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CHAPTER 2 
 

Section 2.1 
 
1.  

a. A but not B = A ∩ B′ 
 

b. at least one of A and B = A ∪ B 
 
c. exactly one hired = A and not B, or B and not A = (A ∩ B′) ∪ (B ∩ A′) 
 
 

3.  
a. S = {1324, 1342, 1423, 1432, 2314, 2341, 2413, 2431, 3124, 3142, 4123, 4132, 3214, 3241, 4213, 4231} 
 
b. Event A contains the outcomes where 1 is first in the list: 

A = {1324, 1342, 1423, 1432}. 
 

c. Event B contains the outcomes where 2 is first or second: 
B = {2314, 2341, 2413, 2431, 3214, 3241, 4213, 4231}. 

  
d. The event A∪B contains the outcomes in A or B or both: 

A∪B = {1324, 1342, 1423, 1432, 2314, 2341, 2413, 2431, 3214, 3241, 4213, 4231}. 
A∩B = ∅, since 1 and 2 can’t both get into the championship game. 
A′ = S – A = {2314, 2341, 2413, 2431, 3124, 3142, 4123, 4132, 3214, 3241, 4213, 4231}. 

 
 
5.  

a. A = {SSF, SFS, FSS}. 
 
b. B = {SSS, SSF, SFS, FSS}. 
 
c. For event C to occur, the system must have component 1 working (S in the first position), then at least one 

of the other two components must work (at least one S in the second and third positions):  C = {SSS, SSF, 
SFS}. 

 
d. C′ = {SFF, FSS, FSF, FFS, FFF}. 

A∪C = {SSS, SSF, SFS, FSS}. 
A∩C = {SSF, SFS}. 
B∪C = {SSS, SSF, SFS, FSS}. Notice that B contains C, so B∪C = B.   
B∩C = {SSS SSF, SFS}. Since B contains C, B∩C = C. 
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7.  
a. The 33 = 27 possible outcomes are numbered below for later reference. 

  
Outcome   Outcome  
Number Outcome  Number Outcome 

1 111  15 223 
2 112  16 231 
3 113  17 232 
4 121  18 233 
5 122  19 311 
6 123  20 312 
7 131  21 313 
8 132  22 321 
9 133  23 322 

10 211  24 323 
11 212  25 331 
12 213  26 332 
13 221  27 333 
14 222    

 
b. Outcome numbers 1, 14, 27 above. 
 
c. Outcome numbers 6, 8, 12, 16, 20, 22 above. 
 
d. Outcome numbers 1, 3, 7, 9, 19, 21, 25, 27 above. 

 
 
9.  

a. S = {BBBAAAA, BBABAAA, BBAABAA, BBAAABA, BBAAAAB, BABBAAA, BABABAA, BABAABA, 
BABAAAB, BAABBAA, BAABABA, BAABAAB, BAAABBA, BAAABAB, BAAAABB, ABBBAAA, ABBABAA, 
ABBAABA, ABBAAAB, ABABBAA, ABABABA, ABABAAB, ABAABBA, ABAABAB, ABAAABB, AABBBAA, 
AABBABA, AABBAAB, AABABBA, AABABAB, AABAABB, AAABBBA, AAABBAB, AAABABB, 
AAAABBB}. 

 
b. AAAABBB, AAABABB, AAABBAB, AABAABB, AABABAB. 

 
 

11.  
a. In the diagram on the left, the shaded area is (A∪B)′.  On the right, the shaded area is A′, the striped area is 

B′, and the intersection A′∩B′ occurs where there is both shading and stripes.  These two diagrams display 
the same area. 
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b. In the diagram below, the shaded area represents (A∩B)′.  Using the right-hand diagram from (a), the 
union of A′ and B′ is represented by the areas that have either shading or stripes (or both).  Both of the 
diagrams display the same area. 

 

Section 2.2 
 
13.  

a. .07. 
 
b. .15 + .10 + .05 = .30. 
 
c. Let A = the selected individual owns shares in a stock fund. Then P(A) = .18 + .25 = .43. The desired 

probability, that a selected customer does not shares in a stock fund, equals P(A′) = 1 – P(A) = 1 – .43 = 
.57. This could also be calculated by adding the probabilities for all the funds that are not stocks. 

 
 
15.  

a. 1 2A A∪ = “awarded either #1 or #2 (or both)”: from the addition rule, 
P(A1 ∪ A2) = P(A1) + P(A2) – P(A1 ∩ A2) = .22 + .25 – .11 = .36. 

 
b. 1 2AA′ ′∩ = “awarded neither #1 or #2”: using the hint and part (a), 

 1 2 1 2 1 2( ) (( ) ) 1 ( )P A A A P A AP A′ ′∩ ∪ = − ∪′ = = 1 – .36 = .64. 
 

c. 1 2 3A A A∪ ∪ = “awarded at least one of these three projects”: using the addition rule for 3 events, 

1 2 3( )AP A A∪ ∪ =  1 2 3 1 2 1 3 2 3 1 2 3) ( ) ( ) ( ) ( ) ( ) )( (P A P A P A A P A A P A A P A A AP A + + − ∩ − ∩ − ∩ + ∩ ∩ = 
.22 +.25 + .28 – .11 – .05 – .07 + .01 = .53. 
 

d. 1 2 3A AA ′′ ′∩ ∩ = “awarded none of the three projects”: 
 1 2 3( )AP A A′ ′∩ ∩′ = 1 – P(awarded at least one) = 1 – .53 = .47. 
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e. 1 2 3A AA ′′∩ ∩ = “awarded #3 but neither #1 nor #2”: from a Venn diagram,  
 1 2 3( )A AP A′∩ ∩′ = P(A3) – P(A1 ∩ A3) – P(A2 ∩ A3) + P(A1 ∩ A2 ∩ A3) = 

.28 – .05 – .07 + .01 = .17. The last term addresses the “double counting” of the two subtractions. 

 
f. 1 2 3( )AA A′∩ ∪′ = “awarded neither of #1 and #2, or awarded #3”: from a Venn diagram, 

1 2 3( ))( A AP A′∩ ∪′ = P(none awarded) + P(A3) = .47 (from d) + .28 = 75.   

 
Alternatively, answers to a-f can be obtained from probabilities on the accompanying Venn diagram: 
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17.   
a. Let E be the event that at most one purchases an electric dryer.  Then E′ is the event that at least two 

purchase electric dryers, and P(E′) = 1 – P(E) = 1 – .428 = .572. 
 

b. Let A be the event that all five purchase gas, and let B be the event that all five purchase electric.  All other 
possible outcomes are those in which at least one of each type of clothes dryer is purchased.  Thus, the 
desired probability is 1 – [P(A) – P(B)] = 1 – [.116 + .005] = .879. 

 
 

19.  
a. The probabilities do not add to 1 because there are other software packages besides SPSS and SAS for 

which requests could be made. 
 
b. P(A′) = 1 – P(A) = 1 – .30 = .70. 
 
c. Since A and B are mutually exclusive events, P(A ∪ B) = P(A) + P(B) = .30 + .50 = .80.  
 
d. By deMorgan’s law, P(A′ ∩ B′) = P((A ∪ B)′) = 1 – P(A ∪ B) = 1 – .80 = .20. 

In this example, deMorgan’s law says the event “neither A nor B” is the complement of the event “either A 
or B.”  (That’s true regardless of whether they’re mutually exclusive.) 

 
 
21. Let A be that the selected joint was found defective by inspector A, so P(A) = 000,10

724 .  Let B be analogous for 

inspector B, so P(B) = 000,10
751 .  The event “at least one of the inspectors judged a joint to be defective is A∪B, 

so P(A∪B) = 000,10
1159 . 

 
a. By deMorgan’s law, P(neither A nor B) = )(P BA′ ′∩ = 1 – P(A∪B) = 1 – 000,10

1159  = 000,10
8841  = .8841. 

 
b. The desired event is B∩A′. From a Venn diagram, we see that P(B∩A′) = P(B) – P(A∩B). From the 

addition rule,  P(A∪B) = P(A) + P(B) – P(A∩B) gives P(A∩B) = .0724 + .0751 – .1159 = .0316.  Finally, 
P(B∩A′) = P(B) – P(A∩B) = .0751 – .0316 = .0435. 

 
 

23. In what follows, the first letter refers to the auto deductible and the second letter refers to the homeowner’s 
deductible. 
a. P(MH) = .10. 
 
b. P(low auto deductible) = P({LN, LL, LM, LH}) = .04 + .06 + .05 + .03 = .18. Following a similar pattern, 

P(low homeowner’s deductible) = .06 + .10 + .03 = .19. 
 
c. P(same deductible for both) = P({LL, MM, HH}) = .06 + .20 + .15 = .41. 
 
d. P(deductibles are different) = 1 – P(same deductible for both) = 1 – .41 = .59. 
 
e. P(at least one low deductible) = P({LN, LL, LM, LH, ML, HL}) = .04 + .06 + .05 + .03 + .10 + .03 = .31. 

 
f. P(neither deductible is low) = 1 – P(at least one low deductible) = 1 – .31 = .69. 
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25. Assume that the computers are numbered 1-6 as described and that computers 1 and 2 are the two laptops.  
There are 15 possible outcomes: (1,2) (1,3) (1,4) (1,5) (1,6) (2,3) (2,4) (2,5) (2,6) (3,4) (3,5) (3,6) (4,5) (4,6) 
and (5,6). 

 
a. P(both are laptops) = P({(1,2)}) = =.067. 
 
b. P(both are desktops) = P({(3,4) (3,5) (3,6) (4,5) (4,6) (5,6)}) = 15

6 = .40. 
 
c. P(at least one desktop) = 1 – P(no desktops) = 1 – P(both are laptops) = 1 – .067 = .933. 

 
d. P(at least one of each type) =  1 – P(both are the same) =  

1 – [P(both are laptops) + P(both are desktops)]  =  1 – [.067 + .40] = .533. 
 
 

27. By rearranging the addition rule, P(A ∩ B) =  P(A) + P(B) – P(A∪B) = .70 + .80 – .85 = .65. By the same 
method, P(A ∩ C) = .70 + .75 – .90 = .55 and P(B ∩ C) = .80 + .75 – .95 = .60. Finally, rearranging the 
addition rule for 3 events gives 
P(A ∩ B ∩ C) = P(A ∪ B ∪ C) – P(A) – P(B) – P(C) + P(A ∩ B) + P(A ∩ C) + P(B ∩ C) = .98 – .70 – .80 – 
.85 + .65 + .55 + .60 = .53. 
 
These probabilities are reflected in the Venn diagram below. 

 

 
 

a. P(A ∪ B ∪ C) = .98, as given. 
 
b. P(none selected) = 1 – P(at least one selected) = 1 – P(A ∪ B ∪ C) = 1 – .98 = .02. 
 
c. From the Venn diagram, P(only automatic transmission selected) = .03. 
 
d. From the Venn diagram, P(exactly one of the three) = .03 + .08 + .13 = .24. 

 
 
  

15
1

.03 .12 

.02 

.08 

.53 
.07 

.13 .02 

A B 

C 
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29. Recall there are 27 equally likely outcomes. 
a. P(all the same station) = P((1,1,1) or (2,2,2) or (3,3,3)) = 9

1
27
3 = . 

 
b. P(at most 2 are assigned to the same station) = 1 – P(all 3 are the same) = 1 – 1

9 = 8
9 . 

 
c. P(all different stations) = P((1,2,3) or (1,3,2) or (2,1,3) or (2,3,1) or (3,1,2) or (3,2,1)) = 9

2
27
6 = . 

 

Section 2.3 
 
31.  

a. Since offices are distinct, order matters, and 5P2 = (5)(4) = 20 (5 choices for president, 4 remain for vice 
president) 

 
b. 5P3 = (5)(4)(3) = 60 
 

c. 5C2 = 
5 5! 10
2 2!3!
 

= = 
 

 (No ordering is implied in the choice.) 

 
33.  

a. Use the Fundamental Counting Principle: (9)(27) = 243. 
 
b. By the same reasoning, there are (9)(27)(15) = 3645 such sequences, so such a policy could be carried out 

for 3645 successive nights, or approximately 10 years, without repeating exactly the same program. 
 
 
35. The first four songs must be non-Beatles song and the fifth a Beatles song. The total number of possible five-

song sequences, assuming no repeats, is 100P5 = (100)(99)(98)(97)(96). The number of such sequences meeting 
our requirements (starting with 90 non-Beatles songs and 10 Beatles songs) is (90)(89)(88)(87)(10) or 90P4 × 
10. The probability is 90P4 × 10 / 100P5 = .0679. 

 
37.  

a. Since order doesn’t matter, the number of possible rosters is 
16
6

 
 
 

 = 8008. 

 

b. The number of ways to select 2 women from among 5 is 
5
2
 
 
 

 = 10, and the number of ways to select 4 

men from among 11 is 
11
4

 
 
 

 = 330. By the Fundamental Counting Principle, the total number of (2-

woman, 4-man) teams is (10)(330) = 3300. 
 

 

c. Using the same idea as in part b, the count is 
5 11 5 11 5 11
3 3

330
4 2 5 1

0         
+ + +        
        

 = 5236. 

 

d. P(exactly 2 women) = 3300
8008

 = .4121; P(at least 2 women) = 5236
8008

 = .6538. 
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39. There are 







2
5

= 10 possible ways to select the positions for B’s votes:  BBAAA, BABAA, BAABA, BAAAB, 

ABBAA, ABABA, ABAAB, AABBA, AABAB, and AAABB.  Only the last two have A ahead of B throughout the 
vote count.  Since the outcomes are equally likely, the desired probability is 2/10 = .20. 

 
 
41. For each of the 5 specific catalysts, there are (3)(4) = 12 pairings of temperature and pressure. Imagine we 

separate the 60 possible runs into those 5 sets of 12. The number of ways to select exactly one run from each 

of these 5 sets of 12 is 
512

1
 
 
 

= 125. 

Since there are 







5
60

ways to select the 5 runs overall, the desired probability is 

5

5

12
1
6

12
60
5

0
5

 
 
  =
   
   
   

= .0456. 

 
43.  

a. We want to choose all of the 5 cordless, and 5 of the 10 others, to be among the first 10 serviced, so the 

desired probability is 0839.
3003
252

10
15

5
10

5
5

==



























. 

 
b. Isolating one group, say the cordless phones, we want the other two groups (cellular and corded) 

represented in the last 5 serviced.  The number of ways to choose all 5 cordless phones and 5 of the other 

phones in the first 10 selections is 
5 10
5 5
  
  
  

=
10
5

 
 
 

. However, we don’t want two types to be eliminated in 

the first 10 selections, so we must subtract out the ways that either (all cordless and all cellular) or (all 

cordless and all corded) are selected among the first 10, which is 
55 5

5 5 5 5
5     

+     
     

= 2. So, the number of 

ways to have only cellular and corded phones represented in the last five selections is 
10
5

 
 
 

– 2. We have three types of phones, so the total number of ways to have exactly two types left over 

is
10

3 2
5

  
⋅ −  
  

, and the probability is  2498.
3003

)250(3

5
15

2
5

10
3

==




















−








⋅

. 

 
c. We want to choose 2 of the 5 cordless, 2 of the 5 cellular, and 2 of the corded phones: 

1998.
5005
1000

6
15

2
5

2
5

2
5

==



































. 
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45. Label the seats 1 2 3 4 5 6. The probability Jim and Paula sit in the two seats to the far left is  

P(J&P in 1&2)  2 1 4 3 2 1 1
6 5 4 3 2 1 15
× × × × ×

= =
× × × × ×

.  

Similarly, P(J&P next to each other) = P(J&P in 1&2) +  … + P(J&P in 5&6) = 1 15
15 3

× = . 

Third, P(at least one H next to his W) = 1 – P(no H next to his W), and we count the number of ways of no H 
sits next to his W as follows: 
# of orderings with a H-W pair in seats #1 and 3 and no H next to his W = 6* × 4 × 1* × 2# × 1 × 1  = 48 

*= pair, # =can’t put the mate of seat #2 here or else a H-W pair would be in #5 and 6 
 # of orderings without a H-W pair in seats #1 and 3, and no H next to his W = 6 × 4 × 2# × 2 × 2 × 1 = 192 

#= can’t be mate of person in seat #1 or #2 
 
So, the number of seating arrangements with no H next to W = 48 + 192 = 240, and 

P(no H next to his W) = 240 1
6 5 4 3 2 1 3

= =
× × × × ×

. Therefore, P(at least one H next to his W) = 1 – 1 2
3 3
= . 

 
 

47. 







−

=
−

=
−

=







kn

n
kkn

n
knk

n
k
n

!)!(
!

)!(!
!  

 
The number of subsets of size k equals the number of subsets of size n – k, because to each subset of size k 
there corresponds exactly one subset of size n – k: the n – k objects not in the subset of size k. The 
combinations formula counts the number of ways to split n objects into two subsets: one of size k, and one of 
size n – k. 
 

Section 2.4 
 
49.  

a. P(A) =  .106 + .141 + .200 = .447, P(C) =.215 + .200 + .065 + .020 = .500, and P(A ∩ C) = .200. 
 

b. P(A|C) = 400.
500.
200.

)(
)(

==
∩
CP

CAP .  If we know that the individual came from ethnic group 3, the 

probability that he has Type A blood is .40. P(C|A) = ( )
( )

P A C
P A
∩

 
= .200

.447
= .447. If a person has Type A 

blood, the probability that he is from ethnic group 3 is .447. 
 
c. Define D = “ethnic group 1 selected.”   We are asked for P(D|B′). From the table, P(D∩B′) = .082 + .106 

+ .004 = .192 and P(B′) = 1 – P(B) = 1 – [.008 + .018 + .065] = .909. So, the desired probability is P(D|B′) 

= 211.
909.
192.

)(
)(

==
′
′∩

BP
BDP .   
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51. Refer to the Venn Diagram. 
 

a. P(B|A) = ( ) .25 .50
( ) .50

P A B
P A
∩

= = . 

 

b. P(B′|A) = 50.
50.
25.

)(
)(

==
′∩

AP
BAP . 

 

c. P(A|B) = ( ) .25 .625
( ) .40

P A B
P B
∩

= = . 

 

d. P(A′|B) = ( ) .15 .375
( ) .40

P A B
P B
′∩

= = . 

e. P(A|A∪B) = ( ( )) ( )
)

.50 .7692
( ) ( .65

P A A B P A
P A B P A B

= =
∪

∩ ∪
=

∪
. It should be clear from the Venn diagram that 

( )A A B∩ ∪ = A. 
 
53. The box has four 40Ws, five 60W (so nine non-75W), and six 75W bulbs. Let B = {at least one selected is 75 

W}. Then P(B) = 1 – P(neither is 75W) = 1 – 
9 6 15
2 0 2

/    
    
    

= 1 – 36/105 = 23/35. [You can also use the 

multiplication rule: P(neither is 75W) = (9/15)(8/14) = 12/35.] Let A = {both are 75W}. Since A is a subset of 

B, 
9 6 15

) ( )
0 2

( /
2

P B P AA     
  ∩ = =   
    

= 15/105 = 1/7. Then, by definition, 

( 1/ 7 5( | )
( ) 23 / 3

)
5 23

P AP
P B

BA B = =
∩

= = .2174. 

Next, Let D = {at least one is not 75 W}. Notice that D = A′, so P(D) = 1 – 1/7 = 6/7. Finally, let C = {both 
bulbs have the same rating}. The event C D∩ is the event {two 40W or two 60W}, whose probability is 

4 15 5 1
(

5
) /

2 2 2 2
/P C D        

+       
     

∩ =
 

= 16/105. Thus 
5

16 /105( | )
7

8
46 /

P C D = = = .1778. 

 
55.  

a. If a red ball is drawn from the first box, the composition of the second box becomes eight red and three 
green. Use the multiplication rule:  

P(R from 1st ∩ R from 2nd ) = P(R from 1st ) × P(R from 2nd|R from 1st) = 6 8 .436
10 11

× = . 

b. P(same numbers as originally) = P(both selected balls are the same color) = P(both R) + P(both G) = 
6 8

10 11
4 4

10 11
× + × = .581. 

 

57. P(B|A) = 
)(
)(

)(
)(

AP
BP

AP
BAP

=
∩   (since B is contained in A, A ∩ B = B) 

= 0833.
60.
05.

=
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59. Since the intersection is contained in the union, ][ [ ]B C A B C A B CA∪ ∪ ∩ ∩ ∩ = ∩ ∩ . 

a. ([ ) ( ) .05( | )
( ) ( ) .49

] [ ]P A PP B C A B C A B CA B C B C
B C B CP

A
P A A

∪ ∪ ∩
=

∩
= =

∩ ∩ ∩
∩ ∩ ∪ ∪

∪ ∪ ∪ ∪
= .102. 

b. If she reads every section, then she automatically reads “at least one” section! The correct probability is 1. 

More formally, ( ) .05( ) 1|
( ) .05

PP A A B CB C A B
P

C
A B C
∩ ∩

∪ ∪ ∩ ∩
∩ ∩

= = = . 

 
 

61. 1
)(
)(

)(
)()(

)(
)(

)(
)()|()|( ==

∩′+∩
=

∩′
+

∩
=′+

BP
BP

BP
BAPBAP

BP
BAP

BP
BAPBAPBAP  

 
 

63. 
)(

)]()[(
)(

))[()|(
CP

CBCAP
CP

CBAPCBAP ∩∪∩
=

∩∪
=∪

)(
)()()(

CP
CBAPCBPCAP ∩∩−∩+∩

=  =  

P(A | C) + P(B | C) – P(A ∩ B | C) 
 
 
65. The tree diagram below shows the probability for the four disjoint options; e.g., P(the flight is discovered and 

has a locator) = P(discovered)P(locator | discovered) = (.7)(.6) = .42. 

 

a. P(not discovered | has locator) = (not discovered has locator) .03 .067
(has locator) .03 .42

P
P

∩
= =

+
. 

 

b. P(discovered | no locator) = (discovered no locator) .28 .509
(no locator) .55

P
P

∩
= = . 
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67. First, use the definition of conditional probability and the associative property of intersection: 
(( ) ) ( ( )))( |

( ) ( )
P A B C P A B CB C

P P
A

C
P

C
∩ ∩ ∩ ∩

∩ = =   

Second, use the Multiplication Rule to re-write the numerator: 

 ( ( )) ( ) ( | )
( ) ( )

P A B C P B C P A B C
P C P C
∩ ∩ ∩ ∩

=  

Finally, by definition, the ratio ( )
( )

P B C
P C
∩  equals P(B | C).  

Substitution gives P(A ∩ B | C) = P(B | C) · P(A | B ∩ C), QED. 
 

 
69. First, partition the sample space into statisticians with both life and major medical insurance, just life 

insurance, just major medical insurance, and neither. We know that P(both) = .20; subtracting them out, P(life 
only) = P(life) – P(both) = .75 – .20 = .55; similarly, P(medical only) = P(medical) – P(both) = .45 – .20 = .25.  
a. Apply the Law of Total Probability:  

P(renew) = P(life only)P(renew | life only) + P(medical only)P(renew | medical only) +  
P(both)P(renew | both) 

  = (.55)(.70) + (.25)(.80) + (.20)(.90) = .765. 
  

b. Apply Bayes’ Rule: P(both | renew) = (both) (renew | both)
(

(.20)
re

(.
new)

90)
.765

P P
P

=  = .2353. 

 
71. Let’s see how we can implement the hint. If she’s flying airline #1, the chance of 2 late flights is (30%)(10%) 

= 3%; the two flights being “unaffected” by each other means we can multiply their probabilities. Similarly, 
the chance of 0 late flights on airline #1 is (70%)(90%) = 63%. Since percents add to 100%, the chance of 
exactly 1 late flight on airline #1 is 100% – (3% + 63%) = 34%. A similar approach works for the other two 
airlines: the probability of exactly 1 late flight on airline #2 is 35%, and the chance of exactly 1 late flight on 
airline #3 is 45%. 
 
The initial (“prior”) probabilities for the three airlines are P(A1) = 50%, P(A2) = 30%, and P(A3) = 20%. Given 
that she had exactly 1 late flight (call that event B), the conditional (“posterior”) probabilities of the three 
airlines can be calculated using Bayes’ Rule:  
 

2 2 3

1 1
1

1 1 3

( ) ( | ) (.5)(.34)| )
( ) ( | ) ( ) ( | ) ( ) ( | ) (.5)(.34) (.3)(.35) (.2)(.45)

( P A P B AB
P A P B A P A P B A P A P

P A
B A

= =
+ + + +

= .170
.365

= .4657; 

2 2
2

2 31 321

( ) ( | ) (.3)(.35)| )
( ) ( | ) ( ) ( | ) ( ) ( | ) .3 5

(
6

P A P B AB
P A P B A P A P B A P A P

P A
B A

= =
+ +

= .2877; and 

3 3
3

2 31 321

( ) ( | ) (.2)(.45)| )
( ) ( | ) ( ) ( | ) ( ) ( | ) .3 5

(
6

P A P B AB
P A P B A P A P B A P A P

P A
B A

= =
+ +

= .2466. 

Notice that, except for rounding error, these three posterior probabilities add to 1. The tree diagram below 
shows these probabilities. 
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73.  

a. Since dad is BB and mom is Bb, their offspring II-2 will have genotype (BB) × (Bb) = BB, Bb, BB, or Bb, 
each with probability 1/4. Combining idential genotypes gives BB or Bb, with probability 1/2 each. 
 

b. The likelihoods of hamster III1 having genotype BB, Bb/bB, or bb depends on the genotype of her mother 
(hamster II2). Applying the law of total probability, the fact that hamster II1 is Bb, and the rules of genetic 
recombination described in the problem, 
P(III1 = BB) = P(II2 = BB)P(III1 = BB | II2 = BB) + P(II2 = Bb)P(III1 = BB | II2 = Bb) 
  = (1/2)(1/2) + (1/2)(1/4) = 3/8 
P(III1 = bb) = P(II2 = BB)P(III1 = bb | II2 = BB) + P(II2 = Bb)P(III1 = bb | II2 = Bb) 
  = (1/2)(0) + (1/2)(1/4) = 1/8 
And, thus, P(III1 = Bb/bB) = 1 – [3/8 + 1/8] = 1/2. Finally, the conditional probability that III1is Bb, given 
that she has a black coat (i.e., is not bb), equals  

P(III1 is Bb | III1 is black) = 
(III1  III1 is black) (III1 ) 1/ 2 4

(III1 is black) (III1 is black) 1 1/ 8 7
P Bb P Bb

P P
= ∩ =

= = =
−

 . 

 
c. Apply Bayes’ Rule: 

P(II2 = BB | III1 = BB) = (II2 ) (III1 | II2 ) (1/ 2)(1/ 2) 2
(III1 ) (3 / 8) 3

P BB P BB BB
P BB

= = =
= =

=
. 

 

Section 2.5 
 
75.  

a. Since the events are independent, then A′ and B′ are independent, too. (See the paragraph below Equation 
(2.7).) Thus, P(B′|A′) = P(B′) = 1 – .7 = .3. 

 
b. Using the addition rule, P(A ∪ B) = P(A) + P(B) – P(A ∩ B) =.4 + .7 – (.4)(.7) = .82. Since A and B are 

independent, we are permitted to write P(A ∩ B) = P(A)P(B) = (.4)(.7). 
 

c. P(A ∩ B′ | A ∪ B) = (( ) ( )) ( ) .12 .146
( )

( ) ( ) (.4)(1 .7)
( ) 2( ) 82. .8

P AP A B A B P A B
P A B P A

P B
P A BB

′ ′∩ ∩ ∪ ∩
= = = = =

−
∪

′
∪ ∪

. 
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77. From a Venn diagram, P(B) = P(A′ ∩ B) + P(A ∩ B) = P(B) ⇒ P(A′ ∩ B) = P(B) –  P(A ∩ B).  
If A and B are independent, then P(A′ ∩ B) = P(B) – P(A)P(B) = [1 – P(A)]P(B) = P(A′)P(B).  
Thus, A′ and B are independent. 

Alternatively, ( ) ( ) ( )( | )
( ) ( )

P A B P B P A BP A B
P B P B
′∩ − ∩′ = = = ( ) ( ) ( )

( )
P B P A P B

P B
−

 
= 1 – P(A) = P(A′). 

 
79. Let Ei denote the event that an error was made in grading the ith question.  We have P(Ei) = .1 for each i, and 

so ( )iP E′ = .9. Using independence, the probability that no errors are made is 

1 10 1 10) (( ( ) )P E PE PE E′ ′∩ ∩ =′ ′
   = (.9)…(.9) = (.9)10 = .3487. The probability that at least one error is made 

is the complementary probability: P(at least one error) = P(E1 ∪ …∪ E10) = 1 – 1 10 )(P EE ′∩ ∩′
 = 1 – .3487 

= .6513. 
Replacing 10 with n and .1 with p, the probability no errors are made is (1 – p)n, and the probability that at 
least one error is made is 1 – (1 – p)n. 

 
81. P(at least one opens) = 1 – P(none open) = 1 – (.05)5 = .99999969. 

P(at least one fails to open) = 1 – P(all open) = 1 – (.95)5 = .2262. 
 
 
83. Let Ai denote the event that component #i works (i = 1, 2, 3, 4). Based on the design of the system, the event 

“the system works” is 1 2 3 4) ( )( A A AA ∪ ∪ ∩ . We’ll eventually need 1 2 )(P A A∪ , so work that out first: 

1 2 1 2 1 2) ( ) ( ) ( ) (.9) (.9) (.9)(.9 .( ) 99A P A P A P A AP A ∪ = + − ∩ = + − = . The third term uses independence of 
events. Also, 3 4( )P A A∩ = (.9)(.9) = .81, again using independence.  
 
Now use the addition rule and independence for the system: 

 
1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

) ( )) ( ) ( ) ) ( ))
( ) ( ) ) ( )

(.99) (.81) (.99)(.8

(( ((

1) .9981
(

A A A P A P A A A A A
P A P A A

P A A P A
A AP P AA A

∪ ∪ ∩ = ∪ + ∩ − ∪ ∩ ∩
= ∪ + ∩ − ∪ × ∩
= + − =

 

(You could also use deMorgan’s law in a couple of places.) 
 
 
85. A = {(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)} ⇒ P(A) = 6

36
1
6= ; B = {(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)} ⇒   P(B) = 6

1 ; and 

C = {(1,6)(2,5)(3,4)(4,3)(5,2)(6,1)} ⇒ P(C) = 6
1 .    

a. A∩B = {(3,4)} ⇒ P(A∩B) = 36
1  = P(A)P(B); A∩C = {(3,4)} ⇒ P(A∩C) = 36

1 = P(A)P(C); and B∩C = 

{(3,4)} ⇒ P(B∩C) = 36
1 = P(B)P(C). Therefore, these three events are pairwise independent. 

b. However, A∩B∩C = {(3,4)} ⇒ P(A∩B∩C) = 36
1 , while P(A)P(B)P(C) =   =

1 1 1 1
6 6 6 216⋅ ⋅ = , so    

P(A∩B∩C) ≠ P(A)P(B)P(C) and these three events are not mutually independent. 
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87.  
a. Let D1 = detection on 1st fixation, D2 = detection on 2nd fixation. 

P(detection in at most 2 fixations) = P(D1) + 1 2( )P D D′∩ ; since the fixations are independent,  
P(D1) + 1 2( )P D D′∩ = P(D1) + 1( )P D′ P(D2) = p + (1 – p)p = p(2 – p). 

 
b. Define D1, D2, … , Dn as in a.  Then P(at most n fixations) = 

P(D1) + 1 2( )P D D′∩ + 1 2 3( )D DP D′∩ ∩′ + … + 1 2 1( )n nP D D DD −′ ′∩ ∩ ∩ ∩′
 =  

p + (1 – p)p + (1 – p)2p + … + (1 – p)n–1p = p[1 + (1 – p) + (1 – p)2 + … + (1 – p)n–1] = 
1 (1 ) 1 (1 )
1 (1 )

·
n

npp p
p

− −
= − −

− −
. 

Alternatively, P(at most n fixations) = 1 – P(at least n+1 fixations are required) = 
1 – P(no detection in 1st n fixations) = 1 – 1 2 )( nD DP D ′ ′∩ ∩ ∩′

 = 1 – (1 – p)n. 
 

c. P(no detection in 3 fixations) = (1 – p)3. 
 

d. P(passes inspection) = P({not flawed} ∪ {flawed and passes}) 
= P(not flawed) + P(flawed and passes) 
= .9 + P(flawed) P(passes | flawed) = .9 + (.1)(1 – p)3. 

 

e. Borrowing from d, P(flawed | passed) = 
3

3
(flawed passed) .1(1 )

(passed) .9 .1(1 )
P p

P p
∩ −

=
+ −

. For p = .5,  

P(flawed | passed) = 
3

3
.1(1 .5) .0137

.9 .1(1 .5)
−

=
+ −

. 

 
89. Use the series and parallel computations illustrated previously. The probability the 1–2 subsystem works is     

.9 + .9 – (.9)(.9) = .99. The probability a series pair works is (.9)2 = .81, so the probability that the 3–4–5–6 
subsystem works is .81 + .81 – (.81)(.81) = .9639. Therefore, 
P(system works) = P(1–2 works ∩ 3–4–5–6 works ∩ 7 works) 

= P(1–2 works) · P(3–4–5–6 works) · P(7 works) 
= (.99)(.9639)(.9) = .8588 

 The subsystem in Figure 2.15(a) works with probability .927. If it were connected in parallel to this subsystem,  
P(system works) = .8588 + .927 – (.8588)(.927) = .9897. 

 
 
91. The question asks for P(exactly one tag lost | at most one tag lost) = 1 2 1 2 1 2((( ) ))) | (C C CC CP C′ ′∩ ∪ ∩ ∩ ′ . 

Since the first event is contained in (a subset of) the second event, this equals 1 2 1 2

1 2

(( )
)(

( )
( )

)C C
C

P C
P

C
C

′∩ ∪ ∩
′∩

′
=

1 2 1 2 1 2 1 2

1 2 1 2

( ( (
1

) ( ) ) ( ) ) ( )
) ( )( 1 ) (

P P CC C P C C P C P CP C
P C P CC P C

′
=

− −
′ ′ ′∩ + ∩ +

∩
by independence = 

2 21
(1 ) (1 ) 2 (1 ) 2

1 1
p p p p p p p

p p p
=

−
−

=
−
+ −

+
−

. 
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Section 2.6 
 
93.  

a. Let A = exactly one of B1 or B2 occurs = (B1 ∩ B2′) ∪ (B2 ∩ B1′). The R code below has been modified 
from Example 1.40 to count how often, out of 10,000 independent runs event A occurs. 
 

A<-0 
for(i in 1:10000){ 
 u1<-runif(1); u2<-runif(1) 
 if((u1<.6 && u2>=.7)|| 
         (u1>=.6 && u2<.7)){ 
  A<-A+1 
 } 
} 

Executing the code returned A=4588, so 
4588ˆ( )

10,000
P A =  = .4588. 

The exact probability is P(A) = P(B1 ∩ B2′) + P(B2 ∩ B1′) = P(B1) – P(B1 ∩ B2) + P(B2) – P(B1 ∩ B2) = 
P(B1) + P(B2) – 2P(B1 ∩ B2) = P(B1) + P(B2) – 2P(B1)P(B2) = .6 + .7 – 2(.6)(.7) = .46. 
 
Note: The code (u1<.6 && u2>=.7)||(u1>=.6 && u2<.7) can be replaced by a single 
“exclusive or” command: xor(u1<.6,u2<.7). 
 

b. The estimated standard error of ˆ( )P A  is 
(.4588)ˆ ˆ( )[1 (1( )] .4588)

10,000
P A P A

n
−−

=  ≈ .00498. 

 
 

95. In the code below, seven random numbers are generated, one for each of the seven components. The sequence 
of and/or conjunctions matches the series and parallel ties in the system design. 
 

A<-0 
for(i in 1:10000){ 
 u<-runif(7) 
      if((u[1]<.9 | u[2]<.9) &  
        ((u[3]<.8 & u[4]<.8) |  
        (u[5]<.8 & u[6]<.8)) &  
        u[7]<.95){ 
  A<-A+1 
 } 
} 

 

Executing the code gave A=8159, so 
8159ˆ( )

10,000
P A = = .8159. 
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97. The program below is written as a function, meaning it can receive inputs and generate outputs. The program 
take two inputs: n = the number of games to be simulated and p = the probability a contestant makes a correct 
guess. The program outputs the estimated probability P̂ of winning the game Now or Then. 
 

nowthen<-function(n,p){ 
win<-0 
for(i in 1:n){ 
    u=runif(6); 
    x=(u<p); 
    if(x[1]+x[2]+x[3]==3 || 
       x[2]+x[3]+x[4]==3 ||  
       x[3]+x[4]+x[5]==3 ||  
       x[4]+x[5]+x[6]==3 ||  
       x[5]+x[6]+x[1]==3 ||  
       x[6]+x[1]+x[2]==3){ 
        win=win+1; 
    } 
} 
return(win/n) 
} 

 
The above code is executed at the command line to create the function in R. After this, you may call this 
function at the command line. 
 
(1) Typing nowthen(10000,.5) at the command line gave .3993. 
(2) Typing nowthen(10000,.8) at the command line gave .8763. 

 
 
99. Modify the program from the previous exercise, as illustrated below. Of interest is whether the difference 

between the largest and smallest entries of the vector dollar is at least 5. 
 

A<-0 
for(i in 1:10000){ 
    u<-runif(25) 
    flips<-(u<.4)-(u>=.4) 
    dollar<-cumsum(flips)    
    if(max(dollar)-min(dollar)>=5){ 
        A<-A+1 
    } 
} 

Executing the code above gave A=9189, so P̂ = .9189. 
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101. Divide the 40 questions into the four types. For the first type (two choices), the probability of correctly 
guessing the right answer is 1/2. Similarly, the probability of correctly guessing a three-choice question 
correctly is 1/3, and so on. In the programs below, four vectors contain random numbers for the four types of 
questions; the binary vectors (u<1/2), (v<1/3), and so on code right and wrong guesses with 1s and 0s, 
respectively. Thus, right represents the total number of correct guesses out of 40. A student gets at least half 
of the questions correct if that total is at least 20. 
 

A<-0 
for(i in 1:10000){ 
    u<-runif(10); v<-runif(13) 
    w<-runif(13); x<-runif(5) 
    right<-sum(u<1/2)+sum(v<1/3) 
             +sum(w<1/4)+sum(x<1/5)    
    if(right>=20){ 
        A<-A+1 
    } 
} 

 
Executing the code once gave A=227, so P̂ = .0227. 
 

 
103.  

a. In the program below, test is the vector [1 2 3 … 12]. A random permutation is generated and then 
compared to test. If any of the 12 numbers are in the right place, match will equal 1; otherwise, 
match equals 0 and we have a derangement. The scalar D counts the number of derangements in 10,000 
simulations. 

 
D<-0 
test<-1:12  
for(i in 1:10000){ 
    permutation<-sample(test,12) 
    match<-any(permutation==test)  
    if(match==0){ 
        D<-D+1 
    } 
} 

 
 

b. One execution of the code in a gave D=3670, so ˆ( )P D  = .3670. 
 

c. We know there are 12! possible permutations of the numbers 1 through 12. According to b, we estimate 
that 36.70% of them are derangements. This suggests that the estimated number of derangements of the 
numbers 1 through 12 is .3670(12!) = .3670(479,001,600) = 175,793,587. 
(In fact, it is known that the exact number of such derangements is 176,214,841.) 

 
 
105. The program below keeps a simultaneous record of whether the player wins the game and whether the game 

ends within 10 coin flips. These counts are stored in win and ten, respectively. The while loop insures that 
game play continues until the player has $0 or $100.  
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win<-0; ten<-0 
for(i in 1:10000){ 
    money<-20; numflips<-0 
    while(money>0 && money<100){ 
        numflips<-numflips+1 
        change<-sample(c(-10,10),1) 
        money<-money+change 
    } 
    if(money==100){ 
        win<-win+1 
    } 
    if(numflips<=10){ 
        ten<-ten+1 
    } 
} 

a. One execution gave win=2080, so P̂ (player wins) = .2080. (In fact, it can be shown using more 
sophisticated methods that the exact probability of winning in this scenario is .2, corresponding to the 
player starting with $20 of a potential $100 stake and the coin being fair.) 

 
b. One execution gave ten=5581, so P̂ (game ends within 10 coin flips) = .5581. 

 
 
107.  

a. Code appears below.  One execution gave A=5224, so P̂ (at least one 6 in four rolls) = .5224. Using 
independence, it can be shown that the exact probability is 1 – (5/6)4 = .5177. 

 
A<-0 
for(i in 1:10000){ 
    rolls<-sample(1:6,4,TRUE) 
    numsixes<-sum(rolls==6) 
    if(numsixes>=1){ 
        A<-A+1 
    } 
} 

 
b. Code appears below.  One execution gave A=4935, so P̂ (at least one 66 in 24 rolls) = .4935. Using 

independence, it can be shown that the exact probability is 1 – (35/36)24 = .4914. 
 
 

 
 
 
 
 
 
 
 
 
 
In particular, the probability in a is greater than 1/2, while the probability in b is less than 1/2. So, you 
should be willing to wager even money on seeing at least one 6 in 4 rolls of one die, but not on seeing at 
least one 66 in 24 rolls of two dice. 

A<-0 
for(i in 1:10000){ 
    die1<-sample(1:6,24,TRUE) 
    die2<-sample(1:6,24,TRUE) 
    numdblsixes<- 
        sum((die1==6)&(die2==6)) 
    if(numdblsixes>=1){ 
        A<-A+1 
    } 
} 
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109. Let 1 represent a vote for candidate A and –1 a vote for candidate B. A randomization of the 12 A’s and 8 B’s 
can be achieved by sampling without replacement from a vector [1 … 1 –1 … –1] with 12 1’s and 8 –1’s. To 
keep track of how far ahead candidate A stands as each vote is counted, employ the cumsum command. As 
long as A is ahead, the cumulative total will be positive; if A and B are ever tied, the cumulative sum will be 0; 
and a negative cumulative sum indicates that B has taken the lead. (Of course, the final cumulative sum will 
always be 4, signaling A’s victory.) 

 
A<-0 
for(i in 1:10000){ 
    die1<-sample(1:6,24,TRUE) 
    die2<-sample(1:6,24,TRUE) 
    numdblsixes<- 
        sum((die1==6)&(die2==6)) 
    if(numdblsixes>=1){ 
        A<-A+1 
    } 
} 

 
One execution of the code above returned A=2013, so P̂ (candidate A leads throughout the count) = .2013. 

 
 

111.  
a. In the code below, the criterion x2 + y2 ≤ 1 determines whether (x, y) lies in the unit quarter-disk. 

 
A<-0 
for(i in 1:10000){ 
    x=runif(1); y=runif(1) 
    if(x^2+y^2<=1){ 
        A<-A+1 
    } 
} 

 
b. Since P(A) = π/4, it follows that π = 4P(A) ≈ 4 ˆ( )P A . One run of the above program returned A=7837, 

which implies that ˆ( )P A = .7837 and π ≈ 4(.7837) = 3.1348. 
 
(While this may seem like a silly application, since we know how to determine π to arbitrarily many 
decimal places, the idea behind it is critical to lots of modern applications. The technique presented here is 
a special case of the method called Monte Carlo integration.) 
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Supplementary Exercises 
 
113.  

a. 24
4

 
 
 

= 10,626. 

 
b. Order matters here (being selected as VP isn’t the same as Treasurer): 24P4 = (24)(23)(22)(21) = 255,024. 

 

c. There are 24
2

 
 
 

= 276 ways to choose co-chairs, then 22 choices for secretary and 21 for treasurer. Apply 

the Fundamental Counting Principle: (276)(22)(21) = 127,512 (exactly half of b). 
 
115.  

a. P(line 1) = 
500

1500
= .333;   

P(crack) = 
( ) ( ) ( ).50 500 .44 400 .40 600 666

1500 1500
+ +

= = .444. 

 
b. This is one of the percentages provided: P(blemish | line 1) = .15. 
 

c. P(surface defect) =
( ) ( ) ( ).10 500 .08 400 .15 600 172

1500 1500
+ +

= ; 

P(line 1 ∩ surface defect) = 
( ).10 500 50

1500 1500
= ; 

so, P(line 1 | surface defect) = 
50 /1500

172 /
5

1 00 25
0

17
= = .291. 

 
 
117. Apply the addition rule: P(A∪B) = P(A) + P(B) – P(A ∩ B) ⇒ .626 = P(A) + P(B) – .144. Apply 

independence: P(A ∩ B) = P(A)P(B) = .144.  
So, P(A) + P(B) = .770 and P(A)P(B) = .144.    
Let x = P(A) and y = P(B). Using the first equation, y = .77 – x, and substituting this into the second equation 
yields x(.77 –  x) = .144 or x2 – .77x + .144 = 0.  Use the quadratic formula to solve:   

x =
2.77 ( .77) (4)(1)(.144) .77 .13

2(1) 2
± − − ±

=  = .32 or .45. Since x = P(A) is assumed to be the larger 

probability, x = P(A) = .45 and y = P(B) = .32. 
 

 
119.  

a. There are 5! = 120 possible orderings, so P(BCDEF) = 1
120 = .0833. 

 
b. The number of orderings in which F is third equals 4×3×1*×2×1 = 24 (*because F must be here), so      

P(F is third) = 24
120 = .2.  Or more simply, since the five friends are ordered completely at random, there is a 

1-in-5 chance F is specifically in position three. 
 
c. Similarly, P(F last) = 4 3 2 1 1

120
× × × × = .2. 
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121. When three experiments are performed, there are 3 different ways in which detection can occur on exactly 2 of 
the experiments: (i) #1 and #2 and not #3; (ii) #1 and not #2 and #3; and (iii) not #1 and #2 and #3.  If the 
impurity is present, the probability of exactly 2 detections in three (independent) experiments is (.8)(.8)(.2) + 
(.8)(.2)(.8) + (.2)(.8)(.8) = .384.  If the impurity is absent, the analogous probability is 3(.1)(.1)(.9) = .027.  
Thus, applying Bayes’ theorem, P(impurity is present | detected in exactly 2 out of 3) = 

(detected in exactly 2 present)
(detected in exactly 2)

P
P

∩
=

(.384)(.4)
(.384)(.4) (.027)(.6)+

= .905. 

 
123.  

a. First, P(both +) = P(carrier  ∩ both +) + P(not a carrier ∩ both +) = 
P(carrier)P(both + | carrier) + P(not a carrier)P(both  + | not a carrier). Assuming independence of the 
tests, this equals (.01)(.90)2 + (.99)(.05)2 = .010575. 
Similarly, P(both –) = (.01)(.10)2 + (.99)(.95)2 = .893575. 
Therefore, P(tests agree) = .010575 + .893575 = .90415. 

b. From the first part of a, P(carrier | both +) = 
2(carrier both ) (.01)(.90)

(both ) .010575
P

P
∩ +

=
+

= .766. 

 
125. P(E1 ∩ L) = P(E1)P( L | E1) = (.40)(.02) = .008. 
 
 
127. Let B denote the event that a component needs rework.   By the law of total probability, 

P(B) = ∑ P(Ai)P(B | Ai) = (.50)(.05) + (.30)(.08) + (.20)(.10) = .069. 

Thus, P(A1 | B) = 
(.50)(.05)

.069  
= .362, P(A2 | B) = 

(.30)(.08)
.069

= .348, and P(A3 | B) = .290.  

 
129. See the accompanying tree diagram. 

a. P(G | R1 < R2 < R3) = 
.15 .67

.15 .075
=

+
while P(B | R1 < R2 < R3) = .33, so classify the specimen as granite. 

Equivalently, P(G | R1 < R2 < R3) = .67 > ½ so granite is more likely.  
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b. P(G | R1 < R3 < R2) = 
.0625 .2941
.2125

=  < ½, so classify the specimen as basalt. 

P(G | R3 < R1 < R2) = 
.0375 .0667
.5625

= < ½, so classify the specimen as basalt. 

 
c. P(erroneous classification) = P(B classified as G) + P(G classified as B) = 

P(B)P(classified as G | B) + P(G)P(classified as B | G) = 
(.75)P(R1 < R2 < R3 | B) + (.25)P(R1 < R3 < R2 or R3 < R1 < R2 | G) = 
 (.75)(.10) + (.25)(.25 + .15) = .175. 
 

d. For what values of p will P(G | R1 < R2 < R3), P(G | R1 < R3 < R2), and P(G | R3 < R1 < R2) all exceed ½? 
Replacing .25 and .75 with p and 1 – p in the tree diagram, 

P(G | R1 < R2 < R3) = 
.6 .6 .5

.6 .1(1 ) .1 .5
p p

p p p
= >

+ − +
 iff 

1
7

p > ; 

P(G | R1 < R3 < R2) = 
.25 .5

.25 .2(1 )
p

p p
>

+ −
 iff 

4
9

p > ; 

P(G | R3 < R1 < R2) = 
.15 .5

.15 .7(1 )
p

p p
>

+ −
 iff 

14
17

p >  (most restrictive). Therefore, one would always 

classify a rock as granite iff 
14
17

p > . 

 
131.  

a. There are 4! = 24 possible ways the calculators could be randomly allocated back to the four friends. Since 
only one of those 24 possibilities results in everyone getting her own calculator back, the chance this 

randomly occurs is 
1
24

. 

 
b. Our goal is to find P(A ∪ B ∪ C ∪ D). We’ll need all of the following probabilities: 

P(A) = P(Allison gets her calculator back) = 1/4. This is intuitively obvious; you can also see it by writing 
out the 24 orderings in which the friends could get calculators (ABCD, ABDC, …, DCBA) and observe 
that 6 of the 24 have A in the first position. So, P(A) = 6/24 = 1/4. By the same reasoning, P(B) = P(C) = 
P(D) = 1/4. 
P(A ∩ B) = P(Allison and Beth get their calculators back) = 1/12. This can be computed by considering all 
24 orderings and noticing that two — ABCD and ABDC — have A and B in the correct positions. Or, you 
can use the multiplication rule: P(A ∩ B) = P(A)P(B | A) = (1/4)(1/3) = 1/12.  All other pairwise 
intersection probabilities are also 1/12. 
P(A ∩ B ∩ C) = P(Allison and Beth and Carol get their calculators back) = 1/24, since this can only occur 
if all four friends get their own calculators back. So, all three-wise intersections have probability 1/24, as 
does P(A ∩ B ∩ C ∩ D), which was part a. 
 
Finally, put all the parts together, using a general inclusion-exclusion rule for unions: 
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) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( )
( )
1 1 1 14 6 4
4 12 24 24
1 1 1 151 .625
2 6 24 24

(P A B C D P A P B P C P D
P A B P A C P C D
P A B C P B C D
P A B C D

∪ ∪ ∪ = + + +
− ∩ − ∩ − − ∩
+ ∩ ∩ + + ∩ ∩
− ∩ ∩ ∩

= ⋅ − ⋅ + ⋅ −

= − + − = =





  

 

c. The final answer in b has the form 
1 1 1 1 1 1 1
2 6 24 1! 2! 3!

1
4!

+ − = − +− −  . Generalizing to n friends, the 

probability at least one will get her own calculator back is 11 1 1 1 1( 1)
1! 2! 3! 4! !

n

n
−− + − + + − . 

 
When n is large, we can relate this to the power series for ex evaluated at x = –1: 

0

2 3

1

1

1! 2! 3!
1 1 1 1 1 11
1! 2! 3! 1! 2! 3!

1 1 11
1! 2!

1
!

1

3!

x

k

kx x x

e

e
k

x

e

∞

=

−

−

+ + + ⇒

 + − + = − − + − ⇒  

− =

= =

− +

+

= −

−

∑ 

 



  

So, for large n, P(at least one friend gets her own calculator back) ≈ 1 – e–1 = .632. Contrary to intuition, 
the chance of this event does not converge to 1 (because “someone is bound to get hers back”) or to 0 
(because “there are just too many possible arrangements”). Rather, in a large group, there’s about a 63.2% 
chance someone will get her own item back (a match), and about a 36.8% chance that nobody will get her 
own item back (no match).  

 
 
133. Note: s = 0 means that the very first candidate interviewed is hired.  Each entry below is the candidate hired for 

the given policy and outcome. 
 

Outcome s = 0 s = 1 s = 2 s = 3 Outcome s = 0 s = 1 s = 2 s = 3 
1234 1 4 4 4 3124 3 1 4 4 
1243 1 3 3 3 3142 3 1 4 2 
1324 1 4 4 4 3214 3 2 1 4 
1342 1 2 2 2 3241 3 2 1 1 
1423 1 3 3 3 3412 3 1 1 2 
1432 1 2 2 2 3421 3 2 2 1 
2134 2 1 4 4 4123 4 1 3 3 
2143 2 1 3 3 4132 4 1 2 2 
2314 2 1 1 4 4213 4 2 1 3 
2341 2 1 1 1 4231 4 2 1 1 
2413 2 1 1 3 4312 4 3 1 2 
2431 2 1 1 1 4321 4 3 2 1 

 
From the table, we derive the following probability distribution based on s: 
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s 0 1 2 3 
P(hire #1) 

24
6  

24
11  

24
10  

24
6  

Therefore s = 1 is the best policy. 
 
 
135. P(A1) = P(draw slip 1 or 4) = ½; P(A2) = P(draw slip 2 or 4) = ½; 

P(A3) = P(draw slip 3 or 4) = ½; P(A1 ∩ A2) = P(draw slip 4) = ¼; 
P(A2 ∩ A3) = P(draw slip 4) = ¼;  P(A1 ∩ A3) = P(draw slip 4) = ¼. 
Hence, P(A1 ∩ A2) = ¼ = P(A1)P(A2), P(A2 ∩ A3) = ¼ = P(A2)P(A3), and  
P(A1 ∩ A3) = ¼ = P(A1)P(A3), thus there exists pairwise independence. However, 
P(A1 ∩ A2 ∩ A3) = P(draw slip 4) = ¼ ≠ ⅛ = P(A1)P(A2)P(A3), so the events are not mutually independent. 

 
 
137. A tree diagram for this problem is given below. 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
a. Using the probabilities provided, 

cdbb
b

cdbcdb
b

DP
b

DP
DBP

DBP
)(1][1)(1

)1)(1(
)'(

)'(
)'|(

21

0

21

000
0 +−

=
+−

=
−

=
∩

=  

Similarly, 
cdbb

cdb
DP

cbdcb
DBP iii

i )(1
)1(

)'(
)1)(1()1(

)'|(
21 +−

−
=

−+−
=  for i = 1,2. It’s straightforward to show 

these sum to 1, using b0 + b1 + b2 = 1. 
 

b. With the numbers provided, P(B0 | D′) = .7117,  P(B1 | D′) = .0577, P(B2 | D′) = .2306. 
  

C 

C′ 

B0 
 
 
 
 
 
 
 
B1 
 
 
 
 
 
 
 
B2 
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b1 
 
 

 
b2 
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1 – d 
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139.  
a. A attracts B ⇒ P(B | A) > P(B) ⇒ 1 – P(B | A) < 1 – P(B), because multiplying by –1 reverses the 

direction of the inequality ⇒ P(B′ | A) < P(B′) ⇒ by definition, A repels B′. In other words, if the 
occurrence of A makes B more likely, then it must make B′ less likely. Notice this is really an iff 
statement; i.e., all of the implication arrows can be reversed. 
 

b. This one is much trickier, since the complementation idea in a can’t be applied here (i.e., to the 
conditional event A). One approach is as follows, which uses the fact that P(B) – P(B ∩ A) = P(B ∩ A′): 

A attracts B ⇒ P(B | A) > P(B) ⇒ 
( )

( )
P A B

P A
∩

 > P(B) ⇒ P(A ∩ B) > P(A)P(B) ⇒  

P(B) – P(A ∩ B) < P(B) – P(A)P(B) because multiplying by –1 is order-reversing     ⇒ 

P(B ∩ A′) < P(B)[1 – P(A)] = P(B)P(A′) ⇒ 
( )

( )
P B A

P A
′∩

′
< P(B) ⇒ P(B | A′) < P(B) ⇒  

by definition, A′ repels B. (Whew!) Notice again this is really an iff statement. 
 

c. Apply the simplest version of Bayes’ rule:  

A attracts B ⇔ P(B | A) > P(B) ⇔ )(
)(

)|()( BP
AP

BAPBP
>  ⇔ 1

)(
)|(
>

AP
BAP  ⇔ P(A | B) > P(A) ⇔  

by definition, B attracts A. 
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