CHAPTER 5

Section 5.1

a. PX=1,Y=1)=p(1,1)=.20.
b. P(X<1andY<1)=p(0,0)+p0,1)+p(1,0) + p(1,1) = .42.
c. At least one hose is in use at both islands. P(X# 0 and Y = 0) = p(1,1) + p(1,2) + p(2,1) + p(2,2) = .70.

d. By summing row probabilities, px(x) = .16, .34, .50 for x =0, 1, 2, By summing column probabilities,
pr(y)=.24, .38, 38 fory=0,1,2. P(X<1)=px(0)+ px(1)=.50.

e. p(0,0)=.10, but px(0) - px(0) = (.16)(.24) = .0384 = .10, so X and Y are not independent.

a. p(1,1)=.135, the entry in the 1% row and 1% column of the joint probability table.
b. PXi=X;)=p(0,0)+p(1,1)+p2,2) +p3,3)=.08 +.15+.10 + .07 = .40.

e€. A={Xi22+XUX>2+X}, 50 P(A)=p2,0)+p(3.0)+ p(4,0)+pB3,1) + p(4,1) + p(4,2) + p(0,2)
+p(0,3) + p(1,3) =.22.

d. P +Xo=4)=p(1,3)+p2,2)+p(3,1) + p(4,0)=.17.
PXi+X:>4)=PXi + X2 =4) +p4,1) + p(4,2) + p(4,3) + p(3,2) + p(3,3) + p(2,3) = .46.

e. pi(0)=P(X; = 0) = p(0,0) + p(0,1) + p(0,2) + p(0,3) = .19
pi(1) = PX, =1)=p(1,0) + p(1,1) + p(1,2) + p(1,3) = .30, etc.

x| 0 1 2
px) |19 30 25 14 12

f.  p20)=PX>=0)=p(0,0) + p(1,0) + p(2,0) + p(3,0) + p(4,0) = .19, etc.

x| 0 1 2 3
px) | .19 30 28 23

g. p(4,0)=0,yetpi(4)=.12>0 and p»(0) =.19> 0, so p(x1, x2) # pi(x1) - p2(x2) for every (x1, x2), and the
two variables are not independent.
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Let X; = the number of freshmen in the sample of 10; define X, X3, X4, analogously for sophomores,
juniors, and seniors, respectively. Then the joint distribution of (Xi, X2, X3, X4) is multinomial with n =10
and (pl,pz, p3,p4) = (20, 18, .21, 41)

10!

_ _ 2 2 2 4_
B P05 X, X0) = (2,2, 2,4) = 5o 5 (20)°(18)' (21 (41)* = 0305,

b. Let Y'=X, +X; =the number of underclassmen in the sample. Then Y meets the conditions of a
binomial rv, with n = 10 and p = .20 + .18 = .38. Hence, the probability the sample is evenly split

10
among under- and upper-classmen is P(Y = 5) = [ 5 ](.38)5(.62)5 =.1829.
c. The marginal distribution of X; is Bin(10, .20), so P(X; = 0) = (.80)'° = .1073.
If selections were truly random from the population of all students, there’s about a 10.7% chance that

no freshmen would be selected. If we consider this a low probability, then we have evidence that
something is amiss; otherwise, we might ascribe this occurrence to random chance alone (“bad Iuck”).

a. p(3,3)=PX=3, Y=23)=P(3 customers, each with 1 package)
= P( each has 1 package | 3 customers) - P(3 customers) = (.6)* - (.25) = .054.

b. p(4,11)=PX=4,Y=11)= P(total of 11 packages | 4 customers) - P(4 customers).
Given that there are 4 customers, there are four different ways to have a total of 11 packages: 3, 3, 3, 2
or3,3,2,30r3,2,3,30r2,3,3,3. Each way has probability (.1)*(.3), so p(4, 11) =4(.1)}(.3)(.15) =
.00018.

a. p(1,1)=.030.
b. P(X<1and Y<1)=p(0,0)+p(0,1) + p(1,0) + p(1,1) = .120.
c. PX=1)=p(1,0)+p(1,1)+p(1,2)=.100; P(Y=1) = p(0,1) + ... + p(5,1) = .300.

d. P(overflow)=P(X+3Y>5)=1-PX+3Y<5)=1-P(X,Y)=(0,0) or ...or (5,0) or (0,1) or (1,1) or
(2,1))=1-.620=.380.

e. The marginal probabilities for X (row sums from the joint probability table) are px(0) = .05, px(1) =
10, px(2) = .25, px(3) = .30, px(4) = .20, px(5) = .10; those for Y (column sums) are py(0) =.5, pn(1) =
.3, pr(2) = .2. It is now easily verified that for every (x,y), p(x,y) = px(x) - px(y), so X and Y are
independent.

w e 30 30 30 30 30 30
a. 1= L’O ,Lo f(x,y)dxdy = LO LO k(x* +y*)dxdy = kLO LO x*dydx + kLO .[20 Vi dxdy
19,000 3
= k=———.
3 380,000

_ 30 5 30 5 _ )
—IOkLox dx+10kLOy dy =20k (
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3 26
b. POX<26and Y<26)= [ [ k(x*+y*)dvdy =k J‘;:{xz y +y?} dx =k (6" +3192)dx =
20

k - (38,304) = .3024.

c. The region of integration is labeled //I below.

30
—
yexe2 | I S 5=x2
20 1l
20 30
P(X-Y|<2)= ([ f(x,)dxdy=1=[[ £ (x,p)dvdy = [[ f(x, y)dxdy =
1 I 1

28 30 30 px-2
-, LZ £ (x, y)dydx — Lz LO £ (x,y)dydx= 3593 (after much algebra).

® 0.2 2 2 y3 * 2
d. fX(x):fo(x,y)dy:LO K+ y")dy = o’y + k= = 10k +.05, for 20 <x < 30.

20

e. fy(y) can be obtained by substituting y for x in (d); clearly f(x,y) # fx(x) - f*(y), so X and Y are not
independent.

13.
X i Y =y XY
a. Since X and Y are independent, p(x,y) = p, (x)'p, ()= ¢ 4 h_¢e £
x! ! x!y!
forx=0,1,2,...;y=0,1,2,....
b. P(X+Y<1)=p(0,0) +p(0,1)+p(1,0)=...=e "1+ +p,].
m m ﬂk lum*k e*llrﬂz m ml
¢. PX+Y=m)= ) PX=kY=m-ky=e“*y L2 __ = )t =
= = k! (m—k)! m! = kl(m—k)!

—H—H m m —H Ty
¢ — Z[ L ] uh ™ = ¢ - (4, + 1,)" by the binomial theorem. We recognize this as the pmf of a
. k=0 .

Poisson random variable with parameter z, + u, . Therefore, the total number of errors, X + Y, also has

a Poisson distribution, with parameter g, + 1, .
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7 x20,y20

0 otherwise

S0ey) = () - 1) = {e

By independence, P(X<1and Y<1)=P(X<1) - P(Y<1)=(1-e") (1 -e")=.400.

P(X+Y<2)= joz j:’x e dydx = foze*x [1-¢0dx = joz(e*x e dr=1-e?—2¢7 = 594,

PX+Y<1)= jo'e [1-e 0 Jax=1-2¢" = 264,
so P(1SX+Y<2)=P(X+Y<2)— P(X+Y<1)=.594 — 264 = 330.

Each X; has cdf F(x) = P(X; <x) = 1—e ™. Using this, the cdf of Y is
F)=P(Y<y)=PX, <yu[X2<ynX3<y))

=PXi£y)+ PXa<ynX:<y)—PXiSyn[Xa<ynX3<y))

= (l-e™)+(1-e?)yY —-(1-e™) fory>0.

The pdf of Yis f(y) = F'(y) = Ae ™™ +2(1-e ™) (Ae ™ )-3(1-e ™) (Ae ™) = 42¢7" —32¢7*
for y > 0.

1

E(Y)= .[:y . (416’“)’ —31e7M )dy = 2(—} L 2

21) 34 34

Let A denote the disk of radius /2. Then P((X,Y) lies in 4) = [[ (x, y)dxdy
A

2
= ” 12 dxdy = 12 ” dxdy = area (;fA _mr /22) 1 .25 . Notice that, since the joint pdf of X and
A e r r 4
Yis a constant (i.e., (X Y) is uniform over the disk), it will be the case for any subset 4 that P((X,Y) lies
in 4) = area (;fA .
s

2
. . 1 . L
By the same ratio-of-areas idea, P(— <X< ] =—— =—. This region is the square
T

r
2

/‘
=

depicted in the graph below.

-\
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r 2Kt 2 . L .
< —j =—F= o This region is the slightly larger square

T ex< <y
V20 T V2 2w

depicted in the graph below, whose corners actually touch the circle.

c. Similarly, P(—

A

. (rz ) 1 2 r2 _ x2
= = —dy=———for—r<x<
d. fX (x) J._mf(xay)dy J_m 1‘[}"2 dy nrz for—r<x<r.
.. 2, —y? ) ) . )
Similarly, f(y) = ————— for— <y <r. Xand Y are not independent, since the joint pdf is not the
w

2\/1”2 —x’ 2\/1’2 —y2
# — .

product of the marginal pdfs: LZ
r o o

21. Picture an inscribed equilateral triangle with one vertex at A, so the other two vertices are 120° away from
A in either direction. Clearly chord AB will exceed the side length of this triangle if and only if point B is
“between” the other two vertices (i.e., “opposite” A). Since that arc between the other two vertices spans

120 1
120° and the points were selected uniformly, the probability is clearly 360 = 3

Section 5.2

23.
a. PX>Y=Y p(x,y) =p(l,0)+p2,0)+p@3,0)+p2, 1) +p3, 1) + p(3,2) = .03 + .02 + .01 +

x>y
.03+.01+.01=.11.

b. Adding down the columns gives the probabilities associated with the x-values:

x | 0 1 2 3
pdx) | 78 12 07 .03

Similarly, adding across the rows gives the probabilities associated with the y-values:

y | o0 1 2
o) | 77 14 .09

c. Testa coordinate, e.g. (0, 0): p(0, 0) = .71, while px(0) - pr(0) = (.78)(.77) = .6006 # .71. Therefore, X
and Y are not independent.
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d. The average number of syntax errors is £(X) = 0(.78) + 1(.12) + 2(.07) + 3(.03) = 0.35, while the
average number of logic errors is E(Y) = 0(.77) + 1(.14) + 2(.09) = 0.32.

e. By linearity of expectation, £(100 — 4X—9Y) = 100 — 4E(X) — 9E(Y) = 100 — 4(.35) — 9(.32) = 95.72.

E(Xi - Xo) = ii(xl —x,) p(x,%,) = (0—0)(.08) + (0 — 1)(.07) + ... + (4 —3)(.06) = .15.

x=0x,=0
Or, by linearity of expectation, E(X; — X2) = E(X1) — E(X>), so in this case we could also work out the means
of Xi and X, from their marginal distributions: £(X;) = 1.70 and E(X>) = 1.55, so E(Xi — X2) = E(X1) — E(X2)
=1.70-1.55=.15.

The expected value of X, being uniform on [L — 4, L + A], is simply the midpoint of the interval, L. Since ¥
has the same distribution, E(Y) = L as well. Finally, since X and Y are independent,

E(area) = EXY)=EX) - E(Y)=L -L = L°.

The amount of time Annie waits for Alvie, if Annie arrives first, is ¥ — X; similarly, the time Alvie waits for
Annie is X — Y. Either way, the amount of time the first person waits for the second person is

h(X, Y) =|X - Y|. Since X and Y are independent, their joint pdf is given by fx(x) - fx(y) = 3x?)(2y) = 6x%y.
From these, the expected waiting time is

BRG] = [ [ =y £ 0o p)dxdy = [ [[x= y]- 62 yadxdy

_('r 2 Ll ) 111 )
_Io.[o (x=)-6x ydde+J.0J;(x_y).6x ydydx_ngE_Zhour’ or 15 minutes.

2 2
Cov(X,Y) = 75 and iy = py v

EX?) = I;xz.fX(x)dx =12J:x3(1—x2dx)=%=%, so V(X) = %—Gj =—.

Similarly, V(Y)=—,s0 p. =——% . 50__2
) ) Xy .
25 o r 75 3

B = | O (x)dx = [ " x[10ke* +.05 ] dx = 1925 55329 : by symmetry, E(Y) = 25.329 also:
20 /X 20 ’ 76 ) > ’ ’ i

_ 3030 ) N 24375
E(XY) LO Lo k(x4 dvdy = == = 641.447 =

Cov(X, Y) = 641.447 — (25.329) = —.1082.

EQO) = [ [10k +.05 ]dy = —3750740 = 649.8246 = V(X) = 649.8246 — (25.329)2 = 8.2664; by
—1082
symmetry, V(Y) = 8.2664 as well; thus, p = \/(8 2664)8.2660) =—
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E(XY) = (0)(0)(.71) + ... + 3)2)(.01) = 35 = Cov(X, ¥) = E(XY) — EO)E(Y) = 35 — (35)(.32) = .238.
Next, from the marginal distributions, V(X) = E(X?) — [E(X)]* = .67 — (.35)* = .5475 and, similarly,
238

J(5475)(.3976)

the number of syntax errors and the number of logic errors in a program. A direct association indicates that
programs with a higher-than-average number of syntax errors also tend to have a higher-than-average
number of logic errors, and vice versa.

(YY) =.3976. Thus, Corr(X, Y) = =.51. There is a moderate, direct association between

a. Let H=h(X, Y). The variance shortcut formula states that V(H) = E(H?) — [E(H)]*. Applying that
shortcut formula here yields V(A(X,Y)) = E(h*(X,Y))—-[E(h(X,Y))]* . More explicitly, if X and Y are

discrete, V'(h(X,Y)) =Y > [h(x, )] - p(x,»)=[ 2 > h(x,)- p(x, y)]2 ; if X and Y are continuous,

VX)) = [T )P £ (e y)dd=[ [[he)- £ p)dd]

b. E[h(X, Y)] = E[max(X, Y)] = 9.60, and E[A*(X, Y)] = E[(max(X, ¥))’] = (0)2(.02) + (5)2(.06) + ... +
(15)%(.01) = 105.5, so F(max(X, ¥)) = 105.5 — (9.60)* = 13.34.

First, by linearity of expectation, 4 ,,,,. = ap, +bu, +c . Hence, by definition,
Cov(aX +bY +c,Z)=E[(aX +bY +c—p .y, NZ —p,)] = E[(aX +DY +c—[apu, +bu, +c])(Z — p,)]
= E[(a(X = 1, )+ b(Y = py )WZ = 11,)]

Apply linearity of expectation a second time:
Cov(aX +bY +¢,Z) = Ela(X — uy \Z = p1, )+ b(Y — py (Z — )]

= aE[(X = py NZ — p)]+bE[(Y — py NZ = p1,)]
=aCov(X,Z)+bCov(Y,Z)
Use the previous exercise: Cov(X, Y) = Cov(X, aX + b) = aCov(X, X) =aV(X) =

2
so Corr(X,Y) = avVar(X) __ aoy _ @ _ lifa>0,and-1ifa<0.
Oy 'Oy oylaloy |al

Section 5.3

43.

a. EQ7X+ 125X, + 512X5) = 27E(X)) + 125E(X) + S12E(X3)
—27(200) + 125(250) + 512(100) = 87.850 .
V(27X + 125X, + 512X3) = 272 V(X]) + 1252 V(Xz) + 5122 V(Xg)
=272 (102 + 1252 (12)* + 5122 (8)* = 19,100,116 = SD(27X; + 125X, + 512X3) = 4370.37 ft".

b. The expected value is still correct, but the variance is not because the covariances now also contribute
to the variance.

c. Let V'=volume. From a, E(V) = 87,850 and V(V) = 19,100,116 assuming the X’s are independent. If
they are also normally distributed, then ¥ is normal, and so

100,000-87,850

419,100,116

PV >100,000) = l—d{ ] =1-0(2.78) =.0027.

7
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1 1
Y is normally distributed with 4, = 5( 1+ 1) _5( Ly + iy + p15) =5, and

1 1 1 1 1
0, =—0, +—0, +—0, +—0, +—0. =7445=> 0, =2.73.
4 4 9 9 9

Thus, P(Y > 0) = P(Z > %} —1-d(1.83) =.0336 and

P(-3<Y<3)= P(_32_7(;5) <zZ< 3;(7_35)j = P(0.73 < Z <2.93) = ®(2.93) - ®(0.73) = .2310.

EXi+ X+ X3)=EX) + E(X,) + E(X3)=15+30+20=65 min, and
VX + X+ X)) = 12+22+1.52=725> SD(X; + Xz + X3) = 2.6926 min.

Thus, P(X; + X + X3 <60)= P| Z < 60-65
2.6926

J: P(Z <-1.86)=.0314.

Let X, ..., X5 denote morning times and X, ..., Xio denote evening times.
a. EXi+...tXw)=EX)+ ...+ EXi)=5E(X) + 5E(Xs) =5(4) + 5(5) = 45 min.

b. V(X1 + ...+ Xio) = V(X)) + ... + V(Xi0) = 5V(X)) + 5V(Xe) :5[%+%}:%:68.33.
C. E(X1 —Xﬁ) = E(Xl) — E(X6) =4-5=-1 rnin, while
64 100 164
V(X —Xs) = V(X)) + (1) V(X)) = —+—=—=13.67.
(X1 = Xe) = V(X1) + (-1)*V(Xe) TRETIRRE

d. E[(Xi+...+X5)— X+ ... +X10)] = 5(4) — 5(5) = —5 min, while
MXi+ ...+ Xs) =X+ ... + Xi0)] = V(X + ... + X5) + (1) V(X6 + ... + Xi0) = 68.33, the same
variance as for the sum in (b).

a. With M =5X, + 10Xo, E(M) = 5(2) + 10(4) = 50,
V(M) =52 (.5)> + 10% (1)? = 106.25 and o, = 10.308.

75-50
10.308

b. P(75<M)= P( < ZJ = P(2.43< Z)=.0075 .

c¢. M=A,X)+ A>X; with the 4; and X; all independent, so
E(M) = E(41.X) + E(42X2) = E(A)E(X)) + E(42)E(X2) = 50.

d. V(M)=EWMM?) - [E(M)]*. Recall that for any rv Y, E(Y?) = W(Y) + [E()]%.
Thus, EMR) = E(A2X2 +24,X, 4, X, + A2X?
= E(Af )E(X]2 )+ 2E(4))E(X))E(4, )E(X, )+ E(AZZ )E(Xf) (by independence)

= (25 +25)(25 + 4) + 2(5)(2)(10)(4) + (.25 + 100)(1 + 16) = 2611.5625, so
V(M) = 2611.5625 — (50)2 = 111.5625.

e. EWM) =50 still, but now Cov(Xi, X2) = (.5)(.5)(1.0) = .25, so
V(M) =alV(X,)+2aa,Cov(X,,X,)+aV(X,)=6.25+2(5)(10)(.25) + 100 = 131.25.
8
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Let X; and X denote the (constant) speeds of the two planes.
a. After two hours, the planes have traveled 2.X; km and 2X; km, respectively, so the second will not have
caught the first if 2X; + 10 > 2X,, i.e. if X, — X; <5.
X> — X1 has a mean 500 — 520 = -20, variance 100 + 100 = 200, and standard deviation 14.14. Thus,
5-(-20)

P(X,-X,<5)= P(Z <

j: P(Z <1.77) = .9616.

b. After two hours, #1 will be 10 + 2X; km from where #2 started, whereas #2 will be 2X; from where it
started. Thus, the separation distance will be at most 10 if
2X>—10-2X11 <£10,1.e.-10<2X, — 10 - 2X; < 10 or 0 £ X2 — X; < 10. The corresponding
probability is P(0 <X, — X7 <10)=P(1.41 < Z<2.12)=.9830 —.9207 = .0623.

1 n n
a. E(Yl.)zng, S0 E(W):ZLE(K):%ZZ':@.
i=1 i=1

1 W n n
b. V(Y;):P(l—P)ZZ, s0 V(W):ZV(;'.YI_):Z“Z'Z.V(Yi)zizi2 - ”(””2)22"“).

The total elapsed time between leaving and returning is 7= X; + Xz + Xz + X3, with
E(T) =15+ 5+ 8 + 12 = 40 minutes and V(T) = 4> + 12+ 22+ 32 =30. T is normally distributed, and the
desired value ¢ is the 99™ percentile of the lapsed time distribution added to 10a.m.:
t—40
99=P(T<f)= @(—J — t= 40+2.33+/30 =52.76 minutes past 10a.m., or 10:52.76a.m.

V30

Note: exp(u) will be used as alternate notation for e” throughout this solution.
X

a. Using the theorem from this section,
o 1 1 (w—x)°
fow)=fx * fr="| fi(x)fy(w=x)dx=| —=exp exp| — dx =
J.—oo X Y J‘—:x: Ion 2 \/E 2
de . Complete the square inside the exponential function to get

2

1 (= X+ (w=x)
2 J—= 2

—w? /4

2 Y "
1 exp(—mjdx—LJ‘ exp(—(x—w/Z)z—w2/4)dx:e
2m o>

o 2
J. e T gy =
2m 2

—o0

2n

—w? /4

Jm e dx under the substitution u = x — w/2.

-0

2n

This last integral is Euler’s famous integral, which equals Jn ; equivalently, %e’”z is the pdf of a
T

normal rv with mean 0 and variance 1/2, which establishes the same result (because pdfs must

—w?/4
1 2 .
integrate to 1). Either way, at long last we have f,, (w) = e—x/; =——-¢"""* This is the normal
2n \4n

pdf with 4 = 0 and ¢® = 2, so we have proven that W ~ N(0, V2 ).
b. Since X and Y are independent and normal, W = X + Y is also normal. The mean of W is E(X) + E(Y) =

0 + 0 = 0 and the variance of Wis V(X) + V(Y) = 12 + 12 = 2. This is obviously much easier than
convolution in this case!
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a. Since the conditions of a binomial experiment are clearly met, X ~ Bin(10, 18/38).
b. Similarly, Y ~ Bin(15, 18/38). Notice that X and Y have different »’s but the same p.

¢. X + Yis the combined number of times Matt and Liz won. They played a total of 25 games, all
independent and identical, with p = 18/38 for every game. So, it appears that the conditions of a
binomial experiment are met again and that, in particular, X + ¥ ~ Bin(25, 18/38).

d. The mgfofaBin(n, p)rvis M(¢t)=(1— p+ pe')" . Using the proposition from this section and the
independence of X and Y, the mgf of X + Y'is
20 18 ,)' (20 18 ,\° (20 18 ,\"
M, ,®)=M,@t)-M,t)=| —+—¢€ | |—+—¢€ | =|=—+—¢'| .Thisisthe mgfofa
iy (0) x ()M, (t) (38 38 J (38 38 j 38 38 g
Bin(25, 18/38) rv. Hence, by uniqueness of mgfs, X + Y ~ Bin(25, 18/38) as predicted.

e. LetW=X;+ ...+ X Using the same technique as in d,
M, )=M, ()M, )=1-p+pe) (-p+pe)* =(-p+pe)" ™ Thisis the mgfof a

binomial rv with parameters », +---+n, and p. Hence, by uniqueness of mgfs, W ~ Bin(}_ n;, p).

f.  No, for two (equivalent) reasons. Algebraically, we cannot combine the terms in d or e if the p’s differ.
Going back to ¢, the combined experiment of 25 trials would not meet the “constant probability”
condition of a binomial experiment if Matt and Liz’s success probabilities were different. Hence, X + Y
would not be binomially distributed.

4

pe

WJ . Assuming the X’s are
—(1-p)e

This is a simple extension of the previous exercise. The mgf of X; is [

independent, the mgf of their sum is
; i ; 2 ; B,
pe pe pe
M H=M, )M, (t)= = .
e 0=y 0t 0= 2 [
This is the mgf of a negative binomial rv with parameters 7 +---+7, and p. Hence, by uniqueness of mgfs,
X, +-+X, ~NBQ i, p).

a. The pdfof Xis f,(x)=Ae ™ forx >0, and this is also the pdf of Y. The pdf of W= X + Yis
fiw) = fx * fy= J: S () f, (w=x)dx = j Ae™  Ae M dx = j A*e*" dx , where the limits of
integration are determined by the pair of constraints x > 0 and w — x > 0. These are clearly equivalent to
0<x<w,s0 f,(w)= IOW/Ve”lW dx = A*we™™ for w> 0 (since x + y > 0). Matching terms with the
gamma pdf, we identify this as a gamma distribution with @ =2 and § = 1/1.

b. If X ~ Exponential(1) = Gamma(1, 1/4) and Y ~ Exponential(4) = Gamma(1, 1/2) as well, then by the
previous exercise (with a; = a; = 1 and f = 1/1) we have X + ¥ ~ Gamma(1 + 1, 1/4) = Gamma(2, 1/4).

10
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c. More generally, if Xi, ..., X, are independent Exponential(4) rvs, then their sum has a Gamma(n, 1/4)
distribution. This can be established through mgfs:
M =M, @t)---M, (t)= Ao A [ 4 jn = ! which is precisely the mgf
AR o i A=t A-t \A-t (A-1/ 0"’

of the Gamma(n, 1/1) distribution.

67.
a. V(X)=E[(X-0)]=E[X’]= j°° X oletldr=2 j: X ledx = j: x*e *dx . To evaluate this

integral, use Expression (4.5): I: e tdx=1'T(3)=2!=2.

b. See Chapter 4, Exercise 34.

c. By linearity of expectation £(Y,) = E(X,)+---+ E(X,)=0+---+0=0.

By independence, V(Y,)=V(X)+--+V(X,)=2+---+2=2n.
1 11
-2 1=y

Again by independence, M, (1)=M, (t)-M, ()= 1

d. Apply the rescaling property with a =1/0, =1/ \2n and b= —Hy 1oy =0
1 B 1
(I-[atP)" (-£/2n)"

M, (t)=M, (at) =

e. Recall that lim (1 + ﬁj = ¢” . Rewrite the denominator and take the limit:

n—»o0 n

—t*/2

n

! ) 1 .
(1-1*/2n)" =(1+ ] —e"? Thus M, (t) > =¢""?, the N(0, 1) mgf.

2
—-t7/2
e

Section 5.4

69.

®

Sx(x)= J-Oxf(x, y)dy = J:Zdy =2x,0<x<1.

b.  frix(y|x) =fix, y)/fx(x) = 2/2x = 1/x, 0 <y <x. That is, Y| X=x is Uniform on (0, x). We will use this
repeatedly in what follows.

c. From (b), P0<Y<.3]X=.5)=.3/5=.6.
d. No, the conditional distribution fyx(y|x) actually depends on x.
e. From (b), E(Y|X=x)= (0 +x)/2 =x/2.

f. From (b), V(Y| X=x) = (x — 0)/12 = x*/12.

11



71.

73.

®

Chapter 5: Joint Probability Distributions and Their Applications

Fe@=[Fendr=["2e 0y =2e2 x>0

Srx(v]x) = fx, Y)fx) = 2eV2e =, 0 <x <y.

P(Y>2|X=1)= '[O}le (v | Ddy = rel‘ydy — o= 3679
2 2

No, since fyx(y|x) actually depends on x.

x

E(Y| X=x) = Lw y-eldy=¢" I:c ye Ydy =e*(1+x)e" using integration by parts = (1 +x).

Using integration by parts and proceeding as in (¢), E(Y?|X=x) = ... =x* + 2x + 2.
Thus, V(Y| X=x)=x*>+2x+2—(1 +x)’=1.

Y|X=x is Uniform(0, x), so E(Y]X=x) = (0 + x)/2 = x/2 and V(¥|X=x) = (x — 0)%/12 = x¥/12.

Sx, y)=fx(x) - frix(ylx)=1/(1-0) - /(x—-0)=1/xfor0 <y <x<1.

) = Llf(x, y)dx = J-yl (1/x)dx =1n(1) - In(y) = — In(y), 0 <y < 1. [Note: since 0 <y < 1, In(y) is

actually negative, and the pdf is indeed positive.]

EY)= .[OI y(=In y)dy . Make the substitutionu =—1Iny,y=e™*, dy=—e* du:

EY)= J'Oe’”u(—e’“)du = I: ue" du = (1/2)’T'(2) =1/ 4 using Expression (4.5). Similarly,
EX)=1/9=VX)=1/9-(1/4)>=7/144.

From a, E(Y | X) = X/2. Thus E[Y]=E[E(Y | X)]=E[X /2]=E[X]/2=(1/2)/2=1/4.(The mean
of X'is 1/2 because X ~ Unif[0, 1].) Next, applying the law of total variance,

V(Y)=VIEQY | X)]+E[V(Y | X)]=V(X/2)+E(X>/12)=1/4)V(X)+(1/12)E(X?). Using the
uniform distribution, V' (X)=(1-0)>/12=1/12 and E(X*)=V(X)+[E(X) =1/12+1/4=1/3 . Put
it all together, and V' (Y)=(1/4)(1/12)+(1/12)(1/3) =7/144 . This is a lot easier than dealing with the
integrals in part d.

12



75.

77.

79.

Chapter 5: Joint Probability Distributions and Their Applications

prx(¥|1) results from dividing each entry in the x = 1 row of the joint probability table by px(1) = .34:

08 20 .06
PyrO11) =7 = 2353, py (1) =0 = 5882 py (2] 1) =7 = 1765

prx(¥|2) is requested; to obtain this divide each entry in the x = 2 row by px(2) = .50:

y ’ 0 1 2

Prx(v2) ’ 12 28 .60

P(Y<1|X=2)=pysOR) + pyx(1[2) = .12 + .28 = .40.

pxr(x]2) is requested; to obtain this divide each entry in the y =2 column by px(2) = .38:

X ‘ 0 1 2

par(x2) ‘ 0526 1579 7895

YIX=x is Unif[0,x?]. So, E(¥JX=x) = (0+ x2)/2 = x%/2 and V(¥|X=x) = (x> — 0)/12 = x¥/12.

. S =) frixp) = 1/(1-0) - /(2 -0)=1/x*for0 <y <x?<1.

50)= [ fxpde= [ _a/atyas = Fhoosl

By considering all 9 possible pairs of numbers David and Peter could select, we find the joint pmf
p(x,y) displayed in the table below.

xly | 1 2 3
1 1/9 0 0
2 2/9 1/9 0
3 2/9 2/9 1/9

Adding across the rows, px(1) = 1/9, px(2) = 3/9, px(3) = 5/9.

Pry (V%) = p(x,»)/ py(x), so divide each row by its total from part b.

y| 1 2 3
rID | 1 0 0
P12 | 253 1/3 0
p13) | 2/ 2/5 1/5

Take the weighted averages from the rows inpartc. E(Y | X=1)=1, E(Y| X=2)=4/3=1.33, and
E(Y|X=3)=9/5=18.

Clearly (Y| X = 1) = 0. From the rows of part ¢, (Y | X =2)=2/9, and V(Y | X = 3) = 14/25.

13



81.

83.

85.

87.

89.

Chapter 5: Joint Probability Distributions and Their Applications

Computations here are similar to the previous two exercises.
a. Add down the columns of the joint pmf.

x | pll p(x]2) p(x]3)
1 1/5 0 0

2 2/5 1/3

3 2/5 2/3 1

&

Froma, EQX | Y = 1) = 1(1/5) + 2(2/5) + 3(2/5) = 11/5; E(X| Y = 2) = 1(0) + 2(1/3) + 3(2/3) = 8/3 =
2.6667, and E(X| ¥ =3) =3.

i

Similarly, V(X'| Y = 1) = 14/25, V(X | Y = 2) = 2/9, and obviously V(X | ¥ = 3) = (3) = 0.

a. Since all ten digits are equally likely, px(x) = 1/10 for x = 0,1,...,9.
Next, pyx(y|x) = 1/9 for y =0,1,...,9, y # x. (That is, any of the 9 remaining digits are equally likely.)
Combining, p(x, ¥) = px(x) - pyx(y|x) = 1/90 for (x,y) satisfying x,y =0,1,...,9, y # x.

&

E(YIX =x) = Yy v pridy[x) = (1/9) Sy v = (1/9) [0+ 1 + ... + 9 — x] = (1/9)(45 —x) = 5 — x/9.

We have X ~ Poisson(100) and Y].X=x ~ Bin(x, .6).
a. E(Y|X=x)=np = .6x, and V(Y| X=x) = np(l — p) = x(.6)(.4) = .24x.

b. From a, E(Y|X) = .6X. Then, from the Law of Total Expectation, E(Y) = E[E(Y]X)] = E(.6X) = .6E(X) =
.6(100) = 60. This is the common-sense answer given the specified parameters.

c¢. From a, E(Y|X) = .6X and V(Y|X) = .24X. Since X is Poisson(100), E(X) = V(X) = 100. By the Law of
Total Variance,
VY)=EWV Y | X)+V(EY | X))=E(24X)+V(.6X)=24E(X)+.6>V(X) =.24(100) + .36(100) =
60.

We’re give E(Y|X) = 4X — 104 and SD(Y|X) = .3X — 17. Down the road we’ll need E(X?) = V(X) + [E(X)]* =
32+ 707 = 4909.

By the Law of Total Expectation, the unconditional mean of Y is

E(Y)=E[E(Y|X)] = E(4X —104) = 4E(X) — 104 = 4(70) — 104 = 176 pounds.

By the Law of Total Variance, the unconditional variance of Y is

(Y)=V(E(Y | X))+ E(V(Y | X)) = V(4X — 104) + E[(3X — 17)?] = 4*V(X) + E[.09X% — 10.2X + 289] =
16(9) +.09(4909) — 10.2(70) + 289 = 160.81.

Thus, SD(Y) = 12.68 pounds.

a. EX)=E(1+N)=1+E®N)=1+4p. (X)= V(1 +N)= V(N) = 4p(1 - p).

b. Let W denote the winnings from one chip. Using the pmf, u = E(W)=0(.39) + ... + 10,000(.23) =
$2598 and ¢*> = V(W) = 16,518,196.

14
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By the Law of Total Expectation, E(Y) = E[E(Y|X)] = E[uX] = 1 E(X) =2598(1 + 4p). By the Law of
Total Variance, V(Y) = V(E(Y | X)) + E(V(Y | X)) = V(uX) + E(6*°X) = u*V(X) + > E(X) =
(2598)% - 4p(1 — p) + 16,518,196(1 + 4p). Simplifying and taking the square root gives

SD(Y) = /16518196 +93071200 p — 26998416 " .

When p =0, E(Y) = $2598 and SD(Y) = $4064. If the contestant always guesses incorrectly, s’/he will
get exactly 1 chip and the answers from b apply.

When p = .5, E(Y) = $7794 and SD(Y) = $7504.

When p =1, E(Y) = $12,990 and SD(Y) = $9088.

As the ability to acquire chips improves, so does the contestant’s expected payout. The variability
around that expectation also increases (since the set of options widens), but the standard deviation does
not quite increase linearly with p.

Section 5.5

91.

X
93, As stated in the section, Y|X=x is normal with mean K, + 00, [

a. Substitute into the above expressions: mean = 170 + .9(20)(

Since X and W are bivariate normal, X + # has a (univariate) normal distribution, with mean E(X+ W)
= E(X) + E(W) =496 + 488 = 984 and variance given by

V(X + W)= WX) + V(W) +2 Cov(X, W)= V(X) + V(W) + 2 SD(X) SD(W) Corr(X, W) =114%+ 114> +
2(114)(114)(.5) = 38,988. Equivalently, SD(X + W) = /38,988 =197.45.

That is, X + W~ N(984, 197.45).

1200-984
197.45
We’re looking for the 90" percentile of the N(984, 197.45) distribution:

x—984 x—984
9= CD[ j =

P(X+ W>1200)=1— (I)( j =1-®(1.09) =.1379.

=128 = x =984 + 1.28(197.45) = 1237.
197.45 197.45

H .
1 ] and variance (1- p*)o .
0,

68—-70

j = 158 Ibs, variance =

(1 —.9%)(20)*> =76, sd = 8.72 Ibs. That is, the weight distribution of 5°8” tall American males is
N(158,8.72).

Similarly, x = 70 returns mean = 170 lbs and sd = 8.72 Ibs, so the weight distribution of 5’10 tall
American males is N(170,8.72). These two conditional distributions are both normal and both have
standard deviation equal to 7.82 lbs, but the average weight differs by height.

. 180—-182
Plug in x = 72 as above to get Y|X=72 ~ N(182, 8.72). Thus, P(Y <180 | X=72) = (D(—] =

8.72
®(—0.23) = .4090.

15
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97.

99.
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The mean is 2 + poa(x — )or = 70 + (71)(15)(x — 73)/12 = .8875x + 5.2125.
The variance is 62*(1 — p?) = 15%(1 —.71%) = 111.5775.
From b, sd =10.563.

90-76.2125

From a, the mean when x = 80 is 76.2125. So, P(Y > 90X = 80) =1_(1)( 10.563

J =1-®(1.31)
= .0951.

The mean is (o + por(x — t1)/or = 30 + (.8)(5)(x — 20)/2 =2x — 10.
The variance is 62*(1 — p?) = 5*(1 — .8%)=9.
From b, sd = 3.

46— 40

From a, the mean when x = 25 is 40. So, P(Y > 46|X = 25) =1—CD( ] =1-0(2)=.0228.

P(50 <X<100,20<Y<25)=PX <100, Y<25)-P(X<50,Y<25)-P(X<100,Y<20)+
PX <50, Y<20)=.3333-.1274 - .1274 + .0625 = .1410.

If X and Y are independent, then P(50 <X < 100,20 <Y <25)=P(50<X<100) - PRO<Y<25)=
[D(0) — D(-1)] [®(0) — D(—1)] = (.3413)*> = .1165. This is smaller than (a). When p > 0, it’s more likely
that the event X < 100 (its mean) coincides with ¥ <25 (its mean).

Section 5.6

101.

If Xi and X, are independent, standard normal rvs, then f'(x,,x,) = f(x,)- f5(x,) L gin L an

=——¢ —c
NeT NeT

L e—(,\'lz +x3)/2 )

21

Solve the given equations for X; and Xz: by adding, Y1 + Y>» = 2X; = X; = (¥ + Y>»)/2. Similarly,
subtracting yields X> = (Y1 — ¥»)/2. Hence, the Jacobian of this transformation is
ox, /0y, Ox, /oy,| |1/2 1/2

Ox, /0y, Ox,/0py,| [1/2 —=1/2
Also, the sum of squares in the exponent of the joint pdf above can be re-written:
TR 6 0 BN e P W Ve e (i A R e LD e

X, +x, = + = =
2 2 4 2
Finally, the joint pdf of ¥; and Y5 is

FOy,) = Le—«ym%)/z)/z, 1-1/2]= Le—uhy%)/ét
2n 4n

det(M) =

=1/2)-1/2)-1/2)1/2)=-1/2
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10s.
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b. To obtain the marginal pdf of Y1, integrate out Y>:
I G | SN SR S I
/1‘ (y)z —e (O uz)/4dy =—¢ yi /4 I dy
i 1 .[—w 41-[ 2 \/E I—m \/E 2
The integrand is the pdf of a normal distribution with # = 0 and ¢ = 2 (so 2¢° = 4). Since it’s a pdf, its
1
N

variance 2, which we know to be the distribution of the sum of two independent N(0, 1) rvs.

-y 4

integral is 1, and we’re left with f, (y) = e """ . This is (also) a normal pdf with mean 0 and

c. Yes, Y and Y, are independent. Repeating the math in b to obtain the marginal pdf of > yields

S (1) = L s , from which we see that f(V},,) = fy1 (yl)'fyz (7)) . Thus, by definition, ¥; and

N

Y are independent.

Let Y=Xi+ X, and W=X,— X, so Xi =(Y— W)/2 and X> = (Y + W)/2. We will find their joint distribution,
and then their marginal distributions to answer a and b.

The Jacobian of the transformation is detB j; _11//22} =1/2.

Graph the triangle 0 <x; < x; < 1 and transform this into the (y, w) plane. The result is the triangle bounded
by y =0, w=y, and w=2 — y. Therefore, on this triangle, the joint pdf of Y and W is

y-w y+w) |l
,w)=2 + ==y
f(w) ( 5 5 ju y

y 2-y

a For0sys1, fy()=[ ydw =y for1ys2, fi0)=[ vdw =y ),
2-w

b. For0<w<l, fW(W):J. ydy =...=2(1-w).

Solving for the X’s gives Xi = Y1, X» = Y»/Y1, and Xz = Y3/Y>. The Jacobian of the transformation is
1 — —

det| 0 1/, — | = 1/y1y2; the dashes indicate partial derivatives that don’t matter. Thus, the joint pdf
0 0 1/y,
of the Y’s is
8y

F L2203 =8y, -1/ 3,3,| = for 0 <y3 <y, <y; < 1. The marginal pdf of Y3 is

1.2

11 8y 1 8y 0
Koo =[ [ Sy, = [ =Ry, = [,

)—8y3udu = 4y3[In(y3)]? for 0 < y3 < 1.

17
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If U ~ Unif(0, 1), then Y =-2In(U) has an exponential distribution with parameter 1 = '2 (mean 2); see the
section on one-variable transformations in the previous chapter. Likewise, 2nU is Uniform on (0, 2).
Hence, Y1, and Y> described here are precisely the random variables that result in the previous exercise, and

the transformations z; = 4/ ¥; €08(,) , 22 = 4/¥; Sin(,) restore the original independent standard normal

random variables in that exercise.

Section 5.7

109.

111.

. ) = 1/10 — F(x) = x/10 — gs(») = S[y/10]*[1/10] = 5y*/10° for 0 < y < 10. Hence, E(Ys) =

}~]

10
J;) y-5y*/10°dy =50/6, or 8.33 minutes.

b. By the same sort of computation as in a, E(Y;) = 10/6, and so E(Y5s — Y1) =50/6 — 10/6 = 40/6, or 6.67
minutes.

5!

c. The median waiting time is Y3; its pdfis g3(y) = M [FO) P — FO))? =301%(10 —y)¥/10° for 0

<y <10. By direct integration, or by symmetry, £(Y3) = 5 minutes (which is also the mean and median
of the original Unif[0, 10] distribution).

10
d. E(X)= '[0 ¥ -5p* 1107 dy = 500/7, so V(Ys) = 500/7 — (50/6)> = 125/63 = 1.984, from which SD(¥s)

= 1.409 minutes.

The joint pdf of the sample minimum and maximum is

51 -1 _ S-l-lpq 5-5
gl,s(yl,ys)—(1_1)!(5_1_1)!(5_5)![F(y1)] [Fs)=F)I =F )™ f(n)f ()

0
(ys—y1)3, 0<y <ys<10

100
4
The pdf of V1 is g = 5[1_13’_(1)) % =%(10—y,)4 . So, the conditional pdf of ¥s given Y1 =4 is
g]5(45y5) 4 3
=4)=28205 =Dy —4), 4<y. <10.
gsly =4 2 @) & (ys—4) Vs
The conditional expectation is
0 4 .
E(Ys | Y = 4) =J J}Sg(ys |y1 = 4)dy5 = L Vs 6_4(y5 _4)3dy5 =---=8.8 minutes.

18
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115.

117.
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Let the original times (in hours after noon) be X, ..., X,, which we’re assuming are Unif[0, 1]. Their pdf is

!
1 and cdf is x, so the pdf of the kth order statistic is gi(y) = S LR y]“1 1- y)”fk , which we can
(k—=D!(n-k)!

recognize as the Beta(k, n — k + 1) distribution. The expected value, from the Beta formulas, is then
k k
E (Y k ) = =
k+n-k+1 n+l

1/(n+1) hours apart. (For example, if # =5, the arrival times are 1/6, ..., 5/6 hours past noon, aka 12:10pm,
12:20pm, ..., 12:50pm.)

. The expected ordered arrival times are evenly spaced throughout the hour,

The pdf of the underlying population distribution is f{x) = Ox%'. The pdf of Y; is

n! i n i n'é i0— n—i
g =——"—TD"1" %"= YO 1= 1" Thus,

G-Dl(n-i) (@ =Dl —10)!

E(Yi):_[olyg,- (y)dy—T()'J‘ y’g[ -y o1 "dy = [via the substitution u = "]

| . . 1/6-1 1
n'e J‘]u'[l—u]'H u du n: j i+1/6— 1(1 u)n tdu
(i—D!(n—i)ldo 0 (i—D!(n—i)ldo
The integral is the “kernel” of the Beta(i + 1/, n — i + 1) distribution, and so this entire expression equals
n! F@+1/0)r(n—i+1) nT@GE+1/0) Similarly, E(¥2)= nl(i+2/6)
(-Dl(n—i)! T(n+1/6+1) (-DIT(n+1/0+1) N (=DIT(n+2/0+1)°

from which V(Y,) =

mri+2/0) [ wra+/o) T
(—DIC(n+2/0+1) | (—D)IT(n+1/0+1)

flx) =3/ forx > 1 = F(x) = J‘lx3/y4dy=1—x’3 forx > 1.

a. P(at least one claim > $5000) = 1 — P(all 3 claims are < $5000) =1 —-PX1 <5 N X2 <5NX3<5)=
1 - F(5) - F(5) - F(5) by independence =1 — (1 — 57)° =.0238.

b. The pdf of 13, the largest claim, is g, (1) =3/ (WV[FO)I " =3@y )H[1-y7F =9 =2y +y7'%) for
y>1.Hence, E(Y;) = ny.9(y*4 —2y7+y " dy = 91':0 (> =2y +y)dy =2.025, or $2,025.

As suggested in the section, divide the number line into five intervals: (—oo, yi], (vi, vi + A1l, i + A, ¥,
(yj, yi+ As],and (y; + A, ). For a rv X having cdf F, the probability X falls into these five intervals are

=P(X<y)=FQ),p2=F@i+ A)—F) = fy)A, p3 = F() — Fi + A1), pa=F(y + Do) — F(y) =
f(yj)Az, andpsfP(X>yj+ Az)*l—F(yj‘i‘ Az)

Now consider a random sample of size n from this distribution. Let ¥; and Y; denote the ith and jth smallest
values (order statistics) with i <j. It is unlikely that more than one X will fall in the 2™ interval or the 4"
interval, since they are very small (widths A; and A,). So, the event that ¥; falls in the 2™ interval and ¥;
falls in the 4" interval is approximately the probability that: i —1 of the X’s falls in the 1 interval; one X
(the ith smallest) falls in the 2" interval; j — i — 1fall in the 3 interval; one X (the jth smallest) falls in the
4™ interval; and the largest n —j X’s fall in the 5" interval. Apply the multinomial formula:
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n! i1 1 j—i-1 1 _n—j

(DG —i— D PP Pabs
DG D OOT S OIALFG) = FO+ A0F ™ £l = + 8,

Dividing the left-hand side by A;A; and letting A} — 0, A, — 0 yields the joint pdf g(y;, ;). Taking the
same action on the right-hand side returns

n! iz _ j-i-lry n—j i
(i—l)!(j—i—l)!(n—j)!F(yi) (FO)=F) 0=-F)I" f(»)f (), as claimed.

P(y, <Y, Sy, +A,y, <Y, <y, +A)~

a. Substitute i =1 andj =n to get

n n—1-1
g, (s »,) = (l_DK”_1_1)!(n_n)![F(yn)—F(yl)] ACVACH)

=n(n=DIF(y,)=F)I" f()f(,) fory <y,

b. Let W =W, =Y, —Y, (drop the subscript “2”) and ¥, =Y, . The Jacobian of this transformation is
clearly 1. With ¥, =W, and Y, =Y, + W =W, + W , the desired joint pdf is
Fw,w)y=nn-D[Fw+w)—FwW)]"> f(w)f(w+w) forw>0.

To find the marginal pdf of the range, integrate out the other variable, ::

Sy = [n(n=D)F Go+w) = FOn)I™ f(m) £ (w9 ),

c. For the Uniform[0, 1] distribution, f{x) = 1 and F(x) =x. The limits 0 < y, < y, <1 are equivalent to
0<w, <w+w, <1, from which the dw; limits are 0 < w, <1-w. Hence,
S (w) = J‘;_wn(n —D[(w+w)—w 172 -1-1dw, = n(n—-DHw" > J‘Ol_wla’w1

=n(n-Dw"?1-w) for0<w<l1

That is, the sample range has a Beta(n — 1, 2) distribution.

Supplementary Exercises

123.

Let X and Y be the transmission times, so the joint pdf of X and Y is
f,y)=fr(X)-fr(y)=e e = forx, y> 0. Define T=2X + Y = the total cost to send the two

messages. The cdf of T'is given by
F,(t)=P(T<t)=PQ2X+Y <t)=P(Y <t-2X). For X> /2, this probability is zero (since Y can’t be
negative). Otherwise, for X <#/2,

V2 e i . .
P(YSt—ZX):'[O '[0 e dydx=---=1-2e""" +¢ fort>0. Thus, the pdf of T'is
L =Fl({t)=e"? —e" fort>0.
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125.

x+y=30
x+y=20

»

=" " reeyyady= [ [ kapdyde+ [ [ locydyx =

81250 4 po 3
81,250

®

[ kewydy = k(250x ~10x%) 0<x<20

&

fX (x)= 30-x
jo foxydy = k(450x —30x7 +1x)

and, by symmetry, fy(y) is obtained by substituting y for x in fx(x). Since fx(25) > 0 and f¥(25) > 0 but
f25,25) =0, fx(x) - fr(y) #f(x, y) for all x, y and so X and Y are not independent.

3 230,625
81,250 24

355

e

20 p25-x 25 25-x
P(X +Y <25)= jo LO_X focydydx + LO jo focydydx =

d. E(X+Y)=E(X)+E(Y)=2EX)= 2j:°x.k(250x—10x2 )dx

42"k (4500 - 302 +4x° ) dv = 2k(351,666.67) = 25.969 Ib.

e. EQ) =[xy feepyxdy = [k ydyax

[ ke yrdvas = £ 220000 364103 o
20 JO 3
Cov(X, ¥)= 1364103 — (12.9845) = -32.19. Also, E(X?) = E(Y*) = 2046154, 50

o) =07 = 2046154~ (12.9845)" =36.0182 and p= = — 804
36.0182

f. V(X +Y)=VX)+ Y) +2Cov(X, ¥) = 7.66.

1ol
127. E(X+Y-1)* = JOJ;(x +y—10)2 f(x,y)dxdy. To find the minimizing value of t, take the derivative with

respect to ¢ and equate it to O:

1 el 1 ol 1ol
0= IOIOZ(X+y—t)(—1)f(x,y) =0= J.O'[)tf(X,y)dxdy =t = LL(x+y)-f(x,y)dxdy =E(X +Y), so the best
prediction is the individual’s expected score (= 1.167).
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129.

a. First, EV)=E(pZ, +\1-p’Z,) = pE(Z,)++]1- p E(Z,) = p(0)++/1- p*(0) = 0. Second, since Z;

and Z; are independent,
2
V) =V(pZ, +\1=p ) = pHZ)+ 1= | () = 0+ - p)1) =1
b Cov(U,,V)=Cov(Z,, pZ, +1- p*Z,) = pCov(Z,, Z,) +J1- p>Cov(Z,, Z,)
= pVar(Z)) +1-p’Cov(Z,,Z,) = p(1) +/1- p*(0) = p.
. Con(Uy)y=—S2Wl) _ p _
SDU)SD(¥;) (1)

131.

b. By the Law of Total Probability, 4 = | | 4N {X, =x}= P(4) =Y P(AN{X, =x}) =
x=0 x=0

Z P4 X, =x)P(X,=x)= Z P(A| X, =x)p(x). With x members in generation 1, the process

x=0 x=0

becomes extinct iff these x new, independent branching processes all become extinct. By definition,
the extinction probability for each new branch is P(4) = p*, and independence implies P(A4| X, =x) =

(p*)". Therefore, p*= z (p*)" p(x).
x=0

c. Checkp*=1: Z(l)xp(x) = Zp(x) =1=p*. [We’ll drop the * notation from here forward.]
x=0 x=0
In the first case, we get p = .3 + .5p + .2p?. Solving for p gives p = 3/2 and p = 1; the smaller value,
p = 1, is the extinction probability. Why will this model die off with probability 1? Because the
expected number of progeny from a single individual is 0(.3)+1(.5)+2(.2) =.9 < 1.
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On the other hand, the second case gives p = .2 + .5p + .3p?, whose solutions are p = 1 and p = 2/3. The
extinction probability is the smaller value, p = 2/3. Why does this model have positive probability of
eternal survival? Because the expected number of progeny from a single individual is 0(.2)+1(.5)+2(.3)
=1.1>1.

133.
a. Use a sort of inclusion-exclusion principle:
Pla<X<bh c<Y<d)=P(X<b Y<d)-PX<a, Y<d)—-PX<bh Y<c)tP(X<a, Y<c).
Then, since these variables are continuous, we may write
Pla<X<b c<Y<d)=F(b, d)—F(a, d)—- F(b, ¢) + F(a, c).

b. In the discrete case, the strict inequalities in (a) must be re-written as follows:
Pa<X<b c<Y<d)y=PX<b Y<d)-PX<a-1,Y<d)-PX<b Y<c-1)+
PX<a-1,Y<c-1)=F(b,d)—Fla-1,d)—F(b, c—1)+F(a—1, ¢c—1). For the values specified,
this becomes F(10,6) — F(4,6) — F(10,1) + F(4,1).

c. Use the cumulative joint cdf table below. At each (x*, y*), F(x*, y*) is the sum of the probabilities at
points (x, y) such that x <x* and y < y*.
F(x,p) x
100 250
200 .50 1
y 100 .30 .50
0 .20 .25

d. Integrating long-hand and exhausting all possible options for (x,y) pairs, we arrive at the following:
F(x,y)=.6x%+ 407, 0<x,y<1; F(x,») =0,x <0 0ry<0; F(x,y) = .6x* + 4x,0<x < 1,y > 1;
F(x,y)=.6y+ .4)y°,x>1,0<y<1; and, obviously, F(x,y)=1,x>1,y > 1. (Whew!)

Thus, from (a), P(.25 <x<.75, .25 <y <.75) = F(.75,.75) — F(.25,.75) — F(.75,.25) + F(.25,.25) = ...
=.23125. [This only requires the main form of F(x, y); i.e., that for 0 <x, y < 1.]

e. Again, we proceed on a case-by case basis. The results are:
Flx,y)=6x3%,x+y<1,0<x<1;,0<y<1;
Fx,y)=3x*-8x3+6x> +3)* -8 + 6p? - 1, x+ y>1,x<1,y<1;
F(x,»)=0,x<0; F(x,y) =0,y <0;
Fx,y)=3x*-8x*+6x2,0<x<1,y>1;

F(x,y)=3y*- 8 +6)?,0<y<1,x>1; and, obviously,
Fx,y)=1,x>1,y>1.

135.
a. For an individual customer, the expected number of packages is 1(.4)+2(.3)+3(.2)+4(.1) =2 with a
variance of 1 (by direct computation). Given X=x, Y is the sum of x independent such customers, so
E(Y)X=x)=x(2) =2x and V(Y| X=x) =x(1) =x.

b. By the law of total expectation, £(Y) = E[E(Y|X)] = E(2X) = 2E(X) = 2(20) = 40.

c. By the law of total variance, V(Y) = V(E(Y|X)) + E(V(Y|X)) = V(2X) + E(X) = 4V(X) + E(X) =
4(20) + 20 = 100. (Recall that the mean and variance of a Poisson rv are equal.)
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137.

139.

141.

143.

145.

Chapter 5: Joint Probability Distributions and Their Applications

Let @ = 1/1000 for notational ease. ¥ is the maximum of the two exponential rvs, so its pdf is f(w) =

2Fx(w)fx(w) = 2(1 — e™)ae ™= 2ae ™ (1 — e ). From this, My(¢) = E[e"] = Io e"2ae” ™ (1-e™)dw =

ZGIw e Ty 2aJ.w€7(2”7t)wdw -2 2 2 = 2 . From this
0 0 a—t 2a-t (a—t)a-t) (1-10007)(2-10007) ’

E[W]= Mj, (0) =1500 hours.

The roll-up procedure is not valid for the 75" percentile unless ;1 = 0 and/or o> = 0, as described below.
Sum of percentiles: (1 +20) + (1, +20,) = g, + b, + z(0, + 7,)

Percentile of sums: (4 + 1) + 24/ o} +0;

These are equal when z = 0 (i.e. for the median) or in the unusual case when o, +0, =,/ 0'12 + 022 , which

happens when o, = 0 and/or o, = 0.

a. LetX), ..., Xi2 denote the weights for the business-class passengers and Y, ..., Yso denote the tourist-
class weights. Then 7'=total weight=X,+ ... + X+ Y1+ ...+ Vso=X+7.
EX) = 12E(X)) = 12(30) = 360; V(X) =12 V(X1) = 12(36) = 432.
E(Y) =50E(Y1) = 50(40) = 2000; V(Y) =50 V(Y1) = 50(100) = 5000.
Thus E(T) = E(X) + E(Y) = 360 + 2000 = 2360,
and M(T) = M(X) + V(Y) =432 + 5000 = 5432 = SD(T) = 73.7021.

2500-2360

b. P(T <2500)=®
73.7021

j—®(1.90)—.9713.

The student will not be late if X; + X3 < X5, i.e. if X1 — X3 + X5 < 0. This linear combination has mean —2
0-(-2)

v4.25

and variance 4.25,50 P(X, - X, + X, <0)= cp( j =®d(.97) =.8340.

a. V(X)=V(W+E)=o0, +o, =V(W+E,)=V(X,) and
Cov(X,,X,)=Cov(W + E,,W +E,)=Cov(W,W)+Cov(W,E,)+Cov(E,W)+CoVv(E,E,)=
yim)y+0+0+0=o; .

Cov(X,,X,) o, o,

Thus, p= = = .
SD(X,)SD(X,) ol +62 -\Joo +62 Oy +0;
12
b. =—=.9999.
P 1*+.01
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149.
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EQY) = h(y, phy, 45, 4,) =120[ 5 + & + 5] = 26.

. o . X X X
The partial derivatives of h(g,, 1t,, 145, 14,) With respect to xi, x2, x3, and x4 are —x—‘;, —x—g, —x—i, and
1 2 3

L+L+L , respectively. Substituting x; = 10, x, = 15, x3 = 20, and x4 = 120 gives —1.2, —.5333, —.3000,
XX X

and .2167, respectively, so V(Y) = (1)(~1.2)* + (1)(—5333)? + (1.5)(—.3000)? + (4.0)(.2167)> = 2.6783, and
the approximate sd of Yis 1.64.

a. The marginal pdf of Xis

[(Inx)*+(Iny)*1/2

v 1 e” . .
fr(x)= IO py ¢ [1+sin(2n1n x)sin(2x1n y)]dy
1 X2 " ' )
=S [ ™21+ sin(2nIn x)sin(2x In &
2w by 0 y
1 e*[(lnx)z]/Z " ,
= 2——j e *[1+sin(2x In x)sin(27u) | du
T X -
Amo’y2 - o
_ 2L ¢ [ [ e du+sin@ninn)|” e sin(Znu)du}
T X e e

The first integral is +/27 , since the integrand is the N(0, 1) pdf without the constant. The second
integral is 0, since the integral is an odd function over (-0, ®). Hence, the final answer is
1 e—[(lux)z]/Z 1 1

X)=— . =
S () 2 e~ o
By symmetry, this is also the marginal pdf of Y.

¢ "2 the lognormal pdf with u =0 and o= 1.

b. The conditional distribution of Y given X =x is

~[(In y)*1/2
frn =L e

[1+sin(2nIn x)sin(2x1n y)], from which

fx(x)  2my
» 1 e lt12
EY"|X=x)= "————[1+sin(2nln x)sin(2xln y)]d
¥ |x=x)=["y N ) »)ldy

© e—[(lny)z]/Z sin(21t In x) o P12 s dy

=),V =t — Y -e 2 gin(2nIn y)—

IO 27[y 21_[ IO y

J.w e—mny)ﬁ/z
The first integral is | »" - ———
0 \2my

second integral equals zero. For the second integral, make the suggested substitution In(y) = u + n, for

which du = dy/y and y = """

dy = I: V' f,(»)dy=E") . So, the goal is now to show that the

“ ) : d * —(u+n)? : © 240’ .
.[0 y" e 2 gin(2nn y)—y = '[ "y e " 2 sin(2m(u + n))du = I e P2 sin(2nu + 2mn) du
y o -

2 © 9 . 2 © 9 . .
=e"/ ZJ. e sinnu + 2nn)du = "’ 2_[ e " sin(2nu)du . The second equality comes from
—o0 —00

expanding the exponents on e; the last equality comes from the basic fact that sin(6 + 27tn) = sin(6) for
any integer n. The integral that remains has an odd integrand (u? is even and sine is odd), so the

integral on (—o0, o) equals zero. At last, we have that E(Y" | X = x) = E(Y") for any positive integer 7.

25



Chapter 5: Joint Probability Distributions and Their Applications

Since the pdf is symmetric in X and Y, the same derivation will yield E(X" |Y = y)= E(X") for all

positive integers 7.

Despite the fact that the expectation of every polynomial in Y is unaffected by conditioning on X (and
vice versa), the two rvs are not independent. From a, the marginal pdfs of X and Y are lognormal, from

l 2 l _ \2 1 _ 2 N2
(Inx)’)/2 | e )2 _ o [ +(ny)2 7$f(x D). Therefore, by

. ) _ -
which f, (x)- f,(») \/ﬂxe \/Ey 27xy

definition X and Y are not independent.
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