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CHAPTER 15 
Section 15.1 
 
1.  

a. From the information provided, θ can only equal .50 (fair) or .75. The prior probability assignments are 
P(θ = .50) = .80 and P(θ = .75) = 1 – .80 = .20.  That is, π(.50) = .80 and π(.75) = .20. 

 
b. As a function of θ, P(HHHTH) equals θ4(1 – θ). Apply Bayes’ theorem: 
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That is, the posterior probability that θ = .5 is .6124. Since .75 is the only other possibility, the 
posterior probability is P(θ = .75 | HHHTH) = 1 – .6124 = .3876. I.e., π(.50|HHHTH) = .6124 and 
π(.75|HHHTH) = .3876. 
 

 
3.  

a. For a gamma distribution with parameters α and β, the mean is αβ and the standard deviation is αβ . 

Here, we want the prior distribution of µ to satisfy αβ = 15 and αβ = 5. Divide the two equations to 

get α = 15/5 = 3, so α = 9; then, β = 15/α = 15/9 = 5/3. So, the prior for µ will be Gamma(9, 5/3). 
 

b. The prior for µ is Gamma(9, 5/3); conditional on µ, the observations X1,  … , Xn are assumed to be a 
random sample from a Poisson(µ) distribution. Hence, the numerator of the posterior distribution of µ 
is 
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where 1 9 ixα = + Σ  and 1 3 5
1

/ n
β =

+
 . We recognize the last expression above as the “kernel” of a 

gamma distribution (i.e., the pdf without the constant in front). Therefore, we conclude that the 
posterior distribution of µ is also gamma, but with the parameters α1 and β1 specified above.  
With the specific values provided, n = 10 and Σ xi = 136, so the posterior distribution of µ given these 
observed data is Gamma(α1, β1) = Gamma(145, 5/53). 
 
 

5. Using (15.1), the numerator of the posterior distribution of µ is 
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is the kernel of a gamma pdf, specifically with first parameter α0 + Σ xi and second parameter 1/[1/β0 + n]. 
Therefore, the posterior distribution of µ is Gamma(α0 + Σ xi, 1/(n + 1/β0)). 
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7. If the prior distribution of p is 0 0 )B ta( ,e α β , its pdf is proportional to 0 01 1(1 )p pα β− −− . The joint pmf of a 
random sample from a negative binomial distribution is 
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function of p, this is the kernel of a beta pdf, but with parameters 1 0 nrα α= + and 1 0 ix nrβ β + −= Σ . That 
is, the posterior distribution of p is Beta( 1 0 nrα α= + , 1 0 ix nrβ β + −= Σ ). 
 
 

9. The prior distribution of μ is 
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Because, as a function of μ, this is the exponential of a quadratic function of μ, we know that the posterior 
distribution of μ is normal (because, by definition, any pdf of that form is a normal pdf). To identify the 
parameters, note the following: if Y is normal with mean μ1 and precision τ1, then the exponential portion of 
the normal pdf has the form 1 1

2 2
2 2

1 1 1 1 1( ) [ 2 ]y y y Cτ µ τ τ µ− − = − − + . So, if we can expand the above 
expression in this way, we can identify the posterior precision and mean hyperparameters by looking at the 
coefficients on μ2 and μ. Let’s proceed: 

2 2 2
0 0 0 0 0

1 1( ( ln ) 2[ ]
2 2

) ) ( lni ixx n Cτ µ µ µ τ µ τ µ µ   − + = − + − +  − Σ +− ∑ , where C does not depend on 

μ. Therefore, the posterior hyperparameters are 1 0 nτ τ= +  and 0 0
1 1 0 0 1

0

ln
ln i

i
x

x
n

τ µ
τ µ τ µ µ

τ
+

= + ⇒ =
Σ

Σ
+

. 

In conclusion, the posterior distribution of μ is normal, with parameters μ1 and τ1 as above. 
 

Section 15.2 
 

11. In Exercise 3, the posterior distribution of μ was found to be Gamma(145, 5/53). 
a. The Bayes estimate of μ is the mean of the posterior distribution:  

1 1 1| ,... )( , nE x xµ α β= = 145(5/53) = 13.68. 
 
b. With the aid of software, we can determine the .025 and .975 quantiles of the posterior distribution. 

Using R, qgamma(c(.025,.975),shape=145,scale=5/53) returns 11.54338 and 15.99373. 
Thus, after observing the data in Exercise 3, there’s a 95% (posterior) chance that μ is between 11.54 
and 15.99. 
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13.  
a. From the conjugate prior proposition regarding the beta distribution, the posterior distribution of p is 

Beta with parameters 1 0 1x nα α= + = +  and 1 0 1 1n x n nβ β += − = + − = . Hence, the posterior mean 
of p is 1 1 1/ ( ) (1 ) / (1 1) ( 1) / ( 2)n n n nα α β = + ++ + + = + . 

 
b. Imagine two prior trials, one success and one failure. Then we observe n successes in the next n trials, 

for n + 1 total successes out of these combined n + 2 trials. The relative frequency of successes is then 
(n+1)/(n+2). 

 
c. This seems like an odd, and arbitrary, application of Laplace’s idea. Why start with two days, with the 

sun rising on only one of them? Then, no matter how many days follow with the sun rising, we still 
include those two days on which the sun rose only once. 

 
 
15. The same method as in Example 15.9 applies, but with n = 1 and σ = 3.5355. In particular, the posterior 

distribution of μ is still normal, with variance
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)28.118(1σµ  = 116.77. This is identical to the results of Example 15.9. 

 
 
17. We are interested in the Beta distribution with parameters 804 and 772. This distribution is approximately 

normal, with mean μ = 804/1576 = .510 and variance 804(772)/(1576)2(1577) = .0001585, or σ = .0126. 
Thus, a 95% credibility interval for p is .510 ± 1.96(.0126) = (.485,.535). 

 
 

19.  
a. The prior expectation of μ is the mean of the Gamma(α0, β0) distribution, α0β0. 

 
b. Exercise 5 established that the posterior distribution of μ is Gamma(α0 + Σ xi, 1/(n + 1/β0)). Hence the 

Bayes estimator is 0
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c. By the Law of Large Numbers, *X µ→  as n →∞ . Divide the numerator and denominator of µ̂  by 

n and take the limit: 0 0
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