CHAPTER 6

Section 6.1

1. The joint pmf of X; and X appears below. Each probability is calculated assuming independence. For the

original distribution, x = 25(.2) +40(.5) + 65(.3) = 44.5 oz and ¢ = 212.25.

x2\ X1 25 40 65
25 .04 .10 .06
40 .10 25 15
65 .06 15 .09

Calculate X = (x, +x,)/ 2 for each of the nine pairs above and record the associated probabilities.
25 32.5 40 45 52.5 65
() ‘ .04 20 25 12 30 .09

x

From this pmf, E(X) = (25)(.04)+32.5(.20) +---+65(.09) =44.5= 1.

b. Compute s> for each pair using s* = (x, —X)’ +(x, —X)*. Again record the probabilities.
s 0 112.5 312.5 800
P(s) ‘ 38 20 30 12

From this pmf, E(S)=0(.38)+112.5(.20)+312.5(.30)+800(.12) = 212.25 = &> .

X is a binomial random variable with n =10 and p = .8. Thus P(X/n = x/n) = P(X = x) = b(x; 10, .8).
X 0 1 2 3 4 5 6 7 8 9 10

x/n 0 1 2 3 4 .5 .6 i 8 9 1.0

px/m) | .000 .000 .000 .001 .005 .027 .088 .201 .302 .269 .107
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All 16 possible pairs of outcomes, their probabilities, and the resulting x and » values appear below.
Outcome 1,1 1,2 1,3 4 21 22 23 24

Probability .16 A2 .08 .04 A2 .09 .06 .03
X 1 1.5 2 2.5 1.5 2 25 3
r 0 1 2 3 1 0 1 2

Outcome 3,1 32 33 34 4,1 42 43 4,4
Probability .08 .06 .04 .02 .04 .03 .02 .01
x 2 2.5 3 35 25 3 3.5 4
r 2 1 0 1 3 2 1 2

a. From the preceding table, the pmf of X is as follows:
1 1.5 2 25 3 3.5 4

x

p(f)‘.m 24 25 20 .10 .04 .01

b. Froma, P(X <2.5)=.16+ .24 + .25+ .20 = .85.

c. From the earlier table, the pmf of R is as follows:
r ‘ 0 1 2 3

() ‘ 30 40 22 08

d. P(X<15=P1,1,1,1)+PQ2,1,1,1)+...+P(1,1,1,2) +P(1,12,2) + ... + P(2,2,1,1) + P3,1,1,1) + ...
+ P(1,1,1,3) = (4)* + 4(.4)%(.3) + 6(4)2(.3)% + 4(.4)3(.2) = .2400.

The mgf of each X; is exp(2(e’ — 1)), so the mgf of their sum is the product of these 5 mgf’s, i.e.,
exp(10(e’ — 1)). That is to say, X X; is Poisson with parameter 10. The possible values in the sampling
distribution of X are {k/5: k=0,1,2,...}, and the exact sampling distribution of X for all its possible
e—lO IOk

values 0, .2, .4, ... can be computed by P(X =k/5)=P(EZX, =k)= k'

The following R code demonstrates how the simulation can be performed. To change the sample size,
simply replace the value of n at the top.

xbar = NULL; n=5

for (i in 1:1000) {
x=rweibull (n, shape=2, scale=5)
xbar [i]=mean (x)

}

The histograms below show the resulting X simulation distributions for n = 5, 10, 20, 30. Even for n = 10,
the simulated distribution of X looks approximately normal.
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Section 6.2

11.

13.

The sampling distribution of X is centered at E(X)=u = 12 cm, and the standard deviation of the X

distribution isc . = —=.01 cm.

Oy .04
Y oJn Vie
With n = 64, the sampling distribution of X is still centered at E(X) = u = 12 cm, but the standard

ﬁ= .005 cm.

Ox _
N
X is more likely to be within .01 cm of the mean (12 cm) with the second, larger, sample. This is due
to the decreased variability of X that comes with a larger sample size.

deviation of the X distribution is oy =

No, it doesn’t seem plausible that waist size distribution is approximately normal. The normal
distribution is symmetric; however, for this data the mean is 86.3 cm and the median is 81.3 cm (these
should be nearly equal). Likewise, for a symmetric distribution the lower and upper quartiles should be
equidistant from the mean (or median); that isn’t the case here.

If anything, since the upper percentiles stretch much farther than the lower percentiles do from the
median, we might suspect a right-skewed distribution, such as the exponential distribution (or gamma
or Weibull or ...) is appropriate.



15.

17.

19.
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Irrespective of the population distribution’s shape, the Central Limit Theorem tells us that X is
(approximately) normal, with a mean equal to x4 = 85 cm and a standard deviation equal to

cr/«/;=15/\/27 =.9 cm. Thus,

P(X >86.3)= P(Z >

@j =1-d(1.44) =.0749

Replace 85 with 82 in (b):

=1-®4.77)~1-1=0

P(X >86.3)= P(z > @)

That is, if the population mean waist size is 82 cm, there would be almost no chance of observing a
sample mean waist size of 86.3 cm (or higher) in a random sample of 277 men. Since a sample mean
of 86.3 was actually observed, it seems incredibly implausible that x4 would equal 82 cm.

Let X denote the sample mean tip percentage for these 40 bills. By the Central Limit Theorem, X is
g 6

Ji %0
P(lés)_(£19)z®(19_18j—<b( 16_18j=<1>(1.05)c1>(2.11)= 8357.

6/~/40 6/~/40

According to the common convention, n should be greater than 30 in order to apply the C.L.T., thus
using the same procedure for n = 15 as was used for n = 40 would not be appropriate.

approximately normal, with E(X)=u =18 and SD(X) = . Hence,

We have X ~ N(10,1), n =4, . =nu=(4)(10)=40 and o, = o/n =2 . Hence, T~ N(40, 2). We desire
the 95% percentile of T: 40 + (1.645)(2) = 43.29 hours.

Let X denote the sample mean fracture angle of our n = 4 specimens. Since the individual fracture

angles are normally distributed, X is also normal, with mean E(X) = u = 53 but with standard
deviation SD(X) = g - L .5. Hence,

NART

54-53
5

P(X <54) = q{ J =®d(2)=.9772, and

P(53< X <54)=D(2) — D(0) = .4772.

Replace 4 with n, and set the probability expression equal to .999:
54-53

1//n

round up: the least such n is n = 10.

999 = P(X <54)= d)[ j = d)(«/;) — Jn =3.09= n=9.5. Since n must be a whole number,
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With Y = # of tickets ~ Poisson(50), the Central Limit Theorem implies that ¥ has approximately a normal
distribution with ¢ = 50 and o = \/; =50 (We saw this normal approximation in Chapter 4, but now we
know it’s justified by C.L.T.)

70.5—50}_(1)(34.5—50

V50 V50

b. Now Y is the sum of 5 Poisson rvs, so Y is still Poisson but with £(Y) = 5(50) = 250 and ¢ =
275.5-250 224.5-250
Ju =~/250 . Hence, P(225 < Y<275) = (D(—j—@(—

V250 V250

a. P(35<Y<70)~ cp( j— D(2.90) — B(-2.19) = .9838.

j= D(1.61) - D(-1.61) =
8926.

c. From software, a =.9862 and b = .8934. Both normal approximations are quite close.

The law of large numbers says that X converges to u; or, equivalently, that (X - [4) converges to zero as

n — o, The central limit theorem says that if you multiply ()? — u) by the fraction yr , the result is a

o
standard normal random variable as n — oo. That is, the inflation factor £ “balances out” the
o

convergence of ( X - ).

Another way to look at the two theorems is this: roughly, CLT says that (for large n) the sampling

o = . . . _r o .
distribution of X is approximately normal with mean x and standard deviation — . As n increases to

n

infinity, this fraction converges to zero, and so the distribution of X degenerates into a distribution with
mean u and standard deviation zero, analogous to saying X converges (in some sense) to u.

P(Y,—0>e)=P(Y,>0+¢e)+P(Y,<0—-¢)=0+ P(Y, < 0—¢), since Y, obviously can’t be greater than 6.
Using the pdf of ¥, provided in the hint,

_ n 0_ _ n
P(Ynfg—ﬁ)_I:_Enynl/ﬁ'zdy—(%] . Since 68<1, (Hegj — 0 as n — oo, which proves that

P(|Y,—6>¢) — 0 as n — o, as claimed.

Assume you have a random sample X;, ..., X, from an exponential distribution with parameter 1. Let X
= 1
denote their sample average. Then by the law of large numbers, X — E(X) = 1 as n — oo. But our goal is

a consistent estimator of 1, i.e. a quantity that converges to A itself as n — oo.
The solution is obvious: let /() = 1/¢, which is continuous for all # > 0. Then by the theorem cited in the

exercise, #/(X) — h(1/2). In other words, the consistent estimator is
1

== =/ asn— oo.

"X 1A
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Section 6.3

29.

31.

33.

3s.

37.

39.

IfX~ sz , then X is distributed as the sum of v iid ;(12 random variables. By the Central Limit Theorem, X
is then approximately normal for large v.

Recall from calculus that the maximum of f'and In(f) occur at the same x-value. If f'is the ;(3 pdf, then In(f)

= C+ (v/2 - DIn(x) — x/2, where C is a constant. Take the first derivative and set that equal to zero: 0 + (v/2
—1)/x—1/2=0 — x=v—2. This is only a valid value for x if v—2>0; i.e., v>2.

a. IfX; and X; are independent, then M;(f) = M, (£)Ma(), and so Ma(t) = Mx(f)/M,(¢). Substitute in the
given distributions, and M, () = (1-2¢)™"* / (1-2¢)™""* = (1-2¢)"""™"?  which is the mgf of the chi-

square distribution with v; —v; df. Therefore, by the uniqueness of mgfs, X> ~ ;(53_‘/] .

b. IfX;and X are independent, then V' (X, + X,) =V (X,)+V(X,). Under the assumed distributions, we
have V(X)) =V (z;)=2v, and V(X + X,) =V (x..) =2v;. Thus V(X,) =V (X, + X,)-V(X,) =
2v, —2v, = 2(v, —v,) . But variances can never be negative, so it must be the case that 2(v, —v,) >0,

Le, vy 2v,.

a. From the ¢ table, #00s,10 = 3.2.
b. From the F table, For,1,10 = 10.04 =~ 3.22. This should be, since li/Z,df =Fy1ar -

c. Minitab gives the following:
Inverse Cumulative Distribution Function
F distribution with 1 DF in numerator and 10 DF in denominator
P( X <= x) X
0.99 10.0443

B(1 exists i BT <on. But B0T) = [~ — "L —ar=a[" " dr = Lin+1?) =o0. Thatis,
o z(1+¢7) 0 7(1+1¢7) v 0

E(|T7) diverges, so E(T) does not exist.

a. From the F'table, Fi,4=4.32.
T Q2+4)2/4)% 75202 1

b. The Fo4 pdfi -
SR rCora @+ @/t [ 2p

.Letc=Fi24; then .1 =

jw ! ~dx = ! —. Solving, [1+¢/2] = 10 > ¢ =2(+/10 - 1) = 4.3246.
e [1+x/2] [1+c/2]

c. Minitab gives the following:
Inverse Cumulative Distribution Function
F distribution with 2 DF in numerator and 4 DF in denominator
P( X <= x) X
0.9 4.32456
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Let X and Y be independent chi-square rvs with v; and v, df, respectively.

a. EJ FV] I E[(XIvi) = (Y/v2)] = vo/vi E[X] E[1/Y].  E[X] = v and, from Equation (6.7),
. -1 _
E[1/Y]= 2 TCl+v,/2) = 2 T, /2-D = . Canceling gives a final answer of
I'(v,/2) vy /2-DI'(v,/2-1) v, =2
E[F,, 1= 2 5 This only holds, obviously, if v,> 2.

2
b. By the same process, E[ F‘,f’vz 1= (vo/v1)?E[X?)E[1/Y2].

2
From Equation (6.7), E[X?] = 21w /2) vi(v; +2) and E[1/Y}]=...= S
T /2) (V2 =2)(vy = 4)
2 2 2
Put together, £ Fv21 n1= i +2) ,and finally /(F, , )= vi(i +2) _ [ Vo ]
j vi(vy =2)(v, —4) vi(v, —2)(v, —4) vy, =2

_ 21/22(1/1 +v,—2)
V(v =2)° (v, —4)

, forv,> 4.

Let X and Y be independent chi-square rvs with v; and v, df, respectively. Let ¢ = F . Then, by

PV
definition, p = P((X/v1) + (Y/v2) > ¢) = P(Y/v2) = (XIvi) < 1/c) = 1 — P((Y/v2) = (X/vi) > 1/c) —
P((Yv2) = (XIvi) > 1/c) =1 — p. Since (Y/v,) + (X/vi) ~ sz,vl by definition, we have 1/c = Flfp,vz,v] . Take

reciprocals of both sides to get the desired result.

Use properties of mgfs. If X ~ Gamma(a, ), then Mx(¢) = (1 — f£)*. Hence, the mgf of cX is
Mx(ct) = (1 = plct]) = (1 — [Bc]f)™, which we can identify as the Gamma(a,fc) mgf.
In particular, if X ~ )gvz = Gamma(v/2,2), then cX ~ Gamma(v/2,2c).

There isn’t a unique solution, but here’s one approach. An F3 > rv has the form [y; /3]+[y; /2]. The

denominator chi-squared is easy to construct: Z; + Z; . For the numerator, the X’s must be standardized:

2 2 2 2 2 2
X, - X, - X, - X +X,+X .
( ! 0) +( 2 Oj +( 2 Oj S W T ~ x:. Therefore, an example of an F3 > 1v is

5 5 5 25
(X7 +X;+X7)/25/3 _ 2 X'+ X, +X]
(Z}+Z3)]2 75 Zi+7Z;

a. Using the fact that the ;(520 distribution is approximately normal with mean 50 and variance 2(50) =
100, P( ;(520 >70) = P(Z>[70-50]/10) = 1 — ®(2) = .0228.
b. Substitute v =50 to get y2, = 50(1 —1/225 + Z/15). Then

P( ;(520 >70) = P(50(1 — 1/225 + Z/15)* > 70) = P(Z> 1.847) = 1 — ®(1.847) = .03237.
Software gives an answer of .032374, suggesting the approximation in (b) is more accurate.
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Section 6.4

51.

53.

5sS.

57.

According to the main theorem of this section, (n—1)S?/o* ~ y2.,. Exercise 45 showed that if X ~ y.
then cX ~ Gamma(v/2,2¢). Apply this with ¢ =o” /(n—1) and v=n -1, and we have
o’ (n-1s* o n-1 2o-2j

. ~ Gamma
n-1 o? n-1 An [ n—1

§? =

a. Since the X’s are normal, X is also normal, with mean 1 =5 and standard deviation o/ Jn=8/13.
9.13-5

8//13

Thus P(X <9.13) = db( j = D(1.86) =.9686.

b. Since S* =) (X,-X)*/(n-1), D.(X,-X)’ /o> =(n-1)S*/o” ~ y._, . Thus
P(Y (X, -X) <1187)=P(Y.(X, - X)' /0” <1187/0” ) = Pz, , <1187/8") = Py}, <18.55),
which from the chi-squared table equals .90.

¢. Per atheorem in this section, X and Z (X, - X)? are independent rvs, so the compound probability is

P(X <9.13nY (X, - X)* <1187) = P(X <9.13) P} (X, - X)* <1187) = (.9686)(.90) = 87174 .

)?—/J: X_5 _ X-5
SiNn Jn-D (X, - Xy in 12X (X, - X)* /13

d. Use Gosset’s Theorem: has a ¢ distribution

withdf=n-1=12.

The trick here is to create a ¢-distributed rv via Gosset’s Theorem:

P( X -5]>048)= PUE 5 945

S/n|" Sn

1 =>5). Continuing, 0.4vn =0.427 =2.078, and P(|T] > 2.078) = 2P(T > 2.078) = 2(.024) = .048.

j =P(T|> 0.4x/;) , where T ~ t,7-1 (because the X’s are normal and

a. Z~N(0,1)regardless of n,s0 P(-2<Z<2)=®(2)— O(-2)=.9772 — .0228 = .9544 for all n.

b. T~t,.Forn=35, P(-2 <t <2)~.8839 from software. For n =10, P(-2 <ty <2)~.9234. Forn =15,
P(-2 <1t4<2)~=.9347. As n increases, this ¢ probability approaches the corresponding standard
normal probability, i.e. the answer from part a.
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Supplementary Exercises

59.

61.

63.

65.

a. From the distribution provided, E(X) =.05(0) +.15(1) +.25(2) +.25(3) +.30(4) = 2.6 tickets.
Similarly, SD(X) = 1.2 tickets.

b. T=X+...+ Xis, which we assume to be an iid sum. Thus, with n =150, E(T) = 150(2.6) = 390 and
SD(T) = ~150(1.2) =14.7.

500—390) — 0(7.48)
14.7

~ 1. In other words, it’s nearly certain that the gym will be able to accommodate all requests.

c. By the Central Limit Theorem, 7 is approximately normal, so P(7 < 500) = q)(

X ~ Bin(200, .45) and Y ~ Bin(300, .6). Because both n’s are large, both X and Y are approximately normal,
so X + Y is approximately normal with mean (200)(.45) + (300)(.6) = 270, variance 200(.45)(.55) +
300(.6)(.4) = 121.40, and standard deviation 11.02. Thus,

P(X+ Y >250) :1_®(M

J:I—d)(—l.86):.9686.
11.02

The total number 7 of claims filed is the sum of 500 independent Poisson(2.3) rvs, so T is also Poisson but
with mean 500(2.3) = 1150. By the central limit theorem, Poisson is approximately normal (with mean
1150 and also variance 1150), so

1199.5-1150

V1150

P(T 21200) = P(T >1199.5) = l—d)( J— 1 - ®(1.46) =.0722.

a. The “center” of a t, distribution is 0. With the aid of software,
P(-1<t,<1)=.5774, P(-2<t,<2)=.8165  P(-3<t, <3) =.9045. Notice these are all
somewhat less than the standard normal probabilities (.68, .95, .997), because the ¢ distributions have
heavier tails.

b. For the first part, we desire the value ¢ such that P(—c <t, <c¢)=.68. The symmetry of the ¢

distribution implies that —c and ¢ divide the distribution into areas of .16, .68, and .16 (the two ends are
equal and the three must sum to 1). Hence, c itself is the .16 + .68 = .84 quantile of the #, distribution.
With the aid of R software, c=qt (.84, df=2) =1.312. That is, 68% of a #, distribution lines within
+ 1.312 of center.

Similarly, P(—c <t, <¢)=.95 implies c is the .95 + (1 — .95)/2 = .975 quantile, and software provides
¢ =4.303. Finally, P(—c<t, <c)=.997 implies c is the .997 + (1 — .997)/2 = .9985 quantile of the #,
distribution, and software gives ¢ = 18.216. (That’s a lot bigger than 3!)
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2 2 2 2 2
Divide all terms by o7 /o3 : P| 2.902L < S—12 <8.127L |=p|290< % <8.12 |. By one of the
o, S o, 5 /o,
theorems in Section 6.4, the rv in this middle of this expression has an F distribution, with degrees of
freedomvi =10—-1=9and v; =12 — 1 = 11. From the F table, 8.12 is the .999 quantile of the Fo i;

distribution and 2.90 is the .95 quantile. Therefore, P(2.90 < F,;, <8.12) =.999-.95=.049.

2 A2 2 ~2 2
Start the same way: P| 21990 <9< 4309 | = p[2.19< 979 <430 |. Observe that
02 0-2 62 0-2 0-2

2
O-l

& XX mm) (X )
== - Ez ZL 21| =>"Z7/10, the sum of squares of 10 independent standard
O-l O-l

normal rvs divided by 10. By definition Y Z? ~ z%,s0 67 /o] ~ 7, /10 . Similarly,
A2 2 2 1
6; /03 ~ x}, /12, from which 7‘2 /012 ~ le" /10 o -
o,loy /12 ’
From the F table, 4.30 and 2.19 are the .99 and .9 quantiles, respectively, of the Fio 1> distribution.
Therefore, P(2.19< F,,, <4.30)=.99-.9=.09.

10
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