CHAPTER 4

Section 4.1

1.
a. P(X<1l)= J‘;f(x)dx:'[;%xdx:%xq; =.25.
1.5 2 1.5
b. P(S<X<15)= [ txdx=1x'] =35.
c. P(X>15)= j]if(x)dx:I;%xdx:%lez_s =1~ 438,
3.
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b. PX>0)= [ .09375(4—x*)dx=.09375| 4x— || =.5.
0 3
0

This matches the symmetry of the pdf about x = 0.

. P-l<Xx<l)= fl.o9375(4 —x%)dx =.6875.

.5
d P(X<-50rX>.5)=1-P-5<X<.5)=1- J' 09375(4 — x2)dx =1 - 3672 = .6328.
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a. 1= wa(x)dx:J’Oloc de==r| =T =k=3
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o
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b. PO<X<1)= [ ixidv=tx'] =1=125.

. PU<X<15)=["pxrde=tx']" =1(3) - 4(1) =13 = 296875 .

1

d. P(x215)=| %xzdngxﬂfs =1(2) —1(1.5)* =.578125.

2
15

1 1 1
a. flx)=s——= =—=.1 for 25 <x < 35 and f{x) = 0 otherwise.
) B-4 35-25 10 )
Distribution Plot
Uniform. Lower=25, Upper=35

b. P(X>33)= fsidx SERREL NS

310 10
c. The mean is clearly the midpoint of 30 min. 30 £2 =28 to 32: P(28< X <32)= Jj: %dx = 4.

_(@+2)-a_2
10 10

a2 |
d. PlasX<a+2)=| zﬁdx - 2.
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P(X <40) = [ ".04e™Vdx = 04[ " e™*""du (after the substitution u = x — 10)

_ 30 _
= ] 21— 5699 .

0

P(X>40)=1-PX<40)=1-.699 =.301. Since X is continuous, P(X > 40) = P(X > 40) = .301 as
well.

50

P(40 < X < 60) = jj.me--"““-“’) dx = .04 j:oo M du =~ [ = 166,

PX<1)=F(1)= %:.25 .

2 2
P(5<X<1)=F()-F(5)= %—%: .1875.

2

PX>1.5)=1-P(X<1.5)=1-F(1.5)= 1—1%;4375.
~2
5= F(ji) =ﬂ7:>ﬂ2 =2 = ji=+/2= 1.414 hours.

fx)=F(x)= % for 0 <x <2, and = 0 otherwise.

ek e .,k ST k 5k _
1—‘[1 ?dx—k‘[l X dx——3x :|l —0-(_—3)(1) —§:>k—3.
x x 3 X 3 1 .
Forx > 1, F(x)= j f(y)dy:j —4dy:_y*3| =-x"+1=1-—.Forx <1, F(x) = 0 since the
—o0 ly 1 X

0 x<1
distribution begins at 1. Put together, F(x) = | 1

P(X>2)=1-F2)=1-1=1 or.125;
PQ2<X<3)=FQ3)-F(2)=(1-%)—-(1-1)=.963-.875=.088..
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Since X is restricted to the interval [0, 2], F(x) =0 for x <0 and F(x) =1 for x > 2.

3
For0<x<2, F(x)= IO 1y*dy =1y’ l) = % . Both graphs appear below.
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3
Per<.5)=Fs)= O — L g1s60s,
8 64

P(25<X<.5)=F(5)—F(25)=.015625-.001953125 =.0137.
Since X is continuous, P(.25 < X< .5)=P(25<X<.5)=.0137.

3

The 75% percentile is the value of x for which F(x) = .75: %: 5= x=1.817.

Let F(x) denote the cdf of X, so that F(5) = .5. Also, let 77y denote the median of Y, so that by definition
P(Y <ny)=.5. Substitute Y= 1.8X+ 32 into the previous expression:

S=P(Y<ny)=P(.8X+32<ny) = P(X < m1—_832j = F(”Yl—_;z] .
. . TRT n,—32. . . n, —32
Looking at the two ends of this expression implies that is the median of X i.e., = THE

Finally, solving for #y gives 5y = 1.8n + 32.
Replace .5 with .9 above and one obtains 7.9y = 1.8%.9.x + 32.

If Y=aX + b with a > 0, then the (100p)th percentiles of X and Y are related by #,y = anpx+ b.
For a <0, the relationship is slightly more complicated because of the sign reversal:

b b
D= P(Y<pp) = PaX+b < npy) = P@X < fjpy— b) = P[X > ’7”—] -1 —F(”“—) N
a a

-b -b
F(n”y—] =l-p= Tpr 72 _ M_px =1,y =an,_, ,+b. So, for example, the 90" percentile of ¥
a a

(when a < 0) is the linear rescaling of the 10" percentile of X.
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Section 4.2

19.

21.

23.

25.

27.

a. E(X)= jljx =040 gy = 040V .L:x e ™ dx . Letu=xand dv=e""dx,sodu=dxand
1 . . —04e* .l FYTEES T
v=———e¢ . Applying integration by parts, E(X) = xe | —.04e"| ——e " dx =
04 pplying integration by parts, £(X)=—4, . Jo~ 04
4 *©
0—(—10)+e'4j10 e ™dx= 10—%6‘04’” =10-(0-25)=10+25=35m’s.
: 10
Similarly, integration by parts twice(!) yields E(X*)=1850, so V(X) = 1850 — 35 = 625 and
o =+/625=25m’s.
_ _ [ _04(x-10) g e
b. P(u-o<X<u+oc)=P10<X <60) _jm 0de dx=1-¢7 =.865.
B ! 8 ! 9 10 o 90 4 1 9 3
a. E(X)= j x- f(x)dx =j x-90x*(1— x)dx =j (90x° —90x'*)dx = 9x"° ——x"' | == = .8182 ft’.
o 0 0 -, 11
Similarly, E(X?) = j_“fxz - f(x)dx :jo’ x> -90x*(1-x)dx = ... = .6818, from which V(X) = .6818 —
(.8182)*=.0124 and SD(X) = .11134 ft*.
b. uto=(.7068,.9295). Thus, P(u— o < X< pu+0)=F(9295) - F(.7068) = .8465 — .1602 = .6863, and
the probability X is more than 1 standard deviation from its mean value equals 1 — .6863 = .3137.
a. To find the (100p)th percentile, set F(#,) = p and solve for 7,: Z;’ _A =p=>n=A+B-Ap.
b. Setp=.5toobtain g =4+ (B—A)(.5)=.5B+.54= # . This is exactly the same as the mean of
X, which is no surprise: since the uniform distribution is symmetric about 4 ; B U= 4 = 4 er B .
B 1 1 xn+1 B Bn+l _ An+l
c. E(X"):J. x"- dx = = .
4 B-A4 B—An+1], (n+1)(B-4)
E(area) = Bk = [ m f (r)dr = L“nrz %(1 ~(10—r)*)dr=++= %n =314.79 m2.

With X = temperature in °C, the temperature in °F equals 1.8X + 32, so the mean and standard deviation in
°F are 1.8uy+ 32 =1.8(120) + 32 = 248°F and |1.8|ox = 1.8(2) = 3.6°F. Notice that the additive constant,
32, affects the mean but does not affect the standard deviation.



29.

31.

33.

3S.

Chapter 4: Continuous Random Variables and Probability Distributions

First, E(X) = J‘:x -4e™ dx . Apply integration by parts with u =x — du =dx and dv =4e > dx —v=—e™*"

I
=— min.

0

E(X)= uv—J.vdu =x-(—e™)

Similarly, E(X*)= J.:xz -4e ™ dx ; with u = x* and dv = 4e™* dx,

E(XZ) — x2 '(_e—4x)

*© «© —4x _ *© —4x _ «© —4x _1 «© —4x —
. —IO (—e )(2x)dx—(0—0)+jo 2xe abc—j0 2xe dx—zjo x-4e M dx =

1 Hence V(X):l— 1 2—L:>SD(X):lmin
8" ’ 8 \4 16 4 '

a. We have R = h(]) = v/I, so h'(I) = —v/I*. The first-order approximation to ug is h(u;) = v/u; = v/20.

2 2 2
The first-order approximation to o2 is [’ yy=|-2L| o?=—Y (5P =—Y . takin
pp w18 [ (u)TV ) { e T (.5) 620,000 g

N .V
the square root, the first-order approximation to oy is 300

b. From Exercise 25, the exact value of E[nR?] was 100.21 = 314.79 m?. The first-order approximation
via the delta method is (uz) = h(10) = n(10)> = 100m =~ 314.16 m?. These are quite close.

c. The derivative of h(R) = nR? is /'(R) = 2nR. The delta method approximation to V[#(R)], therefore, is
1
(A (u)) - V(R)=[2mu, ) -V(R) =[2n(10)] i 80m2. This is very close to the exact variance, given
by 140087%/175 = 80.046m2.

A linear function that maps 0 to —5 and 1 to 5 is g(x) = 10x — 5. Let X ~ Unif]0, 1], so that from Exercise 32
we know that Mx(f) = (¢’ — 1)/t for t # 0. Define Y = g(X) = 10X — 5; applying the mgf rescaling property
with @ = 10 and b = -5, the mgf of Y is given by

(o 5t -5t
M,(t)=e"M,(10t)=e""- e(lOt) L_e IOe . This is an exact match to the mgf of the Unif[-5, 5] mgf

t

based on Exercise 32. Therefore, by uniqueness of mgfs, ¥ must follow a Unif[-5, 5] distribution.
(Equivalently, the pdf of Yis f{y) = 1/10 for -5 <y <5))

f(x) =.04e" " for x > 10.
a.

© o (1-.04)x |©

M, (t)= .[10 e -.04e™ 10 gy = .04e+‘4.[5 0% gy = 046 € m
: t—.

10

for ¢t <.04

B 0464 |:0 ~ e(t7.04)(10) :| '04eIOt

(—04 | 04—t
The condition ¢ < .04 is necessary so that (z —.04) < 0 and the improper integral converges.
To find the mean and variance, re-write the mgfas M , (f) =.04¢'” (.04—¢)"' and use the product rule:
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4™ .04¢"
M' (1) = +————— = EX)= M, (0)=---=35m’/s
=04 (04 -1y (0= M5 0)
10¢ 10¢ 10¢
M= ke )2 08e —= E(X?)= M4 (0)=---=1850 =
04— (04—1)> (04-1)

V(X) = (1850) — (35) = 625.

The mgf of the given pdf is

S
e(t7,04)x 04

(—.04| 04—t

M(t)= “e 04 ™ dx = .04 e dx = .04 for ¢ < .04. Taking derivatives here
0 0

(which is much easier than in part a!) gives E(X)=M'(0) = % =25, E(X*)=M"(0)= 0312 =1250

and V(X) = 1250 — (25)*> = 625. The hazardous flood rate pdf and this pdf have exactly the same
variance, while the mean of the hazardous flood rate pdf is 10 more than the mean of this pdf.

10¢
Dde = 04 , which is exactly the mgf in b. By

04—t 04—t

uniqueness of mgfs, we conclude that Y follows the pdf specified in b: f{y) = .04e~% for y > 0.

In other words, the two pdfs represent “shifted” versions of two variables, X and Y. The rv X'is on

[10, ), while Y=X— 10 is on [0, «). This is consistent with the moments as well: the mean of Yis 10
less than the mean of X, as suggested by Y= X — 10, and the two rvs have the same variance because
the shift of 10 doesn’t affect variance.

If Y=X-10, then M, (f)=e "M (It)=e"" -

Fort<x <o, x - fix) >t f{x). Thus,
J':Cx f(x)dx = jft - f(x)dx = z-f’ f(x)dx=t-P(X >t)=t-[l-F()] .

By definition, 41 = ["x- f(x)dx = | 0 x- f(x)dx+ [ “x- f(x)dx , from which it follows that
J.th'f(x)dx = ,u—jox'f(x)dx .

Now consider the expression ¢ - [1 — F(¢)]. Since > 0 and F(f) <1, ¢ - [1 — F(£)] > 0. Combining that
with part a, we have 0< ¢ [1 = F()] < ["x- f(x)dx = _jo’x-f(x)dx .

As t — oo, the upper bound on ¢ - [1 — F(#)] converges to 0:

lim[,u—rx-f(x)dx} = ,u—lim“tx-f(x)dx} =u —me-f(x)dx =u—u=0.

t—0 0 t—wo| J0 0

(Those operations rely on the integral converging.)

Therefore, by the squeeze theorem, limz-[1—F(¢)]=0 as well.
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Section 4.3

39.

41.

43.

P(0<Z<2.17) = ®(2.17) — D(0) = .4850.

D(1) — D(0) = 3413.

D(0) — D(-2.50) = .4938.

®(2.50) — D(-2.50) = .9876.

®(1.37) = 9147.

P(-1.75<2Z)+[1 - P(Z<-1.75)] = | - ®(~1.75) = .9599.
D(2) — D(-1.50) = .9104.

®(2.50) - ®(1.37) = .0791.

1 - d(1.50) =.0668.

P(|Z] < 2.50) = P(-2.50 < Z < 2.50) = d(2.50) — D(-2.50) = .9876.

®(c) =.9100 = ¢ =~ 1.34, since .9099 is the entry in the 1.3 row, .04 column.

Since the standard normal distribution is symmetric about z = 0, the 9" percentile =
—[the 91% percentile] = —1.34.

D(c) =.7500 = ¢ = .675, since .7486 and .7517 are in the .67 and .68 entries, respectively.

Since the standard normal distribution is symmetric about z = 0, the 25" percentile =
—[the 75" percentile] = —.675.

D(c) =.06 = ¢ ~—1.555, since .0594 and .0606 appear as the —1.56 and —1.55 entries, respectively.

100-80
10

P(XSIOO):P(Z < sz(ZSZ)z(D(Z):.9772.

80-80

P(X< 80)=P(Z£ ):P(ZSO)z(D(O):.S.

P(65< X <100) = P

(65 _080 <Z< 1001;80j =P(-15<Z<2)=0(2)-D(-1.5)=.9104 .

P(70< X) :P[Z z%jzp(z >-1)=1-d(-1)=.8413.

8
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85_80SZ£95_80

10 10

e. P(85<X<95) :P( ):P(.S <Z<1.5)=0(1.5)-D(5)=.2417.

<Z<
10 10

f. P(|X—80|£10)=P(—10SX—8O£10)=P(70£X§90)=P(70_80 90_80) =

P(-1<Z <1)=D(1) - D(-1) =.6826 .

X ~ N(.30, .06)

a. PX>25)=1- @('25_'30

J =1 - ®(-0.83) =.7967.

b. P(X<.10)= @('10‘6'30

j = d(-3.33) =.0004.

-. -.30
c.  We want the 95" percentile: .95 = @(77'95063()) = 77’9506 =-1.645 = 5795 = .29013. So, the

highest 5% of concentrations are those greater than .29013 mg/cm3.

Let X denote the diameter of a randomly selected cork made by the first machine, and let ¥ be defined
analogously for the second machine.

P(2.9<X<3.1)=P(-1.00 £ Z<1.00) =.6826, while

P2.9<Y<3.1)=P(7.00<Z<3.00)=.9987. So, the second machine wins handily.

40— 43

a. PX<40)= P(Z < j— P(Z<-0.667) =.2514.

P(X> 60) = P(Z > %J— P(Z>3.778) ~ 0.

b. We desire the 25™ percentile. Since the 25" percentile of a standard normal distribution is roughly
z=-0.67, the answer is 43 + (-0.67)(4.5) = 39.985 ksi.

The probability X is within .1 of its mean is given by P(u— .1 < X< u+ 1) =

P(M <Z< MJ = CI)(—IJ —(D(—ij =20 (—lj —1. If we require this to equal 95%, we
o o o o o

find 20 A -1=95=> CD(—IJ =975=> A =1.96 from the standard normal table. Thus, o = —1 =.0510.
o o o 1.96

Alternatively, use the empirical rule: 95% of all values lie within 2 standard deviations of the mean, so we
want 20 = .1, or ¢ = .05. (This is not quite as precise as the first answer.)
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b.
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P(u—1.50 <X<u+150)=P(-1.5<Z<1.5)=d(1.50) — O(-1.50) = .8664.

PX<u-25cor X>pu+250)=1-Pu—-250<X<u+250)
=1-P(-25<7<25)=1-.9876=.0124.

Plu—-20<X<u—-ocoru+o <X<u+20)=P(within 2 sd’s) — P(within 1 sd) =
Plu—20<X<u+20)—Pu—o<X<u+o0)=.9544—.6826=.2718.

67-70 X-70 75-70
< <
3 3 3

P(67< X <75)= P( j = P(-1< Z <1.67)= ®(1.67)— D(~1)= 9525 —

1587 =.7938.

By the Empirical Rule, ¢ should equal 2 standard deviations. Since o = 3, ¢ =2(3) =6.
We can be a little more precise, as in Exercise 42, and use ¢ = 1.96(3) = 5.88.

Let Y = the number of acceptable specimens out of 10, so ¥ ~ Bin(10, p), where p = .7938 from part a.

Then E(Y) = np = 10(.7938) = 7.938 specimens.

Now let Y = the number of specimens out of 10 that have a hardness of less than 73.84, so
Y ~Bin(10, p), where

p=P(X <73.84)= P[Z < WJ = P(Z <1.28) = ®(1.28) = .8997. Then
8

10 , i
P(Y<8)= Z( j(.8997)«‘ (.1003)" = 2651.

=0

You can also compute 1 — P(Y =9, 10) and use the binomial formula, or round slightly to p = .9 and
use the binomial table: P(Y < 8) = B(8; 10, .9) = .265.

By symmetry, P(—1.72 < Z<-.55)=P(.55 < Z<1.72) = ®(1.72) — O(.55).

P(-1.72 € Z< .55) = D(.55) — D(~1.72) = D(.55) — [1 — ©(1.72)].

No, thanks to the symmetry of the z curve about 0.

a.

b.

X~N(119, 13.1).

P(100< X< 120)_(1,(120—119 _ [ 100-119
13.1 13.1

Jz @(0.08) — D(-1.45) = 5319 — .0735 = .4584.

The goal is to find the speed, s, so that P(X > s) = 10% = .1 (the fastest 10%). That’s equivalent to
s—119j N s—119

=128=s=119+

P(X<s)=1-.1=.9 (the 90" percentile), s0 .9 = ®
(X=9) ( P ) ( 13.1 13.1

1.28(13.1) = 135.8 kph.

10



61.

63.

65.

Chapter 4: Continuous Random Variables and Probability Distributions

100-119

c. PX>100)=1- @
13.1

j =1-d(-1.45)=1-.0735 = .9265.

d. P(atleast one is not exceeding 100 kph) = 1 — P(all five are exceeding 100 kph). Using independence
and the answer from ¢, this equals 1 — P(first > 100 kph) x ... x P(fifth > 100 kph) = 1 — (.9265)° =
3173.

e. Convert: 70 miles per hour =~ 112.65 kilometers per hour. Thus P(X > 70 mph) = P(X > 112.65 kph) =

- @(112'1635—1“9)— 1 - O(48) = 1 - 3156 = .6844.

a. PQ0<X<30)=P20-.5<X<30+.5)=P(19.5<X<30.5)=P(1.1<Z<1.1)=.7286.

b. P(X<30)=PX<30.5)=PZ<1.1)=.8643, while
P(X<30)=P(X<29.5)=P(Z<.9)=.8159.

Use the normal approximation to the binomial, with a continuity correction. With p = .10 and n =200,
1 =np =20, and ¢® = npg = 18. So, Bin(200, .10) = N(20,~/18 ).
(30+.5)-20

V18

a. P(X<30)= cp( j— D(2.47) = .9932.

(29+.5)—20

Jig

b. P(X<30)=P(X<29)= cp( j = d(2.24) = .9875.

c. P(15<X<25)=P(X<25)— P(X<14) = @((25+'5)"20)—®((l4+‘5)"20j

V18 V18

= d(1.30) — D(-1.30) = .9032 — .0968 = .8064.

We use a normal approximation to the binomial distribution: Let X denote the number of people in the
sample of 1000 who can taste the difference, so X ~ Bin(1000, .03). Because x = np = 1000(.03) = 30 and

o = np(l—p) =5.394, X is approximately N(30, 5.394).
a. Using a continuity correction, P(.X >40)=1-P(X <39)=1 —P(Z < %) =1-P(Z<1.76)=

1 - ®(1.76) = 1 — .9608 = .0392.

7 < 50.5-30

b. 5% of 1000 is 50, and P(XSSO):P[
5.394

):@(3.80):1.

11
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As in the previous exercise, u = (x — u)/o — du = dx/o. Here, we’ll also need x = u + ou.

a. E(X)= j X+ f(x; 1, 0)dx = j

X [(x—,u)/o]2/2 ﬁ _[” H+Oou
\/27r o ™ 2z

e du . The first integral is the area under the standard normal pdf,

—u?/2
e “du =

SR S © u
Y7, e"“du+o
L" \2m 'l.’* \N2n
which equals 1. The second integrand is an odd function over a symmetric interval, so that second
integral equals 0. Put it all together: E(X) = u(1) + (0) = u.

(x ,U) “[(-p)/oP 2 dx (O'”)2 —u*/2
V) =" (- - £ o) dx = ’ T gy =
I '[ \2m o 7 J2n
o Le’“z/ *du . We need to show the integral equals 1; toward this goal, use integration by
- 2n

parts with = u and dv =

—u?/2
e “du.

* 2 1 —u?/2 —u?)2 —u/2 1
u —c" du=—u~u ! ———e¢ " “du=0+
L 7 L v
Both limits required for the ﬁrst evaluation are 0 because the exponential term dominates. What
remains is, once again, the integral of the standard normal pdf, which is 1.

Therefore, V(X) = 6*(1) = 6.

—o0

83+351+562

P(Z>1)= 5-ex
( ) p( 703 +165

j =.1587 , which matches 1 — @(1).

—2362

P(Z<-3)=P(Z>3)~ 5-exp| —2202_
(Z<=3)=FZ>3) eXp(399.3333

j =.0013, which matches ®(-3).

3294
P(Z>4)~ 5-¢
>4 Xp(340 75

j=.0000317, SO P(-4<Z<4)=1-2P(Z>4)~
1-2(.0000317) = .999937.

P(Z>5)~ 5-exp (ﬂj =.00000029 .
305.6

12
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Section 4.4

71. For a and b, we use the properties of the gamma function provided in this section.
a. I'(6)=5!=120.

b. 1|2 :ir(ijzi-l-r 1 :[ijﬁzlsm.
2 2 (2 22 2 4
c. G(4;5)=.371 from row 4, column 5 of Table A 4.

d. G(5;4)=.735.

e. G(0;4)=P(X<0when a=4)=0, since the gamma distribution is positive.

73.
’ a. aff=20,af’=80=f=4=a=5.

b. Let X~ Gamma(5, 4). P(X <24)=G(24/4;5) = G(6;5) =.715.

c. P(0<X<40)=G(40/4;5)—-G(20/4;5)=G(10;5)-G(5;5) = .411.
75.

1

a. EX)= 2 =1.

b. o= % =1

c. Using the exponential cdf, P(X<4)=1- e W@ —1_ o™ = 982

d. Similarly, PQ<X<5)= (I1-e ") —(1-e"P)=e? —¢7 =.129.
77. Note that a mean value of 10 for the exponential distribution implies 4 = %: .1. Let X denote the survival

time of a mouse without treatment.
a. PX>28)=1-[1-e® = DB = 4493 P(X<12) =1 - D12 = 6988. Combining these two
answers, P8 < X< 12)=P(X<12)— P(X<8)=.6988 — [1 —.4493] = .1481.

b. The standard deviation equals the mean, 10 hours. So, P(X> u + 26) = P(X>30) =1 —[1 — ¢ (D39 =
e DBY = 0498. Similarly, P(X > u + 30) = P(X > 40) = ¢ V40 = (0183,

13



79.

81.

83.

Chapter 4: Continuous Random Variables and Probability Distributions

a. {X 21t} = {the lifetime of the system is at least ¢}. Since the components are connected in series, this
equals {all 5 lifetimes are at least ¢t} =41 N A, N A3 N As N A4s.

b. Since the events 4; are assumed to be independent, P(X > f) = P(41 N A2 N A3 N Aa N As) = P(4)) -
P(A4>) - P(43) - P(44) - P(4s). Using the exponential cdf, for any i we have
P(4;) = P(component lifetime is > ) =1 - F(f) =1 - [1 — e ] = 01,
Therefore, P(X > £) = (¢ ') - (") =0 and Fx(f) = P(X <) =1 -
Taking the derivative, the pdf of X is fi(£) = .05¢~%" for ¢ > 0. Thus X also has an exponential
distribution, but with parameter A = .05.

—nit

c. By the same reasoning, P(X < f)=1—-¢"", so X has an exponential distribution with parameter nA.

a. If Xis exponential, then f, (x)=Ae " forsome 1> 0. Thus f;, (w)ocw’-le ™ c w’e ™ =w' e,

This is the kernel of a gamma distribution with « =3 and = 1/4.

b. 3=V(W)=aB>=28"= f=~3/2~1.225.Then, A1=1/B=~2/3 ~.8165.

Using (4.5), for any positive exponent k£ we have

ky 7, 1 a-1_-xIp _ 1 © _k+a-1_-xIp _ . ph+a
E(X )—.[Ox ﬁ“l"(a)x e dx ,B“F(a)-[ox e " dx 5T (@) LT (k+ )
Tk+a)
T I(a) p
_Il+a) o _d(@) ,_ . _I'C+a) ,» _ (a+DI(x+1D) ,, _ (a+Dal'(@)
S0 =y P e PO T gy fw  ’ T @

=(a+Daf?;and V(X) = (a+Daf’ —[af] =ap’.

Section 4.5

85.

a. P(20< X <40)=F(40;1.18,21.61) - F(20;1.18,21.61) = [1— e /216" [ — ¢ 02160 | =
874 — 599 = 275.
P(X <20)=F(20;1.18,21.61) = 1— ¢ 20" = 599

P(X >40)=1-F(40;1.18,21.61) = 1 —[1—e 20" 1= 1 — 874 = .126.

b. Software provides F(l +ﬁ) =.94484 and F(l +£} =1.53845, from which

1 =(21.61)(.94484) = 20.418and o = (21.61)° {1.53845—[.94484]’ | =301.55 , or o = 17.365.

¢. Solve F(x)=.5:.5=1— ™" o
P CE N SN (x/21.61)""® = —In(.5) = x = 21.61(~In(.5))/"'¥ = 15.84 microns.

14



Chapter 4: Continuous Random Variables and Probability Distributions

Imx.ixa—le*(%)“ b =
0 o

a a-1
X Thendy=%__dx,and u=

Use the substitution y = (iJ -
B) B

87.
J.: (B*y)“edy= ,BJWO y%le*y dy=p- F(l + ij by definition of the gamma function.
0 (04
89.
P(X<105) = F(105; 20, 100) = 1—¢ %" = 9295,

a.
b. P(100<X<105)= F(105; 20, 100) — F(100; 20, 100) = .9295 — .6321 = .2974.
Set .5 = F(x) and solve: .5 = 1—¢ """ = _(x/100)® = In(.5) = x = 100[~In(.5)]"2° = 98.184 ksi.

c.
91.
a. E(X)=¢" "% 2 =7 53 square microns. V' (X)= e "SI0 (1% _1) =99 319, 50 SD(X) = 9.966
square microns.
b. P(X<10)=® In0)=1.5131 _ ®(.78) =.7823..
1.006
P10< X <20) = @(1“(20)_1'513j— (ln(lO) _1'513j — O(1.47)— D(.78) = 9292 — 7823 = .1469
1.006 1.006
e PLX <SRy In(e" 3192y _1.513 _ o 1513+ 1.006° /2-1.513 _ ®[1.006j
1.006 1.006 2
=®(.503) ~.6925 . While the normal distribution is symmetric (and so the mean and median are
equal), the lognormal distribution is right-skewed. As a result, the mean exceeds the median, and the
probability X is less than its mean exceeds .5.
93.
a. E(X)=e "% = =149.157; 1(X) =" (e ~1)=223.594.

In(125)-5
b. P(X>125)=1-PX<125)= =1—®(%) =1-®(-1.72)=.9573.

c. P(110<X<125) = @(—1.72)—@[1“(“(1))_5j =.0427-.0013=.0414 .

d. j=e"=¢ =14841.
e. P(any particular one has X > 125) = .9573 = expected # = 10(.9573) = 9.573.
f.  We want the 5 percentile, which is """ =125.90 .

15



Chapter 4: Continuous Random Variables and Probability Distributions

Since the standard beta distribution lies on (0, 1), the point of symmetry must be %, so we require that
f(L- y) =f (%+ ) . Cancelling out the constants, this implies

(- y)ail (++ ,u)ﬂ*l =(1+ y)[H (+- y)ﬂfl , which (by matching exponents on both sides) in turn implies
that = f.

Alternatively, symmetry about % requires u = Y%, so =.5. Solving for a gives a = f.

a. Notice from the definition of the standard beta pdf that, since a pdf must integrate to 1,
r _ = I'(a)l’
_ (OH'ﬂ) a—l(l_x)ﬂ 1dx:>_|.(:xa_l (1_x)/f ' dx = (0() ('B)

() Marp)
Using this, E(X) = J;x .%xm (1-x)""dx = % j; x(1-x)" " dx =
T(@+p) T(a+)L(B) _ ob(e)  T(a+h)  «

F(a)F(ﬁ) F(a+l+,B) F(a)F(,B) (a+ﬁ)l"(a+ﬂ)_a+,8'

b. Similarly, E[(1 - X)"] = jo‘(l —x)" T(@th) e (1-x)"" dx=

[(a)T(B)
_T(a+p) lem(l_x)wqu: T(a+p) T(a)l(m+p) _T(a+p)-T(m+p)
T(a)r(B)" [(a)0(B) T(a+m+p) T(a+m+pB)L(B)

If X represents the proportion of a substance consisting of an ingredient, then 1 — X represents the
proportion not consisting of this ingredient. For m = 1 above,

E1-x)= L@t p)T(+p)  T(atp)prp) __p
T(a+1+B)0(B) (a@+PT(a+p)T(B) a+p

16



Chapter 4: Continuous Random Variables and Probability Distributions

Section 4.6

99.

101.

103.

The given probability plot is quite linear, and thus it is quite plausible that the tension distribution is

normal.

The z percentile values are as follows: —1.86, —1.32, —1.01, —0.78, —0.58, —0.40, —0.24,—0.08, 0.08, 0.24,
0.40, 0.58,0.78, 1.01, 1.30, and 1.86. The accompanying probability plot has some curvature but
(arguably) not enough to worry about. It would be reasonable to use estimating methods that assume a
normal population distribution.

Probability

0.98

Normal Probability Plot
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0.90
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0.02

The accompanying normal probability plot is fairly straight, suggesting that an assumption of population

normality is plausible.
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Chapter 4: Continuous Random Variables and Probability Distributions

105. To check for plausibility of a lognormal population distribution for this data, take the natural logs and
construct a normal probability plot. This plot and a normal probability plot for the original data appear
below. Clearly the log transformation gives quite a straight plot, so lognormality is plausible. The
curvature in the plot for the original data implies a positively skewed population distribution — like the
lognormal distribution.

Probability Plot of TN load Probability Plot of In(TN load)
Normal Normal
9 - 9 -
[ ] [ ]
95 ° e 95 ° °
9% P e %0 0'
80 ’ 80 '

50 50
40

40
30 30
20 20

Percent
33

Percent
33

51 5 °
[ ] (]
1@ 1@
0 200 400 600 800 1000 1200 1400 1600 2 3 4 5 6 7 8
TN load In(TN load)
107. The pattern in the normal probability plot is curved downward, consistent with a right-skewed distribution.

It is not plausible that shower flow rates have a normal population distribution.

Probability Plot of Flow rate

Normal
99.9
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60.
S 50
o 40
e 3
20
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0.1
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109.

Chapter 4: Continuous Random Variables and Probability Distributions

The (100p)™ percentile 7, for the exponential distribution with 4= 1 is given by the formular, = —In(1 — p).
With n =16, we need 7, for p = 83 13 153 = These percentiles are .032, .398, .170, .247, .330, .421, .521,

16 216 2°°*> 16

.633,.758, .901, 1.068, 1.269, 1.520, 1.856, 2.367, 3.466.

The accompanying plot of (failure time value, exponential(1) percentile) pairs exhibits substantial
curvature, casting doubt on the assumption of an exponential population distribution.

Exponential(1) percentiles
15 20 25
1 1

10

05
1

00
1

T T T T T T
0 100 200 300 400 500

Failure time

Because 1 is a scale parameter (as is ¢ for the normal family), 1 =1 can be used to assess the plausibility of
the entire exponential family. If we used a different value of 4 to find the percentiles, the slope of the graph
would change, but not its linearity (or lack thereof).

Section 4.7

111.

113.

115.

117.

y=1lx=x=1/yand0<x<1=0<1/y<1=y>1. Apply the transformation theorem:

Jy) = fx(p)ldx/dy| = (1)1 = 2(1y)(12) = 2/ for y > 1.
(If you’re paying attention you might notice this is just the previous exercise in reverse!)

y= \/; = x=y%and x > 0 = y > 0. Apply the transformation theorem:

Fi0) = 0wl = e 23] = ye " for > 0.

y=area=x>=>x=,/y and 0 <x <4 = 0 <y < 16. Apply the transformation theorem:

S0 =Sy dx/dy| = [y 1811/2 \[y )| = 1/16 for 0 < y < 16. That is, the area Y is uniform on (0,16).

y = tan(n(x—.5)) = x = [arctan(y)+.5]/mr and 0 <x < 1 = —7/2 < (x—.5) </2 = —00 <y < o0 (since tan § —
+00 as § — = 7/2). Also, X ~ Unif(0, 1) = fx(x) = 1. Apply the transformation theorem:

d[arctan(y)+.5}‘ 1 1|_ 1

E m ;1+y2|_n(l+y2)

for o0 <y < oo,

ﬁ@:M@?
y

19



Chapter 4: Continuous Random Variables and Probability Distributions

119. Assume the target function g(x) is differentiable and increasing, so that h(y) = g”'(») is also differentiable
and increasing. Apply the transformation theorem:

)= £ () [H' )|

1= 2 )
8= M ()

Take the antiderivative of both sides to obtain 8y = (1/2)[2(y)]?, from which i(y) = 4\/; . Now reverse the

roles of x and y to find the inverse of /, aka g: x = 4,/g(x) = g(x) =x%/16.

As a check, apply the transformation theorem with ¥ = X?/16 and fx(x) = x/8 for 0 <x <4 and you indeed
obtain Y ~ Unif[0, 1].

You might notice that x%/16 is the antiderivative of x/8; i.e., g(x) = Fx(x). This is a special case of a more
general result: if X is a continuous rv with cdf Fix(x), then Fx(X) ~ Unif]0, 1].

121. The transformation y = |x| is not monotone on [—1, 1], so we must proceed via the cdf method.
Fory>0, Fy(y) = P(Y<y) = P(X| <y) = P(y = X < y) = @(y) - ©(-y) = () - [1 - O(y)] = 20(y) - 1.

Thus, f(y) = d/dy[2D(y) — 1] =2D'(y) = 2
T

derivative of the standard normal cdf is, of course, the standard normal pdf.

e™"'? fory > 0. In the last step, we use the fact that the

123.
a. By assumption, the probability that you hit the disc centered at the bulls-eye with area x is proportional
to x; in particular, this probability is x/[total area of target] = x/[r(1)*] = x/n.
Therefore, Fx(x) = P(X < x) = P(you hit disc centered at the bulls-eye with area x) = x/w. From this,
fx(x) = d/dx[x/m] = 1/m for 0 < x < m. That is, X is uniform on (0, 7).

b. x=m?and 0 <x<n= 0<y<1.Thus, Hy)=fdmy?)|dx/dy| = 1/ 2my| =2y for 0 <y < 1.

Section 4.8

125.
a. F(x)=x¥4. Set u=F(x) and solve forx: u =x¥4 = x=2Ju .
b. The one-line “program” below have been vectorized for speed; i.e., all 10,000 Unif[0, 1] values are
generated simultaneously.

InR: x<-2*sqrt (runif (10000))

c. One execution of the code gave mean (x) = 1.331268 and sd (x) =0.4710592. These are very close
to the exact mean and sd of X, which we can obtain through simple polynomial integrals:

1 4 :
p=[xtdv="["xdv="=1333 EX*)=[ 2 Zde=2 0= [2- 4 V2 g
0" 27 T2 3 0" 2 3) 3

20



127.

129.

Chapter 4: Continuous Random Variables and Probability Distributions

1 1 1
f(x) =§+%x:>F(x) =§x+%x2 . Set u = F(x) and solve for x: u = §x+%x2 =32 +2x - 16u=0=

. —2+./4—4(3)(-16u) _ 2% 24/1+48u _ V1+48u -

2(3) 2(3) 3
between —2 and 0 rather than 0 and 2.) The code below implements this transformation and returns 10,000
values from the desired pdf.

InR: x<-(sqgrt (1+48*runif (10000))-1)/3

! . (The other root of the quadratic would place x

4
a. The cdf of this model is F(x) = 1—(1 —fJ for 0 <x <17. Set u = F(x) and solve for x:
T

0
u=1- [1 —fj =>x=7 ~[1 -(1- u)”e} . This transform is implemented in the function below.
T

waittime<-function (n, theta, tau) {
u<-runif (n)

x<- tau* (l1-(1-u)”~(1l/theta))

}

b. Calling x<-waittime (10000, 4,80) and mean (x) in R returned 15.9188, quite close to 16.

Supplementary Exercises

131.

133.

Let Y = the amount paid out. Since the insurance company only pays up to 5 thousand dollars, this means
Y=XifX<5but Y=5if X> 5. So, the expected payout is

5 - s 3 = 3 36 1
E(Y):j1 x«f(x)dx+L 5-f(x)dx=J‘1 x?dﬂjs 5-—ydv ="+ =148, 0r $1480.

a. Clearly f{x) > 0. Now check that the function integrates to 1:

v 32 o 16 16
—2% _dv={"32(x+4) dx=- 0 =
f (crdy J, 320e w4y (x+4)|, (0+4)
b. Forx <0, F(x)=0.Forx >0,
x x 32 1o [ 16
F@=[ fody=[ —dy=— | =1-——.
- 0 (y+4) 2 (y+4) ], (x+4)
c. P(2£X§5)—F(5)—F(2)—I—E—(I—EJ:QM.
81 36
d. E(X):j‘”x-f(x)dx=j°°x.dezjx(x+4—4)- 32
- = (x+4) 0 (x+4)

o 32 w32
_ d —4J' dx=8— 4 =4 years.
l Gcra) o W rap T

e. E( 100 j:j‘” 100 _ 32 ~dx=3200] " Lo =329 667
X+4 0 x+4 (x+4) 0 (x+4) (3)(64)
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Chapter 4: Continuous Random Variables and Probability Distributions

135.
a. P39<X<4)= @(421‘54())—@[391‘540) — (1.33)— O(—.67) = 9082 — 2514 = 6568.
b. We desire the 85" percentile: ®(z) = .85 = z = 1.04 from the standard normal table, so the 85
percentile of this distribution is 40 + (1.04)(1.5) =41.56 V.
. . B B 42-40\ B
c. Forasingle diode, P(X>42)=1-P(X<42)=1 —CD( s j— 1 -®(1.33)=.0918.
Now let D represent the number of diodes (out of four) with voltage exceeding 42. The random
variable D is binomial with n =4 and p = .0918, so
PD21)=1-PD=0)= 1—(3](.0918)0 (.9082)4 =1 -.6803 = .3197.
137.
a. Let X'=the number of defectives in the batch of 250, so X ~ Bin(250, .05). We can approximate X by a
normal distribution, since np = 12.5 > 10 and ng = 237.5 > 10. The mean and sd of X are y=np =12.5
and o= 3.446. Using a continuity correction and realizing 10% of 250 is 25,
P(X>25)=1—-P(X<25)=1—P(X<24.5)~ 1—@(%] —1-®(348) =
1 —.9997 =.0003. (The exact binomial probability, from software, is .00086.)
b. Using the same normal approximation with a continuity correction, P(X = 10) =
PO.5<X<10.5)~ ®(10.5—1z.5j_®(9.5 ~125 ) p(—58) — d(—.87) = 2810 —.1922 = .088S.
3.446 3.446
— o . (250 10 0&\240
(The exact binomial probability is 10 (.05)7(.95)""=.0963.)
139.

a. F(x)=0forx<1and F(x)=1forx>3. Forl <x<3, F(x):jlxgdyzlj[l—lj-
y X

b. P(X<2.5)=F2.5)=151-.4)=.9; (1.5 < X<2.5)=FQ2.5) - F(1.5) = 4.

c. EX)= _[ x- —dx —1.5fldx=l.51n(x)]f= 1.648 seconds.

d. EX)= :.[13 2. 15 dx =1 5.[ dx =3, 50 V(X) = E(X?) — [E(X)]* = .284 and o=.553 seconds.

e. From the descrlptlon, h(x)=0if 1 <x<1.5; h(x) =x—1.5if 1.5 <x < 2.5 (one second later), and
h(x)=11if 2.5 <x < 3. Using those terms

E[h(X)]z.[]}h(x)dx:J‘l" (x-1.5)- —d j 1—dx-267 seconds .
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141.
a. Since X is exponential, E(X) = % =1.075 and o—:% =1.075.

b. P(X>3.0)=1-PX<3.0)=1-F3.0)=1-[1 -39 = 0614.
P(1.0 X< 3.0) = F(3.0) — F(1.0) = [1 — e %60 — [ — ¢930.0] = 333,

¢. The 90™ percentile is requested: .9 = F(59) = 1—e " = 9= 1n(_913)) =2.476 mm.

143. We have a random variable 7~ N(, ¢). Let f{¢) denote its pdf.
a. The “expected loss” is the expected value of a piecewise-defined function, so we should first write the
function out in pieces (two integrals, as seen below). Call this expected loss O(a), to emphasize we’re
interested in its behavior as a function of a. We have:

O(a) = E[L(a,T)]= [ k(a=0) f()dt+ [ (t-a) f () dt

= ka j f(t)dt - kj o () dt+ th(t) dt - an(t) dt = kaF (a)—k j o (t)dt + th(t) dt —a[l - F(a)]

where F(a) denotes the cdf of 7. To minimize this expression, take the first derivative with respect to
a, using the product rule and the fundamental theorem of calculus where appropriate:

0'(a) = kaF (a) -k j 1 (t)dt + th(r) dt —a[1- F(a)]

=kF(a)+kaF'(a)—kaf (a)+0—af (a)—1+ F(a)+aF'(a)
=kF(a)+kaf (a)—kaf (a)—af (a)—1+ F(a)+af (a)
=(k+1)F(a)-1
Finally, set this equal to zero, and use the fact that, because 7 is a normal random variable,

F(a):d)[a_’ujz
(o2

(k+1)F(a)—1=0:>(k+1)q>[“_“j—1=0:>®(“_“)=L:>a=y+o—-q>‘(Lj
o o k+1 k+1

This is the critical value, a*, as desired.

b. With the values provided, a* = 100,000+ 10,0000 (%) =100,000+ 10,0000 (0.33) =100,000 +
+
10,000(-0.44) from the standard normal table = 100,000 — 4,400 = $95,600. The probability of an
95,600—-100,000
10,000

or 33%. Notice that, in general, the probability of an over-assessment using the optimal value of a is

over-assessment equals P(95,600 > T) = P(T < 96,500) = (D( j = 0(-0.44) = .3300,

equal to L
WO
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145.

147.

Chapter 4: Continuous Random Variables and Probability Distributions

J.j; f(x)dx= Ji le*dx + J.:.le"z‘”dx =5+.5=1.

Forx <0, F() = [ 1e¥ay=Le.

Forx>0, F(x)= (" —[° 102 e gy = L [T e gy =1 L g2
() lef(y)dy _Lo.le dy+_[o.le Ydy 2+Jo.le Ydy =1 26

14
0.8

. E 10 20

P(X<0)=F(0)=.5;P(X<2)=FQ2)=1-5¢4= 665; P(-1 <X<2)=F(2)- F(-1)=.256; and
P(X|>2)=1-(2<X<2)=1-[FQ2)- F(-2)] = .670.

I-a
Provided a> 1, 1=, K ge=g2
X a-—

1:>k:(oz—1)5°"l.

a-1 a-1
Forx =5, F(x) = _[;%dy =51 [xl’” —51’“] =1 —(ij . Forx <5, F(x)=0.
y X

' e ko pe(a-1)5 e
Prov1dedoc>2,E(X)—Lx-x—aabC—J.5 pr= dx—5a_2.

Let Y = In(X/5). Then Fy(y) = P(ln (£) < y\J = P[£ < eyj = P(X < Se”) =F(Se’) = 1- (ija =
5 5 5¢”

1-¢ ", the cdf of an exponential rv with parameter — 1.
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149.

151.

153.

Chapter 4: Continuous Random Variables and Probability Distributions

The accompanying Weibull pdf plot was created in R.

0015

dweibullix, 9, 180]
000

0
.‘\\1

0000
L
\
P

P(X>175)=1—F(175; 9, 180) = ¢ ™%V’ _ 4602.
P(150 < X < 175) = F(175; 9, 180) — F(150; 9, 180) = .5398 — .1762 = .3636.

From b, the probability a specimen is not between 150 and 175 equals 1 —.3636 = .6364. So,
P(at least one is between 150 and 175) = 1 — P(neither is between 150 and 175) = 1 — (.6364)? = .5950.

We want the 10" percentile: .10 = F(x; 9, 180) = 1—¢*" | A small bit of algebra leads us to x =
180(—In(1-.10))"° = 140.178. Thus, 10% of all tensile strengths will be less than 140.178 MPa.

If we let @=2and B =20, then we can manipulate f{v) as follows:

fo)=—e 7 = 2—22v e #vz"e’("’@ = %va-‘e-w’“ , which is in the Weibull family of
o (o) o

distributions.

2

Use the Weibull cdf: P(V'<25) = F(25:2.420) =1—¢ &) —1-¢% =1 - 458 = 542.

—Ax
f(x)=Ae™ and F(x)=1-¢", 50 r(x)= le—d
1-[1-e™]

memoryless property of the exponential distribution.
(a / ﬂa )xa—le—(x/ﬂ)”

_ [1 _ e*(«\'/ﬁ)“ ]
an increasing function of x; for a < 1, (x) decreases with x.

= 1, a constant. This is consistent with the

Substituting Expressions (4.9) and (4.10), 7(x) =

=(a/B)x“" Fora> 1, r(x)is

2

First, In[1- F(x)] =~ j a [1 —%]dx =-a [x —;—ﬂ] = F(x)=1-¢“"") 50 x = B. Then

f(x)=F'(x)= a(l _%j e 028 for 0 < x < 8. Note that this function integrates to less than 1,

meaning that some probability has been assigned to x = oo (a device that “lasts forever”).

25



155.

157.

Chapter 4: Continuous Random Variables and Probability Distributions

Fory >0, F(y):P(ng)zp[zg;2 < ]:P[Xz < ﬂzy]:P[Xs%]zFx(ﬂ\/ﬁ)

2
2
Ny/2
=1-exp —[ﬂ%j (that’s the Weibull cdf) =1-e7"'*. Differentiate: f(y)=(1/2)e"'>. We

recognize this as an exponential distribution, aka the gamma distribution with parameters 1 and 2.

When X < g, gross profits are profit + salvage = dX + e(q — X). But when X > ¢, gross profits are
profit — shortage cost = dq — f* (X — q). In any case, there are fixed costs of ¢ + cig.
If we let Y denote the net profit, then E[Y] =

'[OOO [gross profit] fx(x) dx — [co + c1g] = J-:[dx +e(qg—x)]fy(x)dx + J.:[dq —f(x=@)fy (x)dx —[co +
c1q]. Expand and simplify:

B =~ ¢) [ (O +eq ) + (dy +l1 - @)~ [ ¥ (s [0+ ciq)

Differentiate, using the Fundamental Theorem of Calculus, and then cancel as much as possible:

d/dg E[Y] = (d - e)qfq) + eFx(q) + eqf(q) + (d + H[1 = Fx(q)] + (dq + f)[-Fd9)] - f - [=a/x(@)] — [0 + c1]
=eFx(q) +(d+)[1 — Fx(q)] — ci. Whew!

The optimal value ¢* makes the derivative equal zero, so eFx(¢*) + (d + f)[1 — Fx(¢*)] — c1 = 0, from which
we finally get Fx(¢*) = (d —c1 + f)/(d — e + f). Notice that ¢y is irrelevant to the optimization. For the values
provided, Fx(g*) = (35— 15+25)/(35 -5 +25)=45/55 = .8182.
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