifiers are eval-
uated by some the multiclass performance measures listed below.

Average accuracy:

ACC ¼
PN

i¼1
TPi þTNi

TPi þFNi þFPi þTNi

N
: ð2:5Þ

Average classification error:

ER ¼
PN

i¼1
FPi þFNi

TPi þFNi þFPi þTNi

N
: ð2:6Þ
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An average per-class agreement of the data class labels with those of classifiers:

PrecisionM ¼
PN

i¼1
TPi

TPi þFPi

N
: ð2:7Þ

An average per-class effectiveness of a classifier to identify class labels:

RecallM ¼
PN

i¼1
TPi

TPi þFNi

N
: ð2:8Þ

Relation between data positive labels and those given by a classifier based on a
per-class average:

FscoreM ¼ b2 þ 1
� �

PrecisionMRecallM
b2PrecisionM þRecallM

: ð2:9Þ

Matthews correlation coefficient:

MCC ¼ F2 þ N� 2ð ÞTF� N� 1ð ÞF2
Tþ N� 1ð ÞFð Þ2 : ð2:10Þ

Weighted Kappa statistic is obtained using the weights assigned for each class
(Eq. 2.11). In the case of a task with true exertion ‘Low’ and classified as ‘Medium’
there is no physical strain on the worker, i.e., ergonomic cost is nil. It is likely that
an operating cost exists if the ergonomist undertakes interventions, and on the other
hand, a task with true exertion ‘High’ and classified as ‘Medium’; there is a
physical strain on the worker, i.e., ergonomic cost is present but ignored by the
classifier. The weights are assigned based on author’s judgment regarding penalties
for incorrect classification and are shown in Table 2.2.

Weighted Kappa statistic based on ergonomic weights is as follows:

Kw ¼ Pe oð Þ � Pe wð Þ
1� Pe wð Þ

; ð2:11Þ

Table 2.2 Weights for Kappa agreement analysis

Exertion level by biomechanical analysis Exertion level predicted by classifier

Low Medium High

Low 1 0.75 0

Medium 0.25 1 0.75

High 0 0.25 1
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where observed weighted proportion of agreement is

Pe oð Þ ¼
XN¼3

i¼1

XN¼3

j¼1

wi;j pi:pj:

Chance of expected weighted proportion of agreement is

Pe wð Þ ¼
XN¼3

i¼1

XN¼3

j¼1

wi;j pi:pj:

2.2.4 WEKA Procedure

In WEKA, all data is considered as instances and features in the data are known as
attributes (Witten et al. 1999; Hall et al. 2009). The dataset with nine attributes (see
Table 2.1) is preprocessed in WEKA and stored in a database. The data file nor-
mally used by WEKA is in ARFF file format, which consists of special tags to
indicate different things in the data file. The refined data is given to the proposed
prediction models as input, predicted class will be extracted and performance
evaluation metrics of different algorithms. In this study J48, Random forest, REP
and LMT algorithm are employed. For the test option tenfold cross-validation is
used. Here the dataset is split by tenfold, each fold contains 90% of the samples to
construct a model and the remaining 10% is used to evaluate the model perfor-
mance. The performance measures from WEKA include TPR, FPR, Correct clas-
sification (%), MCC, ROC area, Kappa statistic, and RMSE. Confusion matrices
are very useful for evaluating classifiers. In the confusion matrix, the columns
represent the predictions, and the rows represent the actual class. Based on it the
multiclass performance measures ACC, ER, PrecisionM, RecallM, Fscore, MCCM,
and Kw are estimated (Sokolova and Lapalme 2009; Jurman et al. 2012).

2.3 Results and Discussion

2.3.1 Decision Tree Model Results

The results from J48, Random forest, and REP and LMT algorithm are shown in
Table 2.3. We observe using the TPR and TNR measures that J48 was the best
performing algorithm and the second best was Random Forest. By examining
correct classification measure J48 performed best. Kappa statistic indicates that J48
and the Random Forest have a substantial agreement between biomechanical
analysis and the classifiers. J48 returned the highest correct classification (81%) and
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the lowest RMSE. ROC values for J48, Random Forest, and LMT algorithm
indicated good accuracy (ROC > 0.8). It appears that REP and LMT classifiers are
not suitable for classifying MMH tasks as their correct classification %, Kappa
statistic, and RMSE are lower than J48 and Random Forest algorithms. Confusion
matrix from J48 and Random Forest algorithm is presented in Table 2.4. Though
WEKA performance measures for J48 and Random Forest indicate only slight
advantage for J48, multiclass measures in Table 2.5 indicate a distinct advantage
for J48 classifier. Weighted kappa statistic for J48 is 0.715 against 0.649 for
Random Forest, both of which indicates substantial agreement (Sim and Wright
2005). The lower value for Random Forest is due to the higher number of

Table 2.3 Prediction performance measures (n = 262)

Performance measures Algorithm

J48 Random forest REP REP

TPR 0.813 0.794 0.634 0.76

FPR 0.17 0.19 0.347 0.213

Precision 0.814 0.786 0.603 0.759

Recall 0.813 0.794 0.634 0.757

Correct classification (%) 81.3 79.4 63.3 75.9

ROC area 0.851 0.884 0.725 0.846

Kappa statistic 0.668 0.632 0.287 0.573

RMSE 0.332 0.324 0.418 0.361

Table 2.4 Confusion matrix from J48 and random forest algorithm in WEKA

Exertion level by biomechanical
analysis

Predicted exertion level by
J48

Predicted exertion level by
random forest

Low Medium High Low Medium High

Low 61 11 0 62 10 0

Medium 2 130 15 7 128 12

High 0 21 22 0 25 18

Table 2.5 Prediction performance using multiclass measures (n = 262)

Performance measures Algorithm

J48 Random forest REP LMT

Accuracy (ACC) 0.872 0.856 0.823 0.829

Error rate (ER) 0.13 0.144 0.177 0.17

PrecisionM 0.788 0.761 0.734 0.73

RecallM 0.748 0.717 0.746 0.693

Fscore 0.768 0.738 0.74 0.711

Matthews correlation coefficient (MCCM) 0.563 0.536 0.446 0.473

Weighted Kappa (Kw) 0.715 0.649 0.647 0.631
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misclassification by Random forest as compared to J48 (Table 2.4). Among the four
classifiers REP performed the worst and J48 returned the best results. Hence, J48 is
more suited for prediction purpose.

2.3.2 Decision Tree Induced MMH Guidelines

Figure 2.1 shows the decision tree obtained using J48 algorithm. Figure 2.1 shows
a simple decision tree that consists of a decision node, branches, and leaves. The
root node in this example is ‘MMH’. The results of the test at the root node
(whether the MMH task type is ‘push’ or others) cause the tree to split into bran-
ches. The two branches in this case are ‘=push’ indicating ‘push–pull’ MMH task
and ‘! = push’.

Indicate ‘lift-lower-carry’ MMH task. The leaves are the decisions made and are
found on at the end of the last branch. The size of the tree is 37 with 19 leaves. For
example, the decision made for the task attributes, MMH = push (the task is push–
pull MMH task), Repetition � 1 (one time task), Duration = 4 min with
Load � 462 kg (material load using hand pallet truck is less than 462 kg), is
‘Low’. Some of the useful decision rules that can be practically used in the case
study company are presented in terms of MMH guidelines.

• Pushing tasks that are repeated more than 3 times are categorized as high
exertion task and are unacceptable. An immediate solution to the above con-
dition is to take a break after every 3 continuous push–pull task.

• Lifting–carrying–lowering tasks that are repeated more than 200 times are
categorized as high exertion task and are unacceptable. An immediate solution
to the above condition is to reduce repetitions below 200 or take a break at the
end of 200 repetitions.

• In the case of lifting–carrying–lowering tasks where unit weight is above 36 kg
and total material handling load is more than 80 kg, the MMH task is catego-
rized as high exertion task and is unacceptable. An immediate solution to the
above condition is to reduce the total MMH load to below 80 kg. In addition, a
reduction of unit weight from 36 kg is likely to reduce the stress further and
make the MMH task a medium exertion task. This can be seen from the node
‘Unit Weight � 36’ to ‘Load � 300’.

• In the case of lifting–carrying–lowering tasks where unit weight is above 24 kg,
total material handling load is more than 682 kg and working height is floor–
waist height, the MMH task is categorized as high exertion task and is unac-
ceptable. An immediate solution to the above condition is to reduce total MMH
load to below 682 kg. This can be seen from the node ‘Unit Weight > 24’ to
‘Load � 682’. In addition, a reduction of unit weight to below 24 kg is likely
to reduce the stress further and make the MMH task a medium exertion task.
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• In the case of lifting–carrying–lowering tasks where unit weight is between 25
and 36 kg, total material handling load is more than 300 kg and with 2 or lesser
worker group; the MMH task is categorized as high exertion task and is
unacceptable. An immediate solution to the above condition is to increase the
number of workers in the group.

2.4 Conclusion

The output MMH task classifications in WEKA are also classified into three levels
using WEKA-based classifiers J48, Random Forest, REP, and LMT. J48 and
Random Forest performed better than the other two. Multiclass performance
measures indicated J48 to be better than Random Forest classifier. Weighted Kappa
statistic was the highest for J48. Among the four classifiers REP performed the
worst and J48 gave the best results. J48 returned 81% correct classification. Overall
true-positive rate of 0.813, false-positive rate of 0.170, and ROC value of 0.851 are
obtained. The weighted Kappa statistic is 0.715. The results from WEKA are
encouraging and enable us to use the simple decision tree to judge the physical
demands of material handlers. The decision tree using J48 not only helps the
industry practitioner in making quick ergonomic assessment of MMH task occur-
ring in the plant but also provides insights toward intervention measured toward
reducing the physical load in ‘high’ exertion tasks.

The practical relevance of the study is that the decision tree is helpful for
industry practitioners in assessing the MMH tasks in the case study plant. The
limitation of the study is that the sample size is small. Reasons for the misclassi-
fication need to be examined.
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