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CHAPTER 6 
 

Section 6.1 
 
1. The joint pmf of X1 and X2 appears below. Each probability is calculated assuming independence. For the 

original distribution, μ = 25(.2) + 40(.5) + 65(.3) = 44.5 oz and σ2 = 212.25. 
 

x2 \ x1 25 40 65 

25 .04 .10 .06 

40 .10 .25 .15 

65 .06 .15 .09 

 
a. Calculate 1 2( ) / 2x x x= + for each of the nine pairs above and record the associated probabilities. 

x  25 32.5 40 45 52.5 65 

)(p x  .04 .20 .25 .12 .30 .09 
  

From this pmf, ( (25)(.04) 32.5(.20) 65(.09) 44 5) .E X µ= + + + = = . 
 
b. Compute s2 for each pair using 2 2 2

1 2( )()s x x x x= − −+ . Again record the probabilities. 

s2 0 112.5 312.5 800 

p(s2) .38 .20 .30 .12 

  
From this pmf, 2 2) 0(.38) 112.5(.20) 312.5(.30) 800(.12) 2( 12.25E S σ= + + + = = . 

 
 
3. X is a binomial random variable with n = 10 and p = .8. Thus P(X/n = x/n) = P(X = x) = b(x; 10, .8). 

x 0 1 2 3 4 5 6 7 8 9 10 

x/n 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 

p(x/n) .000 .000 .000 .001 .005 .027 .088 .201 .302 .269 .107 
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5. All 16 possible pairs of outcomes, their probabilities, and the resulting x and r values appear below. 
Outcome 1,1 1,2 1,3 1,4 2,1 2,2 2,3 2,4  

Probability .16 .12 .08 .04 .12 .09 .06 .03  

x  1 1.5 2 2.5 1.5 2 2.5 3  

r 0 1 2 3 1 0 1 2  
 

Outcome 3,1 3,2 3,3 3,4 4,1 4,2 4,3 4,4  

Probability .08 .06 .04 .02 .04 .03 .02 .01  

x  2 2.5 3 3.5 2.5 3 3.5 4  

r 2 1 0 1 3 2 1 2  
 

a. From the preceding table, the pmf of X is as follows: 
x  1 1.5 2 2.5 3 3.5 4 

 
( )p x  .16 .24 .25 .20 .10 .04 .01 

 
b. From a, .( 2 5)P X ≤ = .16 + .24 + .25 + .20 = .85. 
 
c. From the earlier table, the pmf of R is as follows: 

r 0 1 2 3 
 

p(r) .30 .40 .22 .08 
 

d. ( 1.5)P X ≤ = P(1,1,1,1) + P(2,1,1,1) + … + P(1,1,1,2) + P(1,1,2,2) + … + P(2,2,1,1) + P(3,1,1,1) + … 
+ P(1,1,1,3) = (.4)4 + 4(.4)3(.3) + 6(.4)2(.3)2 + 4(.4)3(.2)  = .2400. 

 
 
7. The mgf of each Xi is exp(2(et – 1)), so the mgf of their sum is the product of these 5 mgf’s, i.e.,       

exp(10(et – 1)). That is to say, Σ Xi is Poisson with parameter 10. The possible values in the sampling 
distribution of X  are {k/5 : k = 0,1,2,…}, and the exact sampling distribution of X  for all its possible 

values 0, .2, .4, … can be computed by 
10

/ 5) ( 10( )
!i

keP XX k P k
k

−

== = =Σ . 

 
9. The following R code demonstrates how the simulation can be performed. To change the sample size, 

simply replace the value of n at the top. 
 
xbar = NULL; n=5 
for (i in 1:1000){ 
  x=rweibull(n,shape=2,scale=5) 
  xbar[i]=mean(x) 
} 
 
The histograms below show the resulting X simulation distributions for n = 5, 10, 20, 30. Even for n = 10, 
the simulated distribution of X  looks approximately normal. 
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Section 6.2 
 
11.  

a. The sampling distribution of X  is centered at )(E X = μ = 12 cm, and the standard deviation of the X

distribution is .0
1
4
6

X
X n

σ
σ = = = .01 cm. 

b. With n = 64, the sampling distribution of X  is still centered at )(E X = μ = 12 cm, but the standard 

deviation of the X distribution is .0
6
4
4

X
X n

σ
σ = = = .005 cm.  

c. X is more likely to be within .01 cm of the mean (12 cm) with the second, larger, sample.  This is due 
to the decreased variability of X that comes with a larger sample size. 

 
 

13.  
a. No, it doesn’t seem plausible that waist size distribution is approximately normal. The normal 

distribution is symmetric; however, for this data the mean is 86.3 cm and the median is 81.3 cm (these 
should be nearly equal). Likewise, for a symmetric distribution the lower and upper quartiles should be 
equidistant from the mean (or median); that isn’t the case here.  
 
If anything, since the upper percentiles stretch much farther than the lower percentiles do from the 
median, we might suspect a right-skewed distribution, such as the exponential distribution (or gamma 
or Weibull or …) is appropriate.  
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b. Irrespective of the population distribution’s shape, the Central Limit Theorem tells us that X  is 
(approximately) normal, with a mean equal to μ = 85 cm and a standard deviation equal to 

/ 15 / 277 .9nσ = = cm. Thus, 
86.3 8586.3) 1 (1.44) .0749(

.9
P X P Z − ≥ = ≥ = −Φ = 

   
 

c. Replace 85 with 82 in (b): 
86.3 8286.3) 1 (4.77) 1 1 0

9
(

.
P X P Z − ≥ = ≥ = −Φ ≈ − = 

 
 

That is, if the population mean waist size is 82 cm, there would be almost no chance of observing a 
sample mean waist size of 86.3 cm (or higher) in a random sample of 277 men. Since a sample mean 
of 86.3 was actually observed, it seems incredibly implausible that μ would equal 82 cm. 
 
 

15.  
a. Let X  denote the sample mean tip percentage for these 40 bills. By the Central Limit Theorem, X  is 

approximately normal, with )(E X = µ = 18 and )D(
4
6

0
S X

n
σ

= = . Hence, 

19 18 16 18(16
6 / 40

19
6 / 4

)
0

XP − −   
−   


Φ


Φ


≤ ≈


≤ = Φ(1.05) – Φ(–2.11) = .8357. 

 
b. According to the common convention, n should be greater than 30 in order to apply the C.L.T., thus 

using the same procedure for n = 15 as was used for n = 40 would not be appropriate. 
 
 
17. We have X ~ N(10,1), n = 4, (4)(10) 40T nµ µ= = =  and 2T nσ σ= = . Hence, T ~ N(40, 2). We desire 

the 95th percentile of T: 40 + (1.645)(2) = 43.29 hours. 
 
 
19.  

a. Let X denote the sample mean fracture angle of our n = 4 specimens. Since the individual fracture 
angles are normally distributed, X  is also normal, with mean )(E X = µ = 53 but with standard 

deviation 1)(
4

SD X
n
σ

= = = .5. Hence, 

54 5354)
.5

(XP − ≤ = Φ 
 

 = Φ(2) = .9772, and 

5(53 4)XP ≤ ≤ = Φ(2) – Φ(0) = .4772. 
 

b. Replace 4 with n, and set the probability expression equal to .999: 

.999 = 
54 5354) ( )
1

(
/

X n
n

P − 
≤ = Φ = Φ 

 
 ⇒ n  ≈ 3.09 ⇒ n ≈ 9.5. Since n must be a whole number, 

round up: the least such n is n = 10. 
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21. With Y = # of tickets ~ Poisson(50), the Central Limit Theorem implies that Y has approximately a normal 
distribution with µ = 50 and σ = 50µ = . (We saw this normal approximation in Chapter 4, but now we 
know it’s justified by C.L.T.) 

a. P(35 ≤ Y ≤ 70) ≈
50

70.5 50 34.5 50
50

− −   
−   

  
Φ


Φ = Φ(2.90) – Φ(–2.19) = .9838. 

 
b. Now Y is the sum of 5 Poisson rvs, so Y is still Poisson but with E(Y) = 5(50) = 250 and σ =

250µ = .  Hence, P(225 ≤ Y ≤ 275) ≈ 
275.5 250 224.5 250

250 250
− −   

Φ −Φ   
   

= Φ(1.61) – Φ(–1.61) = 

.8926. 
 
c. From software, a = .9862 and b = .8934. Both normal approximations are quite close. 

 
 
23. The law of large numbers says that X  converges to μ; or, equivalently, that ( X  – μ) converges to zero as  

n → ∞. The central limit theorem says that if you multiply ( X  – μ) by the fraction 
σ
n , the result is a 

standard normal random variable as n → ∞. That is, the inflation factor 
σ
n  “balances out” the 

convergence of ( X  – μ). 
 

Another way to look at the two theorems is this: roughly, CLT says that (for large n) the sampling 

distribution of X  is approximately normal with mean μ and standard deviation 
n
σ . As n increases to 

infinity, this fraction converges to zero, and so the distribution of X  degenerates into a distribution with 
mean μ and standard deviation zero, analogous to saying X  converges (in some sense) to μ. 

 
 
25. P(|Yn – θ| ≥ ε) = P(Yn ≥ θ + ε) + P(Yn ≤ θ – ε) = 0 + P(Yn ≤ θ – ε), since Yn obviously can’t be greater than θ. 

Using the pdf of Yn provided in the hint,  

P(Yn ≤ θ – ε) = 1 /n n dyny
θ

θ ε
θ−

−∫ = 
n







 −

θ
εθ . Since 1<−

θ
εθ

,  
n







 −

θ
εθ  → 0 as n → ∞, which proves that 

P(|Yn – θ| ≥ ε) → 0 as n → ∞, as claimed. 
 
 
27. Assume you have a random sample X1, …, Xn from an exponential distribution with parameter λ. Let X  

denote their sample average. Then by the law of large numbers, X  → E(X) = 
1
λ

 as n → ∞. But our goal is 

a consistent estimator of λ, i.e. a quantity that converges to λ itself as n → ∞. 
The solution is obvious: let h(t) = 1/t, which is continuous for all t > 0. Then by the theorem cited in the 
exercise, )(h X  → h(1/λ). In other words, the consistent estimator is 

1
1/

1
nY

X
λ

λ
→= =  as n → ∞. 
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Section 6.3 
 
29. If X ~ 2

νχ , then X is distributed as the sum of ν iid 2
1χ  random variables. By the Central Limit Theorem, X 

is then approximately normal for large ν. 
 
 
31. Recall from calculus that the maximum of f and ln(f) occur at the same x-value. If f is the 2

νχ  pdf, then ln(f) 
= C + (ν/2 – 1)ln(x) – x/2, where C is a constant. Take the first derivative and set that equal to zero: 0 + (ν/2 
– 1)/x – 1/2 = 0 → x = ν – 2. This is only a valid value for x if ν – 2 > 0; i.e., ν > 2. 

 
 
33.  

a. If X1 and X2 are independent, then M3(t) = M1(t)M2(t), and so M2(t) = M3(t)/M1(t). Substitute in the 
given distributions, and 3 3 11/2 ( )/2/2

2 ( ) (1 2 ) (1 2 ) 1/ ( 2 )t t tM tν ν νν− −− −= − − −= , which is the mgf of the chi-

square distribution with ν3 – ν1 df. Therefore, by the uniqueness of mgfs, X2 ~ 2
13 ννχ − . 

 
b. If X1 and X2 are independent, then 1 2 1 2) ( ) ( )(V X V X V XX + = + . Under the assumed distributions, we 

have 
1

2
1 1)( 2( )V X V νχ ν= =  and 

3 3
2

1 2 ) (( ) 2V X X V νχ ν+ == . Thus 2 1 2 1) ( ) (( )V V X X VX X= + −  = 

3 1 3 1)2 2 2(ν ν ν ν−− = . But variances can never be negative, so it must be the case that 3 1 02 )(ν ν− ≥ , 
i.e., 3 1ν ν≥ . 

 
 
35.  

a. From the t table, t.005,10 = 3.2. 
b. From the F table, F.01,1,10 = 10.04 ≈ 3.22. This should be, since dfdf Ft ,1,

2
,2/ αα = . 

c. Minitab gives the following: 
Inverse Cumulative Distribution Function  
F distribution with 1 DF in numerator and 10 DF in denominator 
P( X <= x )        x 
       0.99  10.0443 

 

37. E(T) exists iff E(|T|) < ∞. But E(|T|) = ∫∫
∞∞

∞− +
=

+ 0 22 )1(
2

)1(
|| dt

t
tdt

t
t

ππ
 = 

∞

+
0

2 )1ln(1 t
π

 = ∞. That is, 

E(|T|) diverges, so E(T) does not exist. 
 
 
39.  

a. From the F table, F.1,2,4 = 4.32. 

b. The F2,4 pdf is 2/)42(
2
1

2
1

2/)22(2/2
2
1

])4/2(1))[4(())2((

)4/2))(42((
+

−

+ΓΓ

+Γ

x

x
 = 3]2/1[

1
x+

. Let c = F.1,2,4; then .1 = 

23 ]2/1[
1

]2/1[
1

c
dx

xc +
=

+∫
∞

. Solving, [1+c/2]2 = 10  c = 2( 10 – 1) = 4.3246. 

c. Minitab gives the following: 
Inverse Cumulative Distribution Function  
F distribution with 2 DF in numerator and 4 DF in denominator 
P( X <= x )        x 
        0.9  4.32456 
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41. Let X and Y be independent chi-square rvs with ν1 and ν2 df, respectively. 
a. E[

21,ννF ] = E[(X/ν1) ÷ (Y/ν2)] = ν2/ν1 E[X] E[1/Y].    E[X] = ν1 and, from Equation (6.7),  

E[1/Y] = 
2

1
)12/()12/(

)12/(2
)2/(

)2/1(2

222

2
1

2

2
1

−
=

−Γ−
−Γ

=
Γ

+−Γ −−

ννν
ν

ν
ν . Canceling gives a final answer of        

E[
21,ννF ] = 

22

2

−ν
ν .  This only holds, obviously, if ν2 > 2. 

b. By the same process, E[ 2
, 21 ννF ] = (ν2/ν1)2E[X2]E[1/Y2].  

From Equation (6.7), E[X2] = )2(
)2/(

)2/2(2
11

1

1
2

+=
Γ

+Γ
νν

ν
ν  and  E[1/Y2] = … = 

)4)(2(
1

22 −− νν
.  

Put together, E[ 2
, 21 ννF ] = 

)4)(2(
)2(

221

1
2
2

−−
+
ννν

νν , and finally V(
21,ννF ) = 

)4)(2(
)2(

221

1
2
2

−−
+
ννν

νν  – 
2

2

2

2 








−ν

ν
 

= … = 
)4()2(

)2(2

2
2

21

21
2
2

−−

−+

ννν
ννν , for ν2 > 4. 

 
 

43. Let X and Y be independent chi-square rvs with ν1 and ν2 df, respectively. Let c = 
21,, ννpF . Then, by 

definition, p = P((X/ν1) ÷ (Y/ν2) > c) = P((Y/ν2) ÷ (X/ν1) < 1/c) = 1 – P((Y/ν2) ÷ (X/ν1) > 1/c) →                
P((Y/ν2) ÷ (X/ν1) > 1/c) = 1 – p. Since (Y/ν2) ÷ (X/ν1) ~ 

12 ,ννF by definition, we have 1/c = 
12 ,,1 ννpF − . Take 

reciprocals of both sides to get the desired result. 
 
 

45. Use properties of mgfs. If X ~ Gamma(α,β), then MX(t) = (1 – βt)–α. Hence, the mgf of cX is  
MX(ct) = (1 – β[ct])–α = (1 – [βc]t)–α, which we can identify as the Gamma(α,βc) mgf.  
In particular, if X ~ 2

νχ  = Gamma(ν/2,2), then cX ~ Gamma(ν/2,2c). 
 
 
47. There isn’t a unique solution, but here’s one approach. An F3, 2 rv has the form 2 2

3 2 ][ / 3] [ / 2χ χ÷ . The 
denominator chi-squared is easy to construct: 2 2

1 2Z Z+ . For the numerator, the X’s must be standardized: 

32
22 2 2 2 2

21 2 31
3

00 0 ~
5 5 5 25

X X X XX X
χ

− + +− −     + + =     
     

. Therefore, an example of an F3, 2 rv is 

2 2 2 2 2 2
1 2 3 1 2 3

2 2 2 2
1 2 1 2

( ) / 25 / 3 2
75( ) / 2

X X X X X X
Z Z Z Z

+ + + +
=

+ +
. 

 
 
49.  

a. Using the fact that the 2
50χ  distribution is approximately normal with mean 50 and variance 2(50) = 

100, P( 2
50χ  > 70) ≈ P(Z > [70-50]/10) = 1 – Φ(2) = .0228. 

b. Substitute ν = 50 to get 2
50χ  ≈ 50(1 – 1/225 + Z/15)3. Then  

P( 2
50χ  > 70) ≈ P(50(1 – 1/225 + Z/15)3 > 70) = P(Z > 1.847) = 1 – Φ(1.847) = .03237.  

Software gives an answer of .032374, suggesting the approximation in (b) is more accurate. 
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Section 6.4 
 
51. According to the main theorem of this section, 2 2 2

1( 1) / ~ nn S σ χ −− .  Exercise 45 showed that if X ~ 2
νχ  

then cX ~ Gamma(ν/2,2c). Apply this with 2 / ( 1)c nσ= −  and ν = n –1, and we have  
2 2 2 2

2 2
12

( 1) 1 2~ Gamma ,
1 1 2 1n

n S nS
n n n
σ σ σχ

σ −

 − −
= ⋅ = ⋅  − − − 

. 

 
53.  

a. Since the X’s are normal, X  is also normal, with mean μ = 5 and standard deviation / 8 / 13nσ = . 

Thus 9.13 59.13) (1.86) .9686
8 / 13

(P X − 
< = Φ = Φ = 

 
. 

 
b. Since 2 2 ))( / ( 1iS X nX= −−∑ , 2 2 2 2 2

1( / ( 1) ~) /i nX n SX σ σ χ −= −−∑ . Thus 

( ) ( )2 2 2 2 2 2 2
13 1 12( 1187 ( / 1187 / ( 1187 / 8 ) ( )) ) 18.55i iP X P X P PX X σ σ χ χ−− −< = < = < = <∑ ∑ , 

which from the chi-squared table equals .90. 
 
c. Per a theorem in this section, X  and 2( )iX X−∑ are independent rvs, so the compound probability is 

( ) ( ) ( )2 2( 1187 ( 1187 (.9686)(.90) .871749.13 ) 9.13 )i iP PX X XX P XX< =< ∩ − =−= <<∑ ∑ . 
 

d. Use Gosset’s Theorem: 
2 2/ ( 1) ( / 12 ( /13

5 5
) )i i

X X X
n XX n XS n X
µ
= =

− −

− −−

−

∑ ∑
 has a t distribution 

with df = n – 1 = 12. 
 
 

55. The trick here is to create a t-distributed rv via Gosset’s Theorem: 
 

5 0.45 | 0.4 ) (| | 0.4 )(|
/

X SX S P P T n
S n S

P
n

 −
− > = > = > 

 
, where T ~ t27–1 (because the X’s are normal and 

μ = 5).  Continuing, 0.4 27 2.0780.4 n = = , and P(|T| > 2.078) = 2P(T > 2.078) ≈ 2(.024) = .048. 
 

 
57.  

a. Z ~ N(0, 1) regardless of n, so P(–2 ≤ Z ≤ 2) = Φ(2) – Φ(–2) = .9772 – .0228 = .9544 for all n. 
 

b. T ~ tn–1. For n = 5, P(–2 ≤ t4 ≤ 2) ≈ .8839 from software. For n = 10, P(–2 ≤ t9 ≤ 2) ≈ .9234. For n = 15, 
P(–2 ≤ t14 ≤ 2) ≈ .9347.  As n increases, this t probability approaches the corresponding standard 
normal probability, i.e. the answer from part a. 
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Supplementary Exercises 
 
59.  

a. From the distribution provided, E(X) = .05(0) + .15(1) + .25(2) + .25(3) + .30(4) = 2.6 tickets. 
Similarly, SD(X) = 1.2 tickets. 
 

b. T = X1 + … + X150, which we assume to be an iid sum. Thus, with n = 150, E(T) = 150(2.6) = 390 and 
SD(T) = 150(1.2)  = 14.7. 

 

c. By the Central Limit Theorem, T is approximately normal, so P(T ≤ 500) ≈ 500 390
14.7
− Φ 

 
 = Φ(7.48) 

≈ 1. In other words, it’s nearly certain that the gym will be able to accommodate all requests. 
 
 
61. X ~ Bin(200, .45) and Y ~ Bin(300, .6).  Because both n’s are large, both X and Y are approximately normal, 

so X + Y is approximately normal with mean (200)(.45) + (300)(.6) = 270, variance 200(.45)(.55) + 
300(.6)(.4) = 121.40, and standard deviation 11.02.  Thus,  

P(X + Y ≥ 250) ( )249.5 2701 1 1.86 .9686.
11.02

− = − = − − = Φ
 

Φ  

 
 
63. The total number T of claims filed is the sum of 500 independent Poisson(2.3) rvs, so T is also Poisson but 

with mean 500(2.3) = 1150. By the central limit theorem, Poisson is approximately normal (with mean 
1150 and also variance 1150), so  

1199.5 11501200) ( 1199.5) 1
1150

(T P TP − 
≥ = > ≈ −Φ 

 
= 1 – Φ(1.46) = .0722. 

 
 
65.  

a. The “center” of a t2 distribution is 0. With the aid of software, 
2 )( 11 tP ≤ ≤− = .5774,     2 )( 22 tP ≤ ≤−  = .8165,     2 )( 33 tP ≤ ≤−  = .9045. Notice these are all 

somewhat less than the standard normal probabilities (.68, .95, .997), because the t distributions have 
heavier tails. 
 

b. For the first part, we desire the value c such that 2 8( ) .6P t cc ≤ =− ≤ .  The symmetry of the t 
distribution implies that –c and c divide the distribution into areas of .16, .68, and .16 (the two ends are 
equal and the three must sum to 1). Hence, c itself is the .16 + .68 = .84 quantile of the t2 distribution. 
With the aid of R software, c = qt(.84,df=2) = 1.312. That is, 68% of a t2 distribution lines within 
± 1.312 of center. 
Similarly, 2 5( ) .9P t cc ≤ =− ≤  implies c is the .95 + (1 – .95)/2 = .975 quantile, and software provides     
c = 4.303. Finally, 2 7( ) .99P t cc ≤ =− ≤  implies c is the .997 + (1 – .997)/2 = .9985 quantile of the t2 
distribution, and software gives c = 18.216.  (That’s a lot bigger than 3!) 
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67.  

a. Divide all terms by 2 2
1 2/σ σ : 

2 2 2 2 2
1 1 1 1 1
2 2 2 2 2
2 2 2 2 2

8 . ./2.9 .12 8 120 2 90
/

P
S

PS S
S

σ σ σ
σ σ σ

   
=   ≤ ≤

 
≤ ≤

 
. By one of the 

theorems in Section 6.4, the rv in this middle of this expression has an F distribution, with degrees of 
freedom ν1 = 10 – 1 = 9 and ν1 = 12 – 1 = 11. From the F table, 8.12 is the .999 quantile of the F9,11 
distribution and 2.90 is the .95 quantile. Therefore, 9,11 8.12) .999 .95 .049(2.90P F≤ ≤ = − = . 
 

b. Start the same way: 
2 2 2 2 2
1 1 1 1 1
2 2 2 2

22
2

222

ˆ ˆ
4 9 ./2.19 .30 4 30

/ˆ ˆ
2.1P Pσ σ σ σ σ

σ σ σ σ σ
   

=   ≤ ≤
 

≤ ≤
 

. Observe that 

1

1
10

222
1 211

2 2
11

( 1 /10
1

)ˆ
0

i i
i

X X
Z

µ µσ
σσ σ 

−


− 
= = =



∑ ∑ ∑ , the sum of squares of 10 independent standard 

normal rvs divided by 10. By definition 2 2
10~iZ χ∑ , so 2 2 2

1 1 10/ ~ 0ˆ /1σ σ χ . Similarly, 

2 2 2
122 2/ ~ 2ˆ /1σ σ χ , from which 

22 2
101 1

10,122 2
2 122

2

ˆ
/

/10
~

ˆ /1
/

2
F

χσ σ
σ σ χ

= .  

From the F table, 4.30 and 2.19 are the .99 and .9 quantiles, respectively, of the F10,12 distribution. 
Therefore, 10,12 4.30) .99 .9 .09(2.19P F≤ ≤ = − = . 
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