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Abstract Satellite optical system produces high-resolution images which deal with
large volume of data. This imposes strain on embedded resources which require
more memory and computing capacity. In classical satellite imaging system, con-
ventional compression algorithms like JPEG were used. However, they are not very
efficient in reducing the data rate. In order to overcome this, block compressive
sensing (BCS) technique, reweighted sampling (RWS) are used. This technique
provides block-by-block sampling continuously at a rate which is very much less
than the Nyquist rate. Due to the interference with high frequency signal in the
environment, noise is induced in the compressed data from the satellite while
transmitting them to the ground station. Curvelet transform with Wiener filtering
technique (CTWF) is used for significant denoising of the BCS data. Experimental
results show that BCS along with denoising technique reproduces images with
better PSNR values.
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1 Introduction

Satellite image processing has been the focus of work in recent years. With the
advancement in satellite imaging systems, the resolution of the image captured is
very high. Transmitting or storing such a high-resolution image becomes a serious
problem because of the energy and bandwidth constraints. In order to overcome
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these problems, compression of data is essential. Conventional compression tech-
niques are not so efficient for satellite image applications.

Compressed sensing (CS) is an effective alternative, which performs compres-
sion at a rate lesser than Nyquist sampling rate [1]. But CS cannot be applied for
real-time sensing of images, as the entire image is sampled at a time. Therefore,
BCS is used in which the entire image is divided into small blocks [2] and CS is
applied to each block independently. Since same measurement matrix is used
memory requirement is less. Blocks are processed independently; therefore, the
initial solution can be easily obtained and reconstruction process is speeded up.

Compressed images from the satellite are more prone to noise, which can
degrade the quality of the image. It is essential to remove the noise and to improve
the image quality. Image denoising can be considered as recovering a signal from
inaccurately measured samples which is partially accomplished by CS. However in
order to remove the noise added in the environment, denoising methods are
essential. Many transform-based denoising techniques like Fourier, wavelet, rid-
gelets are available. However, most of them have certain shortcomings in terms of
image quality and computational efficiency. In order to achieve better PSNR,
CTWF technique is used.

In this paper, combination of both BCS and CTWF technique is used to retain
good quality image with low data rate.

2 Related Works

Donoho [3] explained that signals or images can be recovered from fewer mea-
surements or samples than the one described in Nyquist sampling theorem. In CS,
sampling and compression are performed simultaneously to speed up the process.
He suggested that CS can be applied to the signals only if it is compressible and
sparse.

Gan [4] discussed the acquisition of images in block-by-block manner. This
technique is simpler and efficient than normal compressed sensing technique and
can effectively capture complicated structures of the image. Same measurement
matrix is applied to all the blocks. Therefore, this technique requires less storage
space.

Yang et al. [5] introduced a new weighting process into the conventional CS
framework. Weight values are calculated for all frequency components. Signal
components with larger magnitude will have large weight value and can be
reconstructed more precisely. As a result, enhanced reconstructed image quality can
be obtained.

Starck et al. [6] describe about the implementation of Curvelet transform for
denoising. Images are reconstructed with low computational complexity. Curvelet
reconstruction offers higher quality recovery of edges thereby improving the per-
ceptual quality when compared to that of wavelet-based image reconstructions.
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Ansari et al. [7] compared denoising techniques using wavelet, curvelet and
contourlet transforms for remote-sensed images with additive Gaussian noise. The
Curvelet-based denoising technique preserves the sharpness of the boundaries. The
geometrical structure of the image can be effectively captured by the curvelets.

The rest of the paper is organized as follows: overview of compressed sensing is
provided in Sects. 3 and 4 discusses about the satellite image processing system,
experimental results are provided in Sects. 5 and 6 concludes the paper.

3 Overview of CS

Let x denotes a real-time finite length signal to be acquired. As per the hypothesis of
CS, there exists a basis w where s is sparse up to sufficient level. s can be row or
column vector. The equation is given by

x ¼ ws ð1Þ

This means there exist k non-zero elements such that k � n. w can be any
transform like discrete cosine transform or discrete wavelet transform. Let the
matrix y represents a set of m linear combinations of x. These linear combinations
can be represented as matrix ф with size m � n and are called measurements.
The CS is represented as

ð2Þ

The measurements matrix ф used in this paper is sparse binary random matrix.
This matrix has only binary values 0 and 1’s, and it satisfies restricted isometry
property (RIP). If the measurement matrix used satisfies RIP [3], then the length of
all sufficiently sparse vectors are approximately preserved under transformation by
the matrix. The other measurement matrices generally used are Gaussian matrix,
Bernoulli random matrix and Sub-Gaussian random matrices. Orthogonal matching
pursuit (OMP) is used as reconstruction algorithm [8].

4 Satellite Image Processing System

Figure 1 shows the block diagram of satellite image processing system. The satellite
imaging system captures the image of the target. The images are high-resolution
images. In order to store or process such a large volume of data, more energy will be
consumed by the processor. To reduce the amount of data, BCS technique is used.
This compressed data is then transmitted to the ground station. Noises in the envi-
ronment get added to the data. To remove the noise, CTWF technique is used. The
various techniques used are described briefly in this section.
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4.1 Block Compressed Sensing

BCS adopts an adaptive projection representation, i.e. direction of projection is
along the direction where the signal components have larger magnitude. As a result,
it can efficiently capture the geometric structures of natural images. Also the
computational complexity is reduced as same measurement operator is applied to all
the blocks and can be easily stored. Each block is processed independently;
therefore, the reconstruction process is speeded up. In this paper BCS technique,
RWS is used.

(A) Reweighted sampling [5]

Reweighted Compressive Sampling for image compression introduces a weighting
process to extract low-frequency components of the image. Weight values are
assigned for all frequency components. Low-frequency components have large
weight values. Therefore, this scheme shows discrimination to various components
of the image. RWS sampling is given by the following equation,

ð3Þ
where W is a diagonal weighting matrix with weighting coefficients {w1, w2,… wn}
corresponding to different frequency component. Weight is calculated as sum of the
mean and square root of variance of DC coefficients. By introducing the weighting
matrix, the signal components with large magnitudes are effectively captured,
which improves recovery precision.

4.2 Denoising

Noises in image degrade the quality of the image. The conventional spatial filtering
technique reduces noise, but the edges of the images are blurred. Here, Curvelet
transform along with Wiener filtering technique overcomes this disadvantage.

2.        
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Fig. 1 General block diagram of satellite image processing system
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(A) Curvelet transform [6]

In Curvelets, multiscale ridgelets transform is combined with a spatial bandpass
filtering to isolate different scale. Curvelets occur at all scales, locations, and ori-
entations, but they have varying widths and length. Hence, they have variable
anisotropy, whereas ridgelets have only global length and variable widths.
Therefore, curvelets are used in this paper.

One of the important advantages of using Curvelet transform is that it analyses
the image with different block sizes using a single transform. Initially the image is
decomposed into a set of wavelet bands, and then ridgelet transform is applied to
each band. The block size can be changed at each scale level.

(B) Wiener filtering

Compare to all other filtering technique, the most commonly used is Wiener filter.
This is because only a few computational steps are required for execution and are
very fast to process. Linear equations are used to calculate the filter weight which
reduces the noise level of the signal. Curvelet transform itself provides better
denoising. In order to increase the PSNR values, Wiener filtering is combined with
Curvelet transform.

5 Experimental Results

Matlab R2012a is used for software simulation. The test images are taken by
satellite available in image database [9]. In the BCS technique, block size of 8 � 8
is chosen. Number of pixel values chosen from each block is only 10 out of 64.

Table 1 shows the PSNR values obtained for various images using BCS tech-
nique. The number of pixel values chosen from each block is only 10 out of 64.

Table 1 PSNR values for various images

Technique = BCS number of measurements = 10

Image PSNR

Mountain image 24.2312

Airport image 25.9982

Table 2 PSNR values for various noise levels (mountain image)

Sigma value (noise in dB) CTWF PSNR (dB) Wiener filter PSNR (dB)

10 26.6820 26.7325

20 25.5570 25.2649

30 24.3212 23.5304

40 23.1547 21.9023

50 22.0576 20.4918

Block Compressive Sampling and Wiener Curvelet … 15



Additive White Gaussian noise is added to the BCS data by using Matlab inbuilt
function. Now in order to remove the noise, denoising technique CTWF is used.
The PSNR value comparison for mountain and airport images at various amounts of
noise levels varying from r = 10 to 50 dB is shown in Tables 2 and 3.

It can be seen from the table that CTWF has achieved better PSNR values than
normal Wiener filtering for various noise levels. If noise level is high, then CTWF
is the most efficient technique in achieving better image quality. In order to check
the consistency of the technique, it is tested with various satellite images. Table 3
shows the PSNR value comparison for airport image at various noise levels as
considered before.

The graphical representation of various noise levels and their corresponding
PSNR values is shown below. The graph is plotted for mountain image (Fig. 2).

Table 3 PSNR values for various noise levels (airport image)

Sigma value (noise in dB) CTWF PSNR (dB) Wiener filter PSNR (dB)

10 28.4436 28.2892

20 26.9750 26.4231

30 25.3600 24.2592

40 24.0161 22.4060

50 22.7080 20.8062

Fig. 2 Graphical representation of sigma versus PSNR
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It can be seen from the graph that as the noise level increases, both CTWF and
Wiener filtering have decrease in PSNR values. But however CTWF has improved
PSNR values than normal Wiener filtering as the noise level increases.
Hence CTWF is considered to be the best denoising technique in achieving good
PSNR values.

Visual quality comparison is shown below. The quality of images after applying
both techniques is found to be good with better PSNR values. Figure 3a shows the
original Ikono’s mountain image taken from the database available in [9]. Figure 3b–
d, show the image after applying BCS, noise, CTWF, respectively. Similiarly,
Fig. 4a shows the original airport image taken from the database available in [9].
Figure 4b–d show the image after applying BCS, noise, CTWF, respectively.

Visual quality comparison shows that even with lesser number of measurements,
BCS is very efficient in reconstructing the image. Also CTWF also helps in sig-
nificant noise removal and gives better PSNR values when compared to that of
normal Wiener filtering. Hence BCS with CTWF is considered to be the most
efficient method in achieving good quality images with better PSNR values.

Fig. 3 a Original Ikonos image b BCS compressed image c noisy image d denoised using CTWF

Fig. 4 a Original airport image b BCS compressed image c noisy image d denoised using CTWF
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6 Conclusion and Future Work

Image reconstruction using BCS and denoising using CTWF for satellite images is
investigated in this paper. BCS can effectively reconstruct images with fewer
measurement values. Noise in the BCS data can be effectively removed by using
CTWF technique. The final image obtained by applying BCS–CTWF is found to
have better PSNR values with good image quality.

The future work is to adopt a technique which gives significant improvement in
the reconstructed image quality.
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