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Synonyms

Bathymetry; Coastal cartography; Coastal classification;
Coastal geomorphological maps; Nearshore classification;
Seafloor mapping; Seafloor topography

Definition

Coastal seafloor classification is based on the recognition of
submarine features depicted by bathymetric patterns that are
interpreted in terms of topography of marine origin or the
identification of drowned terrestrial landforms. Coastal

seafloor geomorphological maps are usually the products of
interpretation, visually displaying digital bathymetric patterns
through either cognitive reasoning or the result of computer-
ized autoclassification algorithms. There are advantages and
disadvantages associated with each approach (computerized
autoclassifications versus cognitive interpretations), and the
choice of procedure depends on purpose. Both methods are
beneficial classificatory approaches, as they complement each
other when interpreting coastal seafloor geomorphological
features.

Introduction

Although there are many different methods for classifying
seafloor features, most have a special purpose with specific
goals that rely on the product of the survey technique (e.g.,
Finkl and DaPrato 1993; Mumby et al. 1998; Greene et al.
1999; Finkl 2004a, b; Mayer 2006; Collins et al. 2007; Chust
et al. 2008; Walker et al. 2008; Achatz et al. 2009; Brock and
Purkis 2009; Finkl and Vollmer 2011; Pittman et al. 2013;
Makowski 2014; Finkl and Makowski 2015; Makowski et al.
2015, 2016, 2017; Makowski and Finkl 2016). The exemplar
of the southeast Florida continental shelf has been studied
using remote sensing techniques since the 1960s. The basic
framework of these specific shelf features were outlined for
the first time in reconnaissance seismic reflection profile
surveys conducted by Duane and Meisburger (1969). Spatial
distributions of shore-parallel coral reef tracts, inter-reefal
sediment-filled troughs, and outcrops of carbonate bedrock
were identified in their seismic reflection profiles. Subsequent
LIDAR (light detection and ranging) surveys (2001 and 2008)
in the form of LADS (Laser Airborne Depth Sounding) pro-
duced remarkably detailed depictions of shelf bathymetry.
This kind of digital data is amenable to color ramping where
tonal variations can be keyed to depth. Combinations of
texture, tone, and pattern in the digital data provide a basis
for cognitive (manual) interpretation of seafloor features.
Maps showing spatial distribution patterns of seafloor
features, for example, those prepared by Finkl et al. (2005a,
b, 2007), Finkl and Andrews (2008, 2009), Finkl and Vollmer
(2011), Steimle and Finkl (2011), Finkl and Makowski
(2015), Makowski et al. (2015), Vollmer et al. (2015),
Makowski et al. (2016), Finkl and Vollmer (2017), and
Makowski et al. (2017) all recognize a range of marine
landforms and drowned subaerial forms.

Cognitively derived (i.e., manually interpreted) maps are
normally composed by hand and based on visual inspection,
after which the mapping units are transferred into some sort of
georeferencing informational software (e.g., ArcGIS). Finkl
and Makowksi (2015) have shown that it is possible to clas-
sify bathymetric patterns using automated computer algo-
rithms, such as unsupervised isoclustering and interactive
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supervised autoclassifications, which were then compared
with previously prepared cognitive maps of field-verified
seafloor features.

A good example of this involves the digital format
of LADS (LiDAR) data, which makes the autoclassification
of seafloor bathymetry possible. The basic procedure is to
select a subset of the overall digital bathymetric dataset and
compare the previously cognitive-identified geomorphologi-
cal features (as described by Finkl et al. 2004, 2005a, b, 2008;
Finkl and Andrews 2008, 2009; Finkl and Banks 2010) to
auto-generated classifications of the same area. In order to
determine whether autoclassification algorithms produce
results comparable to cognitively interpreting, it is advisable
to conduct a series of autoclassifying tests in appropriate
geographical information system (GIS) software (e.g.,
ESRI’s ArcGIS ArcMap).

In the example of the study area on the continental shelf
off southeast Florida, the computerized classification of LADS
digital bathymetry was divided into two parts, unsupervised
isocluster and interactive supervised methodologies.
Iterations of both methods were used to discern comparability
with known seafloor geomorphological distribution patterns.
Pixel digital numbers (DNs) were based on variations in color
derived from color ramps that were applied to the DEM.
Critical to this procedure is the number of classes that are
discriminated by computer runs. Experimentation shows that

a large number of autoclasses produces patterns that generally
are not comparable with previously cognitive-derived geomor-
phological maps (Finkl and Makowski 2014; Finkl and
Makowski 2015). Iterations using a dozen or so classes pro-
duce recognizable patterns in interactive supervised classifica-
tions, whereas unsupervised isocluster autoclassifications
require ten or fewer classes. Details of the autoclassification
procedures are briefly summarized as follows.

Unsupervised Isocluster Autoclassification
Method

Within ArcMap, the Image Classification toolbar needs to be
activated and an unsupervised isocluster autoclassification
performed on a subset of the study area. After the appropriate
input raster (composite of the RGB bands) is selected and the
output-classified raster is renamed in the proper geodatabase,
the number of classes is assigned using the same number of
features interpreted from cognitive processes. In the LADS
subset, for example, where 14 geomorphological features
were cognitively interpreted, the number of untrained classes
assigned for the unsupervised isocluster autoclassification
was 14. Because untrained class counts greater than 10 for
unsupervised isocluster analysis of the LADS bathymetry
tends to produce unusable results (cf. Fig. 1), additional

Coastal Seafloor Geomorphological Features, Classification,
Fig. 1 Uninterpreted spatial distribution patterns derived from
unsupervised isocluster analysis of LADS bathymetry DEM using five
classes (left panel), seven classes (middle panel), and 14 classes (right
panel). The larger number of classes in the third panel shows that

increasing the number of classes does not necessarily improve discrim-
ination of the imagery because, even though the same gross patterns are
evident, the increased number of classes requires additional field verifi-
cation. (Source: Finkl and Makowski 2015)
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unsupervised isocluster classification analyses were
performed with five and seven untrained classes, after which
individual output rasters were saved as Tiff image files and
imported as layers into ArcMap adjacent to the raw
images. These displays can then be exported and visually
compared with cognitively interpreted displays of the same
imagery to visually determine the degree of correlation of
autoclassification.

Interactive Supervised Autoclassification Method

Within ArcMap, the Image Classification toolbar is activated,
and an interactive supervised autoclassification performed on
the same subset as the unsupervised isocluster method. Once
an individual scene is selected in the drop-down window from

the Classification toolbar, the Training Sample Manager win-
dow is opened. Training sites can then established for the
interactive supervised classification that corresponds to pixel
patterns used previously for cognitive interpretation of the
seafloor features. For example, in the LADS digital dataset
where 14 geomorphological features were cognitively
interpreted, 14 training sites were established for the interac-
tive supervised classification to match the visual cognitive
criteria. The training fields shown in Fig. 2 contain variable
shapes that are determined by geomorphological landform
patterns. Selection of training fields is critical because they
have to represent the feature or pattern that is autoclassified.
The operator must therefore accurately train the program to
recognize specified features or patterns.

After the interactive supervised classifications are
performed, individual output rasters can be saved as Tiff

Coastal Seafloor Geomorphological Features, Classification,
Fig. 2 Locations of training fields used for the interactive supervised
autoclassification of uninterpreted LADS digital bathymetry. Training
sites represent the main landform features on the continental shelf, as
determined from cognitive interpretation of texture, tone, and pattern

observed in the color ramped DEM, which was then interpreted in terms
of field-verified geomorphological features. The training sample man-
ager legend shows matched pairings of landform class names with a
training field color. (Source: Finkl and Makowski 2015)
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image files and imported as layers into ArcMap adjacent to
the raw LADS images. These displays are then exported and
visually compared with the cognitively interpreted maps to
visually estimate the degree of correspondence with the auto-
classification. Results of autoclassifying bathymetric data
are shown in Fig. 3 where the left panel contains unsupervised
isocluster classification using seven untrained classes and the
right panel shows spatial distribution patterns derived from an
interactive supervised classification using 14 trained classes.

Comparing Classification Results

Visual comparison of the autoclassification results with
a control shows a gross correspondence between the
unsupervised isocluster autoclassification and the control.
Detailed comparisons can, however, get complicated along
the shore where three units are differentiated for the single
larger bar and trough units on the LADS imagery (Fig. 4a).
Bathymetric texture, tone, and pattern attributes are detected
in the unsupervised isocluster classification, suggesting a
basis for discerning discrete landform units. Ground truthing
is required to verify units in the unsupervised isocluster auto-
classification, but in situ familiarity with ground conditions
suggest the following features: a surf zone unit close to the
shore, crenulated bars alongshore, and fans or sediment
splays seaward (Fig. 4b).

On the other hand, the interactive supervised auto-
classification shows more complex spatial distribution

patterns that correspond to parts of the cognitive map, as
shown in Fig. 5. This map may seem confusing because it is
a montage of two different approaches for depicting seafloor
geomorphology. Careful study, compared to a cursory glance,
shows many important interrelationships. Starting at the shore
and moving seaward, for example, the interactive supervised
autoclassification matches the cognitive interpretation.
Additional detail is provided in the form of distributions
for nearshore sandflat, offshore sandflat, and hard-bottom
outcrop.

Classification Determination and Validity

Before modern computerized mapping and GIS software
packages, maps were validated in the field and compared
with other maps known to be accurate. Although valida-
tion and accuracy assessments of computer-aided maps
are usually achieved by statistical procedures and mathe-
matical evaluation of self-tests, the visual comparison of
machine-classified maps versus cognitively derived maps
is simply a measure of correspondence. The advantage of
these modern procedures lies in the pros and cons of an
unsupervised isocluster autoclassification methodology
and an interactive supervised autoclassification methodol-
ogy when compared with mapping units based on the
ratiocinative powers of the human brain. This process
shows the possibility of producing composite maps of
digital bathymetry.

Coastal Seafloor
Geomorphological Features,
Classification, Fig. 3
Cartographic examples
of methodologies based on
unsupervised isocluster analysis
with five classes (left panel) and
interactive supervised
autoclassification with 14 classes
(right panel). Both examples show
organization of bathymetric
patterns that variably correspond
to cognitively interpreted
landform units on the seafloor.
Generalization and increased
discretization is evident in both
examples, as the number of classes
required is dependent upon the
purpose of the classification and
the amount of detail needed.
(Source: Finkl and Makowski
2015)
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Rationale for Classificatory Design

Digital bathymetric data provide new opportunities to
investigate the nature of seafloor topologies. Digital data
provide a dense sampling medium that can be manipulated
to form a DEM of seafloor bathymetry. Elevations can be

exaggerated to emphasize topographic differences that
assist cognitive interpretation processes. A color ramp
keyed to bathymetry can be draped over DEMs
with an assumed light source to produce shadows. This
colored representation of seafloor topography lends itself
to visual inspection and consequent interpretation of

Coastal Seafloor
Geomorphological Features,
Classification, Fig. 4
Comparison of unsupervised
isocluster analysis (right panels)
with unclassified (a) and classified
(b) ramped LADS DEM. (a) Five-
class unsupervised isocluster
analysis (right panel) compared
with (uninterpreted) color ramped
bathymetry (left panel) showing
the general correspondence of
shore zone bar and trough
features, coral reef tracts, bedrock
outcrops, and dredge pits for
beach renourishment projects.
Symbolization of the
geomorphological seafloor
features is given in the legend to
Fig. 6. (b) The same five-class
unsupervised isocluster analysis
(right panel) compared with
cognitively interpreted
geomorphic features on the shelf
(left panel). These figures show
generalization that occurs in maps
hand-drawn at a nominal scale of
1:600 compared with greater
detail that is acquired in
autoclassification. (Source: Finkl
and Makowski 2015)
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bathymorphological features. This kind of observation and
interpretation was not possible prior to the advent of digital
surveys. The sample density of the LADS surveys (4-m
resolution) was sufficiently detailed enough to allow con-
struction of maps that allow interpretation of mesoscale
geomorphological features (e.g., Finkl et al. 2004, 2005a,
b, 2008; Finkl and Andrews 2008, 2009; Finkl and Banks
2010). This procedure is a major advance in the study of
clear-water continental shelves and permits researchers
comprehensive views of seafloor topologies.

Not all digital bathymetric data are amenable to auto-
mated classifications of the type applied to digital aerial
and satellite images. In the case of hyperspectral data, for
example, unsupervised classifications are more or less
inept for interpretation of seafloor features. There are
many reasons why hyperspectral data, usually measured
with hundreds of narrow spectral bands about 10 nm
apart, have prohibitive use for classificatory purposes.
For example, in order to accurately obtain spectral signa-
tures from hyperspectral data for different entities, such as
different phytoplankton classes, zooxanthellae clades, or
scleractinian (i.e., hard coral) species, it is necessary to
first provide in situ spectral information. Without this
information, the imagery cannot be interpreted because a
function of the natural spectral variability is unknown.
One such effort took place at Buck Island, St. Croix, U.
S. Virgin Islands, where hyperspectral data obtained by
AVRIS (air-borne visible infrared imaging spectrometer)

was used in response to a mass coral bleaching event in
the Caribbean. Kruse (2003) used the visible spectrum of
AVIRIS light data reflecting off the coral reef and the
surrounding reef bottom in order to estimate the extent of
the bleaching, as well as the overall health of the coral
colonies. Underwater handheld spectroradiometers first
had to be used to measure reflected light readings from
bleached coral so the hyperspectral imagery data could be
calibrated to the in situ reflectance readings for an accu-
rate interpretation. The procedure also requires that spe-
cial geometric and atmospheric correction techniques are
used to recalculate hyperspectral image pixels with data
values that correspond to reflectance from the precise
locations of those pixels. The main disadvantage is that
the nominal spatial resolution of hyperspectral data is
necessarily lower in order to maintain an acceptable sig-
nal-to-noise ratio. This condition is a function of fewer
available photons in the narrow hyperspectral bands to
interact with a sensor’s detector elements. The conse-
quence of this condition is very little image resolution
to aid in the visual interpretation of the coastal environ-
ment. Lee and Carder (2005) recognized that a more cost-
effective multispectral sensor is preferred over hyper-
spectral imagery when evaluating the major properties of
coastal or shallow-water environments. Because digital
bathymetry does not retain these disadvantages, there is
an opportunity to investigate the possibilities of auto-
classification procedures.

Coastal Seafloor
Geomorphological Features,
Classification, Fig. 5
Interactive supervised
autoclassification (right panel)
compared with cognitively
interpreted geomorphic features
on the continental shelf (left panel;
a field-verified, color ramped
DEM). This comparison shows
the benefits of an interactive
supervised autoclassification,
which enhances the results of
cognitive mapping seafloor
features on the continental shelf.
Cartographic generalizations in
the cognitive maps are refined in
supervised autoclassifications
where the number of classes can
be varied depending on special
purpose investigations. (Source:
Finkl and Makowski 2015)
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Unsupervised Isocluster Autoclassification
Benefits and Limitations

The efficiency of unsupervised pixel clustering depends on
the visual properties of the image being classified. Color
ramped bathymetric DEMs generally do not offer a specific
enough delineation of spectral signatures across the image.
That is, if too many pixels with similar spectral properties are
detected in multivariate space within the color ramped DEM,
then the autoclassification cannot selectively assign different
color values to represent specific seafloor landforms. Because
the color ramped DEM does not offer enough spectral con-
trast and there is no cognitive intervention when running an
unsupervised isocluster autoclassification, when an increased
number of classes is used, each class will inadvertently
include a cluster of pixels that carry the same value. When
the computer runs the unsupervised isocluster auto-
classification and detects the same pixel-valued clusters
throughout the color ramped DEM, the same representative
color is applied universally.

A potential solution to this problem is to use a greater
range of hues in the color ramp applied to the DEM. Although
the range of hues selected for a color ramp is arbitrary, the
range of hues should be selected for overall visual appearance
and arranged by depth. By using a greater range of hues in a
color ramp that are keyed to bathymetric variations, it is
possible to increase the number of classes in an unsupervised
isocluster autoclassification.

Interactive Supervised Autoclassification Benefits
and Limitations

Increased efficiency can be expected when applying the inter-
active supervised autoclassification method across the color
ramped DEM. This is because a cognitive element is intro-
duced to supplement the autoclassification algorithm.
That cognitive element is presented in the form of analyst
delineated training sites, which enclose specific spectral sig-
natures to teach the autoclassification software how to inter-
pret the remaining pixels in the image. This greatly differs
from the unsupervised isocluster autoclassification because
the analysis is no longer solely reliant on the undefined
distribution of pixel values within the color ramped DEM.
Instead, individual geomorphological units are taught to the
machine by associating very specific pixels hues in the form
of training sites. However, the same limitation of the visual
properties in the color ramped DEM that was seen with the
unsupervised isocluster autoclassification still persists when
applying the interactive supervised autoclassification meth-
odology. For example, because the range of hues in the DEM
color ramp shows minimal contrast throughout the image,
certain geomorphological units are not easily delineated

from one another, even with the provided training sites to
guide the autoclassification process. Regardless of this limi-
tation, the interactive supervised autoclassification provides
efficiency in the number of seafloor unit boundaries that could
never be achieved with cognitive, hand-drawn cartography.

Cognitive Versus Autoclassification Methods

Cognitive mapping is an historical method of approximating
spatial distribution patterns on the ground. These efforts were
severely limited in the marine environment, and it was not
until the advent of remote sensing techniques during World
War II that it was possible to conduct regional submarine
mapping. Seismic methods, single beam sonar, sidescan
sonar, and multibeam sonar techniques provided great
advances in the recognition of submarinescapes, but it was
not until the arrival of LIDAR in the 1960s that it was possible
to acquire digital bathymetric data at sufficient resolution to
recognize discrete submarine landforms on continental
shelves. With the ability to create colorized DEMs from
digital bathymetric data, it becomes possible to visualize
seafloor features as never before seen. The cognitive maps
derived from digital bathymetry provide an interpreted pic-
ture of seafloor geomorphology, necessarily generalized to a
level that is dictated by the hand-drawing agility of the car-
tographer. Because these kinds of maps are hand-drawn and
based on visual interpretation, it does not make them any
more or less useful than other kinds of maps. The quality of
the cognitive maps depends on the skill of the interpretation
from the cartographer. That is to say, the more experienced
and qualified the mapper, the more accurate the results.
Because researchers without proper qualification and experi-
ence find it impossible to produce useful products, a
common “solution” is to turn to automated classifications.
Unfortunately, a new problem arises because an automated
classification produces a map that differentiates the seafloor
into different units or classes based solely on pixel arrange-
ment. The key is to know what those units actually represent
and where in the seascape they are correctly represented.
Those units, however, can only be properly interpreted
by those with appropriate training and experience in geomor-
phology. This oversight, a major pitfall that is associated with
many automated classifications, limits the usefulness of auto-
classed maps of seafloor geomorphological features.

On the other hand, supervised machine classifications can
be very useful and informative, as described by Erdey-
Heydorn (2008) and Rozenstein and Karnieli (2011). As in
the analogy of a painting, much critical time and effort is
required to prepare the canvas compared with the time spent
actually painting. The same is true for the interactive super-
vised autoclassification, as careful consideration must be
given to the selection of training sites. Although training
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sites can be selected to represent different kinds of variability
in the survey area, they are perhaps more valuable if selected
to better define known geomorphological features. Such a
procedure requires a priori knowledge of the seafloor, which
can be obtained from cognitive observation and mapping.

Both techniques in question, cognitive mapping and auto-
classification, can be shown with great advantage when used
in concert with one another. Each complements the other to
help produce a more accurate, comprehensive product. That
is, a cognitive mapping product refined by a software-driven
autoclassification algorithm, further details the intricacies of

seafloor spatial distribution patterns in the form of digital
bathymetry. The cognitive map provides a comparative con-
trol, or reference, for the interactive supervised auto-
classification. Both products are useful in their own regard
but acquire greater usefulness when blended into a composite
or montage (Fig. 6).

Both processes, autoclassification and cognitive mapping,
have their own sets of constraints that limit approximations of
reality in the form of the kinds of maps that are produced in
GIS (see for example Benedet and Finkl 2003; Greene et al.
2005; Finkl andMakowski 2015). Each approach has value or
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Coastal Seafloor Geomorphological Features, Classification,
Fig. 6 This montage was created by digitally overlying an interactive
supervised autoclassification on top of a cognitive (manually interpreted)
map of shelf geomorphology based on digital bathymetry in a LADS
format. Increased resolution is provided in the overlaid autoclassification
which gives better discrimination (more details) of offshore sandflats on

top of hard-bottom (pink areas), diabathic channel fields (gray colored
areas), coral reef subcrop (orange colored areas), and coral reefs and reef
gaps (light green colored areas). Somewhat problematic are some light
green areas for reef gaps that may be confused with several other
morphological units, such as coral reefs, coral reef subcrop, and over-
wash deposits. (Source: Finkl and Makowski 2015)
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merit, and greater insight into seafloor features can be
achieved by applying the composite approach that melds the
two disparate methodologies.

Conclusion

Classification of coastal seafloor geomorphological features
can be achieved either through a cognitively derived interpre-
tation or an autoclassificatory algorithm run by geospatial
software. The interactive supervised autoclassification with
expert-derived training sites provides the most discriminative
map when compared with cognitive interpretations. Because
of this general correspondence, it is possible to overlay the
results of interactive supervised autoclassifications on top of
cognitively derived units, thereby merging the two interpre-
tations into a composite that highlights the advantages of both
methodologies. Modern georeferenced software packages,
such as ArcGIS, contain the appropriate type of tool kit
extensions for applying a montage process in the production
of a computer refined cognitively derived map. By applying
both processes in tandem, a more efficient classification effort
is achieved.

Cross-References

▶Altimeter Surveys, Coastal Tides, and Shelf Circulation
▶Beach and Nearshore Instrumentation
▶Beach Profile
▶Coastal Modeling
▶Geodesy
▶Geographical Coastal Zonality
▶Holocene Coastal Geomorphology
▶Nearshore Geomorphological Mapping
▶Nearshore Sediment Transport Measurement
▶ Photogrammetry
▶Remote Sensing of Coastal Environments
▶ Shoreline and Coastal Terrain Mapping
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Coastal Sedimentary Facies

H. Edward Clifton
US Geological Survey, Menlo Park, CA, USA

Introduction

Coastal sedimentary environments include a variety of physical
and biological processes, which act on coastal sediment to
produce associations of composition, texture, primary sedi-
mentary structures, and fossils. These associations constitute
sedimentary facies, lithologically distinct, genetically related
components of a sedimentary system, or environmental facies,
whereby a set of specific environmental processes imparts a
distinctive character to a sediment. Coastal sedimentary facies
provide the signature of specific types of coastal deposits and
facilitate their identification in the geologic record.

This entry describes some of the more common clastic
sedimentary facies associated with open coasts and coastal
embayments. For a review of carbonate coastal facies, the
reader is referred to Demicco and Hardie (1995). The discus-
sion here also does not address facies of high-latitude coasts
or low-latitude coasts dominated by mangrove swamps (see
Hill et al. 1995; and Cobb and Cecil 1993, respectively).
Many of the facies described here form in both marine and
lacustrine settings, although tidally influenced facies are
restricted to the marine environment.

For more detailed information on coastal sedimentary
facies, the reader is referred to the excellent summaries pro-
vided by Reineck and Singh (1973), Davis Jr. (1985), Walker
and James (1992), Galloway and Hobday (1996), and
Reading (1996).

Coastal Sedimentary Processes

A complex array of processes influence coastal sedimentary
facies (Fig. 1). Of these the most important are waves, tides,
and biogenic processes. Sediment input is also critical to the
facies character (grain size) and to the nature of the preserved
deposit (sedimentation rate).

Waves may exist as “seas,” driven by local winds, or as
“swell,” generated by distant storms. Swell tends to have
longer period and to influence the seabed to greater depths
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