CHAPTER 12
Section 12.1

a. Both the BMI and peak foot pressure distributions appear positively skewed with some gaps and

possible high outliers.

Stem-and-leaf of BMI Stem-and-leaf of Foot pressure
1 12 8 7 3 0012344
6 13 00588 16 3 566666678
13 14 2456689 18 4 11

19 15 000569 (8) 4 56789999
21 16 69 16 5 34

21 17 01156 14 5 577778
16 18 677 8 6 024

13 19 5 66

13 20 0156 4 7 4

9 21 0126 3 7

5 22 4 3 81

4 231 2 859

3 24 27

1 25 Leaf Unit = 10

1 265

Leaf Unit = 0.1

b. No, peak foot pressure cannot be uniquely determined by BMI. As a counterexample, the second and
third children listed both have BMI = 13.0 but their peak foot pressures are very different.

c. The scatterplot suggests some positive association between BMI and peak foot pressure (the plot goes
from lower-left to upper-right), so BMI may have some predictive power. But the relationship does not
appear to be very strong, and there are many outliers from the overall pattern.
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Chapter 12: Regression and Correlation

A scatter plot of the data appears below. The points fall very close to a straight line with an intercept of

approximately 0 and a slope of about 1. This suggests that the two methods are producing substantially the
same concentration measurements.

a. The scatter plot with axes intersecting at (0,0) is shown below.
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b. The scatter plot with axes intersecting at (55, 100) is shown below. This plot is certainly preferable,

since the dots in the plot are not compressed into one corner (the plot in a leaves a lot of unused white
space).
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c. A parabola appears to provide a good fit to both graphs.



11.

Chapter 12: Regression and Correlation

Expected fuel efficiency when x = 2500 is {2500) = 70 — .0085(2500) = 48.75 mpg.

If x = weight increases by 1 (Ib), then f{x) changes by —.0085. That is, for each 1-1b increase in car
weight, expected fuel efficiency decreases by .0085 mpg.

Because the relationship is linear, the effect of a 500-1b increase is just 500 times the effect of a 1-lb
increase. So, a 500-1b increase in car weight corresponds to a decrease in expected fuel efficiency
equal to .0085(500) = 4.25 mpg.

Reversing part ¢, a 500-1b decrease in car weight corresponds to an increase of 4.25 mpg in expected
fuel efficiency.

f1 = change in expected flow rate associated with a one-inch increase in pressure drop =.095.

We expect flow rate to decrease by 545, =.475.
Hyo =—12+.095(10) = .83, and 1,5 =—.12+.095(15)=1.305.

835830
>—
025
.840—.830) -

025

P(Y>.835)=P(Z ):P(Z >.20) =.4207

P(Y>.840):P[Z > P(Z >.40) = 3446

Let Y1 and Y> denote pressure drops for flow rates of 10 and 11, respectively. Then g,,, =.925, so

Y1 — Y> has expected value .830 —.925 = —.095 and sd /(.025)" +(.025)" =.035355. Thus
0—(~.095)

PY >Y)=P(Y -Y,>0)=P| Z>
(h>1) =P —1, > 0) ( 035355

J = P(Z >2.69)=.0036.

B1 = expected change for a one-degree increase = -.01, and 105, =—.1 is the expected change for a 10-
degree increase.

Hy 200 = 5-00-.01(200) =3 , and gty o5 =2.5.

The probability that the first observation is between 2.4 and 2.6 is
24-25 26-25
<Z<
075 .075
any particular one of the other four observations is between 2.4 and 2.6 is also .8164, so the probability

that all five are between 2.4 and 2.6 is (.8164)5 =.3627.

P(24<Y<26)= P( j = P(-1.33<Z <1.33)=.8164 . The probability that
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d. Let Y; and Y, denote the times at the higher and lower temperatures, respectively. Then Y;— Y> has

expected value 5.00—.01(x+1)—(5.00—.01x) =—.01. The standard deviation of ¥\ - Y, is

~(~01
(.075)" +(.075)" =.10607. Thus P(Y, - Y, > 0) = P(Z >%) = P(Z >.09)=.4641.

Section 12.2

13.

15.

~ S R A
B === 13,048 _ 652 and B, =y- X = &—( 652)£— .626, so the equation of the LSRL is
S 20,003
y=.626 + .652x.

P =.626 + .652(35) =23.456. The residual is y—y=21-23.456=-2.456.

SSE= 5, —S2 /S, =8903 - (13048)%/20003 =392, 50 & = /SSE /%—57

R =1- SSE =1- 392 _ =.956.
SST 8903
Without the two upper extreme observations, the new summary values are
n=12,%x =272,%x"* =8322,%y =181,%)* =3729,%xy = 5320. The new
S, =2156.667,S, =998.917,8  =1217.333. New ﬁl =.56445 and [fo =2.2891, which yields the
new equation y =2.2891+.56445x . Removing the two values changes the position of the line

considerably, and the slope slightly. The new R* =1 —% =.6879 , which is much worse than

that of the original set of observations.

With the aid of software, Sx. = 504.0, S,, =9.9153, S\, = 45.8246, [;’1 =4582.46/504 = .09092 and

B =v-pBx %—( 09092)@ =-14.6497. The equation of the LSRL is y = —14.6497 +
.09092x.

—14.6497 +.09092(182) = 1.8997.

The four observations for which temperature is 182 are: (182,.90), (182, 1.81), (182, 1.94), and
(182, 2.68). Their corresponding residuals are: .90—1.8997 =—-0.9977, 1.81-1.8997 =-0.0877,
1.94-1.8997 = 0.0423, 2.68—-1.8997 = 0.7823 . These residuals do not all have the same sign
because in the cases of the first two pairs of observations, the observed efficiency ratios were smaller
than the predicted value of 1.8997. Whereas, in the cases of the last two pairs of observations, the
observed efficiency ratios were larger than the predicted value.

SST =8, =9.9153, SSE =9.9153 — 45.8246%/504.0 = 5.7489, R* = 1 — SSE/SST = 1 — 5.7489/9.9153
=.4202. 42.02% of the observed variation in efficiency ratio can be attributed to the approximate
linear relationship between the efficiency ratio and the tank temperature.

4
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19.
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Chapter 12: Regression and Correlation

Yes, the scatterplot shows a strong linear relationship between rainfall volume and runoff volume, thus
it supports the use of the simple linear regression model.

Rainfall volume (x) vs Runoff volume (y)

100 — . ®
90 —
80 —
70 — °
60 —

40 —
30 —
20 —
10 — .

From software, ¥ =53.200, y =42.867, S, =20,586.4, S =14,435.7,and S, =17,024.4 .
~ S, 17,0244

'S 20,5864

xx

=.82697 and ,5’0 =42.867—(.82697)53.2 =-1.1278.

o =—1.1278 + .82697(50) =40.2207 .

SSE = 14435.7 — 17024.4%/20586.4 = 357.07. 5, =6 =,| SSEZ = ,/35173'07 =5.24.
n—

R SSE_, _ 357.07
SST 14,4357

attributed to the simple linear regression relationship between runoff and rainfall.

=.9753. S0 97.53% of the observed variation in runoff volume can be

From statistical software, ,31 =-20939 and ,30 =75.212. So the equation of the LSRL is y = 75.212 —
.20939x. For x = 100, we predict 75.212 —.20939(100) = 54.274.

From statistical software, SSE = 78.92 and SST = 377.17, so R =1 —78.92/377.17 = .791. So, 79.1%
of the variation in cetane number is explained by this linear model with predictor iodine. That is, the
error sum of squares is reduced by 79.1% compared to predicting with just a constant.

¢ 12
predicted cetane number calculated by the estimated regression line.

s, =6= SSE2 = 7892 =2.56, which is a typical deviation of an actual cetane number from the
\7—
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21.
a. The scatterplot shows a very strong, positive, linear relationship between palprebal fissure width and
ocular surface area.

050 ors 100 125 150 175
Width

b. With the aid of statistical software, /3, = 3.080 and /3, =—-0.398, so the LSRL is y =—0.398 + 3.080x.

¢. A l-cm increase in palprebal fissure width corresponds to an estimated 3.080 cm? increase in
average/expected OSA.

d. —0.398 +3.080(1.25) =3.452 cm?.
€. [ly,sis also equal to 3.452 cm?. (That is, the point prediction and point estimate at x = 1.25 c¢m are the

same.)

23. With each Y, ~ N(f, + f,x,,0) , their joint likelihood function is

L Gthepnd e L outaepn e 20 =[By+ fx 1)
- e Ot him e On Lo thix, =Cexp| - . The
SO fW) oox olon p 262

mle’s of Sy and £ maximize this expression, but maximizing Ce” is equivalent to minimizing the
expression w. In the likelihood function that’s Z( v, =B, + Bx]1)° , which is exactly g(/3,,83,) . Therefore,

w/20?

the least squares estimates — which, by definition, minimize g(/f,,3,) — are also the mle’s.

25. The new slope and intercept will be 1.8 ﬁ’l and the new intercept will be 1.8 ,BO +32. To see why, notice that
the x’s are unchanged, so x and S, are unchanged. But with y/ =1.8y, +32, »'=1.8y +32 by linearity of
meansand S, = (x, = X)(¥ =) =D (x, )18y, +32-[1.87 +32]) = D (x, - X)(1.8y, - 1.87) =

1.8S

S RATE n .
1.82 (x, —=X)(y, —¥) =188, . Therefore, the new slope is S” =—==1.84, and then the new intercept

xx xx

is - (1.88)Xx=1.87+32-1.83X =1.8(3 - fX)+32=1.85, +32.
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29.
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The LSRL equation is y = /3'0 + [flx =y- ﬁ])?+ ,[§’lx . Substitute x = x and you get y =7, which shows the
LSRL passes through (x,y) .

a. Subtracting X from each x; shifts the plot in a rigid fashion x units to the left without otherwise
altering its character. The last squares line for the new plot will thus have the same slope as the one for
the old plot. Since the new line is X units to the left of the old one, the new y intercept (i.e., the height

at x = 0) is the height of the old line at x = x, which is BO + ﬁlf =y (since from exercise 26, (x,¥) is
on the old line). Thus the new y interceptis y .

b. We wish by and b, to minimize g(b,,b,) = Z|:yl. —(bo +b,(x, —Y))]Q. Equating (%g and 2—5 to 0
0 1
yields nb, +b,%(x, %) =3y,, b2 (x, -%)+bZ(x, -%) =2(x, —x)" =2(x, = X)y, . Since
2(x,—X)=0, b, =y . Andsince E(x,—X)y, =S, because T(x,-X)y =yZ(x, ), b = . Thus
,Bg =7 and ﬁA; :ﬁ1~

Section 12.3

31.

33.

2 2
a.  With these x-values, X =725 and S, = 3 (x, ~725)> = 17,500. Thus, V(5,) = ;’— - 171(;00

xX

and

= _10 _ 0.0756.

T J17.500

b. Under the model assumptions, the rv ,Bl has a normal distribution with mean £ = .25 and standard

. - A5-2 35-2
deviation 0.0756 from part a. Thus P(.15< S, <.35)=P 525 <Z< 35225
.0756 0756

j=P(—1.32 <z<
1.32) = d(1.32) — d(-1.32) = .813.

c. With these n = 11 values, S, = 11,000, which is smaller than in a. Thus, even though we have a larger
sample, the resulting standard deviation of /;’1 is larger. The n =7 sample from a resulting in more

precise estimation.

Let 81 denote the true average change in runoff for each 1 m® increase in rainfall. To test the hypotheses

G 82 ,
H,:p, =0 vs. H :p, #0,the calculated ¢ statistic is ¢ = A % = 22.64 which (from the printout)
S, .
A
has an associated P-value of P =0.000. Therefore, since the P-value is so small, H is rejected, and we

conclude that there is a useful linear relationship between runoff and rainfall.
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37.
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A confidence interval for B is based on n —2 = 15 — 2 = 13 degrees of freedom. ¢, =2.160, so the
interval estimate is /3, 2, 5 s, =.82697+(2.160)(.03652) = (.748,.906) . Therefore, we can be

confident that the true change in average runoff, for each 1 m3 increase in rainfall, is somewhere between
748 m® and .906 m’.

We want a 95% CI for Bi: B, £t 025,15 S 5 - Using the given summary statistics,
: > 1

~ S,
B === 238112 =1.536. Next, SSE =783.88 —238.11%/155.02 = 418.2494, from which

S, 115019

s, = /% =528 and s, :%:.424. With ¢, s =2.131, our Cl is
' 155.02 o

1.536+2.131- (.424) =(.632, 2.440). With 95% confidence, we estimate that the change in reported

nausea percentage for every one-unit change in motion sickness dose is between .632 and 2.440.

We test the hypotheses H : 8, =0 vs H, : 5, # 0, and the test statistic is ¢ = % =3.6226 . With

df = 15, the two-tailed P-value = 2P(T > 3.6226) = 2(.001) = .002. With a P-value of .002, we would
reject the null hypothesis at most reasonable significance levels. This suggests that there is a useful
linear relationship between motion sickness dose and reported nausea.

No. A regression model is only useful for estimating values of nausea % when using dosages between
6.0 and 17.6 — the range of values sampled.

Removing the point (6.0, 2.50), the new values are (with the aid of software) ,[3’1 =1.561, /}0 =-9.118,
SSE =430.5264, s, =5.55, 5, = 551, and the new Cl is 1.561+2.145-(.551) , or (.379, 2.743). The

interval is a little wider. But removing the one observation did not change it that much. The
observation does not seem to be exerting undue influence.

From Exercise 19, SSE =78.92, s0 s, = 7892 =2.5645 and s, = 2.5645 =.03109. Thus
14-2 B 82.479
—.20939
t= 03109 —6.73 <-4.318 =~ 905,12 and P-value <.001. Because the P-value <.01, H,;: 3 =0

is rejected at level .01 in favor of the conclusion that the model is useful (5, #0).

The CI for f is —.2094+(2.179).03109) = —.2094 + .0677 = (= .277,—.142). Thus the CI for 104, is
(-2.77,-1.42).
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39. Each ¥; has mean S, + fx,,s0 E(Y)= lZ:E(Yl.) = lZ:(,BO + p.x,) = B, + Bx . Thus, using the fact that
n n

EB) =B, EB)=EY -Bx)=EX)~EB)T = py+Bx~ BT =p,.

41. Let x'=cxand y'=dy. Then S, = Z(cx,. —cx)(dy, —dy) =cdS,, and, similarly, S = ¢S and
) LAy Sx’r’ Cdey d » .. . ’ 2
S, =d’S . The new slope is f; = S—’ = g =—/, . Similarly, the new SSE is SSE"=d"SSE, so
’ c c

xx' xx

[SSE’  [a° i5 d/c)f ;
s = SSE' _ |4'SSE _ ds,. Put it all together: ¢' = A _( b, = A =1, as claimed.
n-2 n-2 NN ds, / /czsﬂ s, /S,

Section 124

43,
a. The mean of the x values is X = 613.5. Since x = 600 is closer to 613.5 than is x = 750, the quantity
(600 -X )2 must be smaller than (750 - )_c)z . Therefore, since these quantities are the only ones that are
different in the two s, values, the s, value for x = 600 must necessarily be smaller than the s, for
x=750. Said briefly, the closer x is to X, the smaller the value of s, .
b. Error degrees of freedom =n—2 =6. ¢ ,5 s = 2.447, so the interval estimate when x = 600 is
2.723+(2.447).190) = (2.258,3.188).
c.  The 95% prediction interval is § ¢, (\fs? +s2 =2.723%(2.447)y/(.534)" +(.190)" = (1.336,4.110).
Note that the prediction interval is much wider than the CIL.
d. For two 95% intervals, the simultaneous confidence level is at least 100(1 — 2(.05)) = 90%.
45, The accompanying Minitab output will be used throughout.

a. From software, the least squares regression line is y = —1.5846 + 2.58494x. The coefficient of
determination is R? = 83.73% or .8373.

b. From software, a 95% CI for £, is roughly (2.16, 3.01). We are 95% confident that a one-unit increase
in tannin concentration is associated with an increase in expected perceived astringency between 2.16
units and 3.01 units. (Since a 1-unit increase is unrealistically large, it would make more sense to say a
0.1-unit increase in x is associated with an increase between .216 and .301 in the expected value of y.)

c. From software, a 95% CI for uys, the mean perceived astringency when x = x* = .6, is roughly
(-0.125, 0.058).
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d. From software, a 95% PI for Y].6, a single astringency value when x = x* = .6, is roughly (—0.559,
0.491). Notice the PI is much wider than the corresponding CI, since we are making a prediction for a

single future value rather than an estimate for a mean.

e. The hypotheses are Hy: py.7 = 0 versus Ha: uyn7 # 0, where uy 7 is the true mean astringency when x =
x*=7. Since this is a two-sided test, the simplest approach is to use the 95% CI for uy7 provided by

software. That CI, as seen in the output is roughly (0.125,

0.325). In particular, since this interval does

not include 0, we reject Hy. There is evidence at the .05 level that the true mean astringency when

tannin concentration equals .7 is something other than 0.

Regression Equation

y = -1.5846 + 2.58494 x

Coefficients

Term Coef SE Coef T P 95% CI
Constant -1.58460 0.1338060 -11.8377 0.000 (-1.85798, -1.31122)
X 2.58494 0.208042 12.4251 0.000 ( 2.16007, 3.00982)
Summary of Model

S = 0.253259 R-Sg = 83.73% R-Sg(adj) = 83.19%

Predicted Values for New Observations

New Obs Fit SE Fit 95% CI
1 -0.033635 0.0447899 (-0.125108, 0.057838)
2 0.224859 0.0488238 ( 0.125148, 0.324571)

Values of Predictors for New Observations

New Obs X
1 0.6
2 0.7
47. The midpoint of the CI is the point estimate: y = 92.1+117.7
12.8 12.8

=12.8 and also = ¢, ,5,,80 s, =

loss 2306
— 104.9 + 3.355(5.55) = 104.9 = 18.6 = (86.3, 123.5).

10

95% PI
(-0.558885, 0.491615)
(-0.301888, 0.751606)

=104.9. The margin of error is 117.7 — 104.9

= 5.55. From these, the 99% CI for g, is P *25,0 .5,
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We will need SSE = S, —S2 /5, = 60,089,500 — 303,515%/2692.55 = 25,876,076 and 5, = |~ =
y =5 =

2
25.876,076 _ |96 g
20-2

a. The scatterplot certainly suggests a useful relationship, but let’s formally test Hy: 51 =0 vs H,: 1 # 0.
B -0 112.7-0

s, 1198.98/+/2692.55

clearly reject Hy at any reasonable significance level and conclude that a useful relationship exists.

The test statistic is ¢ = =4.88, and the P-value at 18 df is = 0. So, we

14000 .
12000

12000 .

11000 . . .

10000 . .

9000

Electricity consumption (kWh)

8000 L]
7000

Average outside air temperature
1198.98

\2692.55

level, a 1°F increase in average outside air temperature is associated with a increase in expected
electricity consumption between 64.2 and 161.3 kWh.

b. A 95% Cl for p is ,ﬁl Flops 028, =112.7£2.101- =(64.2, 161.3). At the 95% confidence

¢. The predicted value at x* =70 is 2906 + 112.7(70) = 10,795. With the aid of software, the standard
error of ¥ when x*=70is s, =269.9 . The Cl is 10,795 £ 2.101(269.9) = (10228, 11362).

d. 10,795+2.101 J1198.98% +269.9> = (8215, 13379).

e. Wider, because 85 is farther from the mean x-value of 68.65 than is 70.

f. No: Looking at the scatterplot, x = 95 is well outside the scope of the observed data. This suggests that
estimates or predictions made at x = 95 are not necessarily trustworthy, since we don’t know that the

apparently linear trend will continue.

g. To achieve a simultaneous confidence level of at least 97% (o = .03) for three intervals, we need to use
individual confidence level 100(1 —.03/3)% = 100(1 —.01)% = 99%. That is, we’ll construct three

99% CI’s. The ¢ critical value is ¢, ,,= 2.878.
x* b s, 99% CI for gy
60 9670 334.4 (8707, 10633)
70 10,795 269.9 (10020, 11574)
80 11,924 375.0 (10845, 13004)

11
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51.
a. Yes, the overall trend is a strong, positive, linear association between shear stress and erosion depth.

025
.

020

Erosion depth (ft)
g
.

e
a8
.

10 15 20 25 30 as
Shear stress (Ib/sqft)

b. Test Hy: f1 =0vs H,: 1 #0. With the aid of software, ,31 =.0931 and s 5= .0144, so the test statistic

B,—0 .0931-0
5; 0144

1

is t= = 6.45, and the P-value at 6 — 2 =4 df is = .003. So, we reject Hp at even the

.005 significance level and conclude that a useful relationship exists.

c. Atx*=1.75,5=.08367 and s, =.01144 from software. So, a 95% CI for uyi.751s P+t s, =
08367 £2.776(.01144) = (.05191, .11544).

d. From software, s, = .02769, so the 95% PI for Y|1.75 is .08367 + 2.776 J02769% +.01144% =
(.00048, .16687).

Section 12.5

53. Most people acquire a license as soon as they become eligible. If, for example, the minimum age for
obtaining a license is 16, then the time since acquiring a license, y, is usually related to age by the equation
v =x— 16, which is the equation of a straight line. In other words, the majority of people in a sample will
have y values that closely follow the line y = x — 16.

55.
7377.704

a. Wearetesting Hy:p=0vs H, : p>0. p=
\/36.9839./2,628,930.359

=.7482, and

7482412 , , o
t= —W =3.9066. We reject Ho since ¢ =3.9066>7,,,, =1.782. There is evidence that a

positive correlation exists between maximum lactate level and muscular endurance.

b. We are looking for R?, the coefficient of determination. R? =72 =(.7482)? = .5598. It is the same no
matter which variable is the predictor.

12
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59.
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rln=2 _ (449)V12
Vi-r? i (449)’

Hence we fail to reject Hy; the data does not suggest that the population correlation coefficient differs
significantly from 0.

=1.74.

Hy:p=0vs H,:p=#0;reject Hoatlevel .05if |¢|>¢,,.,, =2.179.1 =

2
(.449) =.20, s0 20 percent of the observed variation in gas porosity can be accounted for by its

linear relationship to hydrogen content.

1 (1+.878

Perform the log-transform specified in the section: v = Eln 1 878) =1.367. A 90% CI for

Ly = lln (H_pj is vi& =1.367+ 1645 _ (1.184, 1.550). Inverting the transformation, a 90%

2 1-p J83-2 J81

Q28 1 20550 g

CI for p is (e“”*‘“) T A J = (.829, .914).

Using the same log-transform, we have x4, = %m[ 1 al Zj = 1.099 when Hj is true. Thus, the test

1.367-1.099

1/83-2

.008 < .05, we reject Hy in favor of H, and conclude that the population correlation coefficient between
digital caliper and laser arm measurements exceeds .8. Note: Since the lower bound of the CI in part
(a) is also a 95% lower confidence bound for p, we could have rejected Hy because p > .829 > 8.

statistic value is z = =2.412 and P-value = P(Z>2.412) = 1 — ®(2.412) =~ .008. Because

R*=p2= 8782= 771, or 77.1%.

When x and y are reversed, neither 7 nor R? change, so the answer is still 77.1%.

Because P-value =.00032 < a =.001, Hy should be rejected at this significance level.

Not necessarily. For this #, the test statistic ¢ has approximately a standard normal distribution when

r498

0] 3 =+ ing 3.60 =
H,:p=0 istrue, and a P-value of .00032 corresponds to z 3.60. Solving m for r

yields » =.159. This r suggests only a weak linear relationship between x and y, one that would
typically have little practical importance.

i .0224/9998
V1-.0222

statistically significant — i.e., it cannot be attributed just to sampling variability in the case p = 0. But
with this n, » = .022 implies p =.022, which in turn shows an extremely weak linear relationship.

=220 21 p5 9993 = 1.96, s0 Ho is rejected in favor of H.. The value ¢ =2.20 is

13
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63. Re-write both statistics in terms of the original sums of squares. The test statistic from Section 12.3 is

b -0 S, /S, S Nn=2

= = . Meanwhile, since SST and S, are the same thing,
S, /S, ~SSE/n-2/S. SSE(S,) ” s

T=

65.

Ryn-2 (S, /1SS, Wn=2 ~ Sxy‘/n—2
J1-R? VSSE/SST ~ [SSE(S,)

We used software to calculate the 7;’s: »1 =0.184, r, =—-0.238, and r; =-0.426.

The only difference between lag autocorrelation coefficients and regular correlation is the number of
terms in the numerator summand: the sum only runs from 1 to n — 1, but X is based upon all n
observations. In regular correlation, ¥ would be replaced in each part of the numerator by the mean of
just the relevant #n — 1 values (1 through n — 1 in the first parentheses, 2 through » in the second). As n
gets larger, the difference between X and these “truncated” means becomes negligible. A similar
comment applies to lag 2.

2 . . . L .
——==.2. Wereject Hoif |r|>.2. Forall lags, r; does not fall in the rejection region, so we cannot

V100

reject Hy. There is not evidence of theoretical autocorrelation at the first 3 lags.

If we want an approximate .05 significance level for the simultaneous hypotheses, we would have to
use smaller individual significance level. If the individual confidence levels were .95, then the
simultaneous confidence levels would be approximately (.95)(.95)(.95) = .857.

Section 12.6

67. The accompanying graph is a plot of e* versus x. As desired, the plot exhibits neither curvature nor a
pattern of increasing/decreasing vertical (i.c., residual) spread. These suggest that the regression model
assumptions of linearity/model adequacy and constant error variance are both plausible.

Standardized Residual

Residuals Versus x
(response is y)
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a. For each observation, ¢, = y, —J, = y, —(182.7+3.29x,) . The accompanying plot of e’s versus x’s does

not show curvature (that’s good), but it shows greater variability at x = 75 than at other x values. The
latter suggests that the equal variance assumption of the simple linear regression model is rot satisfied.
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Residuals Versus x

(response is y)

50

50

80

b. The table below shows the standardized residuals. The standardized residual plot shows the same issue
as the previous graph: a lack of constant variance across all x-values. The normal probability plot of
the standardized residuals is at least roughly linear (no huge deviations from the reference line), so
normality of the true errors is at least plausible.
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Chapter 12: Regression and Correlation

A

a. Ho: i1 =0vs Ha: pi #0. The test statistic is ¢ = ﬂ , and we will reject Hy if |t = 255, =2.776.
S, o
B

LS. 7265 Soooandt

S . =

Ao S 12.869
tempted to conclude that the linear model is useful. However, this test assumes that a true linear
relationship exists between x and y, which is contradicted by the residual plots below.

192
= &568 =10.97 . Since 10.97 >2.776, we reject Hy. We are

b. 5., =1008.14+6.19268(7.0) = 1051.49 , from which the residual is
¥ =) =1046-1051.49 = —5.49 . Similarly, the other residuals are —.73, 4.11, 7.91, 3.58, and -9.38.

The plot of the residuals vs x follows:

RESI1
.

Because a curved pattern appears, a linear regression function is inadequate.

c¢. The standardized residuals are calculated as ¢ * = —5.49 =_-1.074, and

2
7.265\/1 1 (7.0-14.48)
6 165.5983

similarly the others are —.123,.624, 1.208, .587, and —1.841. The plot of e* vs x follows :

SRES1

This plot gives the same information as the previous plot. No values are exceptionally large, but the e*
of —1.841 is close to 2 std deviations away from the expected value of 0.

16
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73.
a. This plot indicates there are no outliers, but there appears to be higher variance for middle values of
filtration rate.

Residuals Versus x

Residual

_\
b. WeneedS = Z(x[ —X) =18,886.8295 . Then each ¢ can be calculated as follows:

%

(response is y)

e: =

Notice thatif ¢ =e;/s., then ¢, /e; =s.. All of the ¢, /¢, ’s range between .57 and .65, which are

close to se.

1

1
.665\/1 -

(x; —140.895)

. The table below shows the values:

c. This plot looks very much the same as the one in part a.

Standardized Residual

Residuals Versus x

(response is y)

20 18,886.8295
standardized standardized

residuals e /e residuals e /e

-0.31064 0.644053 0.6175 0.64218

-0.30593 0.614697 0.09062 0.64802
0.4791 0.578669 1.16776 0.565003
1.2307 0.647714 -1.50205 0.646461

-1.15021 0.648002 0.96313 0.648257
0.34881 0.643706 0.019 0.643881

-0.09872 0.633428 0.65644 0.584858

-1.39034 0.640683 -2.1562 0.647182
0.82185 0.640975 -0.79038 0.642113

-0.15998 0.621857 1.73943 0.631795
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Both a scatter plot and residual plot (based on the simple linear regression model) for the first data set
suggest that a simple linear regression model is reasonable, with no pattern or influential data points which
would indicate that the model should be modified. However, scatter plots for the other three data sets
reveal difficulties. For data set #2, a quadratic function would clearly provide a much better fit. For data
set #3, the relationship is perfectly linear except one outlier, which has obviously greatly influenced the fit
even though its x value is not unusually large or small. One might investigate this observation to see
whether it was mistyped and/or it merits deletion. For data set #4 it is clear that the slope of the least
squares line has been determined entirely by the outlier, so this point is extremely influential. A linear
model is completely inappropriate for data set #4. And all of this is true despite the fact that the summary
statistics for all four data sets are practically identical! The lesson: Always graph your data!

Scatterplots of y1 vs x1, y2 vs x2, y3 vs x3, y4 vs x4
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Section 12.7

77.

a. Since E(g) = 0, the expected sales when there are x; =2 competing outlets and x, = 8 thousand people
in a one-mile radius is 10000 — 1400(2) + 2100(8) = $24,000.

b. Similarly, 10000 — 1400(3) + 2100(5) = $16,300.

c¢. f1=-1400: Adjusting for the size of the nearby population, an increase of one competing outlet
corresponds to a $1400 decrease in expected weekly sales.
> =2100: Adjusting for the number of competing outlets, an increase of 1 thousand people within a
one-mile radius corresponds to a $2100 increase in expected weekly sales.

d. So=10000: In an area with 0 competing outlets and 0 people living within a one-mile radius, expected

weekly sales are $10,000. This might make sense for a highway/roadside fast-food outlet in the middle
of nowhere (so no competition but also no surrounding population).

18
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81.

83.
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Adjusting for fit, arch support, and stability, a one-point increase in a shoe’s cushioning rating from
any particular person is associated with a .34 increase in its estimated overall preference score from
that person.

P =-.66+.35(9.0) +.34(8.7) + .09(8.9) + .32(9.2) = 9.193 points (out of 15 max). It would be more
informative to provide a confidence interval for the mean overall preference score at these settings.

Test H,: p,=p, =0, =, =0vs Hi:notall f’s are 0. With k=4 predictors and n =100
R* n—(k+1) 777 100-5
1-R® k 1-.777 4

an extremely large F statistic; in particular, 82.75 > F, , .. =3.52, so Hj is resoundingly rejected. This

runners/observations, the test statistic value is f = = 82.75. This is

indicates that at least one of the four predictor variables has a significant relationship with overall
score, but not necessarily that a// of them do.

To achieve a family-wise .01 significance level requires testing each of the 4 null hypotheses at a =
.01/4 = .0025. With error df = 95, the critical value for each of the four tests Ho: f; =0 vs Hy: f; # 0 is
3 =t =3.106. With the #-values provided, all null hypotheses are rejected except j = 3.

al/2,n—(k+1) .00125,95
Thus, variables x; and x; and x4 are deemed useful, but after adjusting for those variables, x3 is not
deemed a statistically significant predictor.

Software provides g, =-77, B,=4.397,and g, = 165. Therefore, with y = price and x; = size and x,
= L/B ratio, the estimated regression equation is y =—77 + 4.397x; + 165x.

Interpreting the intercept doesn’t make sense here. /3, =4.397 means that after adjusting for the effects

of land-to-building ratio, a 1 thousand square foot increase in size is associated with an estimated
increase in expected price of 4.397 thousand dollars ($4,397). 3, = 165 means that after adjusting for

the effects of size, an increase of 1 in the L/B ratio (e.g., from 2:1 to 3:1) corresponds to an estimated
increase of 165 thousand dollars ($165,000) in expected price.

$=-77 +4.397(500) + 165(4.0) = 2781.5 = $2,781,500.

With the aid of software, SST= 3" (y, — 3)* = 17.024 and SSE = %" ¢ = 11.226. From these,

s, 11226

17.024
conductivity can be explained by a regression model with CNT weight, CN, height, and water volume

as predictors. Also, ¢ = _11226 _ 967, The typical difference between the actual and predicted
< T\16-G+1)

=.3405, or 34.05%. That is, 34.05% of the observed variation in electrical

electrical conductivity of a CNT specimen is = 0.967 S/cm.

The hypotheses of the model utility test are H,: §, =, = f, =0vs Hy: not all f’s are 0. With k=3
R* n—(k+1) 3405 16-4
1-R® k 1-.3405 3

predictors and n = 16 specimens, the test statistic value is f =

19
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2.065. Since 2.065 < F,

.05,3,12
convincing evidence that at least one of the three explanatory variables is useful for predicting y.

= 3.49, we do not reject H at the .05 level. That is, the data do not provide

Yes, in the sense that the test in part b failed to detect a statistically significant relationship between
any of the x’s and electrical conductivity. (Of course, that is not to say we proved H, is true.)

With the aid of software, the estimated regression equation is y = 148 — 133x; + 128.5x, + 0.0351x3.

Information for the three variable utility tests appear below. The P-values suggest that, at any
reasonable significance level, only x; is a statistically significant predictor of y.

B, S t-statistic P-value (df = 19)
—133 511 -0.26 .798

128.5 13.6 9.43 <.0001

0.0351 0.0247 1.42 171

SSE
From software, SSE = 385,801 and SST = 2,822,482, from which R* =1 _ﬁ =.8633 or 86.33%,

while g2 =1 MSE _, 385801/(23-G+1) _
MST 2,822,482/ (23—1)

.8417 or 84.17%.

For this two variable-regression, SSE = 387,170, while SST remains at 2,822,482. From the updated

SSE, R = 8628 or 86.28% and R? = 1—>0/:170/ 23—+ 1) _ 491 or 84.91%. The R value is
2,822,482/(23-1)

(slightly) larger under the full model (£ = 3) than under the reduced model (k = 2). This must always be

true: SSE cannot increase when more predictors are included, so R? can never be smaller with a larger

set of predictors. However, adjusted R? is (slightly) larger for the reduced model: 84.91% vs 84.17%.

This suggests that if we adjust for the number of predictors in the model, the reduced (k = 2) model

does a better job than does the full (k= 3) model.

The hypotheses are Ho: 1 = 2 = i3 = fa =0 vs. H,: at least one f; # 0. The test statistic is f'=
2
R™ Tk _ 946/4
(1-R*)(n—k-1)  (1-.946)/20

from Table A.8), so we can reject Hy at any significance level. We conclude that at least one of the
four predictor variables appears to provide useful information about tenacity.

=87.6 > Foo1,420= 7.10 (the smallest available significance level

i : -1 SSE n—1 .
The adjusted R? value is 1_”—[ j: - LR i 24, _ _ which does
: n—(k+1)\SST n—(k+1)( ) =1 >0 (1-.946)=.935

not differ much from R? = .946.

The estimated average tenacity when x; = 16.5, x, =50, x3 =3, and x4 =5 is
$=6.121-.082(16.5)+.113(50) +.256(3) —.219(5) =10.091. Fora 99% CI, ¢, ,, =2.845, so the

interval is 10.091+2.845(.350) =(9.095,11.087) . Therefore, when the four predictors are as specified in

this problem, the true average tenacity is estimated to be between 9.095 and 11.087.
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Section 12.8

89.

91.

b -.0191
2a -1.92x10°°
quadratic coefficient is negative, the equation suggests that elastic modulus increases with
temperatures up to —994.8°C and decreases after that. But since temperatures that low do not exist
(that’s below absolute zero), we conclude that elastic modulus decreases with temperature through all
physically possible temperatures.

The vertex of the least-squares parabola occurs at x = — =-994.8"C. Since the

y=-1.92x107°(800)> —.0191(800) +89.0 = 61.432 GPa.

We test H, : B = 3, = 0 versus H,: not all £’s are 0. With k =2 terms in the model, n = 28, and R* =
R* n—(k+1 _ 948 28-(2+1) _

1-R? k 1-.948 2

extremely large F-value; in particular, 227.88 > F, =5.568 . Hence, H, is rejected at the .01 level,

.01,2,25

.948, the model utility test statistic is f = 227.88. This is an

and we conclude that at least one of the two terms in the quadratic model is useful for predicting y.

From part b, y = 61.432. Since 1,,, ,, =2.060, a 95% CI for gyso0 is 61.432 = 2.060(2.9) = (55.458,
67.406).

The 95% PLis J+2.060,/s +s; =61.432£2.06072.37° +2.9* = 61.432+ 7.715 = (53.717, 69.147).

With 95% confidence, the elastic modulus of a single ceria specimen at 800°C will be between 53.717
and 69.147 GPa.

Both scatterplots exhibit some curvature, suggesting that quadratic terms may be appropriate.

Scatterplot of y vs x1 Scatterplot of y vs x2
50 50
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20

x1 %2

No: Interaction is a property of the simultaneous relationship between x1, x>, and y. A scatter plot of
(x1, x2) pairs could not indicate whether the effect of x; on y depends on x; and vice versa.

With the aid of software, a multiple regression was performed with response variable y and predictors
X,,%,, X, %2, %X, . A normal probability plot of the resulting standardized residuals appears below, as

does a plot of the standardized residuals against the fitted values (i.e., e, versus y;). The linearity of
the normal plot suggests that it’s very plausible that errors are normally distributed. The residual-v-fit
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plot shows neither curvature nor varying vertical spread, so the model adequacy and constant variance
assumptions are both reasonable as well.

Normal Probability Plot Versus Fits
(response is y) (response is y)
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Standardized Residual Fitted value

We test separately the null hypotheses H,: 8, =0, H,: 3, =0,and H, : f; =0 . From software,

-36.19 .008850 —-.0870
the test statistic values are ¢, = =-1658,t,=———=17.12,and ¢, = =-297.
2.18 0517 .0293

The two-sided P-values at 57 df are =~ .000, ~.000, and .004, respectively. At most reasonable
significance levels, all three of the aforementioned null hypotheses are rejected, suggesting all three
second-order terms should be retained in the model. (With higher-order terms retained, we don’t bother
to test the first-order terms and they, too, persist in our model.)

Yes, there does appear to be a useful linear relationship between repair time and the two model
predictors. We determine this by conducting a model utility test H,: f, = £, =0 vs. Hy: not all f’s are

0. Wereject Hoif f>F, ,, =4.26. The calculated statistic is

.05,2,9

SSR/k  10.63/2 5315
SSE/(n—k-1) 209/9 232
least one of the two predictor variables is useful.

f= =22.91. Since 22.91>4.26, we reject Hy and conclude that at

We will reject [ : B, =0 in favor of Hy: S, = 0if lf| > ¢ =3.25. The test statistic is

.005,9

;- L1250 _, 5, which is 3.5, so we reject Hy and conclude that the “type of repair” variable does
312

provide useful information about repair time, given that the “elapsed time since the last service”
variable remains in the model.

A 95% confidence interval for S, is: 1.250+(2.262)(.312) =(.5443,1.9557) . We estimate, with a high

degree of confidence, that when an electrical repair is required the repair time will be between .54 and
1.96 hours longer than when a mechanical repair is required, while the “elapsed time” predictor
remains fixed.

$=.950+.400(6)+1.250(1)=4.6, s; =MSE =.23222, and ; =13.25, 50 the 99% PI is

.005,9

4.6+(3.25) (.23222)+(.192)2 =4.6+1.69 =(2.91,6.29) The prediction interval is quite wide,

suggesting a variable estimate for repair time under these conditions.
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a. The complete second-order model obviously provides a much better fit, so there is a need to account
for quadratic and interaction effects from these three predictors.

b. A complete second-order model based on three predictors has 3 +3 +@) =3+3+3 =9 terms, so

degrees of freedom = — (k+ 1) =20 — (9 + 1) = 10. A 95% PI for ¥|(30,30,10) is J %7y 10+ [s2+ s;
= .66573+2.228+.044% +.01785> =(.560, .771).

a. From Minitab, here are the correlations and corresponding P-values:
IBU ABV
ABV 0.843
0.000

Rating 0.843 0.621
0.000 0.001

The correlations are all strongly significant, including the correlation between the two predictors.

b. Here is some of the Minitab regression output:
The regression equation is
Rating = 2.24 + 0.0419 IBU - 0.166 ABV

Predictor Coef SE Coef T P
Constant 2.2383 0.3961 5.65 0.000
IBU 0.041940 0.007688 5.46 0.000
ABV -0.1661 0.1078 -1.54 0.138
S = 0.507612 R-Sq = 73.9% R-Sqg(adj) = 71.5%

Analysis of Variance

Source DF SS MS F P
Regression 2 16.0266 8.0133 31.10 0.000
Residual Error 22 5.6687 0.2577

Total 24 21.6953

Although ABU has a strongly significant, ABV does not. This means that, with ABU in the model, ABV is
not needed. Even though ABV has a strongly significant relationship with Rating, ABV is redundant when
ABU is included. The idea is that ABV is strongly correlated with ABU, so when ABU is already in the
model, ABV has very little new to add to the model.
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Here is the plot of Rating against IBU. Notice that the plot is not linear; the slope decreases as we
move to the right. This suggests including a quadratic term.

Here is some of the Minitab output with the quadratic term included:

The regression equation is
Rating = 0.214 + 0.0953 IBU + 0.131 ABV - 0.000801 IBUsqgq

Predictor Coef SE Coef T P
Constant 0.2142 0.5181 0.41 0.683
IBU 0.09533 0.01269 7.51 0.000
ABV 0.1311 0.1001 1.31 0.205
IBUsq -0.0008014 0.0001716 -4.67 0.000
S = 0.363873 R-Sqg = 87.2% R-Sg(adj) = 85.4%

Analysis of Variance

Source DF SS MS F P
Regression 3 18.9148 6.3049 47.62 0.000
Residual Error 21 2.7805 0.1324

Total 24 21.6953

Plots of Rating and the residuals against IBU no longer show curvature, the normal plot is reasonably
straight, and there is no reason to doubt constant variance.

Notice that the quadratic term is highly significant, but the ABV term is still not needed. The R-
Squared, adjusted R-Squared, and s are substantially improved. Notice that the quadratic coefficient is

negative, in accord with the decreasing slope.

The model now does a good job of fitting the relationship of Rating to IBU. ABYV is redundant when
IBU is included.
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Section 12.9

99.

The data and response matrices are X =

Ml

1.5
Since X'X =41, (X'X) ' =251, and b = 25Xy = {0.5} .
1.0

andy = | |. The normal equations are X'Xb = X'y,

_— = =
—_
|
B~ o = =

B O O

40
which here become {o 4
00

0

§=Xb= 21 , from which SSE = ||y — §|[* = (1)> + (-1)> + (-1)> + (1)> = 4, and MSE = SSE/[4-(2+1)]
3

= SSE/1 = 4.

Cov(B) = o (X'X)"' = MSE(X'X)™" = 4-.251 =1 . So, in particular, S; = (2,2) entry of the estimated

covariance matrix = (2,2) entry of I = 1. Thus a 95% CI for f; is ﬁl * t4025,4,3sﬁ1 =0.5+12.706(1) =
(-12.206,13.206). The CI is so large because we only have 1 df (4 observations, 3 parameters).

0.5-0

The ¢ statistic here is ¢ = =0.5, which at 1 df has a 2-sided P-value of 2(.352) =.704. We

certainly fail to reject the hypothesis that f#; = 0. This is consistent with our 95% CI from part (d).

7 =6/4=15,50 SSR=§ —V|? = (-1.52+ (.5)2+ (~.5)2+ (1.5)> = 5. The rest of the ANOVA table

below follows. In particular, the F test statistic is /= 0.63 with a corresponding P-value of .667, so we
definitely fail to reject Ho. Both slopes could plausibly be zero, and so it appears neither x; nor x; is a

useful predictor for y. Finally, R? = SSR/SST = 5/9 = 55.56%; that is, ~56% of the variability in y can
be explained by the linear regression model that involves predictors x; and x;.

Source DF SS MS F P
Regression 2 5.000 2.500 0.63 0.667
Residual Error 1 4.000 4.000

Total 3 9.000
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101.
a. First,
1 x
, 1 -1 .. n  Zx
X'X = o= :
X X, Xx;, XX
1 x,

Then, using the matrix inverse formula provided,

1 Ix,  -Xx,
(X/X)—l — - - i i
nIix; —(Zx,) |-Xx, n
B3
b. X'y:[l ol } : :{Zy" },sofrompart(a)
XX, X,
ﬁ _ (XrX)—l X'y — 1 zxiz -2, Zyi
nEx; —(Ex)’ | -Zx, n ||[Zxy,

CaEx—(Ex)}|  nZxy, —(Ex)Ey,)

To make these resemble the earlier formulas, make the following substitutions: Xx, =nx,

1 {@xf)(zy,-)—(Zx,-xzx,-y,-)}

Yy, =ny, xy, =S, +nxy (based on the hint) and, similarly, £x’ = S _ +nx”. The fraction
outside the matrix simplifies to nS__, and

oL {(SH +1%°)(n) — (nX)(S,, + nf?)} | {n)_zSn - nfoy} B F— (s, /Su)f}

ns.. n(S, +nx¥y)-n’Xy Tus, | ns, S, /8,

These match our previous formulas: ,31 = Sxy / S and B, =V —-pBx.

, PR B Y S A
c¢. From part (b), (X'X)" may be rewritten as (X'X)™ = < s . Since
L —Zx n

Cov(B) =o*(X'X)"', we have V'(f)=0c"-n/(nS,)=0c/5, and
V(B)=0(S,+nx’)/(nS, )=0c"-(1/n+X"/S,).
The first formula matches 17(3,) given in Section 12.3. As for the second, substitute x* = 0 into
the LSRL; according to Section 12.4, the resulting variable y = 3, has variance

V(¥)=o’(1/n+(0-%)/S,)=0"(1/n+x"/S,), which matches 1(4,) above.

103.  The design matrix is now just the column vector X =[1,...,1]",so X X=n, X'y =%y, and
[B,1=B=XX)"Xy =[1/n][Zy,] =[] Next, ¥(5,) = Cov(p) = (X'X) "' =0o” / n, S0
SD(B,)=c/~/nand 5; =35, /In . Finally, for every i we have $, =8 =v,5 ¢=y, -3 =y,—yand

N e’ Z(y, —)7)2 ) _ .
s2 = i = I = g2 . Therefore, a CI for fy = E(Y) is given by
* n—(k+D n—1 !

By Elappnny S =V Elanr S INn=74 Lyrana ™S, /In . This is exactly the one-sample ¢ CI from
Chapter 8. In other words, the one-sample ¢ procedures are the & = 0 special case of the regression model!
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105.
i i 1 - 1 1 - 1
a. The proposed design matrix and response vector are X’:[5 s s 5} and
Y= Vi Yoy 0 Yowewnl- Assuming m = n, the sum of the second column of X is 0,
and so
A m+n 0 - Ty
BZ(X/X)—IX/yz ( ) i=1 yt
0 25(m+n)| | 52"y, =5y,
|/ (m+n) 0 my, +ny,
0 4/(m+n) || 5my, - .5n7,
1/2n) 0 || n(y+y,) D H+3)/2| & itV A
:|: :||: _1_2 - I_ 2— :}ﬂozgjﬂ]:yl_yz
0 2/n ]| n(y=y,)/2 Y= 2
e [ e U T[EG 2] o oy
b. y=Xp= [y . _
y=Xp [5 s s —-5M 53, 7 % %o
~ 112 A m o n 3
SSE:”y_y" :Z(y[_y[)z :Z[=l(yi_y1)2+2[=m+l(y[_y2)2'
o SSE _ SSE
“ (m+n)—(k+1) m+n-2
2
A o1 |01 (2n) 0 A
Cov(p) = o* (X'X)" { 0 ro? I = V(B)=20"/n= 5, =25} /n=5~2/n.Note: In
the general case where m and n may differ, 2/n becomes 1/m + 1/n.
c.
Iél il‘oz/2,m+f172 .Sﬁl = (-)_/l _)_}Z)ita/Z,m+n72 .Se v 2/7’!
_ DY QIR G S G o L F T
:(yl_yz)ita/z,mm—z'\/ i (Vi =n) it Vi = 7) 242
m+n—2 m n
d. Wihx'=| || ' _‘5J andy’ =[117 119 127 129 138 139], we get the following: b’ =
[128.166,-14.333]; y'=[121 121 121 135.33 135.33 135.33]; SSE = ... = 116.666, 5. = 5.4. Finally,
the 95% CI for B is —14.333 £2.776(5.4) /2 /3 =(-26.58,-2.09).
107.

a. H’=HH=XXX)"'XXXX)"'X'=XIXX)"'X' =X(XX)"'X'=H.

b. Write Y =Y =Y - HY = (I - H)Y. Using the covariance matrix proposition and properties of the
matrices I and H and the random vector Y,
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Cov(Y-Y) =(I-H)'Cov(Y)I—H) = (I'=H)o’I(I-H) = o> (I'-H')(1 - H)
=c’TT-HTI-TH+HH)=0"0I-H -H+HH)
=o’(I-H-H+H?) because H is symmetric
=c’d-H-H+H) part(a)
=c’(I-H)

109.
a. Using the results in this section, the vector of coefficients is b’ =[35.0 3.18 —.006]. The model utility
test gives f= 12.04 (P-value <.001); the ¢ test for ) (foot) is £ =2.96 (P-value = .021); the ¢ test for 5,
(height) is t =-0.02 (P-value = .981). That is, the overall model is useful for predicting wingspan, and
foot size is a useful predictor. However, in the presence of foot size, height is a basically useless
addition to the model.

b. The diagonal entries of H, in order, are: .55, .31, .13, .11, .88, .17, .31, .15, .18, .20. Observation #5 has
the highest leverage by far, by grace of the fact that the height (54”) is much lower than any other
observed height. 54 is 4’6”, suggesting that student #5 mis-recorded his own height (perhaps it should
be 64”). It’s also hard to believe that a 4’6 person would wear a size 9 shoe.

c. Students #1 and #7 (h = .55, .31) are very tall and have very big feet. Student #2 has rather small feet,
both for his height and for the group overall.

d. Student #2 has a very large, negative residual. It seems that a 56” wing span for a 66 person is rather short.

e. If numbers were clearly mis-recorded, these observations should be corrected or deleted. In general,
though, we do not delete a “correct” observation simply because it doesn’t follow the pattern suggested
by the other observations.

Section 12.10

Bo+pix -3.75+0.1x
111. The logistic regression model specifies p(x) = ¢

1+eﬂ0+ﬂ|x = 1+e—3,75+0.1x :

—3.75+0.1(10) -2.75 —3.75+0.1(50) 1.25

e . e
p10) = [ oo = ~.060, while p(50)= ”

o

== .777. According to

275 o 37501(50) = 12

l+e l+e-

the model, there’s a 6% chance someone will redeem a $10 discount coupon, while there’s a 77.7%
chance that someone will redeem a $50 discount coupon.

b, odds10)=—LUD__ 275 = 0639, while odds(50) = —2OY_ _ %= 3.49. The odds of a $10
1- p(10) 1- p(50)

coupon being redeemed are .0639:1 (quite unlikely), while the odds of a $50 coupon being redeemed
are 3.49:1 (3.49 times more likely than not).

c. f1=0.1: For each $1 increase in the value of the emailed coupon, the log-odds of the coupon being

redeemed increase by 0.1. Equivalently, since e’ = e"'=1.105, for each $1 increase in the value of the
emailed coupon, the odds of the coupon being redeemed increase by a multiplicative factor of 1.105
(i.e., the odds increase by 10.5%).

-3.75

d. p(x)=.5—>odds(x)=1— p,+px=log-odds=In(1)=0— x= —% i =$37.50.
: .
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115.

117.
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We test Ho: f1 = 0 vs Ho: 1 # 0. Using the large-sample z test, we will reject Ho if |z| > z,; =1.96. The

-0 —.1998—0

test statistic value is z = A = =-2.026. Since |-2.026| > 1.96, H, is rejected at the .05
Sh .0986

significance level. We conclude that sleep indeed has an effect on the likelihood of driving drunk

among American teenagers.

A95% Cl for fiis B, + 24555, =198 + 1.96(.0986) = (~.3931, ~.0065). Thus a 95% CI for ¢’ has
endpoints (e "', e ") = (.675,.993).

Multiplication by .675 = (1 —.325) is equivalent to a 32.5% decrease, while multiplying by .993 is the
same as a 0.7% decrease because .993 = 1 — .007. Thus, with 95% confidence, a 1-hour increase in a
teenager’s typical number of sleep hours per night is associated with a 0.7% to 32.5% decrease in the
odds of driving drunk.

From software, 4, =—.0573 and $, =.00430. So, the estimated logistic regression function is
—.0573+.00430x

p(x) = 14+ o 573+00430x

e”=1.0043, so a 1-month increase in age is associated with an estimated 0.43% increase in the odds
of having kyphosis.

We test Ho: 1 = 0 vs Ho: f1 # 0. Using the large-sample z test, we will reject Hy if |z] > z,,, =1.96.

.00430-0
From software, S/}l =.00585, so the test statistic value is z = W: 0.74. Since |0.74| < 1.96, we

do not reject Hy at the .05 level (or at any reasonable significance level). The data do not provide
convincing evidence that age has an impact on the presence of kyphosis.

The log-odds are .8247 +.0073(35) +.0041(65) +.9910(1) +.0224(0) = 2.3377, so the estimated

2.3377

probability is p(35,65,1,0) = le—: 912.
+

23377
e

Now the log-odds are .8247 + .0073(35) +.0041(65) +.9910(0) + .0224(0) = 1.3467 and the estimated

1.3467

probability is p(35,65,0,0) =1e— — 794

1.344
+ '3

Adjusting for a customer’s income, sex, and child status (has some or not), a 1-year increase in age
corresponds to an estimated %73 = 1.007 multiplicative increase (aka 0.7% increase) in the odds a
customer wants GM chicken products labeled.

Adjusting for a customer’s age, income, and child status, the odds that a female customer wants GM
chicken products labeled is e°'° = 2.69 times higher than for a male customer.
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119.
a. Statistical software confirms these estimated coefficients. :)

b. The negative coefficient in front of x; signifies that the chance of seeing a whale decreases as the
number of days after final salmon release increases. (That’s logical — there’s incrementally less food
for the whales over time.) The positive coefficient on x, means that the chance of seeing a whale
increases the longer you visit the site (duh).

-0.052

c. log-odds=-5.68 —.096(7) +.210(30) = 0.052, so p(7,30)= lew = 484,
+e

. -.096-0 .210-0
d. The test statistic values are z, = T: —0.38and z, =

Hy if |z| > zs = 1.645. So, based on the z-values, we do not reject Hy: 1 = 0 but we do reject Hy: f> =0
in favor of Hy: >, # 0.

=1.75. At the .1 level, we reject

e. ¢ %% = 9084 means that a 1-day increase in the time since the final salmon release corresponds to a
(1 —.9084) =.0916 = 9.16% estimated decrease in the odds of seeing a whale. ¢?!° = 1.2337 means
that a 1-minute increase in the duration of your visit corresponds to a 23.37% estimated increase in the
odds of seeing a whale.

Supplementary Exercises

121.
a. As flood level increases, so does flood damage, not surprisingly. But there are two “jumps” in the
pattern: the amount of flood damage increases suddenly from x = 2ft to 3ft and at x = 5ft to 6ft.
E 30
’ ’ ) ;ocd Ie\/'e:3 ? - -
b. No: A single straight line would not accurately describe the relationship in the scatterplot. If anything,
three lines are required for three ranges (perhaps 0-2.5ft, 2.5-5.5ft, and 5.5ft+).
123.

a. R*=.5073 or50.73%.
b. r=+JR* =.5073 =.7122 (positive because 23, is positive.)
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127.
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Wetest Hy: 5, =0 v. H_ : [, = 0. The test statistic = 3.93 gives P-value = .0013, which is < .01,
the given level of significance, therefore we reject Hy and conclude that the model is useful.
We use a 95% Cl for 4, _ - }7(50) = -787218"'-007570(50) =1.165718 =2.131, 5. = “Root

.025,15

=.051422 . The interval is, then,

2
MSE” = 020308, 50 5. — 20308 | L+ 17(50—42.33) 2
Ps0) 17 17(41,575)—(719.60)

1.165718+2.131(.051422) =1.165718 +.109581 = (1.056137,1.275299) .

Jsg) =-787218+.007570(30) =1.0143. The residual is y— 5 =.80-1.0143 = 2143

The value of the sample correlation coefficient using the squared y values would not necessarily be
approximately 1. If the y values are greater than 1, then the squared y values would differ from each other
by more than the y values differ from one another. Hence, the relationship between x and 3* would be less
like a straight line, and the resulting value of the correlation coefficient would decrease.

a.

A scatterplot suggests the linear model is appropriate.

99.0 o
o0 *
[ ]
.
. o o °
(] [ ]
& 98.5 | . ]
[ )
> []
g . [ °
0 . ¢
—
o0 [ ]
98.0 .
[ ]
[
T T T
5 10 15
temp
Minitab Output:
The regression equation is
removal% = 97.5 + 0.0757 temp
Predictor Coef StDev T p
Constant 97.4986 0.0889 1096.17 0.000
temp 0.075691 0.007046 10.74 0.000
S = 0.1552 R-Sg = 79.4% R-Sg(adj) = 78.7%
Analysis of Variance
Source DF SS MS F P
Regression 1 2.7786 2.7786 115.40 0.000
Residual Error 30 0.7224 0.0241
Total 31 3.5010
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Minitab will output all the residual information if the option is chosen, from which you can find the
point prediction value J,,; =98.2933, the observed value y = 98.41, so the residual = .0294.

c¢. Roughly s, =.1552.

d. R*=794.
e. A 95% CIfor £, using 7,,, ., =2.042: .075691+2.042(.007046) = (.061303,.090079).

f.  The slope of the regression line is steeper. The value of s. is almost doubled (to 0.291), and the value
of R? drops to 61.6%.

129.
a. Using the techniques from a previous chapter, we can perform a ¢ test for the difference of two means
based on paired data. A paired ¢ test for equality of means gives ¢ = 3.54, with a P-value of .002,
which suggests that the average bf% reading for the two methods is not the same.

b. A scatterplot (not shown) indicates that using linear regression to predict HW from BOD POD seems
reasonable. The least squares linear regression equation, as well as the test statistic and P-value for a
model utility test, can be found in the output below. We see that we do have significance, and the
coefficient of determination shows that about 75% of the variation in HW can be explained by the
variation in BOD.

The regression equation is
HW = 4.79 + 0.743 BOD

Predictor Coef StDev T P
Constant 4.788 1.215 3.94 0.001
BOD 0.7432 0.1003 7.41 0.000

S = 2.146 R-Sq = 75.3% R-Sq(adj) = 73.9%

131. Use what we already know about MLE’s of normal random samples. In the unrestricted case,
2 AN2 2 A N2 0 =
o Z%ZOU‘E)Z%ZOG‘%‘bﬂJ :%ZOG‘%)-Umhﬂ%4h=Qu=Bmﬁ)ﬁ0:y2md
6'3 = %Z(y,- —f)? = :—zZ(y,» - ﬂAo —Ox; ) = %Z(y,» -5, Lastly, the exponential terms in the likelihood
simplify to exp(-#/2) in both cases, for a likelihood ratio equal to
n/2
@r63) " exp(-n/2) (&%) " _ ( SSR
Qr62) "2 exp(-n/2) |\ 62 SST
ANOVA equation) is equivalent to SSR/SSE being large, or = MSR/MSE being large.

n/2
j . We reject Hy when this ratio is small, which (by the
o
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135.
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Take logs of both sides of the model to get In(Y) = In(a) + fx + In(e), or Y=o+ fix + €. If e is
lognormal, then (by definition) €' is normal, and we have our usual regression model.

Software gives the estimated regression equation y =—4.6 + 0.4057x. However, residual plots show a
strong curved patter among the residuals, and that the residuals are non-normal. The former indicates
the simple linear model is not adequate.

A scatter plot (v vs. x) does show a pattern consistent with an exponential model. And a scatter plot of
In(y) versus x is quite linear. If we regress In(y) on x, software gives the estimated regression equation
In(y) = 3.1564 + 0.004811x. Software also gives R> = 96.75%, a good sign of fit, and residual plots are
at least somewhat better, although equal variance concerns persist. The estimates of the original
parameters are a = exp(bo) = 23.486 and b = b; = 0.004811.

From software, a 95% PI for In(Y) when x =250 is (3.99671, 4.72167). Thus, a 95% PI for ¥ when

x =250 is (3971, ¢472167) = (54.42, 112.36).

The scatterplot suggests a linear relationship between pH and the mean response is plausible.

Mean crown dieback (%)

Soil pH

Software provides the estimated regression equation y = 31.04 — 5.79x. The estimated standard error of

-5.79
the slope is 1.36. So, the model utility test statistic is ¢ = m =—-4.25. Comparing this to a ¢

distribution with n — 2 = 17 df, the associated P-value is roughly 0. Hence, we reject Ho: 51 = 0 and
conclude that soil pH is a statistically significant predictor of mean crown dieback.

From software, a 95% PI for a new Y when x =4.0 is (1.41657, 14.3251) while a 95% CI for uyj is
(6.42391, 9.31772). The PI is considerably wider than the CI, consistent with what we’ve learned
about simple linear regression (and about CI’s versus PI’s in general).

The PI and CI at x = 3.4 are (4.69265, 17.9996) and (9.17703, 13.5152), respectively. These are

somewhat wider than the matching intervals in part ¢. That makes sense, because x = 4.0 is closer to
the average x-value in the data set than is x = 3.4.
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With the aid of software, a first-order model yields y = 84.82 +.1643x; — 79.67x; and R’ =.654.

The adjusted R? value jumps to .831 when the interaction term is added. For the full second-order
model, R’=.7207. Looking at the R’ values, it appears that the model with an interaction term but

without quadratic terms is preferred.

The interaction model is y = 6.22 + 5.779x; + 51.33x, — 9.357x1x,. Substituting, the predicted
compressive strength is y = 6.22 + 5.779(14) + 51.33(.60) — 9.357(14)(.60) = 39.32 MPa.

First-order: R’ = 66.22%; with interaction, R = 68.27%; full second-order: R’ =70.42%. These
suggest that the full second-order model is “best” for predicting adsorbability.
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