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CHAPTER 5 
 

Section 5.1 
 
1.  

a. P(X = 1, Y = 1) = p(1,1) = .20. 
 
b. P(X ≤ 1 and Y ≤ 1) = p(0,0) + p(0,1) + p(1,0) + p(1,1) = .42. 
 
c. At least one hose is in use at both islands.  P(X ≠ 0 and Y ≠ 0) = p(1,1) + p(1,2) + p(2,1) + p(2,2) = .70. 
 
d. By summing row probabilities, pX(x) = .16, .34, .50 for x = 0, 1, 2, By summing column probabilities, 

pY(y) = .24, .38, .38 for y = 0, 1, 2.  P(X ≤ 1) = pX(0) + pX(1) = .50. 
 
e. p(0,0) = .10, but pX(0) ⋅ pY(0) = (.16)(.24) = .0384 ≠ .10, so X and Y are not independent. 

 
 
3.  

a. p(1,1) = .15, the entry in the 1st row and 1st column of the joint probability table. 
 
b. P(X1 = X2) = p(0,0) + p(1,1) + p(2,2) + p(3,3) = .08 + .15 + .10 + .07 = .40. 
 
c. A = {X1 ≥ 2 + X2 ∪ X2 ≥ 2 + X1}, so P(A) = p(2,0) + p(3,0) +  p(4,0) + p(3,1) +  p(4,1) + p(4,2) + p(0,2) 

+ p(0,3) + p(1,3) =.22. 
 

d. P(X1 + X2 = 4) = p(1,3) + p(2,2) + p(3,1) + p(4,0) = .17. 
P(X1 + X2 ≥ 4) = P(X1 + X2 = 4) + p(4,1) + p(4,2) + p(4,3) + p(3,2) + p(3,3) + p(2,3) = .46. 

 
e. p1(0) = P(X1 = 0) = p(0,0) + p(0,1) + p(0,2) + p(0,3) = .19 

p1(1) = P(X1 = 1) = p(1,0) + p(1,1) + p(1,2) + p(1,3) = .30, etc. 
 

x1 0 1 2 3 4 
p1(x1) .19 .30 .25 .14 .12 

 
f. p2(0) = P(X2 = 0) = p(0,0) + p(1,0) + p(2,0) + p(3,0) + p(4,0) = .19, etc. 
 

x2 0 1 2 3 
p2(x2) .19 .30 .28 .23 

 
g. p(4,0) = 0, yet p1(4) = .12 > 0 and p2(0) = .19 > 0 , so p(x1, x2) ≠ p1(x1) ⋅ p2(x2) for every (x1, x2), and the 

two variables are not independent. 
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5. Let X1 = the number of freshmen in the sample of 10; define X2, X3, X4, analogously for sophomores, 
juniors, and seniors, respectively. Then the joint distribution of (X1, X2, X3, X4) is multinomial with n = 10 
and (p1, p2, p3, p4) = (.20, .18, .21, .41). 

a. P((X1, X2, X3, X4) = (2, 2, 2, 4)) = 2 2 2 410! (.20) (.18) (.21) (.41)
2!2!2!4!

= .0305. 

 
b. Let Y = X1 + X2 = the number of underclassmen in the sample. Then Y meets the conditions of a 

binomial rv, with n = 10 and p = .20 + .18 = .38. Hence, the probability the sample is evenly split 

among under- and upper-classmen is P(Y = 5) = 5 5(.38)
10

(.62)
5

 
 
 

 = .1829. 

 
c. The marginal distribution of X1 is Bin(10, .20), so P(X1 = 0) = (.80)10 = .1073.  

If selections were truly random from the population of all students, there’s about a 10.7% chance that 
no freshmen would be selected. If we consider this a low probability, then we have evidence that 
something is amiss; otherwise, we might ascribe this occurrence to random chance alone (“bad luck”). 

 
 

7.  
a. p(3, 3) = P(X = 3, Y = 3) = P(3 customers, each with 1 package)  

= P( each has 1 package | 3 customers) ⋅ P(3 customers) = (.6)3 ⋅ (.25) = .054. 
 

b. p(4, 11) = P(X = 4, Y = 11) = P(total of 11 packages | 4 customers) ⋅ P(4  customers). 
 Given that there are 4 customers, there are four different ways to have a total of 11 packages: 3, 3, 3, 2 

or 3, 3, 2, 3 or 3, 2, 3, 3 or 2, 3, 3, 3.  Each way has probability (.1)3(.3), so p(4, 11) = 4(.1)3(.3)(.15) = 
.00018. 

 
 
9.  

a. p(1,1) = .030. 
 
b. P(X ≤ 1 and Y ≤ 1) = p(0,0) + p(0,1) + p(1,0) + p(1,1) = .120. 
 
c. P(X = 1) = p(1,0) + p(1,1) + p(1,2) = .100; P(Y = 1) = p(0,1) + … + p(5,1) = .300. 
 
d. P(overflow) = P(X + 3Y > 5) = 1 – P(X + 3Y ≤ 5) = 1 – P((X,Y)=(0,0) or …or (5,0) or (0,1) or (1,1) or 

(2,1)) = 1 – .620 = .380. 
 
e. The marginal probabilities for X (row sums from the joint probability table) are pX(0) = .05, pX(1) = 

.10, pX(2) = .25,  pX(3) = .30, pX(4) = .20, pX(5) = .10; those for Y (column sums) are pY(0) = .5, pY(1) = 

.3, pY(2) = .2.  It is now easily verified that for every (x,y), p(x,y) = pX(x) ⋅ pY(y), so X and Y are 
independent. 

 
 
11.  

a. 
30 30 2 2

20 20
1 ( , ) ( )f x y dxdy k x y dxdy

∞ ∞

−∞ −∞
= = +∫ ∫ ∫ ∫

30 30 30 302 2

20 20 20 20
k x dydx k y dxdy= +∫ ∫ ∫ ∫

30 302 2

20 20
10 10k x dx k y dy= +∫ ∫

19,000 320 .
3 380,000

k k = ⋅ ⇒ = 
 
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b. P(X < 26 and Y < 26) = 
26

26 26 262 2 2

20

3

20 20
20

( )
3
yk x y dxdy k x y dx

 
+ = + 

 
∫ ∫ ∫  

226

20
319(6 2) dxk x += ∫  =              

k  · (38,304) = .3024. 
  
 

c. The region of integration is labeled III below. 
 
 
 
 
 
 
 
 
 

P(| X – Y | ≤ 2) = ( , )
III

f x y dxdy∫∫ =1 ( , ) ( , )
I II

f x y dxdy f x y dxdy− −∫∫ ∫∫ = 

28 30 30 2

20 2 22 20
1 ( , ) ( , )

x

x
f x y dydx f x y dydx

−

+
− −∫ ∫ ∫ ∫ = .3593 (after much algebra). 

 

d. 
30330 2 2 2

20
20

( , ) (( ) )
3X
yf f x y dy k x y dy kx yx k

∞

−∞
= + = += ∫ ∫ = 10kx2 + .05, for 20 ≤ x ≤ 30. 

 
e. fY(y) can be obtained by substituting y for x in (d);  clearly f(x,y) ≠ fX(x) ⋅ fY(y), so X and Y are not 

independent. 
 
 
13.  

a. Since X and Y are independent, p(x,y) = 
1 2 1 2

1 2 1 2

! !
)

!
( ·

!
) (

x y x y

X Y
e e ep

x
x

y x y
p y

µµ µ µµ µµ µ− −− −

⋅ ==   

for x = 0, 1, 2, …; y = 0, 1, 2, …. 
 
b. P(X + Y ≤ 1) = p(0,0)  + p(0,1) + p(1,0) = … = [ ]1 2

1 21e µ µ µ µ− − + + . 
 

c. P(X + Y= m) = 1 2

0 0

1 2( , )
! ( )!

m k m

k k

km

P X k Y m k e
k m k

µ µ µ µ
=

−
− −

=

= = − =
−∑ ∑  = 

1 2

1
0

2
!

! !( )!
k m k

m

k

e m
m k m k

µ µ

µµ
− −

=

−

−∑  = 

1 2

0
1 2!

m
k

k

k mm
k

e
m

µ µ

µµ
=

− −
− 

 
 

∑  = 
1 2

1 2(
!

)me
m

µ µ

µ µ
− −

+  by the binomial theorem. We recognize this as the pmf of a 

Poisson random variable with parameter 1 2µ µ+ . Therefore, the total number of errors, X + Y, also has 
a Poisson distribution, with parameter 1 2µ µ+ . 

 
  

I

II
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15.  

a. f(x,y) = fX(x) ⋅ fY(y) = 
0, 0

0 otherwise

x ye x y− − ≥ ≥



 

 
b. By independence, P(X ≤ 1 and Y ≤ 1) = P(X ≤ 1) ⋅ P(Y ≤ 1) = (1 – e–1) (1 – e–1) = .400. 
 
c. P(X + Y ≤ 2) = 

2 2 2 (2 )

0 0 0
1

x x y x xe dydx e e dx
− − − − − − = − ∫ ∫ ∫  =

2 2 2 2

0
( ) 1 2 .594.xe e dx e e− − − −− = − − =∫  

 
d. P(X + Y ≤ 1) = 

1 (1 ) 1

0
1 1 2 .264x xe e dx e− − − − − = − = ∫ ,  

so P(1 ≤ X + Y ≤ 2) = P(X + Y ≤ 2) – P(X + Y ≤ 1) = .594 – .264 = .330. 
 
 
17.  

a. Each Xi has cdf F(x) = P(Xi ≤ x) = 1 xe λ−− . Using this, the cdf of Y is 
F(y) = P(Y ≤ y) = P(X1 ≤ y ∪ [X2 ≤ y ∩ X3 ≤ y]) 
= P(X1 ≤ y) + P(X2 ≤ y ∩ X3 ≤ y) – P(X1 ≤y ∩ [X2 ≤ y ∩ X3 ≤ y]) 
=  2 3(1 ) (1 ) (1 )y y ye e eλ λ λ− − −− + − − −  for y > 0. 

  
The pdf of Y is f(y) = F′(y) = ( ) ( )22(1 ) 3(1 )y y y y ye e e e eλ λ λ λ λλ λ λ− − − − −+ − − − = 2 34 3y ye eλ λλ λ− −−         
for y > 0. 
 

b. E(Y) = ( )2 3

0

1 1 24 3 2
2 3 3

y yy e e dyλ λλ λ
λ λ λ

∞ − −  ⋅ − = − = 
 ∫ . 

  
 
19.  

a. Let A denote the disk of radius r/2. Then P((X,Y) lies in A) =  ( , )
A

f x y dxdy∫∫  

2 2

2

22

1 area of 1 .25
4π π

1 π( / 2)
π πA A

Adxdy
r r

rdxdy
rr

= = = = = =∫∫ ∫∫ . Notice that, since the joint pdf of X and 

Y is a constant (i.e., (X,Y) is uniform over the disk), it will be the case for any subset A that P((X,Y) lies 

in A) = 2

area of 
π

A
r

. 

 

b. By the same ratio-of-areas idea,
2

2

1, .
2 2 2 2 ππ
r r r r rP X Y

r
 − ≤ ≤ − ≤ ≤ = = 
 

 This region is the square 

depicted in the graph below. 
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c. Similarly, 
2

2

2 2, .
ππ2 2 2 2

r r r r rP X Y
r

 
− ≤ ≤ − ≤ ≤ = = 
 

 This region is the slightly larger square 

depicted in the graph below, whose corners actually touch the circle. 
  
 

 
 
 
 
 
 
 

 

d. ( )
2 2

2 2

2 2

2 2

1 2( , )
π π

r x

X r x

r xf x f x y dy dy
r r

∞ −

−∞ − −

−
= = =∫ ∫ for –r ≤ x ≤ r.   

Similarly, fY(y) = 
2 2

2

2
π
r y

r
−

 for –r ≤ y ≤ r.   X and Y are not independent, since the joint pdf is not the 

product of the marginal pdfs: 
2 22 2

2 22

22
π π

1
π

r yr x
rr r

−−
⋅≠ . 

 
 
21. Picture an inscribed equilateral triangle with one vertex at A, so the other two vertices are 120° away from 

A in either direction. Clearly chord AB will exceed the side length of this triangle if and only if point B is 
“between” the other two vertices (i.e., “opposite” A). Since that arc between the other two vertices spans 

120° and the points were selected uniformly, the probability is clearly 
120 1
360 3

=  .   

 
 

Section 5.2 
 
23.  

a. P(X > Y) = 
                   

( , )
x y

p x y
>

∑∑  = p(1, 0) + p(2, 0) + p(3, 0) + p(2, 1) + p(3, 1) + p(3, 2) = .03 + .02 + .01 + 

.03 + .01 + .01 = .11. 
 

b. Adding down the columns gives the probabilities associated with the x-values: 
 

x 0 1 2 3 
pX(x) .78 .12 .07 .03 

 
Similarly, adding across the rows gives the probabilities associated with the y-values: 
 

y 0 1 2 
pY(y) .77 .14 .09 

 
c. Test a coordinate, e.g. (0, 0): p(0, 0) = .71, while pX(0) · pY(0) = (.78)(.77) = .6006 ≠ .71. Therefore, X 

and Y are not independent. 
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d. The average number of syntax errors is E(X) = 0(.78) + 1(.12) + 2(.07) + 3(.03) = 0.35, while the 
average number of logic errors is E(Y) = 0(.77) + 1(.14) + 2(.09) = 0.32. 

 
e. By linearity of expectation, E(100 – 4X – 9Y) = 100 – 4E(X) – 9E(Y) = 100 – 4(.35) – 9(.32) = 95.72. 
 

 

25. E(X1 – X2) = ( )
1 2

4 3

1 2 1 2
0 0

( , )
x x

x x p x x
= =

− ⋅∑∑ = (0 – 0)(.08) + (0 – 1)(.07) + … + (4 – 3)(.06) = .15. 

Or, by linearity of expectation, E(X1 – X2) = E(X1) – E(X2), so in this case we could also work out the means 
of X1 and X2 from their marginal distributions: E(X1) = 1.70 and E(X2) = 1.55, so E(X1 – X2) = E(X1) – E(X2) 
= 1.70 – 1.55 = .15. 

 
 
27. The expected value of X, being uniform on [L – A, L + A], is simply the midpoint of the interval, L. Since Y 

has the same distribution, E(Y) = L as well. Finally, since X and Y are independent,  
E(area) = E(XY) = E(X) ⋅ E(Y) = L ⋅ L = L2. 

 
 
29. The amount of time Annie waits for Alvie, if Annie arrives first, is Y – X; similarly, the time Alvie waits for 

Annie is X – Y. Either way, the amount of time the first person waits for the second person is       
h(X, Y) = |X – Y|. Since X and Y are independent, their joint pdf is given by fX(x) · fY(y) = (3x2)(2y) = 6x2y. 
From these, the expected waiting time is  
E[h(X,Y)] = 

1 1 1 1 2

0 0 0 0
( , ) 6x y f x y dxdy x y x ydxdy− ⋅ = − ⋅∫ ∫ ∫ ∫  

( ) ( )
1 1 12 2

0 0 0

1 1 16 6
6 12 4

x

x
x y x ydydx x y x ydydx= − ⋅ + − ⋅ = + =∫ ∫ ∫ ∫ hour, or 15 minutes. 

 

31. Cov(X,Y) = 
2

75
−  and 

2
5X Yµ µ= = . 

E(X2) = 
1 2

0
( )Xx f x dx⋅∫

1 3 2

0

12 112 (1 )
60 5

x x dx= − = =∫ , so V(X) = 
21 2 1

5 5 25
 − = 
 

. 

Similarly, V(Y) =
1
25

, so 
2
75

, 1 1
25 25

2
3

50
75X Yρ −

= = − = −
⋅

. 

 

33. E(X) = 
30 30 2

20 20
( ) 10 .05 25.19 325

7
2

6
9Xxf x dx x kx dx = =+ = ∫ ∫ ; by symmetry, E(Y) = 25.329 also; 

E(XY) = 
30 30 2 2

20 20
( ) 641.44724375

38
xy k x y dxdy =⋅ + =∫ ∫ ⇒  

Cov(X, Y) = 641.447 – (25.329)2 = –.1082. 
 

E(X2) = 
30 2 2

20
10 .05 649.824637040

57
x kx dx + = = ∫  ⇒ V(X) = 649.8246 – (25.329)2 = 8.2664; by 

symmetry, V(Y) = 8.2664 as well; thus, .1082 .0131.
(8.2664)(8.2664)

ρ −
= = −  
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35. E(XY) = (0)(0)(.71) + … + (3)(2)(.01) = .35 ⇒ Cov(X, Y) = E(XY) – E(X)E(Y) = .35 – (.35)(.32) = .238. 
Next, from the marginal distributions, V(X) = E(X2) – [E(X)]2 = .67 – (.35)2 = .5475 and, similarly,         

V(Y) = .3976. Thus, Corr(X, Y) = 
.238

(.5475)(.3976)
 = .51. There is a moderate, direct association between 

the number of syntax errors and the number of logic errors in a program. A direct association indicates that 
programs with a higher-than-average number of syntax errors also tend to have a higher-than-average 
number of logic errors, and vice versa. 

 
37.  

a. Let H = h(X, Y). The variance shortcut formula states that V(H) = E(H2) – [E(H)]2. Applying that 
shortcut formula here yields 2 2( ( , )) ( ( , )) [ ( ( , ))]V h X Y E h X Y E h X Y= − . More explicitly, if X and Y are 

discrete, 
22( ( , )) [ ( , )] ( , ) ( , ) ( , )V h X Y h x y p x y h x y p x y = ⋅ − ⋅ ∑∑ ∑∑ ; if X and Y are continuous, 

2
2( ( , )) [ ( , )] ( , ) ( , ) ( , )V dh X Y h x y f x y h x yd Af yA x = ⋅ − ⋅ ∫∫ ∫∫ . 

b. E[h(X, Y)] = E[max(X, Y)] = 9.60, and E[h2(X, Y)] = E[(max(X, Y))2] = (0)2(.02) + (5)2(.06) + … + 
(15)2(.01) = 105.5, so V(max(X, Y)) = 105.5 – (9.60)2 = 13.34. 

 
 
39. First, by linearity of expectation, aX bY c X Ya b cµ µ µ+ + = ++ . Hence, by definition, 

]
C )ov ( ( )] [ ])( )]

[
,

(
[

(
[

) ( ))(
(

)
( ) aX bY c Z X Y Z

X Y Z

aX bY c Z E aX bY c E aX bYZ a b c Z
E a X b Y Z

cµ µ µ µ µ
µ µ µ

+ ++ + = + + − + + −− = + + −

= − + − −
  

Apply linearity of expectation a second time: 
( )( ) ( )( )]

[( )( )] [( )( )]
Cov( , ) Cov( , )

Cov( , ) [ X Z Y Z

X Z Y Z

X Z b Y Z
aE X Z bE Y

aX bY c Z E a
Z

a X Z b Y Z

µ µ µ µ
µ µ µ µ

− − + − −
= − − + −

+

+ =
−

+

=
 

 
41. Use the previous exercise: Cov(X, Y) = Cov(X, aX + b) = aCov(X, X) = aV(X) ⇒  

so Corr(X,Y) = 
2Var( )

· ·| | | |
X

Y X XX

a
a

aa X
a

σ
σ σ σ σ

= = = 1 if a > 0, and –1 if a < 0. 

 

Section 5.3 
 
43.  

a. E(27X1 + 125X2 + 512X3) = 27E(X1) + 125E(X2) + 512E(X3)  
= 27(200) + 125(250) + 512(100) = 87,850 ft3. 
V(27X1 + 125X2 + 512X3) = 272 V(X1) + 1252 V(X2) + 5122 V(X3) 
= 272 (10)2 + 1252 (12)2 + 5122 (8)2 = 19,100,116 ⇒ SD(27X1 + 125X2 + 512X3) = 4370.37 ft3. 

 
b. The expected value is still correct, but the variance is not because the covariances now also contribute 

to the variance. 
 

c. Let V = volume. From a, E(V) = 87,850 and V(V) = 19,100,116 assuming the X’s are independent. If 
they are also normally distributed, then V is normal, and so 

100,000 87,850
19

( 100,000) 1
,100,116

P V > = −
 −

Φ  
 

 = 1 – Φ(2.78) = .0027. 
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45. Y is normally distributed with ( ) ( )1 2 3 4 5
1 1 5
2 3Yµ µ µ µ µ µ= + − + + = − , and 

2 2 2 2 2 2
1 2 3 4 5

1 1 1 1 1 7.445 2.73
4 4 9 9 9Y Yσ σ σ σ σ σ σ= + + + + = ⇒ = . 

Thus, 0 ( 5)0) 1 6( (1.83) .033
2.73

P Y P Z − − ≥ = ≥ = −Φ = 
 

 and  

( ) 3 ( 5) 3 ( 5)3 3 (0.73 2.93) .
2 7

(2.93) (0 7
.73 2. 3

. 3) .2310P Y P Z P Z− − − − − − ≤ ≤ = ≤ ≤ = ≤ ≤ =  Φ =


Φ


−  

 
 
47. E(X1 + X2 + X3) = E(X1) + E(X2) + E(X3) = 15 + 30 + 20 = 65 min, and  

V(X1 + X2 + X3) = 12 + 22 + 1.52 = 7.25 ⇒ SD(X1 + X2 + X3) = 2.6926 min.  

 Thus, P(X1 + X2 + X3 ≤ 60) = 60 65 ( 1.86) .0314.
2.6926

P Z P Z− ≤ = ≤ − = 
 

 

 
49. Let X1, …, X5 denote morning times and X6, …, X10 denote evening times. 

a. E(X1 + …+ X10) = E(X1) + … + E(X10) = 5E(X1) + 5E(X6) = 5(4) + 5(5) = 45 min. 
 

b. V(X1 + …+ X10) = V(X1) + … + V(X10) = 5V(X1) + 5V(X6) 
64 100 8205 68.33
12 12 12
 = + = =  

. 

 
c. E(X1 – X6) = E(X1) – E(X6) = 4 – 5 = –1 min, while 

V(X1 – X6) = V(X1) + (–1)2V(X6) = 67.13
12

164
12
100

12
64

==+ . 

 
d. E[(X1 + … + X5) – (X6 + … + X10)] = 5(4) – 5(5) = –5 min, while 

V[(X1 + … + X5) – (X6 + … + X10)] = V(X1 + … + X5) + (–1)2V(X6 + … + X10) = 68.33, the same 
variance as for the sum in (b). 

 
 
51.  

a. With M = 5X1 + 10X2, E(M) = 5(2) + 10(4) = 50,  
V(M) = 52 (.5)2 + 102 (1)2 = 106.25 and σM = 10.308. 

 

b. P(75 < M) = 0075.)43.2(
308.10

5075
=<=






 <

− ZPZP . 

 
c. M = A1X1 + A2X2 with the Ai and Xi all independent, so  

E(M) = E(A1X1) + E(A2X2) = E(A1)E(X1) + E(A2)E(X2) = 50. 
 

d. V(M) = E(M2) – [E(M)]2.   Recall that for any rv Y, E(Y2) = V(Y) + [E(Y)]2.   
Thus, E(M2) = ( )2

2
2
22211

2
1

2
1 2 XAXAXAXAE ++  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2
2

2
22211

2
1

2
1 2 XEAEXEAEXEAEXEAE ++=  (by independence) 

= (.25 + 25)(.25 + 4) + 2(5)(2)(10)(4) + (.25 + 100)(1 + 16) = 2611.5625, so  
V(M) = 2611.5625 – (50)2 = 111.5625. 

 
e. E(M) = 50 still, but now Cov(X1, X2) = (.5)(.5)(1.0) = .25, so 

2 2
1 1 1 2 1 2 2 2( ) ( ) 2 Cov( , ) ( )V M a V X a a X X a V X= + + = 6.25 + 2(5)(10)(.25) + 100 = 131.25. 
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53. Let X1 and X2 denote the (constant) speeds of the two planes. 
a. After two hours, the planes have traveled 2X1 km and 2X2 km, respectively, so the second will not have 

caught the first if 2X1 + 10 > 2X2, i.e. if X2 – X1 < 5.  
X2 – X1 has a mean 500 – 520 = –20, variance 100 + 100 = 200, and standard deviation 14.14.  Thus, 

2 1
5 ( 20)( 5) ( 1.77) .9616.

14.14
P X X P Z P Z− − − < = < = < = 

 
 

 
b. After two hours, #1 will be 10 + 2X1 km from where #2 started, whereas #2 will be 2X2 from where it 

started.  Thus, the separation distance will be at most 10 if   
|2X2 – 10 – 2X1| ≤ 10, i.e. –10 ≤ 2X2 – 10 – 2X1 ≤ 10 or 0 ≤ X2 – X1 ≤ 10.  The corresponding 
probability is P(0 ≤ X2 – X1 ≤ 10) = P(1.41 ≤ Z ≤ 2.12) = .9830 – .9207 = .0623. 

 
55.  

a. ( ) ,1
2iE Y p= =  so 

1 1

1
2

( 1)( ) ( ) .
4

n n

i
i i

n nE W i E Y i
= =

+
= ⋅ = =∑ ∑  

 

b. ( ) (1 ) ,1
4iV Y p p= − =  so 2 2

1 1 1

( 1)(2 1)( ) ( ) ( ) .1
244

n n n

i i
i i i

n n nV W V i Y i V Y i
= = =

+ +
= ⋅ = ⋅ = =∑ ∑ ∑  

 
57. The total elapsed time between leaving and returning is T = X1 + X2 + X3 + X4, with  

E(T) = 15 + 5 + 8 + 12 = 40 minutes and V(T) = 42 + 12 + 22 + 32 = 30. T  is normally distributed, and the 
desired value t is the 99th percentile of the lapsed time distribution added to 10a.m.:   

.99 = P(T ≤ t) = 40
30

t − 
Φ 
 

 ⇒ t = 40 2. 033 3+  = 52.76 minutes past 10a.m., or 10:52.76a.m. 

 
59. Note: exp(u) will be used as alternate notation for eu throughout this solution. 

a. Using the theorem from this section, 

fW(w) = fX  fY = 
2 21 1 ( )( ) ( ) exp exp

2 22π 2πX Y
x w xx f w x df x dx

∞− −

∞ ∞

∞

   −
− − −   

   
=∫ ∫  = 

2 2( )1 exp
2π 2

x xx dw∞

∞−

 +
− 
 

−
∫ .  Complete the square inside the exponential function to get 

2 2( )1 exp
2π 2

x xx dw∞

∞−

 +
− 
 

−
∫ = ( )

2
2

/4
2 2 ( /2)1 exp / 4

2π 2π
( / 2)

w
x wex w dxw dx e

−∞

− −

∞ − −

∞ ∞
− −− =∫ ∫ = 

2
2

/4

2π

w
u xe e d

− ∞ −

∞−∫  under the substitution u = x – w/2. 

This last integral is Euler’s famous integral, which equals π ; equivalently, 
21

π
ue−  is the pdf of a 

normal rv with mean 0 and variance 1/2, which establishes the same result (because pdfs must 

integrate to 1). Either way, at long last we have 
2

2
/4

/4( ) π
2π 4π

1w
w

W
e ef w
−

−= = . This is the normal 

pdf with µ = 0 and σ2 = 2, so we have proven that W ~ N(0, 2 ).  
 

b. Since X and Y are independent and normal, W = X + Y is also normal. The mean of W is E(X) + E(Y) = 
0 + 0 = 0 and the variance of W is V(X) + V(Y) = 12 + 12 = 2. This is obviously much easier than 
convolution in this case! 
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61.  
a. Since the conditions of a binomial experiment are clearly met, X ~ Bin(10, 18/38). 

 
b. Similarly, Y ~ Bin(15, 18/38). Notice that X and Y have different n’s but the same p. 
 
c. X + Y is the combined number of times Matt and Liz won. They played a total of 25 games, all 

independent and identical, with p = 18/38 for every game. So, it appears that the conditions of a 
binomial experiment are met again and that, in particular, X + Y ~ Bin(25, 18/38). 

 
d. The mgf of a Bin(n, p) rv is ( ) (1 )t nM t p pe= − + . Using the proposition from this section and the 

independence of X and Y, the mgf of X + Y is 
10 15 2520 18 20 18 20 18( ) ( ) ( )

38 38 38 38 38 38
t t t

X Y X Yt M t M t e e eM + ⋅     = ⋅ = + + +    
  

= 
  

. This is the mgf of a 

Bin(25, 18/38) rv. Hence, by uniqueness of mgfs, X + Y ~ Bin(25, 18/38) as predicted. 
 
e. Let W = X1 + … + Xk. Using the same technique as in d, 

11

1
( ) ( ) ( ) (1 ) (1 ) (1 )k

k

kn n nnt t t
W X XM t M t M t p pe p pe p pe + +== = − + − + − + 

  . This is the mgf of a 

binomial rv with parameters 1 kn n+ +  and p. Hence, by uniqueness of mgfs, W ~ Bin(∑ ni, p). 
 

f. No, for two (equivalent) reasons. Algebraically, we cannot combine the terms in d or e if the p’s differ. 
Going back to c, the combined experiment of 25 trials would not meet the “constant probability” 
condition of a binomial experiment if Matt and Liz’s success probabilities were different. Hence, X + Y 
would not be binomially distributed. 
 

63. This is a simple extension of the previous exercise. The mgf of Xi is 
1 (1 )

irt

t

pe
p e

 
 − − 

. Assuming the X’s are 

independent, the mgf of their sum is 
1 1

1 1
( ) ( ) ( )

1 (1 ) 1 (1 ) 1 (1 )

n

n

n

n

r r r rt t t

X X X X t t tM pe pe pet M t M t
p e p e p e

+ +

+ +

 
= = =  − − − − −

   
   

    −





   . 

This is the mgf of a negative binomial rv with parameters 1 nr r+ +  and p. Hence, by uniqueness of mgfs, 

1 nX X+ +  ~ NB(∑ ri, p). 
 
 

65.  
a. The pdf of X is ( ) x

Xf x e λλ −=  for x > 0, and this is also the pdf of Y. The pdf of W = X + Y is 

fW(w) = fX  fY = ( ) 2( ) ( ) x w x w
X Yx f w x dx e e dxf e dxλ λ λλ λ λ

∞ − − − −

−∞
= ⋅− =∫ ∫ ∫ , where the limits of 

integration are determined by the pair of constraints x > 0 and w – x > 0. These are clearly equivalent to   
0 < x < w, so 2

0

2( ) w ww

W w e df x weλ λλ λ− −== ∫  for w > 0 (since x + y > 0). Matching terms with the 

gamma pdf, we identify this as a gamma distribution with α = 2 and β = 1/λ. 
 

b. If X ~ Exponential(λ) = Gamma(1, 1/λ) and Y ~ Exponential(λ) = Gamma(1, 1/λ) as well, then by the 
previous exercise (with α1 = α2 = 1 and β = 1/λ) we have X + Y ~ Gamma(1 + 1, 1/λ) = Gamma(2, 1/λ). 
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c. More generally, if X1, …, Xn are independent Exponential(λ) rvs, then their sum has a Gamma(n, 1/λ) 
distribution. This can be established through mgfs: 

1 1

1( ) ( )
(1 ( )1/

( )
)n n

n

X X X X nt M t M t
t t t

M
t

λ λ λ
λ λ λ λ+ +

 = = =  − − − 
=

−

  , which is precisely the mgf 

of the Gamma(n, 1/λ) distribution. 
 
 
67.  

a. |1 1
2 2

2 2 2 | 2 2

0 0
] [( ]( 0) 2) [ x x xdV xX E E X x x x d x dxX e e e

∞ ∞ ∞− − −

−∞
= − = = ⋅= =⋅∫ ∫ ∫ . To evaluate this 

integral, use Expression (4.5): 2 3

0
1 (3) 2! 2xx de x

∞ − = Γ = =∫ . 

 
b. See Chapter 4, Exercise 34. 
 
c. By linearity of expectation 1 (( )) 0( ) 0 0n nE E EY X X= + + + + ==  .  

By independence, 1) ( ) (( 2) 2 2n nV X V X nV Y = + + + += =  . 

Again by independence, 
1 2 2 2

1 1 1( ) ( ) ( )
1 1 (1 )n nY X X nM t M t M t

t t t
= = =

− − −
   

 
d. Apply the rescaling property with 1 21/ /

nY na σ= =  and b = / 0
n nY Yµ σ− = : 

2 2

1 1( ) ( )
(1 [ ] (1 / 2 ))n nZ Y n nM t M at

at t n
= = =

− −
. 

 

e. Recall that lim 1
n

a

n

a e
n→∞

 + = 
 

. Rewrite the denominator and take the limit: 

2
2

2 /2/(1 / 2 ) 21
n

n tt
n

t n e− −
= →
 

− + . Thus 
2

2
/2

/2

1( )
n

t
Z t

tM e
e−

→ = , the N(0, 1) mgf. 

 

Section 5.4 
 
69.  

a. ∫∫ ==
xx

X dydyyxfxf
00
2),()(  = 2x, 0 < x < 1. 

 
b. fY|X(y|x) = f(x, y)/fX(x) = 2/2x = 1/x, 0 < y < x. That is, Y|X=x is Uniform on (0, x). We will use this 

repeatedly in what follows. 
 
c. From (b), P(0 < Y < .3| X = .5) = .3/.5 = .6. 
 
d. No, the conditional distribution fY|X(y|x) actually depends on x. 
 
e. From (b), E(Y|X=x) = (0 + x)/2 = x/2.  
 
f. From (b), V(Y|X=x) = (x – 0)2/12 = x2/12. 
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71.  

a. ∫∫
∞ +−∞

==
x

yx

x
X dyedyyxfxf )(2),()(  = 2e-2x, x > 0. 

 
b. fY|X(y|x) = f(x, y)/fX(x) = 2e-(x+y)/2e-2x = ex–y, 0 < x < y. 
 

c. P(Y > 2 | X = 1) = ∫∫
∞ −∞

=
2

1

2
| )1|( dyedyyf y
XY  = e–1 = .3679. 

 
d. No, since fY|X(y|x) actually depends on x. 
 
e. E(Y|X=x) = (1 )x y x y x x

x x
y e dy e ye dy e x e

∞ ∞− − −⋅ = = +∫ ∫  using integration by parts = (1 + x). 

 
f. Using integration by parts and proceeding as in (e), E(Y2|X=x) = … = x2 + 2x + 2.  

Thus, V(Y|X=x) = x2 + 2x + 2 – (1 + x)2 = 1. 
 
 
73.  

a. Y|X=x is Uniform(0, x), so E(Y|X=x) = (0 + x)/2 = x/2 and V(Y|X=x) = (x – 0)2/12 = x2/12. 
 

b. f(x, y) = fX(x) · fY|X(y|x) = 1/(1 – 0) · 1/(x – 0) = 1/x for 0 < y < x < 1. 
 

c. fY(y) = ∫∫ =
11

)/1(),(
yy

dxxdxyxf  = ln(1) – ln(y) = – ln(y), 0 < y < 1. [Note: since 0 < y < 1, ln(y) is 

actually negative, and the pdf is indeed positive.] 
 
d. 

1

0
( ) ( ln )E Y y y dy= −∫ . Make the substitution u = – ln y, y = e–u, dy = –e–u du:  

2 20

0
( ) ( (1/ 2)) (2) 1/ 4u u uE dY e u e ueu du

∞− − −

∞
Γ− = = == ∫ ∫ using Expression (4.5). Similarly, 

2 2( ) 1/ 9 ( ) 1/ 9 (1/ 4) 7 /144E Y V Y= ⇒ = − = . 
 
e. From a, E(Y | X) = X/2. Thus [ ] [ ( | )] [ / 2] [ ] / 2 (1/ 2) / 2 1/ 4E Y E E Y X E X E X= = = = = . (The mean 

of X is 1/2 because X ~ Unif[0, 1].)  Next, applying the law of total variance, 
2 2/12) (1/ 4) ( )( ) [ ( | )] [ ( | )] ( / )2) ( (1/12) (V XY V E Y X E V Y X V X E X V X E= + = + = + . Using the 

uniform distribution, 2 2( ) (1 0) /12 1/1V X == −  and 2 2) ( ) [ ( ) 3( 1/ 2 / 4 1] 1 1 /E V X E XX = + =+ = . Put 
it all together, and ( ) (1/ 4)(1/12) (1/12)(1/ 3) 7 /144V Y = + = . This is a lot easier than dealing with the 
integrals in part d. 
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75.  
a. pY|X(y|1) results from dividing each entry in the x = 1 row of the joint probability table by pX(1) = .34:

|
.08(0 |1) .2353
.34Y Xp = = , |

.20(1 |1) .5882

.34Y Xp = = , |
.06(2 |1) .1765
.34Y Xp = = . 

 
b. pY|X(y|2) is requested; to obtain this divide each entry in the x = 2 row by pX(2) = .50: 

 
y 0 1 2 

pY|X(y|2) .12 .28 .60 

 
c. P(Y ≤ 1 | X = 2) = pY|X(0|2) + pY|X(1|2) = .12 + .28 = .40. 
 
d. pX|Y(x|2) is requested; to obtain this divide each entry in the y = 2 column by pY(2) = .38: 

   
x 0 1 2 

pX|Y(x|2) .0526 .1579 .7895 

 
77.  

a. Y|X=x is Unif[0,x2]. So, E(Y|X=x) = (0+ x2)/2 = x2/2 and V(Y|X=x) = (x2 – 0)2/12 = x4/12. 
 

b. f(x,y) = fX(x) · fY|X(y|x) = 1/(1 – 0) · 1/(x2 – 0) = 1/x2 for 0 < y < x2 < 1. 
 

c. fY(y) = ∫∫ =
1 2 )/1(),(

y
dxxdxyxf  = 11

−
y

, 0 < y < 1. 

 
79.  

a. By considering all 9 possible pairs of numbers David and Peter could select, we find the joint pmf 
p(x,y) displayed in the table below. 
 

x  \  y 1 2 3 
1 1/9 0 0 
2 2/9 1/9 0 
3 2/9 2/9 1/9 

 
b. Adding across the rows, pX(1) = 1/9, pX(2) = 3/9, pX(3) = 5/9. 

 
c. | ( | ) ( , ) / ( )Y X Xp y x p x y p x= , so divide each row by its total from part b. 
 

y 1 2 3 
p(y | 1) 1 0 0 
p(y | 2) 2/3 1/3 0 
p(y | 3) 2/5 2/5 1/5 

 
d. Take the weighted averages from the rows in part c. E(Y | X = 1) = 1, E(Y | X = 2) = 4/3 = 1.33, and              

E(Y | X = 3) = 9/5 = 1.8. 
 

e. Clearly V(Y | X = 1) = 0. From the rows of part c, V(Y | X = 2) = 2/9, and V(Y | X = 3) = 14/25. 
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81. Computations here are similar to the previous two exercises. 
a. Add down the columns of the joint pmf. 

 
x  p(x | 1) p(x | 2) p(x | 3) 
1 1/5 0 0 
2 2/5 1/3 0 
3 2/5 2/3 1 

 
b. From a, E(X | Y = 1) = 1(1/5) + 2(2/5) + 3(2/5) = 11/5; E(X | Y = 2) = 1(0) + 2(1/3) + 3(2/3) = 8/3 = 

2.6667, and E(X | Y = 3) = 3. 
 

c. Similarly, V(X | Y = 1) = 14/25, V(X | Y = 2) = 2/9, and obviously V(X | Y = 3) = V(3) = 0. 
 

 
83.  

a. Since all ten digits are equally likely, pX(x) = 1/10 for x = 0,1,…,9.  
Next, pY|X(y|x) = 1/9 for y = 0,1,…,9, y ≠ x. (That is, any of the 9 remaining digits are equally likely.) 
Combining, p(x, y) = pX(x) ·  pY|X(y|x) = 1/90 for (x,y) satisfying x,y = 0,1,…,9, y ≠ x. 
 

b. E(Y|X = x) = ∑y≠x y pY|X(y|x) = (1/9) ∑y≠x y = (1/9) [0 + 1 + … + 9 – x] = (1/9)(45 – x) = 5 – x/9.  
 

 
85. We have X ~ Poisson(100) and Y|X=x ~ Bin(x, .6). 

a. E(Y|X=x) = np = .6x, and V(Y|X=x) = np(1 – p) = x(.6)(.4) = .24x. 
 

b. From a, E(Y|X) = .6X. Then, from the Law of Total Expectation, E(Y) = E[E(Y|X)] = E(.6X) = .6E(X) = 
.6(100) = 60. This is the common-sense answer given the specified parameters. 

 
c. From a, E(Y|X) = .6X and V(Y|X) = .24X. Since X is Poisson(100), E(X) = V(X) = 100. By the Law of 

Total Variance, 
2( ) ( ( | )) ( ( | )) (. )24 ) (.6 ) .24 ( ) .6 (V Y E V Y X V E Y X E X V X E X XV= + = + = +  = .24(100) + .36(100) = 

60. 
 
 

87. We’re give E(Y|X) = 4X – 104 and SD(Y|X) = .3X – 17. Down the road we’ll need E(X2) = V(X) + [E(X)]2 = 
32 + 702 = 4909. 
By the Law of Total Expectation, the unconditional mean of Y is  
E(Y) = E[E(Y|X)] = E(4X – 104) = 4E(X) – 104 = 4(70) – 104 = 176 pounds. 
By the Law of Total Variance, the unconditional variance of Y is 
V(Y) = V(E(Y | X)) + E(V(Y | X)) = V(4X – 104) + E[(.3X – 17)2] = 42V(X) + E[.09X2 – 10.2X + 289] =   
16(9) + .09(4909) – 10.2(70) + 289 = 160.81. 
Thus, SD(Y) = 12.68 pounds. 

 
 
89.  

a. E(X) = E(1 + N) = 1 + E(N) = 1 + 4p. V(X) = V(1 + N) = V(N) = 4p(1 – p). 
 

b. Let W denote the winnings from one chip. Using the pmf, µ = E(W) = 0(.39) + … + 10,000(.23) = 
$2598 and σ2 = V(W) = 16,518,196. 
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c. By the Law of Total Expectation, E(Y) = E[E(Y|X)] = E[µX] = µ E(X) = 2598(1 + 4p). By the Law of 
Total Variance, V(Y) = V(E(Y | X)) + E(V(Y | X)) = V(µX) + E(σ2X) = µ2V(X) + σ2E(X) =                    
(2598)2 · 4p(1 – p) + 16,518,196(1 + 4p). Simplifying and taking the square root gives 

216518196 93071200 2699841S 6D( ) pY p−= + . 
 
d. When p = 0, E(Y) = $2598 and SD(Y) = $4064. If the contestant always guesses incorrectly, s/he will 

get exactly 1 chip and the answers from b apply. 
When p = .5, E(Y) = $7794 and SD(Y) = $7504.  
When p = 1, E(Y) = $12,990 and SD(Y) = $9088. 
As the ability to acquire chips improves, so does the contestant’s expected payout. The variability 
around that expectation also increases (since the set of options widens), but the standard deviation does 
not quite increase linearly with p. 
 

Section 5.5 
 
91.  

a. Since X and W are bivariate normal, X + W has a (univariate) normal distribution, with mean E(X+W) 
= E(X) + E(W) = 496 + 488 = 984 and variance given by 
V(X + W) = V(X) + V(W) + 2 Cov(X, W) = V(X) + V(W) + 2 SD(X) SD(W) Corr(X, W) = 1142 + 1142 + 
2(114)(114)(.5) = 38,988. Equivalently, SD(X + W) = 38, 988  = 197.45. 
That is, X + W ~ N(984, 197.45). 
 

b. P(X + W > 1200) = 1 – 1200 984
197.45

− Φ 
 

 = 1 – Φ(1.09) = .1379. 

c. We’re looking for the 90th percentile of the N(984, 197.45) distribution: 

.9 = 984
197.45
x − Φ 

 
⇒ 

984
197.45
x −

= 1.28 ⇒ x = 984 + 1.28(197.45) = 1237. 

 

93. As stated in the section, Y|X=x is normal with mean 1
2 2

1

x µ
µ ρσ

σ
 −

+  
 

 and variance 2 2
2(1 )ρ σ− . 

a. Substitute into the above expressions: mean = 170 + 68 70.9(20)
3
− 

 
 

= 158 lbs, variance =                  

(1 – .92)(20)2 = 76, sd = 8.72 lbs. That is, the weight distribution of 5’8” tall American males is 
N(158,8.72). 
 

b. Similarly, x = 70 returns mean = 170 lbs and sd = 8.72 lbs, so the weight distribution of 5’10” tall 
American males is N(170,8.72). These two conditional distributions are both normal and both have 
standard deviation equal to 7.82 lbs, but the average weight differs by height. 

 

c. Plug in x = 72 as above to get Y|X=72 ~ N(182, 8.72). Thus, P(Y < 180 | X = 72) = 180 182
8.72
− Φ 

 
 = 

Φ(–0.23) = .4090. 
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95.  
a. The mean is μ2 + ρσ2(x – μ1)/σ1 = 70 + (.71)(15)(x – 73)/12 = .8875x + 5.2125. 

 
b. The variance is σ2

2(1 – ρ2) = 152(1 – .712) = 111.5775. 
 
c. From b, sd =10.563. 
 

d. From a, the mean when x = 80 is 76.2125. So, P(Y > 90|X = 80) = 90 76.2125
10.563

1 −Φ− 
 
 

 = 1 – Φ(1.31) 

= .0951. 
 

 
97.  

a. The mean is μ2 + ρσ2(x – μ1)/σ1 = 30 + (.8)(5)(x – 20)/2 = 2x – 10. 
 

b. The variance is σ2
2(1 – ρ2) = 52(1 – .82) = 9. 

 
c. From b, sd = 3. 

 

d. From a, the mean when x = 25 is 40. So, P(Y > 46|X = 25) = 46 401
3
−− Φ 

 
 = 1 – Φ(2) = .0228. 

 
99.  

a. P(50 < X < 100, 20 < Y < 25) = P(X < 100, Y < 25) – P(X < 50, Y < 25) – P(X < 100,Y < 20) +           
P(X < 50, Y < 20) = .3333 – .1274 – .1274 + .0625 = .1410. 
 

b. If X and Y are independent, then P(50 < X < 100, 20 < Y < 25) = P(50 < X < 100) · P(20 < Y < 25) =  
[Φ(0) – Φ(–1)] [Φ(0) – Φ(–1)] = (.3413)2 = .1165. This is smaller than (a). When ρ > 0, it’s more likely 
that the event X < 100 (its mean) coincides with Y < 25 (its mean). 

 
 

Section 5.6 
 

101. If X1 and X2 are independent, standard normal rvs, then 
2
1 2

2/2 /2
1 2 1 1 2 2

1 1, ) ( ) ( )
2

(
2π π

x xx f ef xx x f e− −= ⋅ = ⋅  

= 
2 2
1 2( )/ 21

2π
x xe− +  . 

a. Solve the given equations for X1 and X2: by adding, Y1 + Y2 = 2X1 ⇒ X1 = (Y1 + Y2)/2. Similarly, 
subtracting yields X2 = (Y1 – Y2)/2. Hence, the Jacobian of this transformation is  

1 1 1

1

2

2 2 2

1/ 2 1/ 2
det( ) (1/ 2)( 1/ 2) (1/ 2)(1/ 2) 1/ 2

1/ 2
/ /
/ 1 2/ /

x y x y
M

x y x y
∂ ∂ ∂ ∂

= = = − − = −
∂ ∂ ∂ ∂ −

  

Also, the sum of squares in the exponent of the joint pdf above can be re-written: 
2 2 2 2 2 2 2 2

2 2 1 2 1 2 1 1 2 2 1 1 2 2 1 2
1 2 2 2 2

2
4

2y y yy y y y y y y yx y y yx − + +   = + = = 
+ + + − +

 
   

+   

Finally, the joint pdf of Y1 and Y2 is  
2 2 2 2
1 2 1 2(( )/ 2)/2 ( )/4

1 2( | 1 /1 1, )
2π 4π

2 |y y y yf e ey y − + − +⋅= − =   
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b. To obtain the marginal pdf of Y1, integrate out Y2: 

2 2 2 2
21 2 1

1

( )/ 4 /4 /4
1 2 2

1 1 1( )
4π 4π 4π

y y y y
Y y ef e dy e dy

∞ ∞− + − −

−∞ −∞
= =∫ ∫   

The integrand is the pdf of a normal distribution with µ = 0 and σ2 = 2 (so 2σ2 = 4). Since it’s a pdf, its 

integral is 1, and we’re left with 
2
1

1

/4
1

1( )
4π

y
Y y ef −= . This is (also) a normal pdf with mean 0 and 

variance 2, which we know to be the distribution of the sum of two independent N(0, 1) rvs. 
 

c. Yes, Y1 and Y2 are independent. Repeating the math in b to obtain the marginal pdf of Y2 yields 
2
2

2

/4
2

1( )
4π

y
Y y ef −= , from which we see that 1 21 2 1 2, ) ( ) )( (Y Yy f y ff y y= ⋅  . Thus, by definition, Y1 and 

Y2 are independent. 
 
 

103. Let Y = X1 + X2 and W = X2 – X1, so X1 = (Y – W)/2 and X2 = (Y + W)/2. We will find their joint distribution, 
and then their marginal distributions to answer a and b.  

The Jacobian of the transformation is 






 −
2/12/1
2/12/1

det  = 1/2.  

Graph the triangle 0 ≤ x1 ≤ x2 ≤ 1 and transform this into the (y, w) plane. The result is the triangle bounded 
by y = 0, w = y, and w= 2 – y. Therefore, on this triangle, the joint pdf of Y and W is  

1( , ) 2
2 2 2

y w y wf y w y− + = + ⋅ = 
 

. 

 

a. For 0 ≤ y ≤ 1, ∫=
y

Y ydwyf
0

)(  = y2; for 1 ≤ y ≤ 2, ∫
−

=
y

Y ydwyf
2

0
)(  = y(2 – y). 

 

b. For 0 ≤ w ≤ 1, ∫
−

=
w

w
W ydywf

2
)(  = … = 2(1 – w). 

 
 

105. Solving for the X’s gives X1 = Y1, X2 = Y2/Y1, and X3 = Y3/Y2. The Jacobian of the transformation is 
















−
−−

2

1

/100
/10

1
det

y
y  = 1/y1y2; the dashes indicate partial derivatives that don’t matter. Thus, the joint pdf 

of the Y’s is  
3

1 2 3 3 1 2
1 2

8
( , , 8 /) 1y y y yy

y
y

f y
y

⋅ ==  for 0 < y3 < y2 < y1 < 1. The marginal pdf of Y3 is 

2 3
3

3 3

1 1 1 03 3
1 2 2 2 3ln( )3

1 2 2

( )
8 8

ln( ) 8
y y yY y

y y
dy dy y dy y uduf

y
y

y y
= − −= =∫ ∫ ∫ ∫  = 4y3[ln(y3)]2 for 0 < y3 < 1. 
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107. If U ~ Unif(0, 1), then Y = –2ln(U) has an exponential distribution with parameter λ = ½ (mean 2); see the 
section on one-variable transformations in the previous chapter. Likewise, 2πU is Uniform on (0, 2π). 
Hence, Y1, and Y2 described here are precisely the random variables that result in the previous exercise, and 

the transformations z1 = )cos( 21 yy , z2 = )sin( 21 yy  restore the original independent standard normal 
random variables in that exercise. 
 

Section 5.7 
 
109.  

a. f(x) = 1/10 → F(x) = x/10 → g5(y) = 5[y/10]4[1/10] = 5y4/105 for 0 < y < 10. Hence, E(Y5) = 

∫ ⋅
10

0

54 10/5 dyyy  = 50/6, or 8.33 minutes. 

 
b. By the same sort of computation as in a, E(Y1) = 10/6, and so E(Y5 – Y1) = 50/6 – 10/6 = 40/6, or 6.67 

minutes. 
 

c. The median waiting time is Y3; its pdf is g3(y) = 
!2!1!2

!5
[F(y)]2f(y)[1 – F(y)]2 = 30y2(10 – y)2/105 for       0 

< y < 10. By direct integration, or by symmetry, E(Y3) = 5 minutes (which is also the mean and median 
of the original Unif[0, 10] distribution). 

 

d. ∫ ⋅=
10

0

5422
5 10/5)( dyyyYE  = 500/7, so V(Y5) = 500/7 – (50/6)2 = 125/63 = 1.984, from which SD(Y5) 

= 1.409 minutes. 
 
 

111. The joint pdf of the sample minimum and maximum is 
1 1 5 1 1 5 5

1,5 1 5 1 5 1 5 1 5

3
5 1 1 55

5!, ) [ ( )] ) ( )] )] ) ( )
(1 1)!(5 1 1)!(5 5)!
20 ( ) 10

1

( [ ( [1 ( (

,
0

  0

g y F y F y f yy F y F y f y

y y yy

− − − −= −
− − − −

< <− <

−

=
 

The pdf of Y1 is 
4

41
1 1 15

1 5 (10
1

( ) 5 1 )
10 0 10

g yy y = −  −
 

⋅ = . So, the conditional pdf of Y5 given Y1 = 4 is  

1,5 5 3
5 1 5 54

1

(4, ) 4| 4) ( 4) 10
(4)

( ,  
6

  4
g y

g y
g

y yy <= = = = − <

. 

The conditional expectation is 
10 3

5 1 5 5 1 5 5 5 544

44) | 4) ( 4) 8.8 minutes.
6

( | (E Y y y dy y yY g dyy= = = = − = =∫ ∫   
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113. Let the original times (in hours after noon) be X1, …, Xn, which we’re assuming are Unif[0, 1]. Their pdf is 

1 and cdf is x, so the pdf of the kth order statistic is gk(y) = knk yy
knk

n −− −
−−

)1(
)!()!1(

! 1 , which we can 

recognize as the Beta(k, n – k + 1) distribution. The expected value, from the Beta formulas, is then 

11
)(

+
=

+−+
=

n
k

knk
kYE k . The expected ordered arrival times are evenly spaced throughout the hour, 

1/(n+1) hours apart. (For example, if n = 5, the arrival times are 1/6, …, 5/6 hours past noon, aka 12:10pm, 
12:20pm, …, 12:50pm.) 
 
 

115. The pdf of the underlying population distribution is f(x) = θxθ–1. The pdf of Yi is    
iniini

i yy
ini

nyyy
ini

nyg −−−−− −
−−

=−
−−

= ]1[
)!()!1(

!][]1[][
)!()!1(

!)( 111 θθθθθ θθ . Thus, 

∫∫ −−
−−

==
1

0

1

0
]1[

)!()!1(
!)()( dyyy

ini
ndyyygYE ini

ii
θθθ  = [via the substitution u = yθ] 

1/ 11 1 1/ 1

0 0

! ![1 ] (1 )
( 1)!( )! ( 1)!( )!

i n i i n in u nu u du u u du
i n i i n i

θ
θθ

θ

−
− + − −− = −

− − − −∫ ∫ .  

 
The integral is the “kernel” of the Beta(i + 1/θ, n – i + 1) distribution, and so this entire expression equals 

)1/1()!1(
)/1(!

)1/1(
)1()/1(

)!()!1(
!

++Γ−
+Γ

=
++Γ

+−Γ+Γ
−− θ

θ
θ

θ
ni
in

n
ini

ini
n . Similarly, 

)1/2()!1(
)/2(!)( 2

++Γ−
+Γ

=
θ
θ

ni
inYE i , 

from which 
2

! ( 2 / ) ! ( 1/ )(
( 1)! ( 2 / 1) ( 1)! ( 1)

)
1/i

n i n iV Y
i n i n

θ θ
θ θ

 Γ + Γ +
= −  − Γ + + − Γ + + 

. 

 
 

117. f(x) = 3/x4 for x > 1 ⇒ F(x) = 
1

4 33 / 1
x

yy xd −= −∫  for x > 1. 

a. P(at least one claim > $5000) = 1 – P(all 3 claims are ≤ $5000) = 1 – P(X1 ≤ 5 ∩ X2 ≤ 5 ∩ X3 ≤ 5) =     
1 – F(5) · F(5) · F(5) by independence = 1 – (1 – 5–3)3 = .0238. 
 

b. The pdf of Y3, the largest claim, is 3 1 4 3 2 4 7 10
3 ( ) 3 ( )[ ( )] )[3(3 9] (1 2 )g y yy f F y y yy y− − − − − −= = += − −  for 

y > 1. Hence, 4 7 10 3 6 9
3 1 1

( 9( 9 () 2 ) 2 )y dyE Y y y y y yy dy
∞ ∞− − − − − −− −= ⋅ + = +∫ ∫  = 2.025, or $2,025. 

 
 

119. As suggested in the section, divide the number line into five intervals: (−∞, yi], (yi, yi +  Δ1], (yi +  Δ1, yj], 
(yj, yj +  Δ2], and (yj +  Δ2, ∞). For a rv X having cdf F, the probability X falls into these five intervals are   
p1 = P(X ≤ yi) = F(yi), p2 = F(yi +  Δ1) – F(yi) ≈ f(yi)Δ1, p3 = F(yj) – F(yi +  Δ1), p4 = F(yj +  Δ2) – F(yj) ≈ 
f(yj)Δ2, and p5 = P(X > yj +  Δ2) = 1 – F(yj +  Δ2).  
 
Now consider a random sample of size n from this distribution. Let Yi and Yj denote the ith and jth smallest 
values (order statistics) with i < j.  It is unlikely that more than one X will fall in the 2nd interval or the 4th 
interval, since they are very small (widths Δ1 and Δ2). So, the event that Yi falls in the 2nd interval and Yj 
falls in the 4th interval is approximately the probability that: i –1 of the X’s falls in the 1st interval; one X 
(the ith smallest) falls in the 2nd interval; j – i – 1fall in the 3rd interval; one X (the jth smallest) falls in the 
4th interval; and the largest n – j X’s fall in the 5th interval. Apply the multinomial formula: 
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1 1 1 1
1 1 2 32 4 5

1 1
1 1 2 2

!
( 1)!1!( 1)!1!( )!

! )] ) ) ( )] ) )]
(

( , )

[ ( ( [ (
1)!( 1)!( )

( [1 (
!

i j i n j
i i i

i j i n j
i j i j j

j j j

i

P y y p p p

F y

nY y Y y p p
i j i n j

n F y
i j i n j

f y F y f y F y

− − − −

− − − −

< ≤ + ∆ < ≤ + ∆ ≈
− − − −

≈ ∆ − + ∆ + ∆−∆
− − − −

   

Dividing the left-hand side by Δ1Δ2 and letting Δ1 → 0, Δ2 → 0 yields the joint pdf g(yi, yj). Taking the 
same action on the right-hand side returns 

1 1! ( ) ) ( )] [1 ( )] ) ( )
( 1)!( 1)!

(
!

(
( )

[i j i n j
i j i j i j

n F y F y F y f y
i

F y f y
j i n j

− − − −− −
− − − −

, as claimed. 

 
 
121.  

a. Substitute i = 1 and j = n to get 
1 1

1, 1 1 1

2
1 1 1

!, ) [ ( ) ( )] ) ( )
(1 1)!( 1 1)!( )!
( 1)[ ( ) ( )] ) ( )   fo

(

r 

(

(

n
n n n n

n
n n n

g y f y

f y

ny F y F y f y
n n n

n n F y F y f y y y

− −

−

= −
− − − −

= − − <

 

 
b. Let 2 1nYW W Y== −  (drop the subscript “2”) and 1 1W Y= . The Jacobian of this transformation is 

clearly 1. With 1 1Y W=  and 1 1n W W WY Y + == + , the desired joint pdf is 
2

1 1 1 1 1, ) ( 1)[ ( )] ) ( )   for 0( ) ( (nf w F ww f ww n n F w f w w w−= − −+ + > . 
To find the marginal pdf of the range, integrate out the other variable, W1: 

 2
1 1 1 1 1) ( 1)[ ( )] ) ( )    ( ) ( (n

W wf wn n FF w w w f w w df w−= − −+ +∫ . 
 

c. For the Uniform[0, 1] distribution, f(x) = 1 and F(x) = x. The limits 1 10 ny y≤ < ≤  are equivalent to 

1 1 10 w w w≤ ≤ + ≤ , from which the dw1 limits are 10 1w w≤ ≤ − . Hence, 
1 12 2

1 1 1 10 0
2

) ( 1)[( ] ( 1) 1

( 1) 1

( ) 1 1

(1 )   for 0

w wn n
W

n

f ww

w

w n n w w d n n w dw

n n w w

− −− −

−

− ⋅= − + = −

= −

⋅

− ≤ ≤

∫ ∫  

That is, the sample range has a Beta(n – 1, 2) distribution. 
 
 

Supplementary Exercises 
 
123. Let X and Y be the transmission times, so the joint pdf of X and Y is 

( )( , ) ( ) ( ) x y x y
X Yx f yf x y e ef e− − − += =⋅ =  for x, y > 0. Define T = 2X + Y = the total cost to send the two 

messages. The cdf of T is given by  
( ) ( ) (2 ) ( 2 )T t P T t P XF Y t P Y t X= ≤ = + ≤ = ≤ − . For X > t/2, this probability is zero (since Y can’t be 

negative). Otherwise, for X ≤ t/2,  
/2 2 ( ) /2

0 0
( 2 ) 1 2

t t x x y t tt X e dy eP xY d e
− − + − −≤ − = = = − +∫ ∫   for t > 0. Thus, the pdf of T is 

/2( ) ( ) t t
T Tf t eF t e− −′ −= =  for t > 0. 
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125.  
 
 
 
 
 
 
 

a. 
20 30 30 30

0 20 20 0
1 ( , )

x x

x
f x y dxdy kxydydx kxydydx

∞ ∞ − −

−∞ −∞ −
= = +∫ ∫ ∫ ∫ ∫ ∫

81,250 3
3 81,250

k k= ⋅ ⇒ = . 

 

b. 
30 2

20
30 2 31

20

(250 10 )
( )

(450 30 )

x

x
X x

kxydy k x x
f x

kxydy k x x x

−

−

−

 = −= 
 = − +

∫
∫

 
0 20
20 30

x
x

≤ ≤
≤ ≤

 

and, by symmetry, fY(y) is obtained by substituting y for x in fX(x).  Since fX(25) > 0 and fY(25) > 0 but 
f(25, 25) = 0, fX(x) ⋅ fY(y) ≠ f(x, y) for all x, y and so X and Y are not independent. 

 

c. 
20 25 25 25

0 20 20 0
( 25)

x x

x
P X Y kxydydx kxydydx

− −

−
+ ≤ = +∫ ∫ ∫ ∫

3 230,625 .355
81,250 24

= ⋅ =  

 
d. ( )20 2

0
( ) ( ) ( ) 2 ( ) 2 250 10E X Y E X E Y E X x k x x dx+ = + = = ⋅ −∫  

 

( )30 2 31
220

2 450 30x k x x x dx+ ⋅ − +∫ 2 (351,666.67) 25.969k= = lb. 

e. 
20 30 2 2

0 20
( ) ( , )

x

x
E XY xy f x y dxdy kx y dydx

∞ ∞ −

−∞ −∞ −
= ⋅ =∫ ∫ ∫ ∫

30 30 2 2

20 0

33,250,000 136.4103
3 3

x kkx y dydx
−

+ = ⋅ =∫ ∫ , so 

 Cov(X, Y) = 136.4103 – (12.9845)2 = –32.19. Also, E(X2) = E(Y2) = 204.6154, so 
2 2 2204.6154 (12.9845) 36.0182x yσ σ= = − = and 

32.19 .894
36.0182

ρ −
= = − . 

 
f. V(X + Y) = V(X) + V(Y) + 2Cov(X, Y) = 7.66. 

 
 

127. ∫ ∫ ⋅−+=−+
1

0

1

0

22 .),()()( dxdyyxftyxtYXE   To find the minimizing value of t, take the derivative with 

respect to t and equate it to 0: 

tdxdyyxtfyxftyx =⇒=−−+= ∫ ∫∫ ∫
1

0

1

0

1

0

1

0
),(0),()1)((20 )(),()(

1

0

1

0
YXEdxdyyxfyx +=⋅+= ∫ ∫ , so the best 

prediction is the individual’s expected score ( = 1.167). 
 
 
 
  

30=+ yx

20=+ yx
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129.  

a. First, 2 2 2
1 2 1 2) ( 1 ) ( 1 ( ) (0) 1 (0) 0( ) .E V E Z Z E Z E Zρ ρ ρ ρ ρ ρ= − + −+ += − = =  Second, since Z1 

and Z2 are independent, 

 
2

2 2 2 2 2
1 2 1 2) ( 1 ) ( 1 ( ) (1) (1 )(1) 1.( )V V V VV Z Z Z Zρ ρ ρ ρ ρ ρ= − =  + + + − = − =  

 

b. 
2 2

1 1 1 2 1 1 1 2

2 2
1 1 2

C

.

ov( Cov( Cov( Cov

1

(

1Cov(

, ) , 1 ) , ) 1 , )

Var( ) , ) (1) (0)

U Z Z Z

Z

V Z Z Z Z

Z Z

ρ ρ ρ ρ

ρ ρ ρ ρ ρ

= − = + −

= + − =

+

+ − =
    

 

c. 1 2

2

Cov( , ), ) .
SD( )SD( ) (1

C
)(1

orr(
)

U VU V
U V

ρ ρ= = =   

 
131.  

a.  

 
 

b. By the Law of Total Probability, A = ∑
∞

=

∞

=

=∩=⇒=∩
0

1
0

1 }){()(}{
xx

xXAPAPxXA


 = 

∑∑
∞

=

∞

=

====
0

1
0

11 )()|()()|(
xx

xpxXAPxXPxXAP . With x members in generation 1, the process 

becomes extinct iff these x new, independent branching processes all become extinct. By definition, 
the extinction probability for each new branch is P(A) = p*, and independence implies )|( 1 xXAP =  = 

(p*)x. Therefore, ∑
∞

=

=
0

)(*)(*
x

x xppp . 

 

c. Check p* = 1: ∑∑
∞

=

∞

=

=
00

)()()1(
xx

x xpxp  = 1 = p*. [We’ll drop the * notation from here forward.]  

In the first case, we get p = .3 + .5p + .2p2. Solving for p gives p = 3/2 and p = 1; the smaller value,       
p = 1, is the extinction probability. Why will this model die off with probability 1? Because the 
expected number of progeny from a single individual is 0(.3)+1(.5)+2(.2) = .9 < 1.  
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On the other hand, the second case gives p = .2 + .5p + .3p2, whose solutions are p = 1 and p = 2/3. The 
extinction probability is the smaller value, p = 2/3. Why does this model have positive probability of 
eternal survival? Because the expected number of progeny from a single individual is 0(.2)+1(.5)+2(.3) 
= 1.1 > 1. 

 
 
133.  

a. Use a sort of inclusion-exclusion principle:  
P(a ≤ X ≤ b, c ≤ Y ≤ d) = P(X ≤ b, Y ≤ d) – P(X < a, Y ≤ d) – P(X ≤ b, Y < c) + P(X < a, Y < c).  
Then, since these variables are continuous, we may write  
P(a ≤ X ≤ b, c ≤ Y ≤ d) = F(b, d) – F(a, d) – F(b, c) + F(a, c). 

 
b. In the discrete case, the strict inequalities in (a) must be re-written as follows:  

P(a ≤ X ≤ b, c ≤ Y ≤ d) = P(X ≤ b, Y ≤ d) – P(X ≤ a – 1, Y ≤ d) – P(X ≤ b, Y ≤ c – 1) +  
P(X ≤ a – 1, Y ≤ c – 1) = F(b, d) – F(a – 1, d) – F(b, c – 1) + F(a – 1, c – 1). For the values specified, 
this becomes F(10,6) – F(4,6) – F(10,1) + F(4,1). 

 
c. Use the cumulative joint cdf table below. At each (x*, y*), F(x*, y*) is the sum of the probabilities at 

points (x, y) such that x ≤ x* and y ≤ y*. 
 F(x, y)  x 
   100 250 
 200  .50 1 
y 100  .30 .50 
     0  .20 .25 

 
d. Integrating long-hand and exhausting all possible options for (x,y) pairs, we arrive at the following: 

F(x, y) = .6x2y + .4xy3, 0 ≤ x , y ≤ 1; F(x, y) = 0, x ≤ 0 or y ≤ 0; F(x, y) = .6x2 + .4x, 0 ≤ x ≤ 1, y > 1;  
F(x, y) = .6y + .4y3, x > 1, 0 ≤ y ≤ 1; and, obviously, F(x, y) = 1, x > 1, y > 1. (Whew!)  
Thus, from (a), P(.25 ≤ x ≤ .75, .25 ≤ y ≤ .75) = F(.75,.75) – F(.25,.75) – F(.75,.25) + F(.25,.25) = … 
=.23125. [This only requires the main form of F(x, y); i.e., that for 0 ≤ x, y ≤ 1.] 
 

e. Again, we proceed on a case-by case basis. The results are: 
F(x, y) = 6x2y2, x+ y ≤ 1, 0 ≤ x ≤ 1; 0 ≤ y ≤ 1; 
F(x, y) = 3x4 - 8x3 + 6x2 + 3y4 – 8y3 + 6y2 - 1, x+ y > 1, x ≤ 1, y ≤ 1; 
F(x, y) = 0, x ≤ 0; F(x, y) = 0, y ≤ 0; 
F(x, y) = 3x4 - 8x3 + 6x2 , 0 ≤ x ≤ 1, y > 1; 
F(x, y) = 3y4 – 8y3 + 6y2 , 0 ≤ y ≤ 1, x > 1; and, obviously, 
F(x, y) = 1, x > 1, y > 1. 

 
 

135.  
a. For an individual customer, the expected number of packages is 1(.4)+2(.3)+3(.2)+4(.1) = 2 with a 

variance of 1 (by direct computation). Given X=x, Y is the sum of x independent such customers, so 
E(Y|X=x) = x(2) = 2x and V(Y|X=x) = x(1) = x. 

 
b. By the law of total expectation, E(Y) = E[E(Y|X)] = E(2X) = 2E(X) = 2(20) = 40. 

 
c. By the law of total variance, V(Y) = V(E(Y|X)) + E(V(Y|X)) = V(2X) + E(X) = 4V(X) + E(X) =             

4(20) + 20 = 100. (Recall that the mean and variance of a Poisson rv are equal.) 
 
 
 
 



Chapter 5:  Joint Probability Distributions and Their Applications 

 24 

137. Let a = 1/1000 for notational ease. W is the maximum of the two exponential rvs, so its pdf is fW(w) = 

2FX(w)fX(w) = 2(1 – e-aw)ae–aw= 2ae–aw(1 – e–aw). From this, MW(t) = E[etW] = ∫
∞ −− −

0
)1(2 dweaee awawtw  = 

∫∫
∞ −−∞ −− −

0

)2(

0

)( 22 dweadwea wtawta  = 
)2)((

2
2

22 2

tata
a

ta
a

ta
a

−−
=

−
−

−
 = 

)10002)(10001(
2

tt −−
. From this, 

E[W] = )0(WM ′  = 1500 hours. 
 
 

139. The roll-up procedure is not valid for the 75th percentile unless σ1 = 0 and/or σ2 = 0, as described below. 
Sum of percentiles: 1 1 2 2 1 2 1 2( ) ( ) ( )z z zµ σ µ σ µ µ σ σ+ + + = + + +  

Percentile of sums: 2
11
2

22( ) zµ µ σ σ+ + +  

These are equal when z = 0 (i.e. for the median) or in the unusual case when 
1 2

2 2
1 2σ σ σ σ+ = + , which 

happens when σ1 = 0 and/or σ2 = 0. 
 
 

141.  
a. Let X1, …, X12 denote the weights for the business-class passengers and Y1, …, Y50 denote the tourist-

class weights.  Then T = total weight = X1 + … + X12 + Y1 + … + Y50 = X + Y. 
E(X) = 12E(X1) = 12(30) = 360; V(X) = 12 V(X1) = 12(36) = 432. 
E(Y) = 50E(Y1) = 50(40) = 2000; V(Y) = 50 V(Y1) = 50(100) = 5000. 
Thus E(T) = E(X) + E(Y) = 360 + 2000 = 2360, 
and V(T) = V(X) + V(Y) = 432 + 5000 = 5432 ⇒ SD(T) = 73.7021. 

 

b. 2500 2360( 2500)
73.7021

P T −= Φ ≤  
 

= Φ(1.90) = .9713. 

 
 

143. The student will not be late if X1 + X3 ≤ X2, i.e. if X1 – X2 + X3 ≤ 0.  This linear combination has mean –2 

and variance 4.25, so 1 2 3 (.97)
4.25

0 ( 2)( 0) .8340P X X X − − 
− + ≤ = = = Φ

 
Φ . 

 
 

145.  
a. 2 2

1 1 2 2( ) ( ) ( ) ( )W EV X V W E V W E V Xσ σ= + = + = + =  and  

1 11 2 1 2 2 2Cov( , ) Cov( , ) Cov( , ) Cov( , ) Cov( , ) Cov( , )X X W E W E W W W E E W E E= + + = + + + =         
V(W) + 0 + 0 + 0 = 2

Wσ  . 

 Thus, 
2 2

2 22 2

1 2

1 2
2 2

Cov(
SD( )SD(

, )
)

W W

W EW E W E

XX
X X

σ σ
ρ

σ σσ σ σ σ
= = =

++ ⋅ +
. 

b. 
2

2 2

1 .9999
1 .01

ρ = =
+

. 
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147. [ ]1 1 1
1 2 3 4 10 15 20( ) ( , , , ) 120 26.E Y h µ µ µ µ= = + + =



 

The partial derivatives of 1 2 3 4( , , , )h µ µ µ µ with respect to x1, x2, x3, and x4 are 4
2
1

,x
x

−  4
2
2

,x
x

−  4
2
3

,x
x

−  and 

1 2 3

1 1 1
x x x
+ + , respectively.  Substituting x1 = 10, x2 = 15, x3 = 20, and x4 = 120 gives –1.2, –.5333, –.3000, 

and .2167, respectively, so V(Y) = (1)(–1.2)2 + (1)(–.5333)2 + (1.5)(–.3000)2 + (4.0)(.2167)2 = 2.6783, and 
the approximate sd of Y is 1.64. 
 
 

149.  
a. The marginal pdf of X is 

2 2

2
2

2
2

2
2

[(ln ) (ln ) ]/2

0

[(ln ) ]/2
[(ln ) ]/2

0

[(ln ) ]/2
/2

[(ln ) ]/2
/2

1( ) [1 sin(2π ln )sin(2π ln )]  
2π

1 [1 sin(2π ln )sin(2π ln )]
2π

1 [1 sin(2π ln )sin(2π )]
2π
1

2π

x y

X

x
y

x
u

x
u

ef x x y dy
xy

e dye x y
x y

e e x u du
x

e e du
x

− +∞

− ∞ −

− ∞ −

−∞

− ∞ −

−∞

= +

= +

= +

= +

∫

∫

∫

∫
2 /2sin(2π ln ) sin(2π )ux e u du

∞ −

−∞

 
  ∫

 

The first integral is 2π , since the integrand is the N(0, 1) pdf without the constant. The second 
integral is 0, since the integral is an odd function over (–∞, ∞). Hence, the final answer is 

2
2

[(ln ) ]/2
[(ln ) ]/21 1 1( )

2π 2π 2π

x
x

X
ef x e

x x

−
−= ⋅ = , the lognormal pdf with µ = 0 and σ = 1.  

By symmetry, this is also the marginal pdf of Y. 
 

b. The conditional distribution of Y given X = x is  
2[(ln ) ]/2

[1 sin(2π ln )sin(2π ln )]
( ) 2π

( , )( | )
y

X

e x y
x y

f x yf y x
f

−

= += , from which  

2

2
2

[(ln ) ]/2

0

[(ln ) ]/2
[(ln ) ]/2

0 0

| ) [1 sin(2π ln )sin(2π ln )]
2π

sin(2π ln ) sin(2π ln

(

2π π

1

)
2

y
n n

y
n n y

eX x x y dy
y

e xdy e y
y

E

y

Y y

dyy y

−∞

−∞ ∞ −

⋅

⋅

= +

= + ⋅

= ∫

∫ ∫
  

The first integral is 
2[(ln ) ]/2

0 0
( ) ( )

2π

y
n n n

Y
e dy f y dy E Y

y
y y

−∞ ∞
⋅ =⋅=∫ ∫ . So, the goal is now to show that the 

second integral equals zero. For the second integral, make the suggested substitution ln(y) = u + n, for 
which du = dy/y and y = eu+n: 

2 2 2 2[(ln ) ]/2 ( ) /2 /2 /2

0
sin(2π ln ) ) sin(2π( )) si ( 2π )( n 2πn y u n n u n u ne y e udyy n du e u n d

y
e u

∞ ∞ ∞− + − + − +

−∞ −∞
⋅ ⋅= + = +∫ ∫ ∫   

= 
2 2 2 2/2 /2 /2 /2sin(2π 2π ) sin(2π )n u n ue e u n du e e u du

∞ ∞− −

−∞ −∞
+ =∫ ∫ . The second equality comes from 

expanding the exponents on e; the last equality comes from the basic fact that sin(θ + 2πn) = sin(θ) for 
any integer n. The integral that remains has an odd integrand (u2 is even and sine is odd), so the 
integral on (–∞, ∞) equals zero. At last, we have that )( | ( )n nX xY EE Y= = for any positive integer n. 
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c. Since the pdf is symmetric in X and Y, the same derivation will yield )( | ( )n nY yX EE X= =  for all 
positive integers n. 
 

d. Despite the fact that the expectation of every polynomial in Y is unaffected by conditioning on X (and 
vice versa), the two rvs are not independent. From a, the marginal pdfs of X and Y are lognormal, from 

which 
2 2 2 2[(ln ) ]/2 [ ((ln ) ]/2 [(ln ) ln ) ]/21 1 1( ) ( )

2π2π 2π
x y x y

X Yx f y e e e
xyx y

f − − +−⋅ = ⋅ =  ≠ f(x, y). Therefore, by 

definition X and Y are not independent. 
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