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CHAPTER 12 
Section 12.1 
 
1.  

a. Both the BMI and peak foot pressure distributions appear positively skewed with some gaps and 
possible high outliers. 
 
Stem-and-leaf of BMI 
1 12 8 
6 13 00588 
13 14 2456689 
19 15 000569 
21 16 69 
21 17 01156 
16 18 677 
13 19   
13 20 0156 
9 21 0126 
5 22 4 
4 23 1 
3 24 27 
1 25   
1 26 5 

Leaf Unit = 0.1 

Stem-and-leaf of Foot pressure  
7 3 0012344 
16 3 566666678 
18 4 11 
(8) 4 56789999 
16 5 34 
14 5 577778 
8 6 024 
5 6 6 
4 7 4 
3 7   
3 8 1 
2 8 59 

Leaf Unit = 10 

 

 
b. No, peak foot pressure cannot be uniquely determined by BMI. As a counterexample, the second and 

third children listed both have BMI = 13.0 but their peak foot pressures are very different. 
 
c. The scatterplot suggests some positive association between BMI and peak foot pressure (the plot goes 

from lower-left to upper-right), so BMI may have some predictive power. But the relationship does not 
appear to be very strong, and there are many outliers from the overall pattern. 
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3. A scatter plot of the data appears below.  The points fall very close to a straight line with an intercept of 
approximately 0 and a slope of about 1.  This suggests that the two methods are producing substantially the 
same concentration measurements. 

 
 
 

5.  
a. The scatter plot with axes intersecting at (0,0) is shown below. 

 
 

b. The scatter plot with axes intersecting at (55, 100) is shown below. This plot is certainly preferable, 
since the dots in the plot are not compressed into one corner (the plot in a leaves a lot of unused white 
space). 

 
c. A parabola appears to provide a good fit to both graphs. 
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7.  
a. Expected fuel efficiency when x = 2500 is f(2500) = 70 – .0085(2500) = 48.75 mpg. 

 
b. If x = weight increases by 1 (lb), then f(x) changes by –.0085. That is, for each 1-lb increase in car 

weight, expected fuel efficiency decreases by .0085 mpg. 
 
c. Because the relationship is linear, the effect of a 500-lb increase is just 500 times the effect of a 1-lb 

increase. So, a 500-lb increase in car weight corresponds to a decrease in expected fuel efficiency 
equal to .0085(500) = 4.25 mpg. 

 
d. Reversing part c, a 500-lb decrease in car weight corresponds to an increase of 4.25 mpg in expected 

fuel efficiency.  
 
 

9.  
a. β1 = change in expected flow rate associated with a one-inch increase in pressure drop  = .095. 
 
b. We expect flow rate to decrease by 15 .475β = . 
 
c. ( )10 .12 .095 10 .83,Yµ ⋅ = − + =  and ( )15 .12 .095 15 1.305Yµ ⋅ = − + = . 
 

d. ( ) ( ).835 .830.835 .20 .4207
.025

P Y P Z P Z− > = > = > = 
 

 

( ) ( ).840 .830.840 .40 .3446
.025

P Y P Z P Z− > = > = > = 
 

 

 
e. Let Y1 and Y2 denote pressure drops for flow rates of 10 and 11, respectively.  Then  11 .925,Yµ ⋅ =  so   

Y1 – Y2 has expected value .830 – .925 = –.095 and sd ( ) ( )2 2.025 .025 .035355+ = .  Thus 

( )1 2 1 2
0 ( .095)( ) ( 0) 2.69 .0036

.035355
P Y Y P Y Y P Z P Z− − > = − > = > = > = 

 
. 

 
 

11.  
a. β1 = expected change for a one-degree increase = -.01, and 110 .1β = −  is the expected change for a 10-

degree increase. 
 
b. ( )200 5.00 .01 200 3Yµ ⋅ = − = , and 250 2.5Yµ ⋅ = . 
 
c. The probability that the first observation is between 2.4 and 2.6 is 

( ) 2.4 2.5 2.6 2.52.4 2.6
.075 .075

P Y P Z− − ≤ ≤ = ≤ ≤ 
 

 ( )1.33 1.33 .8164P Z= − ≤ ≤ = .  The probability that 

any particular one of the other four observations is between 2.4 and 2.6 is also .8164, so the probability  
that all five are between 2.4 and 2.6 is ( )5.8164 .3627= . 
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d. Let Y1 and Y2 denote the times at the higher and lower temperatures, respectively.  Then Y1 – Y2 has 
expected value ( ) ( )5.00 .01 1 5.00 .01 .01x x− + − − = − .  The standard deviation of Y1 – Y2 is 

( ) ( )2 2.075 .075 .10607+ = .  Thus ( ) ( )1 2

0 .01
( 0) .09 .4641

.10607
P Y Y P Z P Z

− − 
− > = > = > = 

 
. 

 

Section 12.2 
 

13.  

a. 1
13,048ˆ .652
20,003

xy

xx

S
S

β = = =  and 0 1
346 517ˆ ˆ (.652)
14 14

y xβ β−= = − = .626, so the equation of the LSRL is 

y =.626 + .652x. 
 

b. ŷ = .626 + .652(35) = 23.456. The residual is ˆ 21 23.456 2.456y y− = − = − . 

c. SSE = 2 /yy xy xxS S S− = 8903 – (13048)2/20003 = 392, so SSE 392ˆ
2 14 2n

σ = =
− −

= 5.7. 

d. 2 SSE 3921 1
SST 8903

R = − = − = .956. 

e. Without the two upper extreme observations, the new summary values are 
2 212, 272, 8322, 181, 3729, 5320n x x y y xy= Σ = Σ = Σ = Σ = Σ = .  The new 

2156.667, 998.917, 1217.333xx yy xyS S S= = = .  New 1̂ .56445β =  and 0
ˆ 2.2891β = , which yields the 

new equation 2.2891 .56445y x= + .  Removing the two values changes the position of the line 

considerably, and the slope slightly.  The new 2 311.791 .6879
998.917

R = − = , which is much worse than 

that of the original set of observations. 
 
 

15.  
a. With the aid of software, Sxx = 504.0,  Syy = 9.9153, Sxy = 45.8246, 1̂β  = 4582.46/504 = .09092 and 

0 1
40.09 4308ˆ ˆ (.09092)

24 24
y xβ β−= = −  = –14.6497. The equation of the LSRL is y = –14.6497 + 

.09092x. 
 

b. –14.6497 + .09092(182) = 1.8997. 
 
c. The four observations for which temperature is 182 are:  (182, .90), (182, 1.81), (182, 1.94), and    

(182, 2.68).  Their corresponding residuals are: .90 1.8997 0.9977− = − ,  1.81 1.8997 0.0877− = − , 
1.94 1.8997 0.0423− = , 2.68 1.8997 0.7823− = .  These residuals do not all have the same sign 
because in the cases of the first two pairs of observations, the observed efficiency ratios were smaller 
than the predicted value of 1.8997.  Whereas, in the cases of the last two pairs of observations, the 
observed efficiency ratios were larger than the predicted value. 

 
d. SST = Syy = 9.9153, SSE = 9.9153 – 45.82462/504.0 = 5.7489, R2 = 1 – SSE/SST = 1 – 5.7489/9.9153 

= .4202. 42.02% of the observed variation in efficiency ratio can be attributed to the approximate 
linear relationship between the efficiency ratio and the tank temperature. 
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17.  
a. Yes, the scatterplot shows a strong linear relationship between rainfall volume and runoff volume, thus 

it supports the use of the simple linear regression model. 

100500
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x:

y:

Rainfall volume (x) vs Runoff volume (y)

 
b. From software, 53.200x = , 42.867y = , 20,586.4xxS = , 14,435.7yyS = , and 17,024.4xyS = .  

1
17,024.4ˆ .82697
20,586.4

xy

xx

S
S

β = = =  and ( )0
ˆ 42.867 .82697 53.2 1.1278β = − = − . 

 
c. ( )|50ˆ 1.1278 .82697 50 40.2207Yµ = − + = . 
 

d. SSE = 14435.7 – 17024.42/20586.4 = 357.07.  SSE 357.07ˆ 5.24
2 13es

n
σ= = = =

−
. 

e. 2 SSE 357.071 1 .9753
SST 14,435.7

R = − = − = .  So 97.53% of the observed variation in runoff volume can be 

attributed to the simple linear regression relationship between runoff and rainfall. 
 
 

19.  
a. From statistical software, 1̂β = –.20939 and 0β̂ = 75.212. So the equation of the LSRL is y = 75.212 – 

.20939x. For x = 100, we predict 75.212 – .20939(100) = 54.274. 
 

b. From statistical software, SSE = 78.92 and SST = 377.17, so R2 = 1 – 78.92/377.17 = .791. So, 79.1% 
of the variation in cetane number is explained by this linear model with predictor iodine.  That is, the 
error sum of squares is reduced by 79.1% compared to predicting with just a constant. 

 

c. 78.92ˆ 2.56
2 12e

SSEs
n

σ= = = =
−

, which is a typical deviation of an actual cetane number from the 

predicted cetane number calculated by the estimated regression line.  
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21.  
a. The scatterplot shows a very strong, positive, linear relationship between palprebal fissure width and 

ocular surface area. 

 
b. With the aid of statistical software, 1̂β  = 3.080 and 0β̂ = –0.398, so the LSRL is y = –0.398 + 3.080x. 

 
c. A 1-cm increase in palprebal fissure width corresponds to an estimated 3.080 cm2 increase in 

average/expected OSA. 
 
d. –0.398 + 3.080(1.25) = 3.452 cm2. 
 
e. |1.25ˆYµ is also equal to 3.452 cm2. (That is, the point prediction and point estimate at x = 1.25 cm are the 

same.) 
 
 

23. With each 0 1~ ( , )i iY N xβ β σ+ , their joint likelihood function is 

2 2 2 2
0 11 1 01

2
0 1( [ ]) ( [

1
/ ])

2
2 /2( exp

2
( [ ])1 1) ( )

2 2
n ny y i ix x

nf
y x

f y Cey e β β σ β β σ β β
σσ π σ π

− − + − − +  
= −  

 

− +
= ∑

  . The 

mle’s of β0 and β1 maximize this expression, but maximizing 
2/2wCe σ− is equivalent to minimizing the 

expression w. In the likelihood function that’s 2
0 1( [ ])i iy xβ β− +∑ , which is exactly 0 1)( ,g β β . Therefore, 

the least squares estimates — which, by definition, minimize 0 1)( ,g β β  — are also the mle’s. 
 
 

25. The new slope and intercept will be 11.8β̂  and the new intercept will be 01.8 32β̂ + . To see why, notice that 
the x’s are unchanged, so x and Sxx are unchanged. But with 21.8 3i iy y= +′ , 1.8 32y y′ = + by linearity of 
means and ) ) ) 32 [1 )( ( ( .8 32]) .(1.8 ( (1.8) 1 8xy i i i i i iS x yx y x y xx y y yx′ ′− − + −′= − = −+ = −∑ ∑ ∑  = 

)1.8 ( ( 1.) 8i i xyxx y Sy− =−∑ . Therefore, the new slope is 1

1.8
8 ˆ1.xy xy

xx xx

S S
S S

β′ = = , and then the new intercept 

is 1 1 01 32ˆ ˆ ˆ ˆ(1.8 ) 1.8 32 1.8 1.8( ) 32 1.8y x y x y xβ β β β′ − = + − = − ++ = . 
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27. The LSRL equation is 0 1 1 1
ˆ ˆ ˆ ˆ xyy xxβ β β β= + = +− . Substitute x x= and you get y y= , which shows the 

LSRL passes through ( , )x y . 
 
 
29.  

a. Subtracting x  from each xi shifts the plot in a rigid fashion x  units to the left without otherwise 
altering its character.  The last squares line for the new plot will thus have the same slope as the one for 
the old plot.  Since the new line is x units to the left of the old one, the new y intercept (i.e., the height 
at x = 0) is the height of the old line at x x= , which is 0 1

ˆ ˆ x yβ β+ =  (since from exercise 26, ( , )x y is 
on the old line).  Thus the new y intercept is y . 

 

b. We wish b0 and b1 to minimize ( )( ) 2

0 10 1,( ) i ig b y b b x xb  Σ − += −  .  Equating 
0

g
b
∂
∂

 and 
1

g
b
∂
∂

  to 0 

yields ( )0 1 i inb b x x y+ Σ − = Σ , ( ) ( )2
0 1i ib x x b x xΣ − + Σ −  ( ) ( ) iii yxxxx −Σ=−Σ= 2 .  Since 

( ) 0ix xΣ − = , 0b y= . And since ( ) yi i xx x y SΣ − =  because ( ) ( )i ix x y y x xΣ − = Σ − , 1 1̂b β= .   Thus  
*
0

ˆ Yβ =  and *
1 1

ˆ ˆβ β= . 
 

Section 12.3 
 
31.  

a. With these x-values, x = 725 and 27( 25)xx iS x −= ∑ = 17,500. Thus, 
2 2

1
10ˆ )

17
(

,500xx

V
S
σβ = =  and 

1̂ 0
10

17,50β
σ = = 0.0756. 

 
b. Under the model assumptions, the rv 1̂β  has a normal distribution with mean β1 = .25 and standard 

deviation 0.0756 from part a. Thus 1
.15 .25 .35 .25(.15 .35)

.0 7
ˆ

756 .0 56
P P Zβ − − < < = < < 

 
= P(–1.32 < Z < 

1.32) = Φ(1.32) – Φ(–1.32) = .813. 
 
c. With these n = 11 values, Sxx = 11,000, which is smaller than in a. Thus, even though we have a larger 

sample, the resulting standard deviation of 1̂β  is larger. The n = 7 sample from a resulting in more 
precise estimation. 
 

 
33. Let β1 denote the true average change in runoff for each 1 m3 increase in rainfall.  To test the hypotheses 

0 1: 0H β =  vs. a 1: 0H β ≠ , the calculated t statistic is 
1

1

ˆ

ˆ .82697 22.64
.03652

t
s
β

β
= = =  which (from the printout) 

has an associated P-value of P = 0.000.  Therefore, since the P-value is so small, H0 is rejected, and we 
conclude that there is a useful linear relationship between runoff and rainfall. 
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A confidence interval for β1 is based on n – 2 = 15 – 2 = 13 degrees of freedom. .025,13 2.160t = , so the 

interval estimate is  ( )( ) ( )
1̂

1 .025,13
ˆ .82697 2.160 .03652 .748,.906t s

β
β ± ⋅ = ± = .  Therefore, we can be 

confident that the true change in average runoff, for each 1 m3 increase in rainfall, is somewhere between 
.748 m3 and .906 m3. 
 
 

35.  
a. We want a 95% CI for β1: 

1̂15,025.1
ˆ

β
β st ⋅± .  Using the given summary statistics,  

536.1
019.115
112.238ˆ

1 ===
xx

xy

S
S

β .  Next, SSE = 783.88 – 238.112/155.02 = 418.2494, from which 

418.2494 5.28
15es = =  and 

1̂

5.28 .424
155.02

s
β
= = .  With .025,15 2.131t = , our CI is 

( )1.536 2.131 .424± ⋅  = ( .632, 2.440).  With 95% confidence, we estimate that the change in reported 
nausea percentage for every one-unit change in motion sickness dose is between .632 and 2.440. 

 

b. We test the hypotheses 0 1: 0H β =  vs a 1: 0H β ≠ , and the test statistic is 1.536 3.6226
.424

t = = .  With 

df = 15, the two-tailed P-value = 2P(T > 3.6226) = 2(.001) = .002.  With a P-value of .002, we would 
reject the null hypothesis at most reasonable significance levels.  This suggests that there is a useful 
linear relationship between motion sickness dose and reported nausea. 

 
c. No.  A regression model is only useful for estimating values of nausea % when using dosages between 

6.0 and 17.6 — the range of values sampled. 
 
d. Removing the point (6.0, 2.50), the new values are (with the aid of software) 1̂ 1.561β = , 0

ˆ 9.118β = − , 
SSE = 430.5264, 5.55es = , 

1̂
.551s

β
= , and the new CI is ( )1.561 2.145 .551± ⋅ , or ( .379, 2.743).  The 

interval is a little wider.  But removing the one observation did not change it that much.  The 
observation does not seem to be exerting undue influence. 
 
 

37.  

a. From Exercise 19, SSE = 78.92, so 78.92 2.5645
14 2es = =

−
 and 03109.

479.82
5645.2

1
ˆ ==βs .  Thus 

12,0005.318.473.6
03109.
20939. tt −=−<−=

−
=  and P-value < .001.  Because the P-value < .01, 0 1: 0H β =  

is rejected at level .01 in favor of the conclusion that the model is useful ( )01 ≠β . 
    

b. The CI for 1β  is ( )( ) ( )142.,277.0677.2094.03109.179.22094. −−=±−=±− . Thus the CI for 110β  is 
( )42.1,77.2 −− . 
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39. Each Yi has mean 0 1 ixβ β+ , so 0 1 0 1
1 1) ( ) (( )i iY E Y x x
n

E
n

β β β β= = + +=∑ ∑ . Thus, using the fact that 

1 1
ˆ )(E β β= , 0 1 1 0 1 1 0

ˆ ˆ ˆ) () ( (( ) )E E Y x E Y E x x xβ β β β β β β− = − = − == + . 
 
 
41. Let x cx′ = and y dy′ = . Then )(( )x y i i xyS cx dy d cycx dS′ ′ − =−= ∑  and, similarly, 2

x x xxS c S′ ′ =  and 

2
y y yyS d S′ ′ = . The new slope is 1 12

ˆ ˆx y xy

x x xx

S cdS d
S cc S

β β′ ′

′ ′

′ = = = . Similarly, the new SSE is 2SSE SSEd′ = , so 

2SSE SSE
2 2e e

ds ds
n n

′
′ = = =

− −
. Put it all together: 1 1 1

2

( / )
/

ˆ

/

ˆ ˆ

/e x x e xxe xx

d t
S Sc S

ct
s sds

β β β

′ ′

′ = =
′

= =
′

, as claimed. 

 
 

Section 12.4 
 
43.  

a. The mean of the x values is x  = 613.5.  Since x = 600 is closer to 613.5 than is x = 750, the quantity 
( )2600 x−  must be smaller than ( )2750 x− .  Therefore, since these quantities are the only ones that are 
different in the two 

Ŷs  values, the 
Ŷs  value for x = 600 must necessarily be smaller than the 

Ŷs  for      
x = 750.  Said briefly, the closer x is to x , the smaller the value of  

Ŷs . 
 
b. Error degrees of freedom = n – 2 = 6. 447.26,025. =t , so the interval estimate when x = 600 is

( )( )190.447.2723.2 ±  = (2.258,3.188). 
 

c. The 95% prediction interval is ( ) ( ) ( )2 2 22
.025,6 ˆˆ 2.723 2.447 .534 .190e Yy t s s± + = ± +  = (1.336,4.110).  

Note that the prediction interval is much wider than the CI. 
 
d. For two 95% intervals, the simultaneous confidence level is at least 100(1 – 2(.05)) = 90%. 

 
 

 
45. The accompanying Minitab output will be used throughout. 

a. From software, the least squares regression line is ŷ = –1.5846 + 2.58494x. The coefficient of 
determination is R2 = 83.73% or .8373. 

 
b. From software, a 95% CI for β1 is roughly (2.16, 3.01). We are 95% confident that a one-unit increase 

in tannin concentration is associated with an increase in expected perceived astringency between 2.16 
units and 3.01 units. (Since a 1-unit increase is unrealistically large, it would make more sense to say a 
0.1-unit increase in x is associated with an increase between .216 and .301 in the expected value of y.) 

 
c. From software, a 95% CI for μY|.6, the mean perceived astringency when x = x* = .6, is roughly            

(–0.125, 0.058).  
 



Chapter 12:  Regression and Correlation 
 

 
 

10 

d. From software, a 95% PI for Y|.6, a single astringency value when x = x* = .6, is roughly (–0.559, 
0.491). Notice the PI is much wider than the corresponding CI, since we are making a prediction for a 
single future value rather than an estimate for a mean. 

 
e. The hypotheses are H0: μY|.7 = 0 versus Ha: μY|.7 ≠ 0, where μY|.7 is the true mean astringency when x = 

x* = .7. Since this is a two-sided test, the simplest approach is to use the 95% CI for μY|.7 provided by 
software. That CI, as seen in the output is roughly (0.125, 0.325). In particular, since this interval does 
not include 0, we reject H0. There is evidence at the .05 level that the true mean astringency when 
tannin concentration equals .7 is something other than 0. 

 
Regression Equation 
 
y  =  -1.5846 + 2.58494 x 
 
Coefficients 
 
Term          Coef   SE Coef         T      P         95% CI 
Constant  -1.58460  0.133860  -11.8377  0.000  (-1.85798, -1.31122) 
x          2.58494  0.208042   12.4251  0.000  ( 2.16007,  3.00982) 
 
Summary of Model 
 
S = 0.253259     R-Sq = 83.73%        R-Sq(adj) = 83.19% 
 
Predicted Values for New Observations 
 
New Obs        Fit     SE Fit          95% CI                 95% PI 
      1  -0.033635  0.0447899  (-0.125108, 0.057838)  (-0.558885, 0.491615) 
      2   0.224859  0.0488238  ( 0.125148, 0.324571)  (-0.301888, 0.751606) 
 
 
Values of Predictors for New Observations 
 
New Obs    x 
      1  0.6 
      2  0.7 

 
 

47. The midpoint of the CI is the point estimate: 92.1 117.7ˆ
2

y +
= = 104.9. The margin of error is 117.7 – 104.9 

= 12.8 and also = ˆ.025,10 2 Yt s− , so ˆ
.025,8

12.8 12.8
2.306Ys

t
= = = 5.55. From these, the 99% CI for |5Yµ  is ˆ.005,10 2ˆ

Yy t s−±  

= 104.9 ± 3.355(5.55) = 104.9 ± 18.6 = (86.3, 123.5).  
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49. We will need SSE = 2 /yy xy xxS S S− = 60,089,500 – 303,5152/2692.55 = 25,876,076 and SSE
2es

n
=

−
= 

2
25,876,0 6

20
7

−
= 1198.98. 

a. The scatterplot certainly suggests a useful relationship, but let’s formally test H0: β1 = 0 vs  Ha: β1 ≠ 0. 

The test statistic is 
1

1

ˆ

0 112.7 0
1198.98 / 2692.55

ˆ
t

s
β

β − −
= = = 4.88, and the P-value at 18 df is ≈ 0. So, we 

clearly reject H0 at any reasonable significance level and conclude that a useful relationship exists. 

 

b. A 95% CI for β1 is 
1̂

1 .025,20 2
1198.98112.7
2692.55

ˆ 2.101t s
β

β − =± ± ⋅ = (64.2, 161.3). At the 95% confidence 

level, a 1°F increase in average outside air temperature is associated with a increase in expected 
electricity consumption between 64.2 and 161.3 kWh. 
 

c. The predicted value at x* = 70 is 2906 + 112.7(70) = 10,795. With the aid of software, the standard 
error of Ŷ when x* = 70 is ˆ 269.9Ys = . The CI is 10,795 ± 2.101(269.9) = (10228, 11362).  

 
d. 10,795 ± 2.101 2 21198.98 269.9+ = (8215, 13379). 
 
e. Wider, because 85 is farther from the mean x-value of 68.65 than is 70. 
 
f. No: Looking at the scatterplot, x = 95 is well outside the scope of the observed data. This suggests that 

estimates or predictions made at x = 95 are not necessarily trustworthy, since we don’t know that the 
apparently linear trend will continue. 

 
g. To achieve a simultaneous confidence level of at least 97% (α = .03) for three intervals, we need to use 

individual confidence level 100(1 – .03/3)% = 100(1 – .01)% = 99%. That is, we’ll construct three 
99% CI’s. The t critical value is .005,18t = 2.878. 

 
x* ŷ 

Ŷs  99% CI for μY|x* 
60 9670 334.4 (8707, 10633) 
70 10,795 269.9 (10020, 11574) 
80 11,924 375.0 (10845, 13004) 
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51.  
a. Yes, the overall trend is a strong, positive, linear association between shear stress and erosion depth. 

 
b. Test H0: β1 = 0 vs  Ha: β1 ≠ 0. With the aid of software, 1̂β = .0931 and 

1̂
s
β = .0144, so the test statistic 

is 
1

1

ˆ

0 .0931 0
.0144

ˆ
t

s
β

β − −
= = = 6.45, and the P-value at 6 – 2 = 4 df is ≈ .003. So, we reject H0 at even the 

.005 significance level and conclude that a useful relationship exists. 
 

c. At x* = 1.75, ŷ = .08367 and 
Ŷs = .01144 from software. So, a 95% CI for μY|1.75 is  ˆ.025,4ˆ

Yt sy ±  = 
.08367 ± 2.776(.01144) = (.05191, .11544). 

 
d. From software, se = .02769, so the 95% PI for Y|1.75 is .08367 ± 2.776 2 2.02769 .01144+  =   

(.00048, .16687).  
 

Section 12.5 
 
53. Most people acquire a license as soon as they become eligible.  If, for example, the minimum age for 

obtaining a license is 16, then the time since acquiring a license, y, is usually related to age by the equation 
y ≈ x – 16, which is the equation of a straight line.  In other words, the majority of people in a sample will 
have y values that closely follow the line y = x – 16. 
 
 

55.  

a. We are testing 0:0 =ρH  vs 0: >ρaH . 7377.704 .7482
36.9839 2,628,930.359

r = = , and 

2

.7482 12 3.9066
1 .7482

t = =
−

.  We reject H0 since .05,123.9066 1.782t t= ≥ = .  There is evidence that a 

positive correlation exists between maximum lactate level and muscular endurance. 
 
b. We are looking for R2, the coefficient of determination.  R2 = r2 = (.7482)2 = .5598.  It is the same no 

matter which variable is the predictor. 
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57.  

a. 0:0 =ρH  vs a : 0H ρ ≠ ; reject H0 at level .05 if .025,12 2.179t t≥ = . ( )
( )2 2

.449 122 1.74
1 1 .449

r nt
r
−

= = =
− −

.  

Hence we fail to reject H0; the data does not suggest that the population correlation coefficient differs 
significantly from 0. 

 

b. ( )2.449 .20= , so 20 percent of the observed variation in gas porosity can be accounted for by its 
linear relationship to hydrogen content. 
 
 

59.  

a. Perform the log-transform specified in the section: 1 1 .878ln
2 1 .878

v + =  − 
 = 1.367. A 90% CI for 

1 1ln
2 1V

ρµ
ρ

 +
=  − 

 is .05 1.6451.367
83 2 81

v
z

± = ±
−

= (1.184, 1.550). Inverting the transformation, a 90% 

CI for ρ is 
2(1.184) 2(1.550)

2(1.184) 2(1.550)

1 1
1

,
1

e e
e e

 
 +

−
+ 

−
 = (.829, .914). 

 

b. Using the same log-transform, we have 1 1ln
2 1 8

8
.
.

Vµ
+ =  − 

 = 1.099 when H0 is true. Thus, the test 

statistic value is 
2

1.367 1.
1 3

099
8/

z =
−

− = 2.412 and P-value = P(Z ≥ 2.412) = 1 – Φ(2.412) ≈ .008. Because 

.008 < .05, we reject H0 in favor of Ha and conclude that the population correlation coefficient between 
digital caliper and laser arm measurements exceeds .8. Note: Since the lower bound of the CI in part 
(a) is also a 95% lower confidence bound for ρ, we could have rejected H0 because ρ > .829 > .8. 

 
c. R2 = r2 = .8782 = .771, or 77.1%. 
 
d. When x and y are reversed, neither r nor R2 change, so the answer is still 77.1%.  
 

 
61.  

a. Because P-value = .00032 < α = .001, H0 should be rejected at this significance level. 
 
b. Not necessarily.  For this n, the test statistic t has approximately a standard normal distribution when 

0 : 0H ρ =  is true, and a P-value of .00032 corresponds to z = ± 3.60.  Solving 
21

49860.3
r

r

−
=  for r 

yields r = .159.  This r suggests only a weak linear relationship between x and y, one that would 
typically have little practical importance. 

 

c. 96.120.2
022.1

9998022.
9998,025.2

=≥=
−

= tt , so H0 is rejected in favor of Ha.  The value t = 2.20 is 

statistically significant — i.e., it cannot be attributed just to sampling variability in the case ρ = 0.  But 
with this n, r = .022 implies 022.≈ρ , which in turn shows an extremely weak linear relationship. 
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63. Re-write both statistics in terms of the original sums of squares. The test statistic from Section 12.3 is 

1
/ 20

/ SSE / 2 / SSE( )
xy xx x

e

y

xx xx xx

S S S nb
S S n S S

−−
= =

−
. Meanwhile, since SST and Syy are the same thing,                 

T = 
21

2

R

nR

−

−
 = 

( / ) 2 2

SSE/SST SSE( )
xy xx yy xy

xx

S S S n S n

S

− −
= . 

 
 
65.  

a. We used software to calculate the ri’s:  r1 = 0.184, r2 = –0.238, and r3 = –0.426. 
 
b. The only difference between lag autocorrelation coefficients and regular correlation is the number of 

terms in the numerator summand: the sum only runs from 1 to n – 1, but x  is based upon all n 
observations. In regular correlation, x  would be replaced in each part of the numerator by the mean of 
just the relevant n – 1 values (1 through n – 1 in the first parentheses, 2 through n in the second).  As n 
gets larger, the difference between x  and these “truncated” means becomes negligible. A similar 
comment applies to lag 2. 

 

c. 2.
100
2

= .  We reject H0 if 2.≥ir .  For all lags, ri does not fall in the rejection region, so we cannot 

reject H0.  There is not evidence of theoretical autocorrelation at the first 3 lags. 
 
d. If we want an approximate .05 significance level for the simultaneous hypotheses, we would have to 

use smaller individual significance level.  If the individual confidence levels were .95, then the 
simultaneous confidence levels would be approximately (.95)(.95)(.95) = .857. 

 
 

Section 12.6 
 
67. The accompanying graph is a plot of e* versus x. As desired, the plot exhibits neither curvature nor a 

pattern of increasing/decreasing vertical (i.e., residual) spread. These suggest that the regression model 
assumptions of linearity/model adequacy and constant error variance are both plausible. 
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69.  

a. For each observation, )(182.7 3ˆ .29i i i i ie yy y x= − = − + . The accompanying plot of e’s versus x’s does 
not show curvature (that’s good), but it shows greater variability at x = 75 than at other x values. The 
latter suggests that the equal variance assumption of the simple linear regression model is not satisfied. 
 

xi 25 25 25 50 50 50 75 75 75 
ei  –6.50 3.82 5.20 –8.65 –3.37 7.01 –15.12 –4.68 22.32 

 

 
 

b. The table below shows the standardized residuals. The standardized residual plot shows the same issue 
as the previous graph: a lack of constant variance across all x-values. The normal probability plot of 
the standardized residuals is at least roughly linear (no huge deviations from the reference line), so 
normality of the true errors is at least plausible. 
 

xi 25 25 25 50 50 50 75 75 75 
*
ie  –0.65 0.38 0.52 –0.78 –0.30 0.63 –1.51 –0.47 2.23 
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71.  

a. H0: β1 = 0 vs Ha: β1 ≠ 0. The test statistic is 
1

1

ˆ

ˆ
t

s
β

β
= , and we will reject H0 if .025,4 2.776t t≥ = .  

1̂

7.265 .565
12.869

e

xx

s
s

Sβ
= = = , and 

6.19268 10.97
.565

t = = .  Since 10.97 ≥ 2.776, we reject H0. We are 

tempted to conclude that the linear model is useful. However, this test assumes that a true linear 
relationship exists between x and y, which is contradicted by the residual plots below. 

 
b. 

( ) ( )7.0ˆ 1008.14 6.19268 7.0 1051.49y = + = , from which the residual is 

( )7.0ˆ 1046 1051.49 5.49y y− = − = − .  Similarly, the other residuals are –.73, 4.11, 7.91, 3.58, and –9.38.  
The plot of the residuals vs x follows: 

201510

10

0

-10

x

R
E

S
I1

 
Because a curved pattern appears, a linear regression function is inadequate. 

 
c. The standardized residuals are calculated as 

( )
074.1

5983.165
48.140.7

6
11265.7

49.5*
21 −=

−
−−

−
=e , and 

similarly the others are  –.123, .624, 1.208, .587, and –1.841.  The plot of e* vs x follows : 

201510

1

0

-1

-2

x

SR
ES

1

 
This plot gives the same information as the previous plot.  No values are exceptionally large, but the e* 
of –1.841 is close to 2 std deviations away from the expected value of 0. 

  



Chapter 12:  Regression and Correlation 
 

 
 

17 

73.  
a. This plot indicates there are no outliers, but there appears to be higher variance for middle values of 

filtration rate.   

 
b. We need ( )2 18,886.8295ixxS x x= − =∑ .  Then each *

ie  can be calculated as follows: 

( )
8295.886,18
895.140

20
11665.

2
*

−
−−

=
i

i
i

x

ee .  The table below shows the values: 

 
standardized 

residuals */ ii ee    
standardized 

residuals */ ii ee  
-0.31064 0.644053  0.6175 0.64218 
-0.30593 0.614697  0.09062 0.64802 
0.4791 0.578669  1.16776 0.565003 
1.2307 0.647714  -1.50205 0.646461 

-1.15021 0.648002  0.96313 0.648257 
0.34881 0.643706  0.019 0.643881 
-0.09872 0.633428  0.65644 0.584858 
-1.39034 0.640683  -2.1562 0.647182 
0.82185 0.640975  -0.79038 0.642113 
-0.15998 0.621857  1.73943 0.631795 

 
Notice that if  *

ie  ≈ ei / se, then */ ii ee  ≈ se. All of the */ ii ee ’s range between .57 and .65, which are 
close to se. 

 
c. This plot looks very much the same as the one in part a. 
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75. Both a scatter plot and residual plot (based on the simple linear regression model) for the first data set 
suggest that a simple linear regression model is reasonable, with no pattern or influential data points which 
would indicate that the model should be modified.  However, scatter plots for the other three data sets 
reveal difficulties. For data set #2, a quadratic function would clearly provide a much better fit.  For data 
set #3, the relationship is perfectly linear except one outlier, which has obviously greatly influenced the fit 
even though its x value is not unusually large or small. One might investigate this observation to see 
whether it was mistyped and/or it merits deletion.  For data set #4 it is clear that the slope of the least 
squares line has been determined entirely by the outlier, so this point is extremely influential. A linear 
model is completely inappropriate for data set #4.  And all of this is true despite the fact that the summary 
statistics for all four data sets are practically identical! The lesson: Always graph your data! 

 
 

Section 12.7 
 
77.  

a. Since E(ε) = 0, the expected sales when there are x1 = 2 competing outlets and x2 = 8 thousand people 
in a one-mile radius is 10000 – 1400(2) + 2100(8) = $24,000. 
 

b. Similarly, 10000 – 1400(3) + 2100(5) = $16,300. 
 
c. β1 = –1400: Adjusting for the size of the nearby population, an increase of one competing outlet 

corresponds to a $1400 decrease in expected weekly sales. 
β2 = 2100: Adjusting for the number of competing outlets, an increase of 1 thousand people within a 
one-mile radius corresponds to a $2100 increase in expected weekly sales. 

 
d. β0 = 10000: In an area with 0 competing outlets and 0 people living within a one-mile radius, expected 

weekly sales are $10,000.  This might make sense for a highway/roadside fast-food outlet in the middle 
of nowhere (so no competition but also no surrounding population). 
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79.  
a. Adjusting for fit, arch support, and stability, a one-point increase in a shoe’s cushioning rating from 

any particular person is associated with a .34 increase in its estimated overall preference score from 
that person. 
 

b. ŷ = -.66 + .35(9.0) + .34(8.7) + .09(8.9) + .32(9.2) = 9.193 points (out of 15 max). It would be more 
informative to provide a confidence interval for the mean overall preference score at these settings. 

 
c. Test 0 1 2 3 4 0:H β β β β= = = = vs Ha: not all β’s are 0.  With k = 4 predictors and n = 100 

runners/observations, the test statistic value is 
2

2

( 1) .777 100 5
1 .777 41

R n kf
kR

− + −
= =

−−
= 82.75. This is 

an extremely large F statistic; in particular, 82.75 > .01,4,95 3.52F = , so H0 is resoundingly rejected. This 
indicates that at least one of the four predictor variables has a significant relationship with overall 
score, but not necessarily that all of them do. 

 
d. To achieve a family-wise .01 significance level requires testing each of the 4 null hypotheses at α = 

.01/4 = .0025. With error df = 95, the critical value for each of the four tests H0: βj = 0 vs Ha: βj ≠ 0 is 
/ 2, ( 1) .00125,95n kt tα − + = = 3.106. With the t-values provided, all null hypotheses are rejected except j = 3. 

Thus, variables x1 and x2 and x4 are deemed useful, but after adjusting for those variables, x3 is not 
deemed a statistically significant predictor. 

 
 

81.  
a. Software provides 0β̂ = –77, 1̂β = 4.397, and 2β̂ = 165. Therefore, with y = price and x1 = size and x2 

= L/B ratio, the estimated regression equation is y = –77 + 4.397x1 + 165x2. 
 

b. Interpreting the intercept doesn’t make sense here. 1̂β = 4.397 means that after adjusting for the effects 
of land-to-building ratio, a 1 thousand square foot increase in size is associated with an estimated 
increase in expected price of 4.397 thousand dollars ($4,397). 2β̂ = 165 means that after adjusting for 
the effects of size, an increase of 1 in the L/B ratio (e.g., from 2:1 to 3:1) corresponds to an estimated 
increase of 165 thousand dollars ($165,000) in expected price. 

 
c. ŷ = –77 + 4.397(500) + 165(4.0) = 2781.5 = $2,781,500. 

 
 

83.  
a. With the aid of software, SST = 2( )iy y−∑ = 17.024 and SSE = 2

ie∑ = 11.226. From these, 

2 11.2261
17.024

R = − = .3405, or 34.05%. That is, 34.05% of the observed variation in electrical 

conductivity can be explained by a regression model with CNT weight, CNx height, and water volume 

as predictors. Also, 11.226
16 (3 1)es =

− +
= 0.967. The typical difference between the actual and predicted 

electrical conductivity of a CNT specimen is ± 0.967 S/cm. 
 

b. The hypotheses of the model utility test are 0 1 2 3 0:H β β β= = = vs Ha: not all β’s are 0.  With k = 3 

predictors and n = 16 specimens, the test statistic value is 
2

2

( 1) .3405 16 4
1 .3405 31

R n kf
kR

− + −
= =

−−
= 
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2.065. Since 2.065 < .05,3,12F = 3.49, we do not reject H0 at the .05 level. That is, the data do not provide 
convincing evidence that at least one of the three explanatory variables is useful for predicting y. 

 
c. Yes, in the sense that the test in part b failed to detect a statistically significant relationship between 

any of the x’s and electrical conductivity. (Of course, that is not to say we proved H0 is true.) 
 
 

85.  
a. With the aid of software, the estimated regression equation is y = 148 – 133x1 + 128.5x2 + 0.0351x3. 

 
b. Information for the three variable utility tests appear below. The P-values suggest that, at any 

reasonable significance level, only x2 is a statistically significant predictor of y. 
ˆ

jβ  
ˆ

j
s
β  t-statistic P-value (df = 19) 

–133 511 –0.26 .798 
128.5 13.6 9.43 < .0001 
0.0351 0.0247 1.42 .171 

c. From software, SSE = 385,801 and SST = 2,822,482, from which 2 SSE1
SST

R = − = .8633 or 86.33%, 

while 2
a

MSE 385,801/ (23 (3 1))1 1
MST 2,822,482 / (23 1)

R − +
= − = −

−
= .8417 or 84.17%. 

 
d. For this two variable-regression, SSE = 387,170, while SST remains at 2,822,482. From the updated 

SSE, R2 = .8628 or 86.28% and 2
a

387,170 / (23 (2 1))1
2,822,482 / (23 1)

R − +
= −

−
= .8491 or 84.91%. The R2 value is 

(slightly) larger under the full model (k = 3) than under the reduced model (k = 2). This must always be 
true: SSE cannot increase when more predictors are included, so R2 can never be smaller with a larger 
set of predictors. However, adjusted R2 is (slightly) larger for the reduced model: 84.91% vs 84.17%. 
This suggests that if we adjust for the number of predictors in the model, the reduced (k = 2) model 
does a better job than does the full (k = 3) model. 

 
 

87.  
a. The hypotheses are H0: β1 = β2 = β3 = β4 = 0 vs. Ha: at least one βi ≠ 0.  The test statistic is f = 

)1/()1(
/

2

2

−−− knR
kR

 = 
20/)946.1(

4/946.
−

 = 87.6 ≥ F.001,4,20 = 7.10 (the smallest available significance level 

from Table A.8), so we can reject H0 at any significance level.  We conclude that at least one of the 
four predictor variables appears to provide useful information about tenacity. 

 

b. The adjusted R2 value is 
( ) ( )

2 )1 SSE 11 1 (1
1 SST 1

n n R
n k n k

− − − = − − − + − + 
 ( ) 935.946.1

20
241 =−−= , which does 

not differ much from R2 = .946. 
 
c. The estimated average tenacity when x1 = 16.5, x2 = 50, x3 = 3, and x4 = 5 is  

( ) ( ) ( ) ( )ˆ 6.121 .082 16.5 .113 50 .256 3 .219 5 10.091y = − + + − = .  For a 99% CI, .005,20 2.845t = , so the 
interval is ( ) ( )10.091 2.845 .350 9.095,11.087± = .  Therefore, when the four predictors are as specified in 
this problem, the true average tenacity is estimated to be between 9.095 and 11.087. 
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Section 12.8 
 
89.  

a. The vertex of the least-squares parabola occurs at 5

.0191 994.8 C
2 1. 1092
bx
a

°
−

−
= − = − = −

×−
. Since the 

quadratic coefficient is negative, the equation suggests that elastic modulus increases with 
temperatures up to –994.8°C and decreases after that. But since temperatures that low do not exist 
(that’s below absolute zero), we conclude that elastic modulus decreases with temperature through all 
physically possible temperatures. 
 

b. ŷ = 5 21.92 (800) .0191(800) 89 010 .−− +× − = 61.432 GPa. 
 
c. We test 0 1 2: 0H β β= = versus Ha: not all β’s are 0. With k = 2 terms in the model, n = 28, and R2 = 

.948, the model utility test statistic is 
2

2

( 1) .948 28 (2 1)
1 .948 21

R n kf
kR

− + − +
= =

−−
= 227.88. This is an 

extremely large F-value; in particular, 227.88 > .01,2,25 5.568F = . Hence, H0 is rejected at the .01 level, 
and we conclude that at least one of the two terms in the quadratic model is useful for predicting y. 

 
d. From part b, ŷ = 61.432. Since .025,25 2.060t = , a 95% CI for μY|800 is 61.432 ± 2.060(2.9) = (55.458, 

67.406). 
 

e. The 95% PI is 2 2 2 2
ˆˆ 2.060 61.432 2.060 2.37 2.9e Ysy s = ++± ± = 61.432 ± 7.715 = (53.717, 69.147). 

With 95% confidence, the elastic modulus of a single ceria specimen at 800°C will be between 53.717 
and 69.147 GPa. 

 
 

91.  
a. Both scatterplots exhibit some curvature, suggesting that quadratic terms may be appropriate. 

  
 

b. No: Interaction is a property of the simultaneous relationship between x1, x2, and y. A scatter plot of 
(x1, x2) pairs could not indicate whether the effect of x1 on y depends on x2 and vice versa.  
 

c. With the aid of software, a multiple regression was performed with response variable y and predictors 
2 2

1 2 1 2 1 2, , , ,x x x x xx . A normal probability plot of the resulting standardized residuals appears below, as 
does a plot of the standardized residuals against the fitted values (i.e., *

ie versus ŷi). The linearity of 
the normal plot suggests that it’s very plausible that errors are normally distributed. The residual-v-fit 
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plot shows neither curvature nor varying vertical spread, so the model adequacy and constant variance 
assumptions are both reasonable as well. 

  
 

d. We test separately the null hypotheses 0 3: 0H β = , 40 : 0H β = , and 50 : 0H β = . From software, 

the test statistic values are 3
36.19 16.58
2.18

t −
= = − , 4

.008850 17.12

.000517
t = = , and 5

.0870 2.97
.0293

t −
= = − . 

The two-sided P-values at 57 df are ≈ .000, ≈ .000, and .004, respectively. At most reasonable 
significance levels, all three of the aforementioned null hypotheses are rejected, suggesting all three 
second-order terms should be retained in the model. (With higher-order terms retained, we don’t bother 
to test the first-order terms and they, too, persist in our model.) 

 
 
93.  

a. Yes, there does appear to be a useful linear relationship between repair time and the two model 
predictors.  We determine this by conducting a model utility test 0 1 2: 0H β β= =  vs. Ha: not all β’s are 
0.  We reject H0 if .05,2,9 4.26f F≥ = .  The calculated statistic is 

SSR / 10.63 / 2 5.315 22.91
SSE / ( 1) 20.9 / 9 .232

kf
n k

= = = =
− −

.  Since 22.91 4.26≥ , we reject H0 and conclude that at 

least one of the two predictor variables is useful. 
 
b. We will reject 0: 20 =βH  in favor of Ha: 02 ≠β if 25.39,005. =≥ tt .  The test statistic is 

1.250 4.01
.312

t = =  which is 25.3≥ , so we reject H0 and conclude that the “type of repair” variable does 

provide useful information about repair time, given that the “elapsed time since the last service” 
variable remains in the model. 

 
c. A 95% confidence interval for 2β  is: ( )( ) ( )1.250 2.262 .312 .5443,1.9557± = .  We estimate, with a high 

degree of confidence, that when an electrical repair is required the repair time will be between .54 and 
1.96 hours longer than when a mechanical repair is required, while the “elapsed time” predictor 
remains fixed. 

 
d. ( ) ( )ˆ .950 .400 6 1.250 1 4.6y = + + = , 2 MSE .23222es = = , and 25.39,005. =t , so the  99% PI is 

( ) ( ) ( )24.6 3.25 .23222 .192 4.6 1.69± + = ±  ( )29.6,91.2=   The prediction interval is quite wide, 
suggesting a variable estimate for repair time under these conditions. 
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95.  
a. The complete second-order model obviously provides a much better fit, so there is a need to account 

for quadratic and interaction effects from these three predictors. 
 

b. A complete second-order model based on three predictors has 3
3

3
2
 

+ +  
 

 = 3 + 3 + 3 = 9 terms, so 

degrees of freedom = n – (k + 1) = 20 – (9 + 1) = 10.  A 95% PI for Y|(30,30,10) is 2 2
ˆ.025,10ˆ e Yy t s s± +

= 2 2.66573 2.228 .044 .01785± +  = (.560, .771).  
 

 
97.  

a. From Minitab, here are the correlations and corresponding P-values: 
              IBU     ABV 
ABV      0.843 
         0.000 
 
Rating   0.843   0.621 
         0.000   0.001 

 The correlations are all strongly significant, including the correlation between the two predictors.  
 

b.  Here is some of the Minitab regression output: 
The regression equation is 
Rating = 2.24 + 0.0419 IBU - 0.166 ABV 
 
Predictor      Coef   SE Coef      T      P 
Constant     2.2383    0.3961   5.65  0.000 
IBU        0.041940  0.007688   5.46  0.000 
ABV         -0.1661    0.1078  -1.54  0.138 
 
S = 0.507612   R-Sq = 73.9%   R-Sq(adj) = 71.5% 
 
Analysis of Variance 
 
Source          DF       SS      MS      F      P 
Regression       2  16.0266  8.0133  31.10  0.000 
Residual Error  22   5.6687  0.2577 
Total           24  21.6953 

 
 Although ABU has a strongly significant, ABV does not.  This means that, with ABU in the model, ABV is 

not needed.  Even though ABV has a strongly significant relationship with Rating, ABV is redundant when 
ABU is included.  The idea is that ABV is strongly correlated with ABU, so when ABU is already in the 
model, ABV has very little new to add to the model. 
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c. Here is the plot of Rating against IBU.  Notice that the plot is not linear; the slope decreases as we 
move to the right.  This suggests including a quadratic term.  

 
d. Here is some of the Minitab output with the quadratic term included: 

 
The regression equation is 
Rating = 0.214 + 0.0953 IBU + 0.131 ABV - 0.000801 IBUsq 
 
Predictor        Coef    SE Coef      T      P 
Constant       0.2142     0.5181   0.41  0.683 
IBU           0.09533    0.01269   7.51  0.000 
ABV            0.1311     0.1001   1.31  0.205 
IBUsq      -0.0008014  0.0001716  -4.67  0.000 
 
S = 0.363873   R-Sq = 87.2%   R-Sq(adj) = 85.4% 
 
Analysis of Variance 
 
Source          DF       SS      MS      F      P 
Regression       3  18.9148  6.3049  47.62  0.000 
Residual Error  21   2.7805  0.1324 
Total           24  21.6953 

 
Plots of Rating and the residuals against IBU no longer show curvature, the normal plot is reasonably 
straight, and there is no reason to doubt constant variance. 

 
e. Notice that the quadratic term is highly significant, but the ABV term is still not needed.  The R-

Squared, adjusted R-Squared, and s are substantially improved.  Notice that the quadratic coefficient is 
negative, in accord with the decreasing slope.  

 
f. The model now does a good job of fitting the relationship of Rating to IBU.  ABV is redundant when 

IBU is included. 
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Section 12.9 
 
99.  

a. The data and response matrices are X = 
















−
−

−−

111
111
111
111

 and y = 
















4
0
1
1

. The normal equations are X′Xb = X′y, 

which here become 











=













4
2
6

400
040
004

b . 

 

b. Since X′X = 4I, (X′X)–1 = .25I, and b = .25X′y = 












0.1
5.0
5.1

. 

 

c. ŷ  =  Xb = 
















3
1
2
0

, from which SSE = ||y – ŷ ||2 = (1)2 + (-1)2 + (-1)2 + (1)2 = 4, and MSE = SSE/[4-(2+1)] 

= SSE/1 = 4. 
 

d. 2 1 1MC Eov( ( ) (S ) 4 .2ˆ 5) σ − −′ ′ = ⋅ == ≈X X X X I Iβ . So, in particular, 
1̂

2s
β = (2,2) entry of the estimated 

covariance matrix = (2,2) entry of I = 1. Thus a 95% CI for β1 is 
1̂

1 .025,4 3
ˆ st

β
β −± = 0.5 ± 12.706(1) =          

(–12.206,13.206). The CI is so large because we only have 1 df (4 observations, 3 parameters). 
 

e. The t statistic here is 
0.5 0 0.5

1
t −
= = , which at 1 df has a 2-sided P-value of 2(.352) = .704. We 

certainly fail to reject the hypothesis that β1 = 0.  This is consistent with our 95% CI from part (d). 
 

f. y  = 6/4 = 1.5, so SSR = || ŷ  – y ||2 = (-1.5)2 + (.5)2 + (-.5)2 + (1.5)2 = 5. The rest of the ANOVA table 
below follows. In particular, the F test statistic is f = 0.63 with a corresponding P-value of .667, so we 
definitely fail to reject H0. Both slopes could plausibly be zero, and so it appears neither x1 nor x2 is a 
useful predictor for y. Finally, R2 = SSR/SST = 5/9 = 55.56%; that is, ~56% of the variability in y can 
be explained by the linear regression model that involves predictors x1 and x2. 

 
Source          DF     SS     MS     F      P 
Regression       2  5.000  2.500  0.63  0.667 
Residual Error   1  4.000  4.000 
Total            3  9.000 
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101.  
a. First, 

1

2
1

1
1 1

1

i

n i i
n

x
n x

x x x x
x

 
Σ    ′ = =     Σ Σ     

X X


 



 

Then, using the matrix inverse formula provided, 
2

1
2 2

1( )
( )

i i

i i i

x x
n x x x n

−  Σ −Σ
′ =  Σ − Σ −Σ 

X X  

b. 
1

1

1 1 i

n i i
n

y

x x
y

y
x y

 
    ′ = =         

Σ
Σ

X y






, so from part (a) 

2
1

2 2

2

2 2

1ˆ
( )

( )( ) ( )( )1
( ) )( )

( )

(

ii i

i ii i i

i i i i i

i i i i i i

y
x y

y x y
x y

x x
n x x x n

x x
x yn x n x

−  Σ −Σ  
   Σ − Σ −Σ   

 Σ − Σ
=

Σ
′ ′= =

Σ

Σ Σ
Σ − Σ − Σ Σ Σ

β X X X y
 

To make these resemble the earlier formulas, make the following substitutions: i nx xΣ = ,  

i ny yΣ = , i i xy yS nx y x= +Σ (based on the hint) and, similarly, 2 2
i xxS nx x= +Σ . The fraction 

outside the matrix simplifies to xxnS , and 
2

2

)ˆ ( /( )( ) ( )( )1 1
/( )

xx xy xy xxxx xy

xy xy xxxyxx xx

y xS y S xnx ny x S nx y
S SS nx y x

n S n SS n
n Sn ynnS nS
− − −    

= = =     


+ +
+ −     

β  

These match our previous formulas: 1̂ /xy xxS Sβ =  and 0 1
ˆ ˆy xβ β= − . 

 

c. From part (b), 1( )−′X X may be rewritten as 
2

1 1( ) xx i

xx i

n
x

S
nS

x
n

x−  −
′ =  Σ−

Σ

 

+
X X . Since 

2 1Cov( (ˆ ) )σ −= ′Xβ X , we have 2 2
1̂ ) / ( /( )xx xxV nS Snβ σ σ⋅ ==  and 

2 2 2 2
0( ( ) )/ /( ) (1) /ˆ

xx xx xxV S nS nnx x Sβ σ σ⋅ ⋅ += =+ .  
The first formula matches 1( ˆ )V β given in Section 12.3. As for the second, substitute x* = 0 into 
the LSRL; according to Section 12.4, the resulting variable 0

ˆŶ β=  has variance  

( ) ( )2 2 2 2( 1/ (0 / 1/ /ˆ) ) xx xxV n S nY x x Sσ σ+ = += − , which matches 0( ˆ )V β above. 
 
 

103. The design matrix is now just the column vector [1,...,1]′=X , so ′X X = n, iy′ = ΣX y  and 
1

0
ˆ ˆ[ ] ( ) [1/ ][ ]] [in y yβ −′ ′= == = Σβ X X X y . Next, 2 1 2

0
ˆ ˆ) Cov (( ) /( )V nβ σ σ−= ′ == X Xβ , so 

0 /( ˆ ) nSD β σ= and 
0

ˆ /e ns s
β
= . Finally, for every i we have 0

ˆˆiy yβ= = , so ˆi i i iy y ye y− == − and 
2

2 2
2(

( 1 1
)

)
i i

e y
y

s
e

s
n k n

y
= =

−
−

Σ
=

− +
Σ . Therefore, a CI for β0 = E(Y) is given by 

0
ˆ0 /2, ( 1) /2, 1 /2, 1

ˆ / /n k n e n yt y t n y t ns s sα α αβ
β − + − −± = ⋅ ⋅±⋅ ± = . This is exactly the one-sample t CI from 

Chapter 8. In other words, the one-sample t procedures are the k = 0 special case of the regression model! 
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105.  

a. The proposed design matrix and response vector are 1 1 1 1
.5 .5 .5 .5
 ′ =  − − 

X
 

 

 and 

11 1 ( 1)1 ( )1[ ]m m m ny y y y+ +=y  
. Assuming m = n, the sum of the second column of X is 0, 

and so  
1

1 1

1 1

1 2

1 2

1 2 1 2 1 2
0 1

1 2 1 2

( ) 0ˆ ( )
0 .25( ) .5

1/ ( ) 0
.50 4 / (

2

)

1/ (2 ) 0 ˆ ˆ
(0 2

.5

.5

( ) ( ) / 2
,

) 2/ /

m n
i i

m m n
i i i m i

m n y
m n y y

y ym n
y ym n

y y y yn y y
n y

m

y y y

n
m n

n
n

β β

− +
− =

+
= = +

 
 − 

+ 
=  − 

+

+ Σ ′ ′= =  + Σ Σ 

+

+    +
= = ⇒ = 

+ 
 
 


  − −


 



  

β X X X y

1 2y y= −

 

 

b. [ ]1 2
1 1 2 2

1 2

ˆ (
ˆ

) / 21 1 1 1
.5 .5 .5 .5

y y
y y y y

y y

′ +   ′=  


= =
−− −  

y Xβ
 

 

 

. 

2 2 2 2
1 1 1 2S ˆ ˆ ˆ) )E )S ( ( (m n

i i i i i m iyy y yy y= = +Σ − Σ= − Σ −= − = +y y . 

2 SSE SSE
( ) ( 1) 2es
m n k m n

= =
+ − + + −

. 

2
2 1

2

/ (2 )ˆCov( ) (
0

)
0 2 /

n
n

σ
σ

σ
−  
= ⇒′= 
 

β X X 2
1̂ /( ) 2V nβ σ= ⇒

1

2
ˆ 2 / 2 /e en ns s s
β
= = . Note: In 

the general case where m and n may differ, 2/n becomes 1/m + 1/n. 
c.  

1̂
/ 2, 2 1 2 /2, 2

2 2
1 1 1 2

1

1

2 /2, 2

ˆ

(

) 2 /

ˆ ) )

(

( ( 1)
2

1

m n m n e

m n
i i i m i

m n

t y y t n

y y
y y t

n

s s

y y
m n m

α αβ

α

β + − + −

= = +
+ −

± − ±

Σ

⋅ = ⋅

+
⋅ +

+ −
±

− Σ −
= −

 

 
d. With X′ = [ ]

5.5.5.5.5.5.
111111
−−−

 and y′ = [117 119 127 129 138 139], we get the following: b′ = 

[128.166, –14.333]; ŷ ′ = [121 121 121 135.33 135.33 135.33]; SSE = … = 116.666, se = 5.4. Finally, 
the 95% CI for β1 is –14.333 ± 2.776(5.4) 3/2  = (–26.58, –2.09). 
 
 

107.  
a. 2 1 1 1 1( ) ( ) ( ) ( )− − − −′ ′ ′ ′ ′ ′ ′ ′= = = = =H HH X X X X X X X X XI X X X X X X X H . 

 
b. Write Y – Ŷ = Y – HY = (I – H)Y. Using the covariance matrix proposition and properties of the 

matrices I and H and the random vector Y, 
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2 2

2 2

2 2

2

2

Cov( ) ( ) Cov( )( ) ( ) ( ) ( )( )
( ) ( )
( )     because  is symmetric
( )       part (a)
( )

ˆ σ σ

σ σ

σ

σ

σ

′ ′ ′ ′ ′− = − − = − − = − −

′ ′ ′ ′ ′ ′= − − + = − − +

= − − +

= − − +

= −

Y I H Y I H I H I H I H I H
I I H I I H H H I H H H H
I H H H H

Y

I H H
I

I

H
H

  

 
109.  

a. Using the results in this section, the vector of coefficients is b′ = [35.0  3.18  –.006]. The model utility 
test gives f = 12.04 (P-value < .001); the t test for β1 (foot) is t = 2.96 (P-value = .021); the t test for β2 
(height) is t = –0.02 (P-value = .981). That is, the overall model is useful for predicting wingspan, and 
foot size is a useful predictor. However, in the presence of foot size, height is a basically useless 
addition to the model. 
 

b. The diagonal entries of H, in order, are: .55, .31, .13, .11, .88, .17, .31, .15, .18, .20. Observation #5 has 
the highest leverage by far, by grace of the fact that the height (54”) is much lower than any other 
observed height. 54” is 4’6”, suggesting that student #5 mis-recorded his own height (perhaps it should 
be 64”).  It’s also hard to believe that a 4’6” person would wear a size 9 shoe. 

 
c. Students #1 and #7 (h = .55, .31) are very tall and have very big feet. Student #2 has rather small feet, 

both for his height and for the group overall. 
 
d. Student #2 has a very large, negative residual. It seems that a 56” wing span for a 66” person is rather short. 
 
e. If numbers were clearly mis-recorded, these observations should be corrected or deleted. In general, 

though, we do not delete a “correct” observation simply because it doesn’t follow the pattern suggested 
by the other observations. 

Section 12.10 

111. The logistic regression model specifies 
0 1

0 1

3.75 0.1

3.75 0.1( )
11

x x

x x

e ep x
ee

β β

β β

+ − +

+ − += =
++

. 

a. 
3.75 0.1(10) 2.75

3.75 0.1(10) 2.75(10)
1 1

e ep
e e

− + −

− + −= =
+ +

≈ .060, while 
3.75 0.1(50)

3 5

1

.75 0.1(

.25

1.50) 2(50)
1 1

e ep
e e

− +

− += =
+ +

≈ .777. According to 

the model, there’s a 6% chance someone will redeem a $10 discount coupon, while there’s a 77.7% 
chance that someone will redeem a $50 discount coupon. 
 

b. 2.75(10)(10)
1 (10)

podds e
p

−= =
−

= .0639, while 1.25(50)(50)
1 (50)

podds e
p

= =
−

= 3.49. The odds of a $10 

coupon being redeemed are .0639:1 (quite unlikely), while the odds of a $50 coupon being redeemed 
are 3.49:1 (3.49 times more likely than not). 

 
c. β1 = 0.1: For each $1 increase in the value of the emailed coupon, the log-odds of the coupon being 

redeemed increase by 0.1. Equivalently, since 1 0.1e eβ = = 1.105, for each $1 increase in the value of the 
emailed coupon, the odds of the coupon being redeemed increase by a multiplicative factor of 1.105 
(i.e., the odds increase by 10.5%). 

d. p(x) = .5 → odds(x) = 1 → 0 1xβ β+ = log-odds = ln(1) = 0 → 0

1

3.75
0.1

x
β
β

−
= − = − = $37.50. 
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113.  
a. We test H0: β1 = 0 vs H0: β1 ≠ 0. Using the large-sample z test, we will reject H0 if |z| ≥ .025 1.96z = . The 

test statistic value is 
1

1

ˆ

ˆ 0z
s
β

β −
= = 

.1998 0
.0986

− −
= –2.026. Since |–2.026| ≥ 1.96, H0 is rejected at the .05 

significance level. We conclude that sleep indeed has an effect on the likelihood of driving drunk 
among American teenagers. 
 

b. A 95% CI for β1 is 
1̂

1 .025
ˆ z s

β
β ± = –.1998 ± 1.96(.0986) = (–.3931, –.0065). Thus a 95% CI for 1eβ has 

endpoints .3931 .0065 ) (.675,.993)( ,e e− − = . 
 
c. Multiplication by .675 = (1 – .325) is equivalent to a 32.5% decrease, while multiplying by .993 is the 

same as a 0.7% decrease because .993 = 1 – .007. Thus, with 95% confidence, a 1-hour increase in a 
teenager’s typical number of sleep hours per night is associated with a 0.7% to 32.5% decrease in the 
odds of driving drunk. 

 
 

115.  
a. From software, 0 .0573β̂ = −  and 1 .00430β̂ = . So, the estimated logistic regression function is 

.0573 .00430

.0573 .00430
ˆ ( )

1

x

x

ep x
e

− +

− +=
+

. 

 
b. 1̂eβ = 1.0043, so a 1-month increase in age is associated with an estimated 0.43% increase in the odds 

of having kyphosis. 
 
c. We test H0: β1 = 0 vs H0: β1 ≠ 0. Using the large-sample z test, we will reject H0 if |z| ≥ .025 1.96z = . 

From software, 
1̂

s
β = .00585, so the test statistic value is z = 

.00430 0
.00585

−
= 0.74. Since |0.74| < 1.96, we 

do not reject H0 at the .05 level (or at any reasonable significance level). The data do not provide 
convincing evidence that age has an impact on the presence of kyphosis. 

 
 

117.  
a. The log-odds are .8247 + .0073(35) + .0041(65) + .9910(1) + .0224(0) = 2.3377, so the estimated 

probability is 
2.3377

2.3377
ˆ (35,65,1,0)

1
ep

e
=

+
= .912. 

 
b. Now the log-odds are .8247 + .0073(35) + .0041(65) + .9910(0) + .0224(0) = 1.3467 and the estimated 

probability is 
1.3467

1.3467
ˆ (35,65,0,0)

1
ep

e
=

+
 = .794. 

 
c. Adjusting for a customer’s income, sex, and child status (has some or not), a 1-year increase in age 

corresponds to an estimated e.0073 = 1.007 multiplicative increase (aka 0.7% increase) in the odds a 
customer wants GM chicken products labeled. 

 
d. Adjusting for a customer’s age, income, and child status, the odds that a female customer wants GM 

chicken products labeled is e.9910 = 2.69 times higher than for a male customer. 
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119.  
a. Statistical software confirms these estimated coefficients. :) 

 
b. The negative coefficient in front of x1 signifies that the chance of seeing a whale decreases as the 

number of days after final salmon release increases. (That’s logical — there’s incrementally less food 
for the whales over time.) The positive coefficient on x2 means that the chance of seeing a whale 
increases the longer you visit the site (duh). 

 

c. log-odds = –5.68 – .096(7) + .210(30) = –0.052, so 
0.052

0.052
ˆ (7,30)

1
ep

e

−

−=
+

= .484. 

 

d. The test statistic values are 1
.096 0
.253

z − −
= = –0.38 and 2

.210 0
.120

z −
= = 1.75. At the .1 level, we reject 

H0 if |z| ≥ z.05 = 1.645. So, based on the z-values, we do not reject H0: β1 = 0 but we do reject H0: β2 = 0 
in favor of Ha: β2 ≠ 0.  

 
e. e–.096 = .9084 means that a 1-day increase in the time since the final salmon release corresponds to a           

(1 – .9084) = .0916 = 9.16% estimated decrease in the odds of seeing a whale. e.210 = 1.2337 means 
that a 1-minute increase in the duration of your visit corresponds to a 23.37% estimated increase in the 
odds of seeing a whale. 

 

Supplementary Exercises 
 
121.  

a. As flood level increases, so does flood damage, not surprisingly. But there are two “jumps” in the 
pattern: the amount of flood damage increases suddenly from x = 2ft to 3ft and at x = 5ft to 6ft. 

 
 

b. No: A single straight line would not accurately describe the relationship in the scatterplot. If anything, 
three lines are required for three ranges (perhaps 0-2.5ft, 2.5-5.5ft, and 5.5ft+). 
 

 
123.  

a. 2 .5073R =  or 50.73%. 
 
b. 2 .5073 .7122r R= + = =  (positive because 1̂β  is positive.) 
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c. We test 0: 10 =βH  v. a 1: 0H β ≠ .  The test statistic t = 3.93 gives P-value = .0013, which is < .01, 
the given level of significance, therefore we reject H0 and conclude that the model is useful. 

 

d. We use a 95% CI for 50⋅Yµ .  ( ) ( )50ˆ .787218 .007570 50 1.165718y = + = , .025,15 2.131t = , se = “Root 

MSE” = .020308, so 
( )

( )
( ) ( )50

2

ˆ 2

17 50 42.331.20308 .051422
17 17 41,575 719.60

ys
−

= + =
−

.  The interval is, then, 

( ) ( )1.165718 2.131 .051422 1.165718 .109581 1.056137,1.275299± = ± = . 
 

e. ( ) ( )30ˆ .787218 .007570 30 1.0143.y = + =   The residual is ˆ .80 1.0143 .2143y y− = − = − . 
 

 
125. The value of the sample correlation coefficient using the squared y values would not necessarily be 

approximately 1.  If the y values are greater than 1, then the squared y values would differ from each other 
by more than the y values differ from one another.  Hence, the relationship between x and y2 would be less 
like a straight line, and the resulting value of the correlation coefficient would decrease. 

 
 
127.  

a. A scatterplot suggests the linear model is appropriate. 

15105

99.0

98.5

98.0

temp

re
m

o
v
a

l%

 
b. Minitab Output: 
 

The regression equation is 
removal% = 97.5 + 0.0757 temp 
 
Predictor        Coef       StDev          T        P 
Constant      97.4986      0.0889    1096.17    0.000 
temp         0.075691    0.007046      10.74    0.000 
 
S = 0.1552      R-Sq = 79.4%     R-Sq(adj) = 78.7% 
 
Analysis of Variance 
 
Source            DF          SS          MS         F        P 
Regression         1      2.7786      2.7786    115.40    0.000 
Residual Error    30      0.7224      0.0241 
Total             31      3.5010 
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Minitab will output all the residual information if the option is chosen, from which you can find the 
point prediction value 10.5ˆ 98.2933y = , the observed value y = 98.41, so the residual = .0294. 

 
c. Roughly se = .1552. 
 
d. R2 = 79.4. 
 
e. A 95% CI for β1, using .025,30 2.042t = :  ( ) ( ).075691 2.042 .007046 .061303,.090079± = . 
 
f. The slope of the regression line is steeper.  The value of se is almost doubled (to 0.291), and the value 

of R2 drops to 61.6%. 
 
 
129.  

a. Using the techniques from a previous chapter, we can perform a t test for the difference of two means 
based on paired data.  A paired t test for equality of means gives t = 3.54, with a P-value of .002, 
which suggests that the average bf% reading for the two methods is not the same. 

 
b. A scatterplot (not shown) indicates that using linear regression to predict HW from BOD POD seems 

reasonable. The least squares linear regression equation, as well as the test statistic and P-value for a 
model utility test, can be found in the output below.  We see that we do have significance, and the 
coefficient of determination shows that about 75% of the variation in HW can be explained by the 
variation in BOD. 
 

The regression equation is 
HW = 4.79 + 0.743 BOD 
 
Predictor        Coef       StDev          T        P 
Constant        4.788       1.215       3.94    0.001 
BOD            0.7432      0.1003       7.41    0.000 
 
S = 2.146       R-Sq = 75.3%     R-Sq(adj) = 73.9% 
 

 
131. Use what we already know about MLE’s of normal random samples. In the unrestricted case, 

212
10

1212 )ˆ()()ˆ(ˆ iiniinin yyxbbyy −Σ=−−Σ=−Σ= µσ . Under H0: β1 = 0, μ = β0, so y=0β̂  and 
212

0
1212

0 )()0ˆ()ˆ(ˆ yyxyy iniinin −Σ=−−Σ=−Σ= βµσ . Lastly, the exponential terms in the likelihood 
simplify to exp(–n/2) in both cases, for a likelihood ratio equal to 

2/2/
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
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σπ
σπ . We reject H0 when this ratio is small, which (by the 

ANOVA equation) is equivalent to SSR/SSE being large, or F = MSR/MSE being large. 
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133.  
a. Take logs of both sides of the model to get ln(Y) = ln(α) + βx + ln(ε), or Y′ = β0 + β1x + ε′. If ε is 

lognormal, then (by definition) ε′ is normal, and we have our usual regression model. 
 

b. Software gives the estimated regression equation y = –4.6 + 0.4057x. However, residual plots show a 
strong curved patter among the residuals, and that the residuals are non-normal. The former indicates 
the simple linear model is not adequate. 

 
c. A scatter plot (y vs. x) does show a pattern consistent with an exponential model. And a scatter plot of 

ln(y) versus x is quite linear. If we regress ln(y) on x, software gives the estimated regression equation 
ln(y) = 3.1564 + 0.004811x. Software also gives R2 = 96.75%, a good sign of fit, and residual plots are 
at least somewhat better, although equal variance concerns persist. The estimates of the original 
parameters are a = exp(b0) = 23.486 and b = b1 = 0.004811. 

d. From software, a 95% PI for ln(Y) when x = 250 is (3.99671, 4.72167). Thus, a 95% PI for Y when       
x = 250 is (e3.99671, e4.72167) = (54.42, 112.36). 
 
 

135.  
a. The scatterplot suggests a linear relationship between pH and the mean response is plausible. 

 
 
 

b. Software provides the estimated regression equation y = 31.04 – 5.79x. The estimated standard error of 

the slope is 1.36. So, the model utility test statistic is 
5.79

1.36
t −
= = –4.25. Comparing this to a t 

distribution with n – 2 = 17 df, the associated P-value is roughly 0. Hence, we reject H0: β1 = 0 and 
conclude that soil pH is a statistically significant predictor of mean crown dieback.  
 

c. From software, a 95% PI for a new Y when x = 4.0 is (1.41657, 14.3251) while a 95% CI for μY|4.0 is  
(6.42391, 9.31772). The PI is considerably wider than the CI, consistent with what we’ve learned 
about simple linear regression (and about CI’s versus PI’s in general). 

 
d. The PI and CI at x = 3.4 are (4.69265, 17.9996) and (9.17703, 13.5152), respectively. These are 

somewhat wider than the matching intervals in part c. That makes sense, because x = 4.0 is closer to 
the average x-value in the data set than is x = 3.4. 
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137.  
a. With the aid of software, a first-order model yields y = 84.82 + .1643x1 – 79.67x2 and 2

aR = .654. 
 

b. The adjusted R2 value jumps to .831 when the interaction term is added. For the full second-order 
model, 2

aR = .7207. Looking at the 2
aR  values, it appears that the model with an interaction term but 

without quadratic terms is preferred. 
 
c. The interaction model is y = 6.22 + 5.779x1 + 51.33x2 – 9.357x1x2. Substituting, the predicted 

compressive strength is ŷ = 6.22 + 5.779(14) + 51.33(.60) – 9.357(14)(.60) = 39.32 MPa. 
 
d. First-order: 2

aR  = 66.22%; with interaction, 2
aR  = 68.27%; full second-order: 2

aR  = 70.42%. These 
suggest that the full second-order model is “best” for predicting adsorbability. 
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