19. Amorphous Selenium and Nanostructures

Keiji Tanaka

The chapter reviews studies of amorphous, glassy,
and nano-structural Se, focusing on their atomic
structures, physical properties, light-induced
phenomena, and recent photoconductive appli-
cations. Among the group VIb (16) elements, Se
forms a monatomic glass having two-folded co-
valent and van der Waals bonds that possesses
a bandgap of ~ 2 eV, in contrast to Si0, having
three-dimensional networks consisting of fairly
ionic Si-0 bonds and a wide bandgap (~ 10 eV).
The dualistic bonding structure of Se causes a low
glass-transition temperature (~ 310 K), the narrow
gap provides photoconductive responses covering
visible wavelengths, and also the heavy atomic
mass of 79 can afford high x-ray sensitivity. In
addition, the one-dimensional atomic structure
becomes a framework of needle-like and single-
chain nano-structures.
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Studies on the material science of Se have continued for
more than a century mainly with two motivations [19.1—
6]. One stems from its simplicity and diversity. It is an
element bridging the group VIb (16) materials O, S,
Se, Te and Po, which form varied atomic structures;
O, dimer, Sg ring, Se chain/ring, and cubic Po crys-
tal [19.7]. Here, in comparison with S and Te, Se has
more crystalline and non-crystalline allotropes [19.8,
9], all of which are composed normally with two-
fold coordinated Se atoms, reflecting the s>p* electron
configuration (Fig. 19.11). The atom can gather to cis-
configured ring molecules of different members, which
are stacked in respective ways; Seq in thombohedral,
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Se; in orthorhombic, Seg in a-, B- and y-monoclinic
(m-)forms, among which a-m-Se illustrated in Fig. 19.1
has been studied from early days. In trigonal (t-)Se, also
shown in Fig. 19.1, which is the most stable form at
standard conditions, the atom can possess right- and
left-handed helical chains, being held together with
intermolecular forces. It should also be noted that Se ex-
ists as only-one element which retains glassy structures
at atmospheric conditions [19.10], the glass-transition
temperature being ~ 35°C (~ 310K) [19.1-6]. The
structure seems to be dominated by entangled helical
chains (Sect. 19.2), which contrast with the three-
dimensional network in oxide glasses [19.11], and
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accordingly, glassy (g-)Se can be regarded as an inor-
ganic polymer, probably the simplest substance among
ubiquitous polymeric materials [19.12]. Amorphous (a-
) Se also behaves, in covalent chalcogenide materials
such as the As-Ge-S(Se,Te) systems, as an intrinsic
lone-pair electron semiconductor [19.13]. (Following
the terminology by Mott and Davis [19.4], we define
amorphous as non-crystalline solid, and restrict glassy
to the melt-quenched one through super-cooled liquid
states.) Besides, the melting temperature 217°C (=
490K) [19.1,2, 5] of t-Se is not so high that the (super-
cooled) liquid state can be investigated relatively easily.
These multifaceted aspects of Se make its fundamental
properties worthy of exploration.

The other reason for interest is that solid Se,
specifically a-Se films, exhibit useful semiconductor
properties such as high photoconductivity. Actually,
Smith [19.14] discovered the photoconduction of Se
in the 19th century, and the phenomenon had been
utilized for photo-cells and xerographic photorecep-

Fig. 19.1a,b
Crystalline
structures of
trigonal (a) and
a-monoclinic (b)
Se (after [19.2])

Fig. 19.2 Number of papers on
physics and chemistry of Se (according
to Web of Science in March 2017)[T5:1]

2000 Year

tors [19.1-6, 15]. Although these two applications were
replaced with crystalline Si sensors and organic films,
respectively, new a-Se devices including avalanche
vidicons and x-ray imagers have now been developed
(Sect. 19.7). We may also note intriguing features such
as unique phase transitions [19.16—-18], superconductiv-
ity [19.19], and light-induced phenomena (Sect. 19.6).
Besides, zero- and one-dimensional Se nano- and
molecular structures have attracted considerable inter-
est recently (Sect. 19.8).

Such longstanding scientific and technological stud-
ies of a-Se have unveiled many features, e.g., short-
range atomic structures and photoconductive proper-
ties, though a lot of unresolved problems still re-
main. For instance, why can the avalanche breakdown
(Sect. 19.5.2) occur in the disordered semiconductor?
Nevertheless, after comprehensive reviews published
during the xerography era [19.1-4], few articles refer-
ring to recent Se researches seem to be available [19.5,
6]. The aim of this chapter is therefore to summa-
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rize updated understandings and developments of Se,
specifically, a- and g-Se. We will also cast a look at
nano-structures. Nevertheless, the present review can-
not touch details of doping effects of As, Ge, Te, etc. to
Se, due to numerous references.

At the outset, it may be valuable to take a bird’s-
eye view of the Se research. Figure 19.2 shows the
number of publications per year till 2016, analyzed us-
ing Web of Science, having a title word selenium in
material sciences. (As known, there are a huge num-
bers of Se-related biological and medical papers, which

19.1 Samples
19.1.1 Preparation Methods

As shown in Fig. 19.3 [19.2,20,21], a-Se can be
prepared from gas, liquid, and crystalline phases.
Since the amorphous material is in a quasi-equilibrium
state, it is plausible that the atomic structure de-
pends upon preparation procedures and aging pro-
cesses, which is a reason giving rise to varied properties
and less-reproducible results, despite of the elemental
composition.
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Fig. 19.3 Entropy as a function of temperature, with three
preparation routes of a- and g-Se from vapor, liquid,
and crystalline phases: glass-transition temperature 7Ty ~
35°C, crystallization temperature 7, ~ 100°C, melting
temperature 7, = 217°C, and boiling temperature 7, =
685 °C (after [19.2,20,21])

are excluded as possible.) The total number is more
than 6000, in which we can mark two features, a peak
around 1970 and an increase after ~ 2000. The peak
appears to be related with xerography [19.15], and the
recent increase may be related with nano-science. It is
also mentioned that a lot of work have recently been
published from Canadian groups, which greatly con-
tribute to the progress in photoconductive applications
(Sect. 19.7). Incidentally, a Wikipedia column states
that major countries producing Se ingots are Japan,
Canada, and the US.

G-Se is prepared through quenching of the melt.
As the source material we may employ commercially
available Se beads with nominal purity of 5N — 6N
or chemically-purified flakes through various tech-
niques [19.2,22]. Those materials are vacuum-sealed
in quartz ampoules, melted at some temperature, and
quenched with a selected cooling rate to room or lower
temperatures. Bulk ingots can be shaped into slabs by
lapping and polishing [19.2] or flattened by squeez-
ing [19.23-25] around the glass-transition temperature.

A-Se films have been prepared in several ways.
Among those, the most conventional is the ther-
mal evaporation in vacuum, which can straightfor-
wardly produce large-area films with thicknesses up
to &~ 0.5 mm [19.26] through condensation of gaseous
molecules such as Seq [19.2,27-29]. However, the
method yields films with varied properties depending
upon substrate materials [19.30, 31], substrate temper-
atures T, (20 K —70°C) during evaporation [19.4,27,
32-45], substrate vibration [19.46], boat temperatures
(=< 800°C) or deposition rates (< 4 wm/min) [19.2, 22,
27,28,40,41], film thicknesses [19.26,27,47-50], de-
position angle [19.38], light irradiation from boats, and
so forth. Reflecting these diverse conditions, as listed
in Table 19.1, the density [19.2, 9] of films for instance
appreciably scatters [19.27,48], in contrast to relatively
fixed values in g-Se [19.24,48,51,52], t-Se [19.27, 48],
and a-m-Se [19.27]. It has also been demonstrated that
even preparation procedures of Se beads employed for
evaporation sources affect structures and photoelectri-
cal properties of deposited films [19.28, 53, 54].

In addition, less-common methods have been re-
ported. Those include sputtering [19.55], chemical va-
por deposition [19.56], laser-pulse deposition [19.57]
, and electron-beam evaporation [19.58]. Electro-
deposition techniques have been employed for prepar-
ing porous films [19.59]. Peled’s group continues to
explore photo-chemical depositions of thin films from
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Table 19.1 Bond lengths and physical properties in the three Se solids at room temperature with references in [19.449—
452]. For other references, see the texts. Optical gaps in the crystals depend upon the definitions, while for the amorphous

the Tauc gap is cited

Property Trigonal o-monoclinic Amorphous

Bond length (A) 2.31-2.37 2.31-2.33 2.30—-2.37

Density (g/cm?) 4.807 [19.8] 4.400 [19.8] 4.285, 4.26 for g-Se [19.2]
4.819,4.76 [19.2] 4.389 [19.2] 3.7+0.2 [19.48]

Optical energy gap (eV) 1.87[19.2]
2.79 (n,), 3.61 (nex) [19.2]
2.6 (no), 3.25 (nex) [19.451]

Refractive index
(A~ 1pum)
Dielectric constant
e (cm?/V's)

jtn (cm?/V's)

Me/Wn &~ 1/4 [19.250]
0.13, 28, 40 (//c) [19.2,250]
6,17 (L ¢) [19.2,250]

Se solutions [19.60, 61]. The so-called red a-Se, which
can be prepared through several ways, has attracted
some interest, while its atomic structure and properties
remain speculative, partly due to its un-stability at room
temperature [19.2,9, 62-64].

Lastly, we mention solid-state a-Se preparation
through ball millings [19.65-68]. In this method, me-
chanical energy with frictional heat continuously trans-
forms t-Se samples to non-crystalline powders, the
conversion process having been monitored using x-ray
and neutron beams. The preparation method is unique
and scientifically interesting, while the sample shape
may limit applications.

19.1.2 Impurities and Dopants

It is assumed that, in general, amorphous semicon-
ductors or chalcogenide glasses are less susceptible to
impurities and dopants. Actually, a-Si:H films possess
much lower doping efficiencies than that in crystalline
Si, which may imply that different valencies of foreign
atoms tend to be compensated by disordered, flexible
bonding structures.

However, we should pay special attention to some
impurities in Se, particularly, oxygen [19.2]. As shown
in Fig. 19.4 [19.69], an exceptionally conspicuous O
effect on the electrical resistivity in g-Se is known:
Only ~ 10ppm O atoms cause a drastic decrease in
the resistivity by six orders of magnitude, which can be
ascribed to creation of acceptors by chain-terminating
O-atom pairs, —Se=0, [19.69, 70]. Interestingly, how-
ever, if Si or As is co-doped with O, the resistiv-
ity does not decrease (Fig. 19.4), the compensation
mechanism being ascribed to formation of more sta-
ble Si(As)—O bonds [19.69]. It is also known that O
contaminations in g-Se provide marked effects upon

2.25,2.5,2.85[19.452,453]
~2.5[19.451]

~7.5(Lec), ~ 12 (o) [19.449] 7.4 [19.449]
2[19.251] ~ 0.005
10 [19.251] ~0.15

(Ts = room temperature)
4.1£0.3[19.27]

(T, = 100—290 K)
2.05[19.4]

2.50[19.2]

6.0 [19.450], 6.2—6.4 [19.73]

Log resestivity (Q cm)
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Fig. 19.4 Resistivity of g-Se as a function of doped oxy-
gen content, reported from MacKenzie’s group (V with
a solid line, @, and A). The square (&) at upper middle
shows a result of g-Se co-doped with 500 ppm SeO, and
500 ppm Si (after [19.69][CE:2])

photoluminescence behaviors [19.71,72] and the di-
electric constant [19.73]. On the other hand, for a-Se
films, which have exhibited resistivities scattering over
109 —10'° Q cm [19.2,47,74, 75], we may also envis-
age similar O-effects, while no systematic studies have
been presented, except for transport properties [19.53,
54,76]. We should also take structural relaxations into
account: O-related aging effects have been demon-
strated in infrared spectra of g-Se [19.69] and transport
properties of a-Se [19.54].

Please check reference [19.69], do you mean [19.70] instead?
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Pure a-Se films have some unsatisfactory proper-
ties, and accordingly, doping effects have been ex-
plored over decades. So far, a variety of atoms with
densities up to a few atomic percent, which clearly
surmount the conventional doping level (&~ ppm) in
crystalline semiconductors, have been incorporated.
Regarding examined dopants, in addition to inten-
sively studied ClI [19.25, 30,43, 54, 77-83], As [19.45,
55,71,82-87], and Te [19.32,45,51,77,86,88-93],
we may list Li [19.94], K [19.95], Ag [19.96],
Ge [19.97], O [19.30,54,72,76], S [19.51,77,98,99],
and so forth [19.25,71, 100]. Also, several doping pro-
cedures have been employed, the conventional being
direct alloying to Se ingots [19.51,85], which may
be used as (flash) evaporation sources [19.77-84, 87].
Otherwise, Se and dopants are co-evaporated [19.86],
or dopants are ion-implanted [19.94] or molecularly-
incorporated [19.100]. Besides, the dopant pro-
file may be spatially uniform [19.83] or modu-
lated [19.81], the ultimate being multi-layers [19.86,
92] (Sect. 19.5.4).

What are the outcomes of doping in a-Se films? We
may expect improved thermal stability by incorporation
of cross-linkers such as As [19.77,84] or different-
size atoms as Te [19.78], enhanced red-sensitivity by

19.2 Non-crystalline Structure
19.2.1 Heterogeneity

When studying non-crystalline structures, the first issue
to be known is if the atomic structure is homogeneous,
or spatially uniform. For pure Se, we can naturally dis-
regard the compositional disorder. However, even in
the elemental material, some structural heterogeneity
could exist. For instance, it is known that the liquid
has thermo-dynamical density fluctuations, given by
the Einstein-Smolukovskii equation, which are likely
to affect quenched glassy structures [19.11, 107, 108].
Actually, light-scattering correlation spectroscopy of
liquid (1-)Se detected clusters with sizes of ~ 150 nm
just above the melting temperature [19.109]. Or, mi-
croscopy inspections of a-Se films counted numer-
ous crystalline inclusions, the structure varying with
substrate temperatures [19.32,34]. Small-angle scat-
tering measurements of Se glasses [19.24,110] and
films [19.40, 111] suggested some inhomogeneity such
as ellipsoidal voids and fractal structures. Positron an-
nihilations detected voids and free volumes [19.112,
113], which may be responsible for the density deficit of
~ 10 % of g-Se with respect to that in t-Se (Table 19.1).
Provided that a heterogeneous scale is wider than the
wavelength of excitations, analyses of a related property

bandgap reduction [19.32,51, 86], and efficient carrier
transports [19.4,79-83]. Such doping effects seem to
depend not only on the atomic species and quanti-
ties but upon various conditions including the substrate
temperature [19.44]. However, in most cases, the dop-
ing tends to degrade transport properties [19.4,77,
100], which is a plausible consequence arising from
trapping centers produced by compositional disorders.
A notable exception is the case of stabilized a-Se
films, evaporated onto substrates held at 75 ~ 60°C
(= 330K) using ingots containing 0.2 —0.5 % As and
10 ppm-level Cl, which exhibit ameliorated photocon-
ducting characteristics [19.44, 45, 82,84, 101-103] ; the
co-doping mechanism being theoretically explored re-
cently [19.104]. Here, it may be interesting to point
out that this Ty satisfies a universal rule, /T &~ 0.34
[19.105], where Ty, (=958K) is the boiling temper-
ature, while its origin remains unclear. We also note
that, in many cases, a dopant (and impurities) modifies
a property continuously with the concentration, though
the modification being not necessarily proportional to
the concentration, as we have seen in Fig. 19.4. Be-
sides, in a vector photo-deformation in a-Se:As films,
a dramatic, qualitative change (Fig. 19.21) appears at
~ 1l at.% As [19.100].

taking the heterogeneity into account will be needed.
However, as described hereafter, in standard analyses
using radial-distribution-functions (RDFs) and (vibra-
tional and electronic) densities-of-states (DOSs), such
structures are inevitably neglected.

Suppose the atomic structure being homogeneous,
it could consist of normal bonding structures and de-
fects [19.6]. The former is the atomic connection which
exists in the corresponding ideal crystal, i.e., —Se—Se—
bonds in the present case. The latter includes point-
defect-like structures such as dangling bonds, three-fold
coordinated Se, and so forth. The densities are ~ 1 at.%
at most, which is fewer than detection limits of struc-
tural analyses methods, while the defects may play
significant roles as electronic gap states (Sect. 19.4.3).

19.2.2 Normal Bonding Structure

Short-range Structure
After a comprehensive study by Kaplow et al. [19.33],
a lot of structural analyses have been performed for g-
Se [19.2,24,64,114-118], with fewer for a-Se films
and powders [19.40,66,67,119]. Since there exists
only the Se—Se homopolar bond, diffraction and EX-
AFS profiles can straightforwardly be converted to

6L | 9 Med
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Fig. 19.5 (a) Schematic a-Se structure
with definitions of the intra- (rq,

12, r3) and inter-chain (R and R;)
distances, and (b) RDFs of quenched
and annealed (room temperature, 1
day) g-Se, in which the three peaks
at ~ 2.4, ~ 3.7, and ~ 4.6A are
resolved into pair distances through

a reverse Monte Carlo procedure
(after [19.52])

RDFs, a result being shown in Fig. 19.5. The short-
range structure determined by the three parameters, i.e.,
the nearest-neighbor coordination number Z = 2 £ 0.1,
the covalent bond length r = 2.30 ~ 2.37 A, and an-
gle 0 ~ 105° [19.24,33,52,67,114-120] in g-Se are
nearly the same with those in t- [19.2,33, 64, 67,119,
121] and m-Se [19.2,24] (Table 19.1). Here, we un-
derline that, even in t-Se, reported r values substan-
tially scatter, which may be caused by defective and/or
contaminated crystals. Accordingly, the resonant-bond
(between the covalent and the van der Waals) concept
applied to t-Se [19.122], after taking a relatively long
r (=2.37 A) for t-Se, might be re-examined. We also
note that, as shown in Fig. 19.5b, since the second RDF
peak at ~ 3.7 A is made up with the three (12, Ry, R»)
correlations [19.24, 52, 120], it is difficult to accurately
estimate the 6 value.

Medium-range Structure

The medium-range structural parameters include the in-
termolecular distance R, the dihedral angle ¢ (trans/cis
configurations), ring/chain ratio, and so forth. For
R, since both r, and R are distributed at = 3.7A
(Fig. 19.5), precise values have hardly been esti-
mated [19.24,52, 115]. For ¢, a problem is if it varies
freely or takes nearly-fixed values characteristic to trans
(t-Se like) and/or cis (m-Se like) configurations. If the
value varies, entangled chains may exist (Fig. 19.6a).
Or, if it is fixed over several Se bonds, chain segments
(Fig. 19.6b) may exist. However, as shown in Fig. 19.5,
the third RDF peak spreads at 4—5A, and accord-
ingly, no convincing conclusions have been obtained,
despite of repeated studies [19.24,33, 52,66, 114, 115,
118, 120].

5 r(A)

The ring/chain ratio in g-Se has been a longstand-
ing problem. In retrospect, solubility of g-Se samples
into liquid CS, was assumed to be proportional to
the content of Seg rings [19.2], and this idea had
been employed for estimating the ring content. In ad-
dition, a relationship between the densities p(t-Se) >
p(m-Se) ~ p(g-Se) (Table 19.1) and some RDF anal-
yses [19.33,123] supported the view that g-Se and
1-Se contain large fractions of ring molecules. How-
ever, Lucovsky [19.124] casts doubt upon the solubility,
taking the observation that the solubility is enhanced
by light illumination and it became negligible in the
dark. It is also doubtful if the solubility can distinguish
(closed) ring molecules from ring-like (curled) chains.
Besides, diffraction studies seem to be powerless in
this problem: J6vdri et al. [19.66] concludes through
comparing diffraction profiles and reverse Monte-Carlo
models that diffraction data alone cannot evaluate the
ring/chain ratio. On the other hand, viscosity [19.2],
magnetic [19.16], and structural [19.125,126] stud-
ies strongly suggest that 1-Se is composed by chain
molecules, with chain lengths of ~ 10° atom at just
above T, (=217°C). Under these circumstances, it
seems reasonable to envisage entangled chain struc-
tures, such as Fig. 19.6(a), for g-Se.

Vibrational studies may add some insights into this
problem. Since t-Se and m-Se undergo clearly differ-
ent vibrations at stretching frequencies (~ 250cm™!,
~ 30meV) [19.4], vibrational spectra had been em-
ployed for analyzing the ring/chain ratio in g- and
1-Se [19.2]. (IR measurements at wavenumbers below
~200cm~! are experimentally more-or-less limited,
which makes Raman spectroscopy more useful.) How-
ever, Lucovsky [19.124] also suggested that 2-shaped
(open ring) curling chains can cause ring-like (cis-
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Fig. 19.6a,b Schematic models of
amorphous polyethylene —(CH,)—.
(a) interpenetrating coils and

(b) folded-chain fringed micellar
grain model (after [19.107])

type) vibrations (at 113 and 256cm™'), making the
ratio-evaluation procedure useless. Though his asser-
tion was argued [19.127], the ring-chain problem has
as a whole appeared to shift to estimation of ringlike-
chainlike (cis/trans) configurations. Following the idea,
Nakamura and Tkawa [19.128] theoretically predicted
that vibrational spectra at the bond-bending regime
(50—130cm™!) can give insights into the chain con-
figurations. Yannoupoulos and Andrikopoulos [19.129]
have focused on Raman-scattering spectroscopy at
5—450cm™!, evaluating the contents of ring- and chain-
like fragments at 143—353 K. These studies reinforce
the model that not Seg molecules but long chains, which
are probably mixed up with entangled ring- (cis) and
chain-like (frans) segments, are major constituents of
g-Se. Nevertheless, the chain conformation in wider
scales is largely speculative; it may form random
coils [19.120], segments connected with kinks [19.36],
and so forth, the notions paralleling those proposed for
polyethylene (Fig. 19.6) [19.107, 130], in which intra-
and inter-chain conformations (r; &~ 1.5 A, R~ SA)
are more distinguishable than those in Se. We also note
that the medium-range structures are possibly modified
by the aging.

Lastly, we refer to four topics. The first relates to
the first-sharp diffraction peak appearing at ~ 1A}
in chalcogenide glasses such as As;S(Se)s [19.6, 11].
Compositional studies of the peak in the As-Se system
have demonstrated that the peak reduces to a shoul-
derat ~ 1.5 A~! in g-Se [19.66, 131]. Averbach’s group
examined the shoulder through a correlation analy-
sis, suggesting the existence of clusters with a ra-

dius of ~ 10 A [19.115,120], in harmony with similar
scales repeatedly pointed out [19.33, 132]. On the other
hand, Caprion and Schober [19.133] proposed through
molecular dynamics analyses that the prepeak is ex-
plainable in terms of void correlation, with reasoning
that it disappears in densified samples. The two ideas
appear different, while those may merely emphasize
different aspects of the same structure; i.e., voids possi-
bly exist between atomic clusters. Second, the origins of
the Boson peak at ~ 20 cm™' and quasi-elastic compo-
nent peaking at ~ Ocm™' in Raman-scattering spectra
are still matters of controversy [19.11, 129, 134]. Third,
despite of wide applications of (stabilized) a-Se films
with varied preparation conditions (Sect. 19.1.2), the
structural studies are surprisingly a few [19.33,34, 37,
40]. Lastly, Scopigno et al. [19.57] have demonstrated
that the vibrational DOS of a-Se surfaces is markedly
smooth at 5—15meV regions, suggesting the existence
of hypervalent defects.

19.2.3 Molecular Dynamics Simulation
of Atomic Structures

Molecular dynamics simulation has continuously been
employed for structural studies. Principally, the simu-
lation proceeds from equilibrating a molten Se cluster
and to quenching it into disordered solids [19.128,
135-145]. In some cases, structural disorder is intro-
duced artificially [19.145], or the equilibration is set at
under-melt conditions, or temperatures below the melt-
ing temperature of the corresponding crystal [19.144].
Otherwise, Kugler’s group [19.140-143] has obtained

n
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a-Se films from gaseous states, through pitching Se
atoms with fixed kinetic energies and incident angles at
cold substrates, which produces amorphous structures
with comparable densities, 3.2—4.5 g/cm?, to the ob-
served ones (Table 19.1). Atomic potentials employed
for calculations are either semi-empirical [19.128, 136,
138-143, 145] or ab-initio [19.135, 137, 144], in which
the total numbers of studied atoms have been lim-
ited by computer capacities to ~ 2000 and =~ 200,
respectively.

Such studies have shed light upon atomic struc-
tures of a-Se and also what kinds of defects could exist
therein. Simulated short-range structures well repro-

19.3 Structural Properties
19.3.1 Static and Dynamic

Substantial data have been obtained for g-Se on me-
chanical [19.2, 85, 89] and thermal [19.2,21, 63] prop-
erties, including the low-temperature (< 5K ) anoma-
lies [19.146,147], and remaining subjects will be to
relate these macroscopic properties with microscopic
atomic structures. For instance, how can we connect the
specific heat with disordered atomic structures, without
using the periodic boundary condition? If an amorphous
structure were homogeneous and could be explicitly de-
lineated, we would follow the conventional procedure
which is established for understanding structural prop-
erties in ideal crystals; atomic structure — vibrational
dispersion relation and DOS — macroscopic proper-
ties. However, the disordered structure does not sustain
the dispersion relation in principle, and accordingly,
considerable efforts have been devoted to experimental
determinations of the vibrational DOS.

In such studies, IR and Raman spectroscopies have
been employed [19.2,37,127,129], and recently, in-
elastic x-ray [19.57, 148] and neutron [19.20, 63, 149]
scatterings provide more complete vibrational spec-
tra D(E,q) resolved in energy E and wavenumber
q. Those results appear to be fairly consistent, and
a typical DOS is reproduced in Fig. 19.7, which con-
sists of three bands. The spectrum can explain tem-
perature variations of the specific heats, shown in
Fig. 19.8, which are nearly the same in t-, g- and
red a-Se at 10—300K [19.63]. By contrast, it seems
still difficult to identify a structural entity causing
the universal low-temperature (< 10K) anomaly in
glasses, which has conceptually been explained us-
ing some two-level systems with spectral densities of
102°—10%" eV~ em™ [19.11, 146, 147].

duce the experimental RDF. However, since the (effec-
tive) quenching rate is anomalously fast 101°—10'4 K /s
due to limited computation times, produced structures
tend to be far more disordered and contain too many de-
fects, with densities of &~10 at.%, which disagree with
experimental observations. Actually, the structural and
vibrational measurements, possessing typical sensitivi-
ties of & 1 at.%, have never detected any defects such
as dangling and three-folded bonds in bulk a-Se. In ad-
dition, the maximal number of studied atoms of ~ 2000
is still insufficient for drawing medium-range (and het-
erogeneous) structures. For other computation studies,
readers may refer to Sect. 19.6.5.

19.3.2 Glass Transition and Crystallization

Among many macroscopic properties in condensed
matters, the glass transition poses undoubtedly one
of the biggest challenges [19.11, 150]. And, since the
glass-transition temperature 7, (=~ 310K) in g-Se is
just above room temperature, it is more-or-less straight-
forward to evaluate glassy and super-cooled liquid
properties, including atomic volumes [19.113], heat
capacities [19.151-154], elasticity [19.155-157], vis-
cosity (fluidity) [19.158-162], hardness [19.163, 164],
and relaxation (aging) behaviors [19.52, 152, 165-167].
For instance, Kostdl and Mdlek [19.162] have demon-
strated that the viscosity 7, plotted in Fig. 19.8, follows

DOS (1/meV) Frequency (THz)
0 2 4 6 8 _
0.11
Torsional
0.05 Bending
0 10 20 )

Energy (meV)

Fig. 19.7 Vibrational DOSs in t- and g-Se (after [19.63])
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Fig. 19.8 Temperature variations of the heat capacity ¢,
(after [19.63, 162]) and viscosity 7 (after [19.160, 162]) in
I- and t-Se. Tx (&~ 226K) is the Kauzmann temperature,
T, the glass-transition temperature, 7. the crystallization
temperature, Tp, the melting temperature

the empirical Vogel-Fulcher-Tammann equation

Innp= (19.1)

T—Tx'

where A~ —9.3, B~ 2800K, and the Kauzmann
temperature T ~226K. The curve gives the
fragility index (=d(Inn)/[d(T,/T)] at T =T,) of
50—100 [19.160,167]. Note that Tk is assumed to
be a material parameter (as Ty,), while 7, and n(T)
vary with melt-quenching rates. In addition, some
differences of transition behaviors between bulk sam-
ples and films have been pointed out [19.68, 153]. It
has also been demonstrated that the glass-transition,
crystallization, and melting temperatures become
higher under hydrostatic compression [19.168-170].
How can we understand such glass-transition be-
haviors? As known, the glass transition has formally
been interpreted using the free-volume concept, the
mode-coupling theory, and so forth [19.11], while can

we connect the transition to real atomic structures?
Since no compositional disorder exists in g-Se, theo-
retical treatments could be less demanding. However,
the non-isotropic chain-like structures make the anal-
ysis complicated. Several ideas have been proposed,
such as a polymeric-polymorphoid structural transfor-
mation [19.9] and a kinematic treatment [19.159], both
appearing to be challenging. Molecular dynamics sim-
ulations are hardly practical, due to the limitation of
computation times [19.108, 133, 171]. Otherwise, a for-
mulation based on an enthalpy landscape approach
and non-equilibrium statistical mechanics, presented by
Mauro et al. [19.161], despite the numbers of dealt Se
atoms being limited to 60, attains a fair success in pre-
dicting, e.g., temperature variations of atomic volume
and viscosity.

Crystallization of a-Se also attracts continuing in-
terest. At 1 atm the amorphous-to-trigonal crystalliza-
tion sets in at temperature of 7. ~ 100°C [19.49, 68,
151,172,173], and at room temperature it occurs at
pressure of p. &~ 11 GPa (= 110kbar) [19.19, 168, 174,
175]. What govern these threshold values?

We see implicative trends in Fig. 19.9 for the period-
four solids, Ge, As, and Se: T, (and also T, [19.176,
177]) increases roughly linearly with the coordina-
tion number Z, and p. increases with the bond en-
ergy Ep. By contrast, no simple correlations seem
to exist between p. and Z and between 7. and Ep.
The monotonous 7, o< Z relation may imply that the
thermal crystallization in a-Se is governed by rear-
rangements of two-fold coordinated bonds [19.178],
as reptational motions in polyethylene to spherulitic
forms [19.179]. It proceeds with activation energies of
50—100kJ/mol (& 0.5—1eV/atom) [19.93, 172, 180],
being smaller than the bond energy of ~ 2eV/atom.
On the other hand, the p. o< Eg relation fuels a spec-
ulation that the pressure crystallization proceeds from
breakage of covalent bonds. We envisage that, in a-
Se under compression, the intermolecular separation is
substantially compressed [19.168], which reduces the
difference between covalent and van-der-Waals bonds,
and at some critical pressure —Se—Se— bonds will
be intermingled and ordered, leading to the phase
transformation.
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Fig. 19.9a,b Crystalliza-
tion temperature 7, and
pressure p. as functions of
the covalent coordination
number Z (a) and the bond
energy Eg (b) for series of
atoms in the same lines of
the periodic table Se, As
and Ge (after [19.178]).
Note that S, P, and Si
also shows the T, x Z
correlation, while p. of
a-S is not known
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19.4 Electronic Spectra
19.4.1 Band Structure

The electronic structures of t-, a-m- and a-Se, evalu-
ated using ultraviolet and x-ray photoemission spec-
troscopies (UPS, XPS) [19.4,36, 181-184], have con-
firmed the concept of lone-pair semiconductors [19.13].
As shown in Figs. 19.10 and 19.11, the two-fold coor-
dinated p* wavefunctions produce the valence and the

Intensity (arb.u.)

"..‘ a-Se
1.0 ‘\\\J JJ\ N :,r\,.. /
S i,
L4
W/
0
% t-Se
1.0 \ A
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UPS (He I) W IPES
0 -
10 5 10 15
Energy (eV)

Fig. 19.10 Photoemission spectra (UPS and inverse UPS)
of a-Se, deposited onto Au substrates at room temperature,
and t-Se (after [19.184]), compared with that (XPS) of a-
m-Se (after [19.183])

Bond energy Eg (eV/atom)

conduction band peaking at around —2.5 and +3.0eV,
which are composed with lone-pair electron and anti-
bonding states, respectively. In addition, there exists
a band consisting mostly of bonding p-states at around
—6¢V, the detailed shape attracting some interest: The
band has double peaks at —5 and —6¢V, with the in-
tensity ratios in a- and m-Se being contrastive to that
in t-Se, which may originate from alternative (or dis-

Fig. 19.11 A simplified t-Se structure with the bond and the
dihedral angle of 90°. Dashed ellipsoids represent the lone-
pair wavefunctions
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ordered) and fixed dihedral angles [19.4,36, 183, 185].
It should be mentioned here that limited sensitivity of
photoemission spectroscopy cannot yet afford informa-
tion on gap states.

The lone-pair semiconductor concept is consistent
also with electron dispersion curves of t-Se, which have
been calculated by several methods [19.2,4, 186-192].
The simplest is a tight-binding approximation under
the simplification of 8 = ¢ = 90° [19.186], sketched in
Fig. 19.11. More sophisticated calculations have man-
ifested, as shown in Fig. 19.12a, an indirect-transition
type dispersion, in agreement with experimental re-
sults [19.2], with the conduction-band bottom at H and
the valence-band top at L in the k-space, both the points
slightly deviating from the chain axis A [19.188-192].
Nevertheless, we see in the figure that the valence-band
top is broader so that the dispersion can roughly be re-
garded as a direct-transition type with the bandgap at H,
as previously been assumed [19.2,4].

As known, once the dispersion relation having been
fixed, the DOS can directly be calculated. Fig. 19.12b
shows the electronic DOS in t-Se [19.189, 190], the
overall feature being in harmony with the photoemis-
sion spectrum in Fig. 19.10. We also mark that the shape
of the conduction-band bottom is typical to that (D
E~Y 2) of the one-dimensional crystal. In contrast, such

a) Energy (eV)
8

b) Density-of-state
4

a characteristic does not exist at the top of the valence
band, which may be ascribed to spatially extended lone-
pair wavefunctions (Fig. 19.11). On the other hand, the
red line in Fig. 19.12b shows a DOS calculated for
amodeled a-Se structure, consisting of disordered 50 Se
atoms which are placed under a periodic boundary con-
dition [19.189]. We see that the disorder makes the DOS
smoother. We also see in Fig. 19.12b,c, that these DOSs
possess some similarities to the energy levels of related
molecules [19.69]. Incidentally, the work function of Se
is experimentally estimated at 6.0 +0.25eV [19.193,
194].

We can get insight into the band structure also using
the absorption spectrum «(fw), calculated from re-
flectance spectra, at super-gap regions [19.4, 195]. Ne-
glecting the wavenumber-conservation rule, we write
down a(hw) as

a(hw) ~ |M(ha))|2/D(E)D(E+ha))dE, (19.2)

where M (hw) is the transition matrix, D(E) is the DOS,
and the integration is performed over Er —Aiw to the
Fermi energy Er. Thus, if M(hw) were constant, o (hw)
would represent convoluted D(E), though the presump-
tion being questionable [19.4].

0 2 4 6
Energy (eV)

wssen || [l
s 111 1l

H-Se-H |

4 >~ -
I' 4 S HL MZK r -10 -8 -6 —4 —2 0
k-point Energy (eV)

Fig. 19.12 (a) Dispersion curves for t-Se and (b) DOSs for t-Se (shaded) and a-Se (brown line) with the left-hand side
energy-scale (after [19.189, 190]), and (c) the energy levels of helical H-8Se-H, Seg ring, and H-Se-H clusters (calculated
by an ab-initio method (after [19.69])) with the right-hand side scale, the zero being set at the vacuum level
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19.4.2 Band Edge

Optical Absorption
Fig. 19.13 shows the optical absorption edge of a-Se,
which consists of, at least, two curves [19.1,4, 196].
At @ > 103 cm™!, the spectrum is approximated by the
Tauc curve

ahw ~ (hw—Eg)n, (19.3)

where n = 1 and ET (~ 2.0eV at room temperature) is
the Tauc optical gap [19.1], which becomes smaller at
higher temperatures [19.40, 56, 196]. The fitting param-
eter n = 1 is peculiar to a-Se, which has been ascribed
to the one-dimensional atomic structure [19.4]. How-
ever, the one-dimensional D(E) is not evident in a-Se,
Fig. 19.12(b), and accordingly, the more general n = 2
may be preferred [19.56, 196, 197]. Below the curve,

we see the Urbach edge
0
a(hw) = apexp %M§ , (19.4)

Ey

where oy (=~ 107 cm™') and EY, (~2.4eV) gives the
Urbach focus, in which E% is assumed to be a mea-
sure of the mobility gap [19.4, 198], and Ey (=~ 60 meV
at room temperature) is the Urbach energy, which

a(cm™) 1, o, (arb.u.)
10°
A _ A 1

10*
1072

10%
104

10°
10°¢

1072

1 2 3
Photon energy (eV)

Fig. 19.13 Spectral variations of the absorption coeffi-
cients o in g-Se (solid line) and a-Se (dashed line) (af-
ter [19.201]), photoconduction o}, (after [19.202]), and
photogeneration quantum efficiencies for electron 7(e) and
hole n(h) (after [19.203]) in a-Se films (75 ~ 60°C) at
room temperature. Tauc optical gap E;,F (after [19.196]) and
the mobility gap Eg (after [19.204]) are indicated

tends to increase with temperature (< 900°C) [19.4,
16,196]. Note that Ey >50meV is universally ob-
served in amorphous semiconductors and insulators,
which may arise from thermodynamical density fluc-
tuation [19.199]. Also note that the spectral shape and
position of the absorption edge in evaporated films
hardly change with ppm-level CI doping and substrate
temperatures (Sect. 19.1.1), though some aging modifi-
cations have been pointed out [19.27,43].

Features below the Urbach edge in a-Se remain
vague, in contrast to exponential weak-absorption tails
in g-As;S(Se)s [19.1,4, 6]. As shown in Fig. 19.13, the
absorption level at Aw & 1 eV in nominally-pure a-Se
varies at 1072—10%>cm™! from sample-to-sample and
the intrinsic spectrum has not been revealed [19.69],
the reason being ascribable to employed samples and
experimental artifacts. For instance, in many experi-
ments [19.1, 2, 196], the optical spectrum at higher and
lower absorption regions than ~ 103>cm™' has been
evaluated, respectively, using a-Se films and polished
g-Se ingots, and accordingly, the purity of the ingot
(Sect. 19.1.2) is crucially important when inspecting
low absorption characteristics at o < lcm™!. In addi-
tion, small attenuation (high transmission) is suscepti-
ble to light scattering caused by heterogeneous struc-
tures, even in photo-thermal spectroscopies [19.200,
201]. Further studies using well-characterized samples
with scattering-calibrated measurements are required
for elucidating the residual absorption spectrum, which
is indispensable for obtaining reliable insights into gap
states.

Photoconduction Spectra
Photoconductivity remains the most useful property of
Se (Sect. 19.7). Hence, many studies have been per-
formed on a-Se films [19.1-6], while few data are
available for g-Se [19.25,96] and 1-Se [19.205]. Pho-
tocurrents appear through two processes; carrier gener-
ation and transport [19.4, 6], the former being affected
by geminate recombination [19.203,206] as described
below and the latter by multiple trapping transport
(Sect. 19.4.3) [19.207].

Photoconduction spectra, which are governed by
the photogeneration process, of a-Se have been stud-
ied in details. Fig. 19.13 compares photogeneration
quantum-efficiencies 7(hw) [19.203] and photocon-
ductivity o, (hw) obtained by a constant-photocurrent
method [19.202] for a-Se films with T ~ 60°C. We
see that, despite of different samples and the measuring
methods, the two spectra resemble in shape, which con-
sist of three curves; with increasing Aw, a steep rise at
hw < 1.2eV, a gradual increase at 1.2—2.2 eV, which
overlaps with the optical Urbach-edge, and a steep
rise again above ~ 2.2eV. It is mentioned that a-Se
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films with T &~ 25 °C exhibit somewhat different spec-
tra with a shoulder at ~ 1.4 ¢V [19.203].

Here, comparing the absorption and photoconduc-
tion spectra in Fig. 19.13, we can point out two features.
One is the fading photoconductive response at hw <
1.2eV, in contrast to the fairly stable level of the optical
absorption. This fact may suggest that the absorption
at hw &~ 1 eV is ascribed to electron (less mobile than
hole) excitations from mid-gap states to the conduc-
tion band (Fig. 19.16). The other is the existence of
a non-photoconducting gap, a spectral blue-shift of the
photoconduction edge by 0.3—0.5eV from the optical
absorption edge [19.47,203,208], which was first re-
ported by Weimer [19.209]. The gap is understood to
be a manifestation of recombination of photogenerated
geminate electron-hole pairs, the idea being compre-
hensively analyzed by Pai and Enck [19.206] using an
Onsager model. (It should be mentioned that, different
from the exciton, the geminate pair is treated as clas-
sical charged particles.) The geminate-pair recombina-
tion model predicts that n(Aw) can be approximated by
two curves [19.204]

hw —E
n(hw) ~ exp{ CZBT g{ and
exp {—(hw —Eg)™/?}, (19.5)

respectively, below and above 1~ 1072, in harmony
with the observation, where E, ~ 2.4eV can be re-
garded as the mobility gap. The former equation
manifests a photoconducting Urbach edge, though
it is substantially masked by the residual response
at hiw < 1.2eV. The photoconduction spectrum red-
shifts under high electric fields, which can be in-
terpreted using an extended Onsager model [19.210,
211]. Finally, it seems worth mentioning that similar
non-photoconducting gaps exist in g-Se [19.25], 1-
Se [19.205], and in all the Se crystals, except t-Se [19.2,
212], the reason being speculative.

19.4.3 Gap States and Defects

Studies of the gap state in a-Se are indispensable
to two purposes. One is fundamental, i.e., the iden-
tification of defects, and the other concerns with
device applications. Experimentally, related insights
can be obtained through measurements of electron-
spin resonance (ESR), optical and photoconductive
spectroscopy, photoluminescence, thermally-stimulated
currents, photoinduced changes, and so forth. However,
since the gap-state density is typically of ppm levels,
which are naturally sensitive to disordered structures
and impurities (Fig. 19.4), reproducibility of gap-state
data is more-or-less problematic. In the following, we

briefly touch the known charged defect model [19.4-6],
and then, will summarize experimental results on the
gap state, in which transient photocurrents at room tem-
perature are specifically interested in accordance with
growing applications.

Charged Defect Model
The gap state in pure materials originates from some
kinds of defects. And, for the defect in chalcogenide
glasses including a-Se, the most frequently employed
concept is undoubtedly the charged dangling bonds,
D*(---—Se—Se) and D™ (---—Se—Se:), proposed by
Street and Mottt [19.213], or a modified one, the
valence alternation pairs (Cs+, C;-) by Kastner et
al. [19.214]. They assumed that the positively- and
negatively-charged defects, with a density of 10'® cm~3
in a-Se [19.215], produce gap states below the conduc-
tion band and above the valence band, respectively. The
ideas have been analyzed theoretically and employed in
interpreting many observations [19.4-6,216].

However, the concept still remains unconvincing.
Actually, there is no direct experimental evidence re-
vealing the existence of the charged defects. Or, we
have no experimental tools which can detect ESR-
inactive, point-defect like, atomic structures with ppm
densities in amorphous materials. Besides, theoretical
calculations of defective states, specifically the forma-
tion energy and electronic level, in flexible disordered
structures encounter very subtle situations [19.69, 135,
137,218-227]. For instance, through an ab initio calcu-
lation of the total energy, Vanderbilt and Joannopoulos
[19.218] argued that the charged defects have positive
correlation energy in a-Se, suggesting few densities. On
the other hand, several calculations support the exis-
tence of intimate valence-alternation pairs =Cs+—C;-
with modified charges [19.69,137,220,224], an ex-
ample being shown in Fig. 19.14. In addition, differ-
ent ideas have been proposed for defective structures,
which include four-fold coordinated Se atoms [19.135,
223,224], polarons [19.69,220,222], and also disor-
ders in the dihedral angle [19.225-227], segmental
lengths [19.69], and interactions between lone-pair
electrons [19.228,229]. Gap states probably arise also

Fig. 19.14 An

+0.17

atomic structure of
(H—2Se)=Se—Se, cal-
culated using an ab
initio chemical method
(after [19.69]), in which
Cs+ and C;- have the
total Mulliken charges of
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from heterogeneous structures such as embedded crys-
talline grains [19.31,34]. In short, it seems fair to
assert that, although the charged-defect concept has
been a good working hypothesis, it still faces a matter
of debate.

Low-Temperature Observations
ESR characteristics of Se have been explored since the
1960s [19.2]. In pioneering studies, spin signals appear-
ing in Se solids were ascribed to O impurities [19.2,
69]. Afterwards, Agarwal [19.230] demonstrated that
in pure g-Se the spin density was less than 103 cm=3,
which was nearly an ESR detection limit. However,
Bishop et al. [19.215] discovered that light exposures
to g-Se at 4.2K produce spin signals with a density
of 10%cm™3, and later, Kolobov et al. [19.231] noti-
fied that the density increases up to 10 cm~ in a-Se
films upon exposures to intense illumination at 20K,
which disappears with annealing at ~ 100K (~ T,/3).
These spin signals evince the photo-creation of neutral
dangling bonds DU (---—Se—Se-), which may be pro-
duced through conversion from the charged defects, i.e.,
D* £ ¢ — D (e depicts an electron) [19.4]. However,
since D° can be produced also by breakage of normal
—Se—Se— bonds, the spin signal cannot prove the exis-
tence of the charged defects, D™ and D™.

Photoluminescence in a-Se exhibits both similar
and dissimilar behaviors from those in other chalco-
genide materials [19.4,216,217,232]. As illustrated in
Fig. 19.15, similarities lie in the two points; the peak
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Fig. 19.15 Comparison of photocurrent, photolumines-
cence (PL and PLE) (after [19.217]), and absorption spec-
trum « with the Tauc optical gap Eg at ~ 10K. Symbols
show photocurrent spectra in a-Se before (open circles)
and after (solid circles) illumination of 2.5 eV light, and at
room temperature (triangles), where illumination exerted
no changes (after [19.74])

position Ep g of photoluminescence excitation spec-
trum at the Urbach-edge region and the spectral location
of a luminescence peak at Ep;, & Epy /2, referred to as
the half-gap rule. It applies to t-Se as well [19.233].
a-Se also exhibits the so-called photoluminescence fa-
tigue under continuous excitation at 4 K [19.234], as
those in As(Ge)-S(Se) glasses [19.217]. However, in
more details, Se presents some peculiar facets. For the
peak positions, we see that Ep /Ep g ~ 0.8/2.1(eV) =
0.38 < 0.5 [19.217,232], clearly deviating from the
half-gap rule. For emitted light intensity, photolumines-
cence efficiency in g-Se has been demonstrated to be
smaller by ~ 1072 and ~ 1073 than those in g-As,Se3
and g-GeSe, [19.97,217]. Also, it is known that the
efficiency in g-Se is strongly quenched by O impuri-
ties [19.71,72,95].

How can we understand these observations? In
terms of the charged defect model, the mid-gap lumi-
nescence has been related with D levels [19.4, 216].
Otherwise, some researchers have applied excitonic
models [19.233,234]. Nevertheless, no convincing in-
terpretations have been given for the spectral deviation
and weak intensity.

The last topic concerns the photoinduced mid-gap
absorption [19.4,6]. It is known that, in g-As;S(Se)s
under illumination at low temperatures, an absorp-
tion band with @ ~ 10cm™! appears at hw ~ Ey/2 —
E,, the origin being ascribed to DO defects [19.4,
6,214-216]. For a-Se, however, such an absorption
band has not been reported, to the author’s knowledge,
though photoinduced below-gap absorptions are known
to emerge in t-Se [19.235], 1-Se at 590°C [19.236],
a-Se nano-particles [19.237], and single Se chains in
zeolite [19.238,239]. Nevertheless, it has been demon-
strated, as shown in Fig. 19.15, that a-Se films at 13 K
undergo photoinduced photocurrent enhancement ex-
tending to 7w > 1.0 eV, which recovers with annealing
at 200 K [19.74]. This enhancement may be related with
the photoinduced mid-gap absorption.

In short, these photoinduced phenomena at low
temperatures evince the creation of mid-gap defects.
However, the idea that the D level is located at mid-gap
regions cannot be justified in the lone-pair semiconduc-
tor [19.4-6, 13], in which the level is assumed to lie in
the vicinity of the valence band [19.69,229]. Several
candidates, including impurities, can also be envisaged
for the mid-gap state [19.69, 220], and accordingly, the
atomic structure still remains vague.

Transient Photo-Responses

and Thermally-stimulated Currents
Transient photocurrents 7, in samples with stacked/
planar electrodes and decaying surface potentials Vy in
xerographic configurations give insights into the gap-
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state DOSs [19.45,91, 101, 240-242]. In details, there
are several experimental and analytical procedures, in
which a common principle is to convert the time vari-
ations 1,(z) or Vy(7), where 1~ 1ns —10%s, to D(E,),
where E; is the trap depth. The derivation follows
a multiple-trapping model, in which trapped charges
are assumed to be thermally activated from gap states
lying at varied E; after a delay ¢, which satisfies ¢ ~
exp(E;/ksT), where in many experiments 7 =~ 300 K.
Such procedures have provided considerable results so
far, while the gap-state DOSs are not necessarily repro-
ducible [19.4, 6], which may be due to different samples
and experimental problems. For instance, in optical
time-of-flight measurements of /,(¢), photo-generated
and/or deep-trapped charges may modify applied elec-
tric fields. In the conventional transient photocurrent
method using thin samples with planar electrodes, 7, ()
is likely to be affected by surfaces. Xerographic mea-
surements probe slow Vi(fr) responses with > 0.1s,
governed by deep states, which are plausibly sensitive
to impurities, prehistory, and so forth.

Recently, Kasap et al. [19.242] have reported com-
prehensive results for a-Se films with 75 ~ 60 °C. Their
DOS, in conjunction with an assumption of Ej a
2.35eV [19.198], is plotted in Fig. 19.16. We see
that the valence-band edge at 0—0.5eV is exponen-
tial, &~ exp(—E/E,) with the steepness parameter E, ~
25meV. On the other hand, the conduction-band edge
consists of a similar exponential curve with an addi-
tional peak at a depth of ~ 0.3eV and a small hump
at ~ 0.45eV. They ascribe these peaks to Cs3+ defects,
which may be incompatible with their presumption of
neutral defects. Alternatively, these edge states may
arise from heterogeneous structures, e.g., crystalline in-

DOS (cm™ eV 0.5 0
Valence Conduction /
band band
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Fig. 19.16 DOS of band-edge and gap states reported (af-
ter [19.242])

clusions [19.32,34]. They also suggest that the total
density of deep gap states at 0.7—1.5eV, occupied and
unoccupied, is less than 10" cm—3.

Is the Kasaps’ DOS compatible with previous ob-
servations? The DOSs at the conduction- and valence-
band edges are connected with the Urbach energy Ey
(Fig. 19.13) through the convolution integral (19.2), and
accordingly, the steepness parameters of ~25 meV in
both edges are consistent roughly with the Ey value
of ~60 meV. However, taking the different origins
(lone-pair and anti-bonding states) of the two bands,
we may be puzzled about the same values. Actually,
Lanyon [19.47] obtained E, ~ 67 meV from volt-
age variations of space-charge limited currents, and
also theoretical results [19.69, 243] predict more grad-
ual valence-band edges than conduction-band edges.
Another remark is that, in contrast to the simple ex-
ponential valence-band edge, many researchers assert
the existence of a DOS peak at ~ 0.3eV [19.87, 102,
240,241]. Reasons of this discrepancy are speculative;
the peak may be so small and broad that it could
merge into the exponential edge [19.244]. Regarding
the conduction-band edge, the 0.3eV peak is consis-
tent with previous results [19.4, 77], which are obtained
from thermal activation energies of the drift mobility.
It is plausible that the DOS peak produces an opti-
cal absorption peak at hw ~ 2.0eV (= 2.35—-0.3¢eV),
while it may merge into the Urbach edge (Fig. 19.13).
Also, the 0.45eV hump may cause a spectral peak at
~ 1.9eV, which could be related with a small elec-
tron response of 7 at the energy (Fig. 19.13). Finally,
the result that the total deep-state density is less than
10" cm™! is in harmony with previous results [19.91,
200].

Thermally-stimulated ~ depolarization  currents
(TSCs) also give insights into trap parameters [19.80,
94,245-249]. In this experiment, traps are first filled
with photogenerated carriers at low temperatures,
e.g. 80K, and the carriers are detected as thermally-
stimulated currents upon rising sample temperature
with a fixed rate of 0.1—1.0 K/s. We may assume that,
under the thermal activation process which occurs in
proportion to & exp(—E;/kgT), the temperature scan
takes a determinative role, instead of the time delay
in the transient photoconductivity. Using this method,
Kang et al. [19.94] and Mikla and Mikla [19.245] re-
producibly identified hole traps at depths of ~ 0.22¢eV,
which should be re-examined in conjunction with
the simple exponential edge in Fig. 19.16 [19.242].
They also inferred other deeper traps at 0.6—1.1eV
from current peaks appearing above =~ 300K [19.94,
245-249], while those could be affected by the glass
transition and crystallization.

19
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19.5 Electrical Properties

19.5.1 Electrical Conduction

Substantial studies have been performed on electrical
conductions in crystalline Se. As known, the conduc-
tivity is written as o0 = enu (n is the carrier density
and p is the mobility), and intrinsic conduction in
Se with E, ~ 2eV suggests few thermal carriers (n <
10*cm™) at room temperature, which makes the mo-
bility ; a matter of concern. It is formally written as
u = et®/m* in Drude model, where t° is the scattering
time and m* (= #2/(0°E/dk?)) is the effective mass,
for which the dispersion curve (Fig. 19.12) suggests
my <my in t-Se. On the other hand, experimental
values in t-Se appreciably scatter, probably owing to
defective and/or contaminated samples, with typical fp
of ~ 30 and ~ 10cm?/Vs for parallel and normal to
the chain axis and /e ~ 4 (Table 19.1) [19.2,250].
We may then assume z; < 7;, which implies stronger
electron—lattice interaction. Or, the electron may form
a small polaron. The hole is known to be more mobile
also in @-m-Se [19.251].

In pure g-Se the electrical conduction is totally elec-
tronic, with no ionic contribution being reported. The dc
electrical conductivity is evaluated as low as 10717 S/cm
(Fig. 19.4) at room temperature with the activation ener-
gies of 0.7—1.0eV [19.2,4,75, 88]. Holes dominate the
conduction (Table 19.1) [19.2, 4], which also applies to
1-Se [19.252]. n-Type conductions, e.g., by Cl doping,
seem to be more-or-less difficult to attain [19.25,42,
78, 83,252].

For a-Se, important quantities which govern the
motion of photogenerated carriers are two. One is the
drift (trap-controlled) mobility w4, defined as pg ~
w(n/ny) [19.4], where p is the band (conventional) mo-
bility, and n and n, are the carrier densities in a band
and band-tail traps. The other is the carrier lifetime t,
which may be governed by deep traps. And, the prod-
uct puqt, the so-called range, becomes a measure which
characterizes the transport of photogenerated carri-
ers. These values have been evaluated using transient
experiments such as optical time-of-flight measure-
ments (Fig. 19.17), in which photo-generated carriers
in a-Se output conventional rectangular-shaped (non-
dispersive) I,(t) signals at room temperature [19.23,
241,242]. Specifically, for the evaporated films, these
transport parameters have been evaluated as func-
tions of substrate temperatures [19.44], film thick-
nesses [19.26], relaxation (aging) [19.82, 84], bias illu-
mination [19.253], and doping [19.76-83, 103].

These studies have demonstrated the followings: In
good-quality a-Se films [19.1,4, 54,76, 84,254] and g-
Se layers [19.23], 114 is fairly reproducible; gy ~ 0.15

and fge ~ 0.005cm?/V's (Table 19.1), while T con-
siderably scatters; 7, ~ 10—50 ps and . &~ 10—500 s,
the combined results giving panth > [4deTe, Which may
be termed p-like conduction [19.255]. Since pq and
are governed by shallow and deep traps, respectively,
the latter appears to largely depend upon samples and/or
experimental artifacts. In stabilized a-Se films, the car-
rier ranges tend to become higher than those in pure
films [19.79, 103], the reason having been theoretically
considered [19.104]. To the author’s knowledge, no
transport data have been available for 1-Se.

19.5.2 Avalanche Breakdown

Juska and Arlauskas discovered that a-Se films in an
optical time-of-flight configuration (Fig. 19.17) ex-
hibit photoconductive avalanche breakdown [19.256,
257]. We see in Fig. 19.17 that, at electric fields
above &~ 1 MV/cm, hole and electron photocurrents
abruptly increase. On the other hand, during investi-

Current density (A/cm?)
1074,

@ Hole photocurrent
O Electron photocurrent
A Dark current
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Fig. 19.17 Electric field dependence of photo- and dark-
current density at room temperature for a 1 pwm thick a-Se
film under illumination of 400 nm light. The inset illus-
trates the sample structure, in which the facing electrode
area is 1 mm x 1 mm and excitation light is incident on the
glass substrate (after [19.259])
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gations of a-Se vidicon targets, Tanioka et al. noticed
dramatic sensitivity enhancements [19.258], arising
from carrier multiplications, which have been devel-
oped to HARP (high-gain avalanche rushing amor-
phous photoconductor) vidicons (Sect. 19.7). These
two discoveries have then initiated many fundamen-
tal studies, which delineate avalanche behaviors as
functions of electric filed (< 1.6MV/cm) [19.259],
temperature (100—300K) [19.256,257,259], a-Se film
thickness (0.5—200 wm) [19.257,259], and light wave-
length (400—600nm) [19.259,260], and also in several
sample-electrode arrangements [19.261-263].

However, scientifically, the avalanche breakdown in
a-Se still remains puzzling. The avalanche breakdown
in crystalline semiconductors such as Si and InSb has
been known, which appears through successive impact
ionizations by field-accelerated hot carriers. But, why
can the avalanche breakdown occur in an amorphous
semiconductor, probably having short carrier mean-free
paths? In addition, the breakdown in a-Se becomes
more conspicuous at higher temperatures [19.256, 257,
259], which is opposite to the behavior of conventional
and impurity-related [19.264] carrier multiplications in
crystalline semiconductors. And, why does the phe-
nomenon appear clearly only in a-Se, but not in other
amorphous semiconductors as g-As,Ses and a-Si:H and
in crystalline Se [19.265,266]? We just know that single
crystalline t-Se undergoes piezo-electric oscillations at
high fields [19.2], and poly-crystalline Se rectifiers ex-
hibit injection-related current increases [19.267,268].

For such fundamental problems, Canadian groups
continue active studies [19.188-190,269-273]. They
have applied a lucky-drift model [19.274] to the amor-
phous film [19.270-272], under an assumption that
carriers undergo elastic collisions with disorder po-
tentials, thereby its energy can successively increase,
giving rise to the impact ionization. Nevertheless, es-
timated lengths of the mean-free path between elastic
collisions are only &~ 0.5 nm [19.270, 272], and we may
cast doubt upon the particle picture [19.275]. Following
the model, they have interpreted the temperature depen-
dence with a thermally-activated increase in the hole
mobility [19.273], which is governed by tail states. Be-
sides, the uniqueness to a-Se has been related with its
low vibrational energy (~ 30meV, Fig. 19.7) [19.271],
arising from the heavy atomic mass, 79, which is
effective to suppressing energy dissipation of acceler-
ated carriers. If this were the case, can we envisage
the avalanche multiplication in a-Te (or a-Se-Te alloy)
films?

Finally, other approaches to the breakdown phe-
nomenon should also be mentioned: Masuzawa et
al. [19.262] have demonstrated carrier multiplication
in Se/As-Se multilayers sandwiched between indium-

tin-oxide (ITO) and Al films (no blocking electrodes
inserted) at ~ 1MV /cm, and proposed a different
idea for the multiplication mechanism. Park and Tan-
ioka [19.263] analyze HARP characteristics in a phe-
nomenological way. Tanaka suggests a role of tail
states above the valence band for impact ionization of
holes [19.275].

19.5.3 Electrical Switching
and Crystallization

Since the crystallization temperature of a-Se is rel-
atively low ~ 100°C (Fig. 19.3), Joule-heated crys-
tallizations are likely to occur. It may behave as an
electrical Ovonic memory effect [19.276,277], which
is an ongoing topic of phase-change materials such
as Ge,Sb,Tes. Actually, the electrical switching and/or
memory phenomena of a-Se had been explored in the
1970s and 1980s [19.278-285], while those results
seem to be mostly forgotten. However, further stud-
ies of the behavior in the elemental material, which
may have some relation with the photocrystallization
(Sect. 19.6.3), will shed light upon the electrical phase-
change. Hence, we briefly take a look upon previous
studies below.

Several pioneering experiments uncovered switch-
ing (breakdown) behaviors in g- [19.278] and a-
Se [19.279-285] samples having symmetric [19.278] or
asymmetric [19.279, 280, 285] electrodes. For instance,
Matsushita et al. [19.279] investigated a memory effect
in Fe point-contacted a-Se/SnO, structures. Petretis
et al. [19.281] observed electrical breakdowns in a-Se
films subjected to corona charging. In these phenom-
ena, transformations from a- to t-Se are likely to take
place. The threshold fields of these switching were
0.1-1 MV /cm [19.278-285], which are similar to that
in the avalanche breakdown (Sect. 19.5.2). However, in
contrast to the bulky avalanche breakdown, the elec-
trical switching seems to occur with carrier injections
from electrodes or surfaces.

Mechanisms of the electrical crystallization re-
main confusing. Taking the photocrystallization phe-
nomenon (Sect. 19.6.3) into account, we may en-
visage pure electronic mechanisms [19.280, 285]. Or,
Bolotov and Komarova [19.282] demonstrate electric
field effects on thermal crystal growth in a-Se. Oth-
erwise, Joule heating could be responsible. In some
memory effects, diffusion of electrode metals such
as Pt and Ag has been detected [19.278,284,285].
It is hence plausible that several switching and/or
memory processes play roles in each observation. Fi-
nally, we mention that optical effects upon electrical
memory phenomena have been demonstrated using a-
Se/SeO; hetero-junctions [19.286] and corona-charged
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a-Se films [19.287], which also seem to involve the
crystallization.

19.5.4 Electrode, Junction, and Multilayer

The choice of metal electrodes is a key issue when
examining (photo-)electrical properties of semicon-
ductors. For pure a-Se films (7 = 50°C), Mort and
Lakatos [19.193] demonstrated using internal photoe-
mission spectroscopy that the barrier height ¢, for
holes, defined in Fig. 19.18, becomes smaller in the
order of Al (¢pn ~ 1.40eV and ¢y ~ 4.3eV), Cu (x
1.10eV, ~4.7¢V), and Au (~0.85¢V, &~ 5.1eV),
which suggests that Au makes a good hole-injecting
contact. Au is also known to be less reactive with a-
Se than Al [19.288]. Nevertheless, for stabilized a-Se
films contacting with metal electrodes of various kinds,
Kasap and Rowlands [19.102] found no correlation
between dark currents and the metal work-functions.
Reasons of these seemingly different observations are
unknown.

Blocking electrodes have also been explored,
mainly for photoconductive experiments and appli-
cations. In the usage in xerographic photoreceptors,
a-Se films deposited upon oxidized Al layers are ex-
posed to positive corona discharges, in which the oxide
is expected to work for suppressing electron injec-
tion [19.15,79]. For similar purposes, Sb,Ss [19.86,
261], poly-vinylcarbazole [19.249,289], and cellu-
lose acetate [19.261] films have also been employed.
In other cases, we may need blocking electrodes
for both polarities. Specifically, since the hole is
more mobile, good blocking anodes — even under
high voltages — would be required. For such pur-
poses, several layers have been inspected, e.g., n'-
type SnO, (E, ~3.5¢V and ¢y ~ 4.8eV) [19.86,
286], CeO, (E, ~ 3.4¢eV) [19.86,261,263,290], GeO,
(Eg ~5¢eV) [19.263], ZnO (E, ~ 3.2¢eV) [19.291], and
polyimide (E, ~ 7eV) [19.290, 292, 293].

19.6 Light-induced Phenomena

Discovery of light-induced structural changes in
chalcogenide glasses can be traced back to a short
note reporting “the fluidity in g-Se under illumination”
by Vonwiller about a century ago [19.301]. Neverthe-
less, his note might attract little interest. Afterwards,
the pioneering work of optical (and also electrical)
phase changes by Ovshinsky’s group [19.276] trig-
gered worldwide studies on light-induced structural
changes. And, we now know several kinds of phenom-
ena in chalcogenide glasses such as a-Se and As;Ss,

_____________________ Vacuum
z Conduction
band
Ef
Valence
band
a-Se

Fig. 19.18 Band diagram of a metal/a-Se junction (af-
ter [19.193]). The work function Egt 4 y ~ 6eV and the
mobility gap Ef ~ 2.3eV

Junctions including a-Se films have been pre-
pared mainly for investigating and/or improving pho-
toconductive characteristics. For instance, a-Se/poly-
vinylcarbazole and a-Se/a-Se;—,Te, were devised as
xerographic photo-receptors [19.193,294,295]. More
recently, Campbell [19.296] has demonstrated that the
hetero-junction using a-Se and an organic film, octa-
butoxy tin naphthalocyanine dichloride, can extend
photoconductive responses to wavelengths of ~ 1 pm
under reverse-bias conditions. Here, it is mentioned that
few studies have been performed for a-Se/t-Se junc-
tions [19.247], while the inspections will be valuable
for understanding electronic properties of partially-
crystalized a-Se films.

Multi-layer structures are expected to extend
spectral performance and enhance thermal stability.
Maruyama [19.86] examined Se/As,Ses films, demon-
strating that the 1 nm-periodicity structures can be re-
garded as an almost uniform material. Masuzawa et
al. [19.262] and Yu et al. [19.297] also studied simi-
lar systems for improving photoconductive responses.
Nesheva et al. uncovered interfacial effects on thermal
stability in Se/CdSe [19.298] and Se/Se-Te [19.92]
films. In Se/As,S3, however, photoinduced diffusion is
likely to take place [19.299, 300].

which have repeatedly been reviewed [19.5,6,216,
302].

What are the outcomes obtained through study-
ing the light-induced phenomena in a-Se? It may be
fair to admit that since the glass-transition tempera-
ture (=~ 310K) of a-Se is just above room temperature,
applications of the phenomena will be limited. Or,
in some cases, those may cause serious problems in
photoconductive applications, e.g., photocrystallization
in HARP films [19.303], and accordingly, suppres-
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sion is strongly required, for which the understand-
ing of induction processes is a prerequisite. On the
other hand, the existence of only the homopolar bond
—Se—Se— makes the underlying mechanisms more spe-
cific. In other words, it is important to examine whether
a phenomenon is unique to the elemental material or
universal to compound chalcogenide glasses. In such
contexts, studies using S and Te are also tempting,
while the glass-transition temperature in a-S is below
room temperature (~ 260K [19.304]) and a-Te films
appear to crystalize at room temperature (& 285K)
without undergoing a glass transition [19.305]. Inciden-
tally, Sakaguchi and Tamura [19.302] have investigated
light-induced phenomena in thin (& 1 pm) 1-Se and 1-
S samples (above the melting temperatures), the results
being very valuable to examine roles of the equilibrium
states.

Light-induced phenomena in a-Se are of several
kinds, and then a classification may be instructive. At
the outset, the phenomena can be divided into two.
One is the thermal change — heat mode —, in which
temperature rises induced by light absorption are as-
sumed to govern the structural changes; a known ex-
ample being the optical phase change [19.276], which
has widely been commercialized using Ge,Sb,Tes
films [19.277], while studies for a-Se remain. The
other is the photoinduced change — photon mode —, in
which not the temperature rise but electronic excita-
tions directly cause successive atomic transformations.
The photon mode can further be divided into two;
those appearing only during illumination (as photo-
conductivity) and those existing after illumination, the
two being referred to as transitory and memory ef-
fects. Besides, the memory effect may be irreversible
(permanent) or reversible (meta-stable), in the sense
whether annealing treatments cannot or can restore
the state before illumination. We may regard the ir-
reversible change as a kind of photoinduced stabi-
lization processes, the known examples being pho-
tocrystallization (Sect. 19.6.3) and ring-to-chain trans-
formations [19.62,306]. The reversible can further be
divided into two by needed annealing temperatures,
which may be ~ T,/2 (defective) or ~ T, the for-
mer being already touched in Sect. 19.4.3. Here, it
is plausible that a transitory change at room tempera-
ture and a low-temperature defective phenomenon have
some common origins, which remains to be studied.
Finally, all the photo-induced changes can be divided
into scalar or vector, in the sense if the polariza-
tion of excitation light provides isotropic or anisotropic
changes. It should also be mentioned here that, not only
visible light, but electron [19.5,307,308] and high-
energy [19.5, 181, 309] beams can exert some structural
changes.

19.6.1 Transitory Effects

As mentioned above, g-Se undergoes softening when
exposed to light [19.301], and later studies have
emphasized respective features; photoinduced “relax-
ation” [19.310,311], “aging” [19.310,312], “melt-
ing” [19.313], “fluidity” [19.314], “viscosity” [19.315],
and so forth [19.316-318]. It is plausible that these
transitory changes cause modifications of thermal prop-
erties [19.310,319]. Transitory volume expansion and
oscillation have also been discovered [19.320, 321]. Be-
sides, transitory absorption, which has been known
for As-S films [19.6], was demonstrated also for a-
Se at room temperature [19.322,323]. The origin may
be related with the defective absorption (Sect. 19.4.3)
and/or the photodarkening (Sect. 19.6.2). Mechanisms
of photoinduced changes could be inferred from
the excitation spectra. Fig. 19.19 [19.324] compares
three kinds of spectra with the absorption spectrum
a. (1) shows the photoluminescence excitation spec-
trum (Fig. 19.15), (2) represents the photodarkening
magnitude (Sect. 19.6.2), which peaks at the non-
photoconducting spectral region (Fig. 19.13), and (3)
includes the photoconduction (Fig. 19.15). Larmag-
nacs’ result implies that the photoinduced relaxation
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Fig. 19.19 Comparison of the absorption-edge spectrum
o and the Tauc optical gap Eg with three spectral types
of photoinduced phenomena at ~ 80K (after [19.324]);
(1) includes photoluminescence-excitation spectrum (af-
ter [19.217]), (2) saturated edge-shift in the photodark-
ening (after [19.324]), and (3) photoconductivity (af-
ter [19.202]), a quantum efficiency of photo-etching (af-
ter [19.124]), and probably the photocrystallization (af-
ter [19.247,325])
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efficiency has the type (2) [19.310]. We then straight-
forwardly assume geminate-pair excitations as the first
step of the transitory change.

The next problem is whether the excitation induces
some atomic changes directly through electron—lattice
interaction or indirectly through temperature rises. Inas-
much as the glass-transition temperature of a-Se is
just above room temperature, low-temperature experi-
ments are preferred for the distinction. And, such stud-
ies [19.311] seem to support major roles of the direct
mechanism, e.g., excited geminate pairs cut —Se—Se—
bonds through some processes, the consequence ap-
pearing as the fluidity increase etc. Intra- and inter-bond
mixing may occur in the process, which is consis-
tent with an EXAFS result, demonstrating an increase
in the atomic coordination number by ~4 % in a-
Se films at 30K during illumination (Xe lamp, ~
100 mW /cm?) [19.326]. With terminations of the expo-
sure, relaxational bond restorations take place. Quan-
titative formulation connecting induced fluidity with
light intensity will be a challenging subject.

19.6.2 Photodarkening and Deformations

There may be some confusion about the usage of photo-
darkening. In the broadest sense, the word can represent
all the photochromic effects, i.e., decreases in opti-
cal transmittance induced by illumination, which make
the material darker. In the research area of chalco-
genide glasses, however, it has restrictively been uti-
lized to denote “photoinduced nearly-parallel red-shifts
of the optical absorption edge which can be recovered
with annealing at around the glass-transition tempera-
ture” [19.6,216,302] [1S:3]. The word does not include
transitory and irreversible photochromic effects.

The photodarkening in chalcogenide glasses such
as As;S(Se)s has been comprehensively studied [19.6,
216,302]. And, we may trace its discovery in a-Se
back to Chang [19.327], though he seemed to exam-
ine optically-thick samples. (For quantitative evalua-
tion of photodarkening characteristics, specifically the
time variation, inspected samples are preferred to be
optically-thin, oL < 1, where L is the sample thickness
and « (~ 10* cm™!) is the absorption coefficient to exci-
tation light. Accordingly, most of experiments have em-
ployed deposited films of L < 10 pm. Such experiments
demonstrate exponential growths, which can be con-
nected with the first-order reaction kinetics [19.328].)
Later studies have confirmed its existence, e.g., a red-
shift of ~ 50meV at Aw ~ 2.3 eV in a- and g-Se at ~
80K [19.56,324,329,330], and also under high pres-
sures [19.331-333]. In addition, although no spectral
shifts having been presented, photoinduced transmis-
sion decreases reported in [19.334-337] seem to arise

from the photodarkening. Taking the Kramers—Kronig
relation into account, we straightforwardly envisage
that the photodarkening accompanies an increase in re-
fractive index [19.6, 328].

Despite of its simple appearances, the mechanism
of the photodarkening in chalcogenide glasses has been
controversial. For instance, some researchers asserted
that the hetero- to homo-polar bond-change causes the
photodarkening [19.302]. Actually, Raman-scattering
spectroscopy manifests that in As,Ss (super-)bandgap
illumination produces As—As bonds, which may be
oxidized to As;O; crystals in some conditions, and
also give rise to the photodarkening. Practically, it is
very plausible that super-bandgap photons induce sev-
eral structural changes. However, why is the produc-
tion of As—As bonds able to cause a red-shift of the
optical absorption edge? It should also be noted that
sub-gap illumination can induce the photodarkening in
As,S5[19.324, 337], with producing few As—As bonds.
In addition, the fact that the photodarkening occurs un-
ambiguously in a-Se, and also in a-S [19.332], evinces
that such bond alternations cannot be a universal origin.

For the photodarkening mechanism, it is valuable
to recall the excitation spectra. In a-Se, the red-shift
is the highest (~ 50meV at 80K) upon illumination
of light with the photon energy of ~ 2.4eV [19.324,
329, 332], which is located at the non-photoconducting
gap region, i.e., the type (2) in Fig. 19.19. This fact
manifests that the photodarkening is triggered by gem-
inate (excitonic) carriers, which may cause local (~
SA) twisted bonds and overall structural disorder-
ing [19.216,228,302,326,332], giving rise to broad-
ening of the lone-pair band, and consequently, the
red-shift of the optical absorption edge. As an example,
Fig. 19.20 illustrates a bond-twisting model [19.332]
in a trimer structure consisting of two H—Se—H and
a H—3Se—H, in which the central Se can take elec-
tronically transferable bi-stable positions. An ab initio
chemical calculation [19.104] demonstrate that, reflect-
ing stronger inter-cluster interaction between lone-pair
states, the twisted (lower) structure has a higher HOMO
level by ~ 0.3eV with little change in LUMO levels
(not shown), which is assumed to cause the photodark-
ening. Incidentally, the number of atoms contributing to
the photodarkening is estimated at ~ 1 at.%, the density
being consistent with the reversible behavior [19.328].

The structural disordering, with the transitory pho-
toinduced fluidity described in Sect. 19.6.1, may cause
quasi-stable volume expansions. Actually, expansions
of ~0.3% are detected in a-Se after illumination at
room temperature [19.338], despite that the photodark-
ening is short-lived at the temperature, which is just
below T, [19.335,336]. How can these observations
be mediated? We assume that both the phenomena are

Is this a direct quote?
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a)

Fig. 19.20a,b Bond-twisting motion in a Se trimer, with
HOMO wavefunctions, which models three Se chains in a-
Se structures: (a) stable configuration, in which the central
atom rotates to the right-hand side under electronic exci-
tation, and relaxes to (b) the quasi-stable structure upon
de-excitation

manifestations of the photoinduced structural disorder-
ing, while because the photodarkening arises from local
atomic changes (such as bond twisting) and the expan-
sion appears through successive macroscopic atomic
flows [19.338], thermal recovery of the latter needs
much longer times. Finally, it should be mentioned that,
instead of the structural disordering, some researchers
propose Coulombic forces [19.320,321] and thermal
effects [19.339,340] as expansion stimuli. However,
such ideas face to difficulties in interpreting the fact that
these photoinduced changes become greater at lower
temperatures [19.6,216, 302].

19.6.3 Photo-crystallization

Photo-crystallization, its mechanism being comprehen-
sively studied by Dresner and Stringfellow [19.247],
has attracted considerable interest due to its peculiar
features. For instance, the crystallization of a-Se to
t-Se causes conspicuous morphological and electrical
changes. However, it is still difficult to draw a whole
picture of the photo-structural process, due to its com-
plicated nature involving crystallite nucleation and suc-
cessive growth [19.5, 6].

Pioneering researchers inspected the phenomenon
mainly using optical microscopes, which revealed sev-
eral unique features [19.247,325,341,342]. A growth

Onset time of crystallization (h)

260 280 300 320 340
T(K)

Fig. 19.21 Exposure (incubation) times until photocrystal-
lization is detected as a function of the sample temperature
T (after [19.303]). Excitation light is 633 nm in wave-
length and 17 W/cm? in intensity. The inset shows a Se
spherulite, the diameter being &~ 0.1 mm, grown with a rate
of ~ 0.1 wm/min on the free surface of an a-Se(2um-
thick)/Au/mica sample at 325K under illumination of
~ 20mW /cm? from an Hg lamp

rate of crystals in a-Se films just the crystallization
temperature 7. (=~ 100°C) is markedly enhanced by
light illumination, or specifically by photo-generated
holes [19.247]. In this context, the photocrystalliza-
tion may be related with the (photo-)electric phase
change (Sect. 19.5.3). t-Se crystals emerge, depend-
ing upon conditions, on the free surface as spherulites
and also at the boundary with substrates. On the other
hand, suppressions of the crystallization by electron
beams [19.341] and red light [19.343], the phenom-
ena resembling infrared quenching in photoconductiv-
ity [19.208,246], have been demonstrated. Also, the
photocrystallization can be suppressed by alloying with
other atoms such as Ge [19.344], Te [19.90, 92], etc. It
is also known that the crystal growth is thermally acti-
vated, which exhibits vector behaviors (Sect. 19.6.4).
Raman measurements [19.31,92, 134,303, 337,
345] seem to have higher sensitivity in crystallite
detection. And recently, a Canadian group has demon-
strated that the photocrystallization occurs at two
temperature regions, as shown in Fig. 19.21, lower
and higher than T, (=~ 310K), the latter having been
known as written above. By contrast, at the lower
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ASlsegg

420 min

ASgSCgZ AS40SC60

480 min 480 min

1000 pm

Fig. 19.22 Vector deformations in As-Se films deposited upon silicone grease, induced by linearly (vertically) polarized
bandgap light (exposure times given). Note that only a-Se produces vertical wrinkling pattern, with a transition at As; Seqgg
to the horizontal (after [19.106]) (Copyright WILEY-VCH Verlag GmbH & Co. KGaA, Reproduced with permission)

temperatures, the incubation time of light-induced
t-Se growth appears to become longer infinitely, with
the variation curve resembling that of the viscosity
(Fig. 19.8). The group proposes [19.31,303,337],
following a Stephen’s idea [19.347], that the crystal-
lization at 260—300K is driven by local strain. Note
that they evaluate the sample temperature from Stokes
and anti-Stokes Raman peak intensities, which assures
that the sample temperature is accurately determined.
Incidentally, several researchers have also reported
photocrystallizations at 7 < T, using intense or super-
bandgap laser-beams; 676 nm light with intensity of
~ 250 W /cm? at 100K [19.134] or 488 nm light with
~ 0.5W/cm? at room temperature [19.346], while
the crystallization could be enhanced by light-induced
temperature rises.

These observations manifest that relations between
the optical phase change (heat mode) and the photo-
enhanced crystallization (photon mode) remain to be
studied. For instance, more detailed experiments, which
separately monitor crystallite nucleation and growth,
are valuable. The insight will shed light also upon
photo-effects in other materials such as amorphous
ice [19.348] and proteins [19.349].

19.6.4 Vector Effects

Zhdanov and Malinovskii [19.350] discovered opti-
cal vector effects (anisotropic changes appearing upon
illumination of linearly-polarized light or sideward
illumination of unpolarized light [19.6]) in As,S;,
and we naturally envisage similar phenomena in a-
Se. Actually, optical and structural vector effects have
been demonstrated; dichroism [19.351], birefringence
(<0.008) [19.352], transitory opto-mechanical de-
formation [19.338], M-shaped deformation [19.338],
macroscopic elongation parallel to the light electric
filed by ~ 10% (Fig. 19.22) [19.106], and oriented

photocrystallization at &~ 350K [19.353-357], which
accompanies birefringence reaching to ~ 0.1.

For the vector effects, we may point out three inter-
esting observations. First, as shown in Fig. 19.22 the
vector deformation in the AsySejgo_x system exhibit
anomalous composition dependence; i.e., the defor-
mation direction abruptly changes at the composition
x & lat.% . Second, different from the photodarkening
(Sect. 19.6.2), which becomes greater at lower tempera-
tures, the dichroism and birefringence become maximal
at &~ 200K [19.352], which implies that wider-scale
structural changes are involved. Lastly, Kikineshi’s
group demonstrated that, not single, but two-beam in-
terference patterns can produce clear sinusoidal defor-
mations [19.314], and Trunov et al. have reported that
the amplitude depends on the polarization directions of
the two beams [19.358] and also on plasmonic enhance-
ments [19.359].

These phenomena have been understood through
extending Fritzsche’s idea [19.6,360]. We here assume
that anisotropic photo-electronic excitation under illu-
mination of linearly-polarized light makes Se segments
tend to align normal to the polarization direction, which
leads to the optical and shape changes [19.352]. That is,
polarized illumination induces rotation and directional
flow of atomic units. For the oriented photocrystal-
lization, resultant atomic configurations have actually
been detected by structural measurements [19.353,
355-357].

19.6.5 Simulations

Photoinduced phenomena have been simulated using
empirical [19.142, 143, 361] and ab-initio molecular dy-
namics [19.137,302,362,363] and also analyzed with
a quantum-chemical method [19.243]. In a pioneering
work by Zhang and Drabold [19.137], initially, an Se
cluster with 216 atoms is produced by cook and quench
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procedures, and afterwards an electron is transferred
from a HOMO to a LUMO level, which is followed by
free structure evolution for a while (400fs), and then
the electron is deexcited and quenched. The process
yields valence alternation pairs (C;-, Cs+), which they
assert as an origin of the photodarkening. Hegediis et
al. [19.361] have demonstrated that the volume of Se
clusters consisting of 162 atoms expands and shrinks,
respectively, during electrons and holes being excited.
These results illustrate plausible photo-structural
changes that may occur under some restrictions, and

19.7 Applications
19.7.1 Vidicon

TV cameras employing photoconducting chalcogenide
films had been utilized [19.86], which has now been
developed to HARP vidicons [19.258]. It operates
with photo-triggered avalanche breakdown in a-Se
films, giving rise to ultrahigh sensitivities, higher by
~ 10 times than that of crystalline Si photo-detectors
(CCD). However, the vacuum-tube structure having
an electron gun and beam-scanning assembly cannot
be compact, longer than ~ 10cm, and accordingly,
challenging work is being devoted to reduce its size
by replacing the scanning part to field-emitter arrays
(FEA) with a thickness of &~ 1 cm [19.364], shown in
Fig. 19.23. Otherwise, charge images are scanned by

hence, further developments are promising. For in-
stance, is it still difficult to trace slow phenomena such
as the photocrystallization using molecular-dynamics
simulations? For the photodarkening, the reversible be-
havior by annealing has not been demonstrated, and
accordingly, we wonder if the simulated, photoinduced
structures are really quasi-stable. In addition, to the au-
thor’s knowledge, no simulations have been performed
for the vector effect so far, which require quantal
formulation of polarization-dependent photo-electro-
structural processes.

thin-film-transistors [19.365]. In addition, intense stud-
ies are now focused on suppressing thermal and optical
un-stabilities of a-Se films [19.366] and on enhanc-
ing red-sensitivity [19.367,368]. On the other hand,
Imura et al. [19.268] have recently demonstrated photo-
multiplication of electrons injected through metal/c-Se
(not a-Se) interfaces, which may promote further devel-
opments of vidicons.

19.7.2 X-ray Imager

X-ray imaging plates of direct- and indirect-conversion
types using a-Se films have been developed for medi-
cal [19.255,369, 370] and scientific [19.371-373] pur-
poses. The direct type has a simpler structure, an

Light
Output signal
Glass
O O o “‘D‘O
HARP 5 a5 5
target Holes
Electrons @ % \];glri:e
/ \\ Fig. 19.23 Schematic cross-sectional
Efgcst};ode RN & S © . view of FEA-HARP vidicons. An
Mesh image incident upon the top surface
FEA-gate _ | voltage excites photo-holes, which are
avalanche-amplified in the HARP
= film, and are read by electron beams
FEA Gate emitted by a 640 x 480-pixel field

voltage

emitter array (after [19.364], with

permission from American Vacuum

Society)
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example being shown in Fig. 19.24, which is com-
posed of a wide-area (typically, 40 cm x 40 cm for med-
ical imaging) thick a-Se film sandwiched in between
a positively-biased top electrode and back capacitors.
The a-Se film converts x-ray photons into electrons
and holes, which charge the pixel (&~ 80 pm x 80 pum)
capacitors, from which signals are gated by thin-film
transistors (TFT). X-ray detectors employing avalanche
multiplication, with HARP [19.370] or similar struc-
tures [19.255,371] to Fig. 19.23, have also been de-
vised. On the other hand, in the indirect type, an a-Se
film works as a photoconductor [19.374], which detects
visible images emitted from a stacked x-ray fluorescent
screen made from a material such as TI-Csl. In this
system, the a-Se film can be as thin as a few micron-
meters [19.374], and accordingly, it can operate in an
avalanche-multiplication mode under moderate applied
voltages. Needless to say, there exist other, competitive
materials such as CdTe in the direct type and Si pho-
todiodes in the indirect [19.375]. We summarize below
some performances of the direct type.

The first concern would undoubtedly be x-ray sen-
sitivity [19.102,255,376]. It is determined by sev-
eral successive processes including x-ray absorption,
electron-hole generation with recombination, and car-
rier transport to electrodes. As known, the x-ray ab-
sorption coefficient & is proportional to pA3Z>, where
p is the density, A the x-ray wavelength, and Z (=
34) the atomic number of an absorber, which makes
Se a potential material for x-ray detectors. However,
for pertinent x-ray absorption, the a-Se films must be
thicker than ~ 0.2mm, which requires feasible and
economic preparation techniques. An absorbed x-ray

photon then creates a primary electron-hole with ener-
gies Ex of a few tens of keV (x-ray photon energy),
which produces n carriers through impact ionization
cascades and instantaneous recombination. The num-
ber of resultantly generated carriers can be written as
n = Ex/W;, where W; is an electron-hole pair creation
energy, or an ionization threshold, which should be low
as possible for obtaining high sensitivity. However, it is
still difficult to theoretical predict W; for a-Se [19.189,
190,377,378], and instead, we follow an empirical
formula, W; ~ W° + B/F, where W9~ 7eV , which
may be related with the energy separation between the
DOS peaks of the valence and the conduction band
(Fig. 19.12), F an applied electric field, and B ~ 4.4 x
10%eV V/cm [19.102]. Provided that all generated car-
riers being transported without recombination [19.379,
380], this relation suggests that a 50keV x-ray photon
is able to charge a capacitor by 10* electrons.

In addition to the sensitivity, several specifications
should be satisfied. The dark current must be as low (<
10pA/mm? [19.260]) as possible under applied high
voltages of, e.g., 2kV (~ 10V/um). However, it is
known that the dark current is affected by carrier in-
jection from electrodes [19.293,379] and bulk thermal
generation. The latter increases with decreasing E,,
while we may assume W° o E,, and accordingly, it
is not straightforward to compromise high sensitivity
and low dark current. Other performances concern im-
age resolution [19.381], response times [19.382, 383],
device degradation under x-ray exposures [19.384],
thermal stability, etc. [19.255, 385]. Smooth amorphous
structures, not containing polycrystalline grain bound-
aries, may be preferred in these measures.
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19.7.3 Other Devices

As known, the usage of a-Se films in xerography and
xero-radiography has now been mostly discarded. The
xerographic use was replaced by organic photocon-
ductors [19.15], probably because of cost and toxic
problems. On the other hand, the xero-radiographic
technique [19.376] has been transferred to the digital x-
ray imagers (Sect. 19.7.2), in which x-ray detectability
of a-Se remains an inherent advantage [19.102].

In contrast to such established usages, new ap-
plications to electrical, photoconductive, and pho-
tonic devices of crystalline, amorphous, and liquid

Se are now being explored. Those include Al/a-
Se/Au diodes [19.288,386], ITO/TiO,/Se/Au solar
cells with an efficiency of a~ 5% [19.387], a super-
capacitor of porous Se films [19.59], and a radioiso-
tope 1-Se battery generating 16nW [19.388]. Be-
sides, reported are several photo- and x-ray detec-
tors having lateral configurations [19.389-392], fiber
forms [19.393], and diamond cold cathodes [19.262].
Sharma et al. [19.318] have fabricated a-Se photo-
optical switches having ps response times, which may
be based upon a defect-absorption principle commonly
appearing in other amorphous semiconductors [19.237,
394].

19.8 Nano-Structures and Single Molecules

The fact that Se forms ring and chain molecules
(Fig. 19.1) makes preparations and characterizations
of nano- and molecular-structures fascinating subjects.
Such studies might start near the end of 20th cen-
tury, while it should be noted that the smallest clus-
ter, Se dimer, has been utilized as a precious dye in
ultramarine-type solids over centuries [19.395] and still
arouses renewed interest [19.396].

19.8.1 Nano-Selenium

Nanoscale Se structures with different shapes have been
prepared through various procedures, as comprehen-
sively reviewed by Chaudhary et al [19.397]. Those
include spherical [19.398-405] and polygonal [19.406—
408] free nano-particles of a-, m- and t-Se in gases
and solutions. T-Se can also take a variety of shapes;
needles [19.401,404,408-410], wires [19.391-416],
belts [19.417], and tubes [19.414,418], the exam-
ple being shown in Fig. 19.25. Nano-particles have

500 nm 300 nm 100 nm

been produced also in transparent insulators such
as polymers [19.237,419], silica [19.420,421], and
opal [19.422]. Se nano-crystals can also be prepared
through annealing g-Se [19.423].

These nano-Se exhibit several marked fea-
tures [19.187,424], such as photoconduction [19.411,
415,425], irradiation effects [19.413,426], Li-con-
duction [19.427], and peculiar optical nonlinearities
[19.421,428]. Deng et al. have fabricated filamental
photo-detectors using cm-long t-Se wires with diam-
eters of ~200 nm [19.429]. In fundamental aspects,
scale- and confined-effects on thermal and mechanical
properties have provided interesting subjects such as
how the glass-transition temperature varies in smaller
and/or thinner flakes [19.187, 424, 430].

19.8.2 Isolated Molecules

Se can form isolated atomic clusters in vacuum and
gases [19.2,431-434]. Se clusters have also been laid

Fig. 19.25 Se
nanotubes.
(Reprinted

with permis-
sion [19.418].
Copyright 2006
American Chem-
ical Society.)
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Fig. 19.26a—c An illustration of ZSM-5 zeolite with magnified pore arrangements (a), and photographs of the zeolite (b)
and a Se-loaded one (c), the dimension being & 40 pm x40 pm x 200 um. ZSM-5 is a fairly non-polar zeolite with a com-
position of SigsAl>O,9;, containing channels with diameters of ~ 0.7 nm (Reprinted from [19.446] with the permission

of AIP Publishing)

on graphite surfaces [19.435] and introduced into car-
bon nanotubes [19.436]. Among those, the gaseous Se
would behave as free substances, while only limited
properties such as cluster stability have been inspected.

On the other hand, after a pioneering work by
Bogomorov et al. [19.437], substantial studies have
been carried out for Se clusters incorporated into pores
in zeolites [19.11] of various kinds [19.238,239, 396,
437-448). Terasaki et al. [19.438] evinced, by taking
electron-microscopy photographs, single Se chains in
a zeolite, mordenite (NagAlgSisnOgg - 24H,0). Atomic
structures of incorporated Se clusters have been investi-
gated also using x-ray diffraction and Raman scatter-
ing [19.239,396,442-445,447,448]. Such zeolite-Se
structures may manifest intrinsic properties to single
Se clusters, while we should be careful to possible
guest-host interaction, existing between Se clusters and

19.9 Summary

We have seen that the study of a-Se is promising toward
two directions, fundamentals and applications, which
may be related as shown in Fig. 19.27. The final goal
will be to grasp all physical properties as the emergence
from atomic structures on the basis of theoretical formu-
lations. If a property would be useful to some purpose,
the structure could then be tuned toward the target.

In the fundamental, the elemental structure (no
chemical disorder) with dualistic atomic bonds (cova-
lent and van der Waals) gives a simple stage for explor-
ing the nature of disordered materials, amorphous semi-
conductors, and chalcogenide glasses. Currently, we
have mostly understood the short-range structure, the
band structure, and related properties such as gross op-
tical absorption spectra (Sect. 19.4.1). However, other

atoms (such as Na) forming inner walls of pores in ze-
olites [19.220].

The zeolite-Se system exhibits several charac-
teristic properties, such as blue-shifting absorption
edges [19.238,239,441,443,444,447], rises of the
glass-transition temperature [19.440,444], and unique
photoinduced phenomena [19.238,239]. Specifically
promising may be the optical nonlinearity of Se in
ZSM-5 zeolites (Fig. 19.26) [19.446], higher by three
orders of magnitude than that of g-Se, which may orig-
inate from confined excitons. Since there exist many
kinds of zeolites, the zeolite-Se system will exhibit
more diverse properties. Or, provided that single Se
clusters could be arranged as photonic crystals, optical
properties might be resonantly enhanced. It would also
be challenging to explore the electrical conduction of
single Se chains.

atomic structures, including wider-scale conformations
and defects, and associated properties cannot yet be cor-
related. Studies on light-induced phenomena, avalanche
breakdown, responses to x-rays, and nano-structures are
in progress.

Among the chalcogenide glass, a-Se exhibits com-
mon and uncommon features to those in compounds
such as As(Ge)-S(Se). The common includes the two-
fold coordinated chalcogen atoms with the valence
band consisting of lone-pair states (Fig. 19.10), the Ur-
bach edge with a steepness parameter Ey greater than
~ 50meV (Fig. 19.13), no dark ESR signals, and many
photoinduced phenomena such as the photodarkening
(Sect. 19.6.2). On the other hand, characteristic of a-
Se are the power of n =1 in the Tauc’s curve (19.3),
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Fig. 19.27 Relations be-

6L | 9 11ed

Diffraction | Normal bonding structure Band .
EXAFS Short-range; Z, r, § ———| structure Optical absorption tween structgre—analyzmg
Microscopy Medium-range; ¢, R, etc. Photoconduction } Vidicon methods (left), atomic
Vibrational Density fluctuation Band Avalanche X-ray imager structural components,
Simulation Heterogeneity, void edge Electrical (transient) related electronic states,
Defect Photoluminescence . .
ESR Spin; DO Photoinduced changes macroscs)pl({ prope.rtles,
Noatie Gap TSC and applications (right)
Distortions, DY, D™, etc. state

Impurity, dopant

no clear weak absorption tail (Fig. 19.13), smaller spin
density (=~ 10'®cm™!) under moderate illumination,
high photoconductivity, the highest hole drift mobility
(Table 19.1), avalanche breakdown (Fig. 19.17), pecu-
liar vector deformation (Fig. 19.22), and so forth. How
can we understand such native facets? The photocrys-
tallization is more-or-less unique to a-Se, probably
because of its elemental structure.

In applications, the most valuable property of a-
Se remains undoubtedly the visible and x-ray pho-
toconduction. The HARP vidicon utilizing avalanche
breakdown has been commercialized, and now being
reduced in size to more compact devices (Fig. 19.23).
Thick a-Se layers are employed as direct x-ray imag-
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ing plates (Fig. 19.24), which are useful for medical
inspections and probably for scientific purposes as well.
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