Matlab File List Supplement

This file lists the Matlab m-files that are made available as supplementary material for
generating selected figures in the book Chaos, authored by A.C. Fowler and M.J. McGuin-
ness, Springer, 2019. The annotated Matlab code for these figures will be made available
online as an additional resource in the same location as this README file, alongside the
book. The file descriptions here are very brief. Some of these files and figures are given
more detailed descriptions in the appendix to the book.

Mark McGuinness, December 2019.
Figure 1.9

The cusp of the map associated with the Lorenz equations is sharpened in the m-file
fig1_9.m, by shooting for the centre of the cusp. Two starting points are needed that
straddle the cusp and hence can be iterated on using interval bisection. We use the
(x,y, z) locations of successive maxima in z on an orbit. An orbit is followed until it
completes two circuits of one unstable spiral point, before crossing to circle the other
unstable spiral point. The sign of x is used as a simple proxy for which spiral point is
being visited.

The first point chosen is the maximum in z (and its associated = and y values) on an orbit
that completes one circuit of the same fixed point, and the second is the next maximum,
on the same orbit, which has been chosen to then cross over to the other spiral point before
reaching a local maximum in z there. These two points then provide initial conditions
giving orbits that straddle the cusp, and a new starting point is chosen halfway between
them. The orbit through this point is computed, and the next maximum of z is checked
to see whether x is positive or negative there. The new pair of initial points with orbits
that straddle the cusp is now used. The process is repeated, always halving the distance
between the two straddling points, until they are very close to each other. Note that this
is a process that corresponds to shooting for the stable manifold of origin.

Figure 2.1

Despite its simplicity, we include the m-file fig2_1.m that we used to create the cobweb
plots in Fig. 2.1, for completeness.

Figure 2.2

The m-file fig2_2.m generates Fig. 2.2, the bifurcation or cascade diagram for the logistic
map equation (2.3).

Figure 2.17

The m-file fig2_17.m generates Figure 2.17, the bifurcation or cascade diagram for the
logistic equation in the form x,,; = 1 — pz?, which has superposed upon it the iterates

n’



of origin.
Figure 3.3

The m-files fig3-3a.m and fig3-3b.m generate Figure 3.3 by solving equation (3.9) nu-
merically with w = 1 and g = —0.05 for the first plot, and g = 0.09 for the second
plot.

Figure 4.2

This figure is generated by the m-file figd_5.m — see later in this description, and in the
appendix, the descriptions of Figure 4.4.

Figure 4.3

The m-file fig4_3.m generates both plots in Figure 4.3, the potential and the phase portrait
for the nonlinear oscillator (4.1) .

Figure 4.4

The file fig4_4.m generates Figure 4.4, and if run on all 86 r-values takes about 20 minutes
to run on a 2016 Macbook pro laptop. The action (period times amplitude) of unstable
periodic orbits that exist around the two nonzero stable spiral points for the Lorenz
equations is plotted against the parameter r. The r values range from the value where a
homoclinic orbit exists for origin, to the value where the spiral point becomes unstable. At
each value of r, the unstable periodic orbit is found by a shooting method: if successive
maxima in the z variable are increasing, or if the orbit flips from circling one nonzero
spiral point to circling the other, the initial point is outside the unstable periodic orbit;
otherwise the initial point is inside.

Figure 4.5

The file fig4_5.m generates Figure 4.5, the unstable homoclinic orbit that exists near
o =10, b = 8/3, and r = 13.926. It is just a version of the Figure 4.4 file with a fixed
value of r. It also generates Figure 4.2.

Figure 4.7
The file fig4_7.m generates Figure 4.7, similarly to Figures 4.5 and 4.4.
Figure 4.16

The file fig4_16.m generates Figure 4.16, a plot of an orbit that is close to a homoclinic
orbit of Shil’'nikov type. As described in the Appendix to Chaos, first a value of ¢ was
found that gives a homoclinic orbit of simple type, the principal homoclinic orbit. The file
fig4_16_Find_c.m was used to find the value ¢ = 10.3134491342463 by iterating backwards
in time. This value of ¢ is used in fig4_16.m to compute an orbit going forwards in time,
that starts near the fixed point P, and spirals away before making a close approach to



P, again. This orbit looks like the principal homoclinic orbit. See the appendix for more
detailed comments on shooting for the homoclinic orbit.

Figure 5.3

The file figb_3.m generates Figure 5.3, a Poincaré section through the solutions of a
Hamiltonian system with the Hénon-Heiles potential.

Figure 5.4
The file fig5_4.m generates Figure 5.4, iterates of the standard map for K = 0.85.
Figure 5.7

The file fig5_7.m generates Figure 5.7, iterates of the standard map for K = 0.757, showing
secondary resonance.

Figure 5.13

The file figh_13.m generates Figure 5.13, a Poincaré section through solutions of a three-
body problem with a constant value for the Jacobi integral and e = 0.001. The plot shows
values of (r,7) when ¢ = 7/2. It takes about a minute to run when the longest run end
times are set to HE06; if the full plot is desired the end times should be multiplied by
1000 instead of 10, in line 77 of the code, which takes about an hour to run.

Figure 5.14

The file fig5_14.m generates Figure 5.14, a Poincaré section through solutions of a three-
body problem with a constant value for the Jacobi integral like in Figure 5.13, but with
e = 0.04.

Figure 5.15

The file fig5_15.m generates Figure 5.15, a Poincaré section through solutions of a three-
body problem with a constant value for the Jacobi integral like in Figure 5.13, but with
e =0.1.

Figure 5.16

The file figb_16.m generates Figure 5.16, contours of constant effective potential Vg for
the restricted three-body problem.

Figure 5.17

The file fig5_17.m generates Figure 5.17, a series of egg-shaped Poincaré sections in the
Hénon-Heiles Hamiltonian system for increasing values of the energy.



Figure 5.18

The file figb_18.m generates Figure 5.18, iterates of Henon’s area-preserving map for
a = 1.328. Figure 5.19 is a magnification of this figure near the saddle.

Figures 5.20, 5.21

The file figb_20.m generates Figure 5.20, iterates of the standard map, for K = 0.5.
Changing K to one generates Figure 5.21.

Figure 6.1

The file fig6_1a.m generates Figure 6.1 (a). It shows the solution of the delay-recruitment
equation ez (t) = —x(t) + 3.8%(t — 1)(1 — z(t — 1)) with initial values in the ¢-range [—1, 0]
linearly interpolated on ten random numbers in the range [0.2,1]. It uses the delay-
differential equation solver dde23, and takes half a day to reach the time range plotted
when tolerances are set to 1.0E-08 with ¢ = 0.01.

The file fig6_1b.m generates Figure 6.1 (b), the solution to an AR process.

The file fig6_1c.m generates Figure 6.1(c), the NZ TWI or the Trade Weighted Index,
which is the currency value of the NZ dollar against a 17 currency basket. The horizontal
axis is time in working days since 6 Jan 2014. This file requires that the data be present in
the same folder, in a file called TWI.txt. This data file is provided with these m-files.

Figure 6.3

The file fig6_3.m generates the plots in Figure 6.3, a plot of the solution x(t) to the
Lorenz equations, and its power spectrum based on the periodogram, for 27" = 100. It
also illustrates what happens if you look at a higher resolution spectrum.

Figure 6.4

The file fig6_4.m generates the first plot in Figure 6.4, a power spectrum of the solution
x(t) to the Lorenz equations, based on the periodogram, for 27" = 800. The second plot
in Figure 6.4 may be generated by changing the value of tend in the file figb_4.m to
6400.

Figure 6.6

The file fig6_6.m generates the singular value decomposition (svd) of a solution to the
Lorenz equations, after some noise is added, and produces Figure 6.6, the first few singular
values computed. It also produces figures showing the clean solution and the noisy signal
analysed by svd.

Figure 6.7

The file fig6_7.m uses the singular values shown in Figure 6.6 to filter the white noise out



of the noisy signal by the process described in the book and in the appendix. Figures
output by this file include figure 6.7, the solution z(t) to the Lorenz equation together
with a lagged plot, in red; then the raw signal obtained by adding white noise to x(t),
then the filtered signal obtained by using just the first three singular values, then the
result of filtering this filtered signal again by keeping only the first three singular values
of its svd. Also shown is the result of filtering one more time, and the singular values that
arise at each stage of the filtering process.

Figure 6.9

The file fig6_9.m generates the black spleenwort shown in figure 6.9. It uses the transfor-
mation matrices given in Michael Barnsley’s book Fractals Everywhere, and the random
iteration algorithm also to be found in that book.

Figure 6.10

The file fig6_10.m generates figure 6.10, the Julia set for the map 2?2 — u, with complex z
and pu = 0.999 — 0.251z.

The Julia set is found by iterating the inverse of the function, starting with an unstable
fixed point of the map, that is, (14+/1 + 4p)/2. This approach is based on the observation
that the Julia set is invariant under the map and under its inverse, and its inverse is
not subject to rapid growth in magnitudes of errors. However, there are two inverses
of any given point and hence as one iterates backwards the number of points increases
exponentially fast, blowing out computer memory.

We follow the algorithm used in maxima code written by Adam Majewski (fraktal.republika.pl)
with his permission. It is called the modified inverse iteration method (MIIM). This algo-
rithm pushes the inverse iterates to a stack to store them, and limits the number of hits
that are made on each pixel that is to be plotted, and pops from the stack to continue
iterating. The stack grows rapidly at first, but eventually the stack is emptied and then
iteration stops. Saved points are fully accurate to the default double precision for plotting
and for iterating.

This process avoids the known issues with the doubling of the number of inverse points
each iteration. More details are given in the code and in the appendix to our book.

Figure 6.11

The file fig6_11.m generates figure 6.11, the Julia set for the map z? — p, with complex z
and a range of p values. It uses the same method, MIIM, as described in Figure 6.10.

Figure 6.12

The file fig6_12.m generates the Mandelbrot set plotted in figure 6.12. It uses an escape
time algorithm, together with a transformation that focusses the region of rapid colour



changes more sharply onto the more interesting features of the set. The "hot” colourmap
built into matlab is used, with 10,000 colours to reduce the banding that is seen when the
escape time is integer valued. Points inside the basins of attraction that would normally
be coloured white because they never escape, are set to black for better contrast at the
boundary. The distances obtained are morphed to focus on the boundary by using two
arctan functions, hand-tuned for a good-looking image. The resolution of the image that
is used for this figure is 10,000 by 10,000 pixels. Since this takes about twelve hours to
run on a Macbook Pro, we have also included Matlab Figure files (with names ending
in .fig) for the high-resolution image and for its reverse colour-map version; the m-file is
set to an image resolution of 1000 by 1000 pixels, so that it runs in a reasonably short
time.

Mark McGuinness
Kilkee, Ireland

June 2018



