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CHAPTER 4 
 

Section 4.1 
 
1.  

a. P(X ≤ 1) = 
1 1 121 1

2 4 00
( ) .25f x dx xdx x

−∞
= = =∫ ∫ . 

 
b. P(.5 ≤ X ≤ 1.5) = 

1.5 1.521 1
2 4 .5.5

.5xdx x = =∫ . 

 
c. P(X > 1.5) = 

2 22 71 1
2 4 161.51.5 1.5

( ) .438f x dx xdx x
∞

= = = ≈∫ ∫ . 

 
 
3.  

a.  

 
 

b. P(X > 0) = 
232 2

0
0

.09375(4 ) .09375 4 .5
3
xx dx x

 
− = − = 

 
∫ .  

This matches the symmetry of the pdf about x = 0. 
 
c. P(–1 < X < 1) = 

1 2

1
.09375(4 ) .6875x dx

−
− =∫ . 

 

d. P(X < –.5 or X > .5) = 1 – P(–.5 ≤ X ≤ .5) = 1 – ∫− −
5.

5.

2 )4(09375. dxx  = 1 – .3672 = .6328. 
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5.  

a. 1 = 
3 2

2 2

0
0

8 3
3 3 8

( )f x dx kx dx kkx k∞

−∞


= = = ⇒ =


∫ ∫ . 

 
b. P(0 ≤ X ≤ 1) = 

1 12 33 1 1
8 8 800

.125x dx x = = =∫ . 

 
c. P(1 ≤ X ≤ 1.5) = ( ) ( )

1.5 1.5 3 32 33 3 191 1 1
8 8 8 2 8 6411

1 .296875x dx x = = − = =∫ . 

 
d. P(X ≥ 1.5) = 

2 22 33 1 1 3 1
8 8 8 81.51.5

3(2) (1.5) .578125x dx x == = −∫ . 

 
 

7.  

a. f(x) = 
1 1 1 .1

135 2 05B A
= = =

− −
 for 25 ≤ x ≤ 35 and f(x) = 0 otherwise. 

 

 
 

b. P(X > 33) = 
35

33 0
1 3

1
35 3

10
dx −

=∫ = .2. 

 

c. The mean is clearly the midpoint of 30 min.  30 ± 2 = 28 to 32: 
32

28

1
10

(28 32)P dxX< < = ∫ = .4. 

 

d. P(a ≤ X ≤ a + 2) =
2 1 ( 2) 2
10 10 10

a

a

adx a+
=

+ −
=∫ = .2. 

 
 

x

f(
x)
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9.  
a. 

40 30.04( 10) .04

10 0
( .04 .040) 4x uP X e dx e du− − −≤ = =∫ ∫  (after the substitution u = x – 10) 

= 
30.04 .04(30)

0
1 .699ue e− −− = − ≈ . 

 
b. P(X > 40) = 1 – P(X ≤ 40) = 1 – .699 = .301. Since X is continuous, P(X ≥ 40) = P(X > 40) = .301 as 

well. 
 
c. P(40 ≤ X ≤ 60) = 

60 50 50.04( 10) . 0

4

04 . 4

3030 0
.04 .04x u ue dx e du e− − − −= = −∫ ∫  =  .166. 

 
 
11.  

a. P(X ≤ 1) = F(1) = 
21
4

.25= . 

 

b. P(.5 ≤ X ≤ 1) = F(1) – F(.5) = 
2 21 .5
4 4
− = .1875. 

 

c. P(X > 1.5) = 1 – P(X ≤ 1.5) = 1 – F(1.5) = 
2

1 1.5
4

− =.4375. 

 

d. .5 = 
2

2( ) 2 2
4

F µµ µ µ= ⇒ = ⇒ =


   ≈ 1.414 hours. 

 

e. f(x) = F′(x) = 
2
x  for 0 ≤ x < 2, and = 0 otherwise. 

 
13.  

a. 4 3 3
41

1
1

1 1) 3
3

0 (
33

k kdx k x dx kk k
x

x
∞

− − −∞ ∞ = = = = − = ⇒ =
 
 − − ∫ ∫ .  

 

b. For x ≥ 1, F(x)= 3 3
3141

1( ) 1 13x x x
f y dy dy

xy
xy −−

−∞
= = = − + = −−∫ ∫ . For x < 1, F(x) = 0 since the 

distribution begins at 1. Put together, 
3

0
( ) 11 1

1
F x

x

x
x

 <

≤
= 
−

.   

 
c. P(X > 2) = 1 – F(2) = 1 – 7

8
1
8=  or .125; 

( ) ( )1 1
27 8(2 3) (3) (2) 1 1 .963 .875 .088P X F F< < = − = − − − = − = . 
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15.  
a. Since X is restricted to the interval [0, 2], F(x) = 0 for x < 0 and F(x) = 1 for x > 2.   

For 0 ≤ x ≤ 2, F(x) = 2 33 1
8 8 00

3

8
x x xy dy y = =∫ . Both graphs appear below. 
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b. P(X ≤ .5) = F(.5) = 
3(.5) 1

8 64
= = .015625. 

 
c. P(.25 < X ≤ .5) = F(.5) – F(.25) = .015625 – .001953125 = .0137. 

Since X is continuous, P(.25 ≤ X ≤ .5) = P(.25 < X ≤ .5) = .0137.   
 

d. The 75th percentile is the value of x for which F(x) = .75: 
3

8
x = .75 ⇒ x = 1.817. 

 
17.  

a. Let F(x) denote the cdf of X, so that F(η) = .5. Also, let ηY denote the median of Y, so that by definition 
P(Y ≤ ηY) = .5.  Substitute Y = 1.8X + 32 into the previous expression: 

.5 = P(Y ≤ ηY) = P(1.8X + 32 ≤ ηY) = 
1.8 1.

32 32
8

Y YP X Fη η− −   =  
  

≤ 


 . 

Looking at the two ends of this expression implies that  
1.8

32Yη − is the median of X; i.e., η = 
1.8

32Yη − . 

Finally, solving for ηY gives ηY = 1.8η + 32. 
 

b. Replace .5 with .9 above and one obtains η.9,Y = 1.8η.9,X + 32.  
 

c. If Y = aX + b with a > 0, then the (100p)th percentiles of X and Y are related by ηp,Y = aηp,X + b.         
For a < 0, the relationship is slightly more complicated because of the sign reversal: 

p = P(Y ≤ ηp,Y) = P(aX + b ≤ ηp,Y) = P(aX ≤ ηp,Y – b) = , ,1p Y p Y

a
b b

P X F
a

η η− −   
= −   

   
≥  ⇒  

, ,
1 , , 1 ,1p Y p Y

p X p Y p X

b b
F p b

a
a

a
η η

η η η− −

− − 
= − =⇒ ⇒ = + 

 
. So, for example, the 90th percentile of Y 

(when a < 0) is the linear rescaling of the 10th percentile of X. 
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Section 4.2 
 
19.  

a. .04( 10) ( .04)( 10)

10 10

.04( ) .04 .04x xE e dX x ex dxx e
∞ ∞− − − − −= ⋅ = ⋅∫ ∫ . Let u = x and .04x dxdv e−= , so du = dx and 

.041
.04

xv e−= − . Applying integration by parts, 
.4

.04 .4 .0

1

4

1
0

0

.04 1( ) .04
.04 .04

x x dE eX e xxe e
∞

∞− −−
= − −∫  = 

.4
.4 .04 .04

10
10

0 ( 10) 10
.04

x xd ee e ex
∞

∞ − −− − + = −∫ = 10 – (0 – 25) = 10 + 25 = 35 m3/s. 

Similarly, integration by parts twice(!) yields 2 0( ) 185E X = , so V(X) = 1850 – 352 = 625 and 

625σ = = 25 m3/s. 
 

b. 
60 .04( 10) 2

10
) (1 50 60) .04 1( .86xP X P X e dx eµ σ µ σ − − −− ≤ ≤ + == ≤ ≤ = = −∫ . 

 
 
21.  

a. E(X) = 
1 18 9

1
10 10 11

0 0
0

( ) 90 (1 ) (90 9 90 9
11 1

0 )
1

9x f x dx x x x dx x x dx xx
∞

−∞

⋅ = ⋅ − = − = 
− =∫ ∫ ∫  

≈ .8182 ft3. 

Similarly, E(X2) = 
12 2 8

0
( ) 90 (1 )x f x dx x x x dx

∞

−∞
⋅ = ⋅ −∫ ∫ = … = .6818, from which V(X) = .6818 – 

(.8182)2 = .0124 and SD(X) = .11134 ft3. 
 

b. μ ± σ = (.7068, .9295). Thus, P(μ – σ ≤ X ≤ μ + σ) = F(.9295) – F(.7068) = .8465 – .1602 = .6863, and 
the probability X is more than 1 standard deviation from its mean value equals 1 – .6863 = .3137. 

 
 

23.  

a. To find the (100p)th percentile, set F(ηp) = p and solve for ηp: p A
B A
η −

−
 = p ⇒ ηp = A + (B – A)p. 

b. Set p = .5 to obtain µ  = A + (B – A)(.5) = .5B + .5A = 
2

A B+ . This is exactly the same as the mean of 

X, which is no surprise: since the uniform distribution is symmetric about 
2

A B+ , µ = µ  = 
2

A B+ . 

c. 
11 11( ) .

( 1)( )
1

1

nBn

A

nBn n

A

x
B A

B AE X x dx
B A n B An

+ + +
− +

−
= ⋅ =


=

− + −∫  

 
 

25. E(area) = E(πR2) = ( )112 2 2

9

3 501π ( ) π 1 (10 ) π
4 5

r f r dr r r dr
∞

−∞
== − − =∫ ∫  = 314.79 m2. 

 
 
27. With X = temperature in °C, the temperature in °F equals 1.8X + 32, so the mean and standard deviation in 

°F are 1.8μX + 32 = 1.8(120) + 32 = 248°F and |1.8|σX = 1.8(2) = 3.6°F. Notice that the additive constant, 
32, affects the mean but does not affect the standard deviation. 
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29. First,
0

4( ) 4 xE X x e dx
∞ −= ⋅∫ . Apply integration by parts with u = x → du = dx and dv = 4e–4x dx → v = – e–4x:  

4
4 4 4

0
0

0 0
( ) ( (0 0 1

4
))

4

x
x x x edu dxE X uv v x e e dxe

∞−∞ ∞∞− − −= − =
−

⋅ − − − = − + = =∫ ∫ ∫  min. 

Similarly, 2 4

0

2( ) 4 xE X x xe d
∞ −= ⋅∫ ; with u = x2 and dv = 4e–4x dx, 

2 2 4 4 4 4

0 0

4

0 0 0
( ) ( ( )(2 ) (0 0) 2 1

2
2) 4x x x x xE X x e e x xd e xe x ex dx dx dx

∞ ∞ ∞ ∞∞− − − − −= ⋅ − − − = − + = = ⋅∫ ∫ ∫ ∫  = 

1 1 1 1( )
2 2 4 8

E X = ⋅ = .  Hence, V(X) = 
21 1 1

8 4 16
 



=− 


 ⇒ SD(X) = 1

4
 min. 

 
 
31.  

a. We have R = h(I) = v/I, so h′(I) = –v/I2. The first-order approximation to µR is h(µI) = v/µI = v/20.      

The first-order approximation to 2
Rσ  is 

2 2 2
2 2 2

2 2 2[
0

( ( ) (.5)
( )

)]
6402 ,00 0I I

I

v vh V I vµ σ
µ

 
′ = − ⋅ = ⋅ = 

 
 ; taking 

the square root, the first-order approximation to σR is 
800

v
. 

 
b. From Exercise 25, the exact value of E[πR2] was 100.2π ≈ 314.79 m2. The first-order approximation 

via the delta method is h(µR) = h(10) = π(10)2 = 100π ≈ 314.16 m2. These are quite close.  
 
c. The derivative of h(R) = πR2 is h′(R) = 2πR. The delta method approximation to V[h(R)], therefore, is 

2 2 2

5
)] π ] 1[ ( ( ) [2 ( ) [ 10)π ]2 (R Rh V R V Rµ µ′ ⋅ = ⋅ = ⋅  = 80π2. This is very close to the exact variance, given 

by 14008π2/175 ≈ 80.046π2. 
 

 
33. A linear function that maps 0 to –5 and 1 to 5 is g(x) = 10x – 5. Let X ~ Unif[0, 1], so that from Exercise 32 

we know that MX(t) = (et – 1)/t for t ≠ 0. Define Y = g(X) = 10X – 5; applying the mgf rescaling property 
with a = 10 and b = –5, the mgf of Y is given by 

(10 ) 5 5
5 5

(10 ) 1
1( ) (10 )

0

t t t
t t

Y X
e eM M et e t

t
e

t

−
− − − −

⋅= = =  . This is an exact match to the mgf of the Unif[–5, 5] mgf 

based on Exercise 32. Therefore, by uniqueness of mgfs, Y must follow a Unif[–5, 5] distribution. 
(Equivalently, the pdf of Y is f(y) = 1/10 for –5 ≤ y ≤ 5.) 

 
 
35. .04( 10)( ) .04 xf x e− −=  for x ≥ 10. 

a.  
( .04)

.04( 10) .4 ( .04) .4

10 .5
10

( .04)(10) 10
.4

.04
.04

.04. 0 for .04
0

( ) .

.04 . 4

04 .04

04

t x
tx x t x

X

t t

et e dxM e
t

e t
t

e e dx e

ee
t

∞−∞ ∞− − + −

−

⋅
−

 
= − = < − − 

= = =∫ ∫
  

The condition t < .04 is necessary so that (t – .04) < 0 and the improper integral converges. 
To find the mean and variance, re-write the mgf as 10 1(.04( .04 )) t

XM t e t −−=  and use the product rule: 
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10 10

2
.4 .04( )
.04 (.04 )

t t

X
e et

t
M

t
= +

− −
′  ⇒ E(X) = (0) 35XM =′ = m3/s 

10 10 10
2

2 3
4 2(.4 .08( ) ( (0) 1850

.04 (.04 ) (.04
) )

)

t t t

X XM Me e et E X
t t t

= + +′′ ′′⇒ = =
− − −

=   ⇒ 

V(X) = (1850) – (35)2 = 625. 
 

b. The mgf of the given pdf is  
( .04)

.04 ( .0

0

4)

0 0

.04.04
.

0
.

( ) .
04 0

04
4

. 4
t x

tx x t xM et e dx e de x
t t

∞−∞ ∞− − =⋅ ==
−

=
−∫ ∫  for t < .04. Taking derivatives here 

(which is much easier than in part a!) gives 5( ) (0) 1 2
.04

E X M= = =′  , 2
2

2( ) (0) 0125
.04

E X M= =′′ =

and V(X) = 1250 – (25)2 = 625. The hazardous flood rate pdf and this pdf have exactly the same 
variance, while the mean of the hazardous flood rate pdf is 10 more than the mean of this pdf. 
 

c. If Y = X – 10, then 
10

10 10 .04 .) 04
.04 .

( (1 )
04

t
t t

Y X
eM

t
t e t eM

t
− − ⋅= = =

− −
, which is exactly the mgf in b. By 

uniqueness of mgfs, we conclude that Y follows the pdf specified in b: f(y) = .04e–.04y for y > 0. 
In other words, the two pdfs represent “shifted” versions of two variables, X and Y. The rv X is on    
[10, ∞), while Y = X – 10 is on [0, ∞).  This is consistent with the moments as well: the mean of Y is 10 
less than the mean of X, as suggested by Y = X – 10, and the two rvs have the same variance because 
the shift of 10 doesn’t affect variance. 

 
 

37.  
a. For t ≤ x < ∞, x · f(x) ≥ t · f(x). Thus, 

]( ) ( ) ( ) )( [1 ( )
t t t

dx f x t f x t f x td Xx dx x t t F tP
∞ ∞ ∞

⋅ ⋅ = ⋅ = ⋅ >≥ = ⋅ −∫ ∫ ∫  . 

 
b. By definition, µ = 

0 0
( ) ( ) ( )

t

t
x f x x f xd fdx xx dxx

∞ ∞
⋅ = ⋅ + ⋅∫ ∫ ∫ , from which it follows that 

0
( ) ( )

t

t
x dx dxf x x f xµ

∞
⋅−⋅ =∫ ∫ .  

 
Now consider the expression t · [1 – F(t)]. Since t > 0 and F(t) ≤ 1,  t · [1 – F(t)] ≥ 0. Combining that 
with part a, we have 0 ≤ t · [1 – F(t)] ≤ 

0
( ) ( )

t

t
x dx dxf x x f xµ

∞
⋅−⋅ =∫ ∫ .  

As t → ∞, the upper bound on t · [1 – F(t)] converges to 0:  

0 0 0
l ( ) ( ) ( )im lim 0
t

t t

t
dx dx dx f x f x f x xx xµ µ µ µ µ

∞

→∞ →∞
⋅ ⋅   − = − = − − =  ⋅ =    ∫ ∫ ∫ .  

(Those operations rely on the integral converging.)  
 
Therefore, by the squeeze theorem, [1l ( )] 0im

t
t F t

→∞
⋅ − =  as well. 

 
 



Chapter 4:  Continuous Random Variables and Probability Distributions 

 8 

Section 4.3 
 
39.  

a. P(0 ≤ Z ≤ 2.17) = Φ(2.17) – Φ(0) = .4850. 
 
b. Φ(1) – Φ(0) = .3413. 
 
c. Φ(0) – Φ(–2.50) = .4938. 
 
d. Φ(2.50) – Φ(–2.50) = .9876. 
 
e. Φ(1.37) = .9147. 
 
f. P( –1.75 < Z) + [1 – P(Z < –1.75)] = 1 – Φ(–1.75) = .9599. 
 
g. Φ(2) – Φ(–1.50) = .9104. 
 
h. Φ(2.50) – Φ(1.37) = .0791. 
 
i. 1 – Φ(1.50)  = .0668. 
 
j. P(|Z| ≤ 2.50) = P(–2.50 ≤ Z ≤ 2.50) = Φ(2.50) – Φ(–2.50) = .9876. 

 
 
41.  

a. Φ(c) = .9100 ⇒ c ≈ 1.34, since .9099 is the entry in the 1.3 row, .04 column. 
 
b. Since the standard normal distribution is symmetric about z = 0, the 9th percentile =  

–[the 91st percentile] = –1.34. 
 
c. Φ(c) = .7500 ⇒ c ≈ .675, since .7486 and .7517 are in the .67 and .68 entries, respectively. 
 
d. Since the standard normal distribution is symmetric about z = 0, the 25th percentile =  

–[the 75th percentile] = –.675. 
 
e. Φ(c) = .06 ⇒ c ≈ –1.555, since .0594 and .0606 appear as the –1.56 and –1.55 entries, respectively. 

 
 
43.  

a. 100 80100) ( 2( 2) (2) .977
10

P ZX P Z P− ≤ = ≤ = ≤ = Φ = 
 

. 

 

b. 80 8080) ( 0) (0) .5(
10

P P ZX P Z− ≤ = ≤ = ≤ = Φ = 
 

. 

 

c. 65 80 100 80100) ( 1.5 2) (2) ( 1.5) .9104
10 10

(65P X P Z P Z− − ≤ ≤ = ≤ ≤ = − ≤ ≤ = Φ −Φ − = 
 

. 

 

d. 70 80) ( 3(7 1) 1 ( 1) .8
10

0 41P X P Z P Z− ≤ = ≥ = ≥ − = −Φ − = 
 

. 
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e. 85 80 95 8095) (.5 1.5) (1.5) (.5) .2417
10 10

(85P X P Z P Z− − ≤ ≤ = ≤ ≤ = ≤ ≤ = Φ −Φ = 
 

. 

 

f. 70 80 90 8010) ( 10 80 10) (70 900 )
10 1

( 8
0

P X PP X P ZX − − ≤ = − ≤ − ≤ = ≤ ≤ = ≤ ≤ −
 

 = 

1) (1) ( 1) .6826( 1P Z≤ ≤ = Φ Φ =− − − . 
 

 
45. X ~ N(.30, .06) 

a. P(X > .25) = 1 – .25 .30
.06
− Φ 

 
 = 1 – Φ(–0.83) =.7967. 

 

b. P(X ≤ .10) = .10 .30
.06
− Φ 

 
 = Φ(–3.33) = .0004. 

 

c. We want the 95th percentile: .95 = .95 .30
.06

η − Φ 
 

 ⇒ .95 .30
.06

η −
= –1.645 ⇒ η.95 = .29013. So, the 

highest 5% of concentrations are those greater than .29013 mg/cm3. 
 
 
47. Let X denote the diameter of a randomly selected cork made by the first machine, and let Y be defined 

analogously for the second machine. 
P(2.9 ≤ X ≤ 3.1) = P(–1.00 ≤ Z ≤ 1.00) = .6826, while 
P(2.9 ≤ Y ≤ 3.1) = P(–7.00 ≤ Z ≤ 3.00) = .9987. So, the second machine wins handily. 

 
 
49.  

a. P(X < 40) = 40 43
4.5

P Z − ≤ 
 

= P(Z < –0.667) = .2514. 

P(X > 60) = 60 43
4.5

P Z − > 
 

= P(Z > 3.778) ≈ 0. 

 
b. We desire the 25th percentile. Since the 25th percentile of a standard normal distribution is roughly        

z = –0.67, the answer is 43 + (–0.67)(4.5) = 39.985 ksi. 
 

 
51. The probability X is within .1 of its mean is given by P(µ – .1 ≤ X ≤ µ + .1) = 

.1) ( .1( .1 1 .12 1) .P Zµ µ µ µ
σ σσ σ σ

− − − < < = 


+      Φ −Φ − = Φ −     
     

. If we require this to equal 95%, we 

find .1 .1 .12 1 .95 .975 1.96
σ σ σ
   Φ − = ⇒Φ = ⇒ =   
   

from the standard normal table. Thus, 0510.
96.1
1.

==σ . 

Alternatively, use the empirical rule: 95% of all values lie within 2 standard deviations of the mean, so we 
want 2σ = .1, or σ = .05. (This is not quite as precise as the first answer.) 
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53.  
a. P(μ – 1.5σ  ≤ X ≤ μ + 1.5σ) = P(–1.5 ≤ Z ≤ 1.5) = Φ(1.50) – Φ(–1.50) = .8664. 
 
b. P(X < μ – 2.5σ or X > μ + 2.5σ) = 1 – P(μ – 2.5σ ≤ X ≤ μ + 2.5σ) 

= 1 – P(–2.5 ≤ Z ≤ 2.5) = 1 – .9876 = .0124. 
 

c. P(μ – 2σ ≤ X ≤ μ – σ or μ + σ  ≤ X ≤ μ + 2σ) = P(within 2 sd’s) – P(within 1 sd) =  
P(μ – 2σ ≤ X ≤ μ + 2σ) – P(μ – σ ≤ X ≤ μ + σ) = .9544 – .6826 = .2718. 

 
 
55.  

a. 70 75 70 (1.67) (67 70(67 75) ( 1 1. 17
3

)
3 3

6 )P X XP P Z− < < = < = − < < = 


Φ


− −
< −Φ − = .9525 – 

.1587 = .7938. 
 
b. By the Empirical Rule, c should equal 2 standard deviations. Since σ = 3, c = 2(3) = 6.  

We can be a little more precise, as in Exercise 42, and use c = 1.96(3) = 5.88.  
 

c. Let Y = the number of acceptable specimens out of 10, so Y ~ Bin(10, p), where p = .7938 from part a. 
Then E(Y) = np = 10(.7938) = 7.938 specimens. 

 
d. Now let Y = the number of specimens out of 10 that have a hardness of less than 73.84, so  

Y ~ Bin(10, p), where 
73.84 70( 73.84) ( 1.28)

3
(1.28)p P X P Z P Z− = < = < = < Φ= 

 
= .8997. Then 

P(Y ≤ 8) = 10
8

0
(.8997)

10
(.1003)y y

y y=

− 
 
 

∑ = .2651. 

 
You can also compute 1 – P(Y = 9, 10) and use the binomial formula, or round slightly to p = .9 and 
use the binomial table: P(Y ≤ 8) = B(8; 10, .9) = .265. 

 
 
57.  

a. By symmetry, P(–1.72 ≤ Z ≤ –.55) = P(.55 ≤ Z ≤ 1.72) = Φ(1.72) – Φ(.55).  
 
b. P(–1.72 ≤ Z ≤ .55) = Φ(.55) – Φ(–1.72) = Φ(.55) – [1 – Φ(1.72)]. 

 
No, thanks to the symmetry of the z curve about 0. 

 
 
59. X ~ N(119, 13.1). 

a. P(100 ≤ X ≤ 120) = 120 119 100 119
13.1 13.1
− −   Φ −Φ   

   
≈ Φ(0.08) – Φ(–1.45) = .5319 – .0735 = .4584. 

 
b. The goal is to find the speed, s, so that P(X > s) = 10% = .1 (the fastest 10%). That’s equivalent to   

P(X ≤ s) = 1 – .1 = .9 (the 90th percentile), so .9 = 119
13.1

s − Φ 
 

 ⇒ 
119

13.1
s −

≈ 1.28 ⇒ s = 119 + 

1.28(13.1) ≈ 135.8 kph. 
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c. P(X > 100) = 1 – 100 119
13.1
− Φ 

 
 = 1 – Φ(–1.45) = 1 – .0735 = .9265.  

 
d. P(at least one is not exceeding 100 kph) = 1 – P(all five are exceeding 100 kph). Using independence 

and the answer from c, this equals 1 – P(first > 100 kph) × … × P(fifth > 100 kph) = 1 – (.9265)5 = 
.3173. 

 
e. Convert: 70 miles per hour ≈ 112.65 kilometers per hour. Thus P(X > 70 mph) = P(X > 112.65 kph) = 

1 – 112.65 119
13.1

− Φ 
 

= 1 – Φ(–.48) = 1 – .3156 = .6844. 

 
 
61.  

a. P(20 ≤ X ≤ 30) = P(20 – .5 ≤ X ≤ 30 + .5) = P(19.5 ≤ X ≤ 30.5) = P(–1.1 ≤ Z ≤ 1.1) = .7286. 
 
b. P(X ≤ 30) = P(X ≤ 30.5) = P(Z ≤ 1.1) = .8643, while 

P(X < 30) = P(X ≤ 29.5) = P(Z < .9) = .8159. 
 
 
63. Use the normal approximation to the binomial, with a continuity correction. With p = .10 and n = 200,        

μ = np = 20, and σ2 = npq = 18. So, Bin(200, .10) ≈ N(20, 18 ). 

a. P(X ≤ 30) = (30 .5) 20
18

+ − Φ 
 

= Φ(2.47) = .9932. 

 

b. P(X < 30) =P(X ≤ 29) = (29 .5) 20
18

+ − Φ 
 

= Φ(2.24) = .9875. 

 

c. P(15 ≤ X ≤ 25) = P(X ≤ 25) – P(X ≤ 14) = (25 .5) 20 (14 .5) 20
18 18

+ − + −   Φ −Φ   
   

 

= Φ(1.30) – Φ(–1.30) = .9032 – .0968 = .8064. 
 
 
65. We use a normal approximation to the binomial distribution:  Let X denote the number of people in the 

sample of 1000 who can taste the difference, so X ∼ Bin(1000, .03). Because μ = np = 1000(.03) = 30 and   
σ = (1 )np p−  = 5.394, X is approximately N(30, 5.394). 

a. Using a continuity correction, ( ) ( ) 39.5 3040 1 39 1
5.394

P X P X P Z − ≥ = − ≤ = − ≤ 
 

 = 1 – P(Z ≤ 1.76) = 

1 – Φ(1.76) = 1 – .9608 = .0392. 
 

b. 5% of 1000 is 50, and  ( ) 50.5 3050 (3.80) 1.
5.394

P X P Z − ≤ = ≤ = Φ ≈ 
 
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67. As in the previous exercise, u = (x – µ)/σ → du = dx/σ. Here, we’ll also need x = µ + σu. 

a. 2 2[( )/ ] / 2 /2, )
2π 2π

( ) ( ; x uE X x f x dx udx e e dux µ σ µ σµ σ
σ

∞ ∞

− −

∞− − −

∞ ∞ −∞
= ⋅ =

+
=∫ ∫ ∫  = 

2 2/2 /21
2π 2π

u uue du e duµ σ
∞ ∞ −

∞ ∞−

−

−
+∫ ∫  . The first integral is the area under the standard normal pdf, 

which equals 1. The second integrand is an odd function over a symmetric interval, so that second 
integral equals 0. Put it all together: E(X) = µ(1) + σ(0) = µ. 
 

b. 2 2
2 2

2 [( /2 2)/ /]( ) (
2

( ) ( )) ,;
2π

( )
π

x uV dX x f x x x udx e e duµ σµ σµ µ σ
σ

∞ ∞

−

∞− −

−∞ ∞−

−

∞
= − ⋅ = =

−
∫ ∫ ∫  = 

22 22 /1
2π

uu e duσ −

−

∞

∞∫ . We need to show the integral equals 1; toward this goal, use integration by 

parts with u = u and dv = 
2 /21

2π
uu e du−⋅  → v = 

2 /21
2π

ue−− : 

2 2 2 2/2 /22 /2 /21 1 1 1
2π 2 2π 2

0
π π

u u u uu e du u u e e du e du
∞

∞ ∞

−

∞− − − −

∞ ∞ ∞
−∞

− −
= − = +− −⋅∫ ∫ ∫ . 

Both limits required for the first evaluation are 0 because the exponential term dominates. What 
remains is, once again, the integral of the standard normal pdf, which is 1.  
Therefore, V(X) = σ2(1) = σ2. 
 

 
69.  

a. P(Z ≥ 1) ≈ 83 351 562.5 exp .1587
703 165
+ + ⋅ = + 

, which matches 1 – Φ(1). 

 

b. P(Z < –3) = P(Z > 3) ≈ 2362.5 exp .0013
399.3333
− ⋅ = 

 
, which matches Φ(–3). 

 

c. P(Z > 4) ≈ 3294.5 exp .0000317
340.75
− ⋅ = 

 
, so P(–4 < Z < 4) = 1 – 2P(Z ≥ 4) ≈  

1 – 2(.0000317) = .999937. 
 

d. P(Z > 5) ≈ 4392.5 exp .00000029
305.6
− ⋅ = 

 
. 
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Section 4.4 
 
71. For a and b, we use the properties of the gamma function provided in this section. 

a. Γ(6) = 5! = 120. 
 

b. 5 3 3 3 1 1 3 π 1.329
2 2 2 2 2 2 4

       Γ = Γ = ⋅ ⋅Γ = ≈       
       

. 

 
c. G(4; 5) = .371 from row 4, column 5 of Table A.4. 
 
d. G(5; 4) = .735. 
 
e. G(0; 4) = P(X ≤ 0 when α = 4) = 0, since the gamma distribution is positive. 

 
 
73.  

a. 2 58020, 4αβ αβ β α⇒= = ⇒ == . 
 

b. Let X ~ Gamma(5, 4). 24) (24 / 4;5) (6;5) .715(P G GX ≤ = = = . 
 
c. 40) (40 / 4;5) (20 / 4;5) (10;5) (5;5) .411(20P X G G G G≤ ≤ = − = − = . 
 

 
75.  

a. E(X) = 11
=

λ
. 

 

b. 11
==

λ
σ . 

 
c. Using the exponential cdf, P(X ≤ 4) = 982.11 4)4)(1( =−=− −− ee . 
 
d. Similarly, P(2 ≤ X ≤ 5) = (1)(5) (1)(2) 2 5(1 ) (1 ) .129e e e e− − − −− − − = − = . 

 
 

77. Note that a mean value of 10 for the exponential distribution implies λ = 
1

10
= .1. Let X denote the survival 

time of a mouse without treatment. 
a. P(X ≥ 8) = 1 – [1 – e–(.1)(8)] = e–(.1)(8) = .4493. P(X ≤ 12) = 1 – e–(.1)(12) = .6988. Combining these two 

answers, P(8 ≤ X ≤ 12) = P(X ≤ 12) – P(X < 8) = .6988 – [1 – .4493] = .1481. 
 

b. The standard deviation equals the mean, 10 hours. So, P(X > µ + 2σ) = P(X > 30) = 1 – [1 – e–(.1)(30)] = 
e–(.1)(30) = .0498. Similarly, P(X > µ + 3σ) = P(X > 40) = e–(.1)(40) = .0183. 
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79.  
a. {X ≥ t} = {the lifetime of the system is at least t}. Since the components are connected in series, this 

equals {all 5 lifetimes are at least t} = A1 ∩ A2 ∩ A3 ∩ A4 ∩ A5.  
 
b. Since the events Ai are assumed to be independent, P(X ≥ t) = P(A1 ∩ A2 ∩ A3 ∩ A4 ∩ A5) = P(A1) ⋅ 

P(A2) ⋅ P(A3) ⋅ P(A4) ⋅ P(A5). Using the exponential cdf, for any i we have   
P(Ai) = P(component lifetime is ≥ t) = 1 – F(t) = 1 – [1 – e–.01t] = e–.01t. 
Therefore, P(X ≥ t) = (e–.01t) ··· (e–.01t) = e–.05t , and FX(t) = P(X ≤ t) = 1 – e–.05t.  
Taking the derivative, the pdf of X is fX(t) = .05e–.05t  for t ≥ 0.  Thus X also has an exponential 
distribution, but with parameter λ = .05. 

 
c. By the same reasoning, P(X ≤ t) = 1 – n te λ− , so X has an exponential distribution with parameter nλ. 

 
 
81.  

a. If X is exponential, then ( ) x
Xf x e λλ −=  for some λ > 0. Thus 2 2 3 1( ) w w w

W w w e wf e w eλ λ λλ − −−−∝ ∝⋅ = . 
This is the kernel of a gamma distribution with α = 3 and β = 1/λ. 
 

b. 2 2 3 / 2 1.2253 ( ) 2V W αβ β β= = = ≈= ⇒ . Then, 1/ 2 / 3 .8165λ β= = ≈ .  
 
 

83. Using (4.5), for any positive exponent k we have 
11 / /

0 0

1 1 1(
( ) ( ) ( )

( )

) ( )

( )

x xk k k k

k

E X x x e x dedx x k

k

α αα β β
α α α β α

α β

β α β α β α

α

∞ ∞ + − +− − −⋅ = = ⋅
Γ Γ Γ

= Γ +

Γ
+

=
Γ

∫ ∫
  

So, E(X) = 1(1 ) (
( ( )

)
)
α α

α
αβ αβ

α
β=

Γ
+

Γ
Γ Γ

= ; E(X2) = 2 2(2 ) ( 1) ( 1
( ) ( )

(
)

) (
(

) 1 )α α α α α αβ β
α α α

Γ + + Γ +
=

Γ
+
Γ

Γ
=

Γ
 

2( 1)α αβ= + ; and V(X) = 2 2 2[( 1) ]α αβ αβ αβ+ − = . 

Section 4.5 
 
85.  

a. 
1.18 1.18(40/21.61) (20/21.61)40) (40;1.18,21.61) (20;1.18,21.61) [1 ] [1 ](20P X F F e e− −≤ ≤ = − = − − −  =          

.874 – .599 = .275. 
1.18(20/21.61)(20;1.18,21 9( 20) .61) 1 .59P F eX −=< = − = . 

1.18(40/21.61)40) 1 (40;1.18,21.61) 1 [1 ] 1 .874 .126(P X F e−> = − = − − = − = .  
 

b. Software provides 11 .94484
1.18

 Γ + = 
 

and 21 1.53845
1.18

 Γ + = 
 

, from which 

(21.61)(.94484) 20.418µ = = and { }2 2 2(21.61) 1.53845 [.94484] 301.55σ = − = , or σ = 17.365. 
 
c. Solve F(x) = .5: .5 = 1 –  

1.18( / 21.61)xe−  ⇒  
1.18( / 21.61)xe− = .5 ⇒ 1.18/ 21.61) ln(.5)(x = − ⇒ x = 21.61(–ln(.5))1/1.18 = 15.84 microns. 
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87. Use the substitution y = x x
α α

αβ β
 

= 
 

. Then dy = 
α

α

β
α 1−x dx , and ( )∫

∞ −−⋅=
0

1 dxexx
x α
βα

αβ
αµ  = 

1

0

/) ·( ye dy yα αβ
∞ −∫ = 






 +Γ⋅=∫

∞ −

α
ββ α

11
0

1
dyey y  by definition of the gamma function. 

 
 
89.  

a. P(X ≤ 105) = F(105; 20, 100) = 
20(105/100)1 e−− = .9295. 

 
b. P(100 ≤ X ≤ 105) =  F(105; 20, 100) – F(100; 20, 100) = .9295 – .6321 = .2974. 
 
c. Set .5 = F(x) and solve: .5 = 

20( /100)1 xe−− ⇒ –(x/100)20 = ln(.5) ⇒ x = 100[–ln(.5)]1/20 = 98.184 ksi. 
 

 
91.  

a. 21.513 1.006 /2( )E X e += = 7.53 square microns. 
2 22(1.513) 1.006 1.006 1)( ) (V X e e+= −  = 99.319, so SD(X) = 9.966 

square microns. 
 

b. ln(10) 1.513 (.78) .7823
1.006

( 10)P X − Φ = Φ =


< = 


. 

ln(20) 1.513 ln(10) 1.51320) (1.47) (.78)
1.006 1. 06

0
0

(1P X − −   ≤ ≤ = Φ −Φ = Φ −Φ   
   

= .9292 – .7823 = .1469. 

 

c. 
2

2
1.513 1.006 /2 2

1.513 1.006 /2 ln( 1.513 1.006
1

) 1/ 2 1.0061.51
0

3 .
.0 6 1.006 2

513( ) eP X e
+

+
   +  Φ = Φ = Φ     


−
    

< =


−

(.503) .6925= Φ ≈ . While the normal distribution is symmetric (and so the mean and median are 
equal), the lognormal distribution is right-skewed. As a result, the mean exceeds the median, and the 
probability X is less than its mean exceeds .5. 

 
 

93.  
a. 5 (.01)/2 5.005( ) 149.157E X e e+= = = ; ( )10 (.01) .01( ) 1 223.594V X e e+= ⋅ − = . 
 

b. P(X > 125) = 1 – P(X ≤ 125) = ( )ln(125) 51 1 1.72 .9573
.1

− = − = −Φ 
 

Φ − = . 

 

c. P(110 ≤ X ≤ 125) ( ) ln(110) 51.72 .0427 .0013 .0414
.1

− = Φ − −Φ = − = 
 

. 

 
d. 5 148.41e eµµ = = = . 
 
e. P(any particular one has X > 125) = .9573 ⇒ expected # = 10(.9573) = 9.573. 
 
f. We want the 5th percentile, which is 5 ( 1.645)(.1) 125.90e + − = . 
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95. Since the standard beta distribution lies on (0, 1), the point of symmetry must be ½, so we require that 
( ) ( )1 1

2 2f fµ µ− = + . Cancelling out the constants, this implies 

( ) ( ) ( ) ( )1 1 1 11 1 1 1
2 2 2 2

α β α βµ µµ µ− − − −− + = + − , which (by matching exponents on both sides) in turn implies 
that α = β. 

Alternatively, symmetry about ½ requires μ = ½, so α
α β+

= .5. Solving for α gives α = β. 

 
97.  

a. Notice from the definition of the standard beta pdf that, since a pdf must integrate to 1,  
( )
( ) ( ) ( ) ( ) ( ) ( )

( )
1 11 11 1

0 0
1 1 1x x dx x x dxβ βα αα β α β

α β α β
− −− −Γ + Γ Γ

= − ⇒ − =
Γ Γ Γ +∫ ∫ . 

Using this, E(X) = ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
1 11 11

0 0
1 1x x x dx x x dxβ βα αα β α β

α β α β
− −−Γ + Γ +

⋅ − = −
Γ Γ Γ Γ∫ ∫ = 

( )
( ) ( )

( ) ( )
( )

1
1

α β α β
α β α β

Γ + Γ + Γ
⋅

Γ Γ Γ + +
 = ( )

( ) ( )
( )

( ) ( )
.

α α α β α
α β α β α β α β
Γ Γ +

⋅ =
Γ Γ + Γ + +

 

 

b. Similarly, E[(1 – X)m] = ( ) ( )
( ) ( ) ( )

1 11

0
1 1mx x x dxβαα β

α β
−−Γ +

− ⋅ −
Γ Γ∫ = 

( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( )
( )

( ) ( )
( ) ( )

1 11

0
1 m m m

x x dx
m m

βαα β α β α β α β β
α β α β α β α β β

+ −−Γ + Γ + Γ Γ + Γ + ⋅Γ +
= − = =
Γ Γ Γ Γ Γ + + Γ + + Γ∫ . 

 
If X represents the proportion of a substance consisting of an ingredient, then 1 – X represents the 
proportion not consisting of this ingredient. For m = 1 above,  

E(1 – X) = ( ) ( )
( ) ( )

( )
( ) ( )

(1 )
1 ( )

α β β α β β
α β β α β α β β α β

β βΓ + ⋅Γ + Γ + ⋅
= =

Γ + + Γ + + Γ
Γ

Γ +
.  
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Section 4.6 
 
99. The given probability plot is quite linear, and thus it is quite plausible that the tension distribution is 

normal. 
 

 
101. The z percentile values are as follows: –1.86, –1.32, –1.01, –0.78, –0.58, –0.40, –0.24,–0.08, 0.08, 0.24, 

0.40, 0.58, 0.78, 1.01, 1.30, and 1.86.  The accompanying probability plot has some curvature but 
(arguably) not enough to worry about. It would be reasonable to use estimating methods that assume a 
normal population distribution. 

 
 

 
103. The accompanying normal probability plot is fairly straight, suggesting that an assumption of population 

normality is plausible. 
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105. To check for plausibility of a lognormal population distribution for this data, take the natural logs and 
construct a normal probability plot.  This plot and a normal probability plot for the original data appear 
below.  Clearly the log transformation gives quite a straight plot, so lognormality is plausible.  The 
curvature in the plot for the original data implies a positively skewed population distribution — like the 
lognormal distribution. 
 

  
 

 
107. The pattern in the normal probability plot is curved downward, consistent with a right-skewed distribution. 

It is not plausible that shower flow rates have a normal population distribution. 
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109. The (100p)th percentile ηp for the exponential distribution with λ = 1 is given by the formulaηp = –ln(1 – p).  
With n = 16, we need ηp for p = 0.5 1.5 15.5

16 16 16, ,..., .  These percentiles are .032, .398, .170, .247, .330, .421, .521, 
.633, .758, .901, 1.068, 1.269, 1.520, 1.856, 2.367, 3.466.   
 
The accompanying plot of (failure time value, exponential(1) percentile) pairs exhibits substantial 
curvature, casting doubt on the assumption of an exponential population distribution.   

 
Because λ is a scale parameter (as is σ for the normal family), λ = 1 can be used to assess the plausibility of 
the entire exponential family. If we used a different value of λ to find the percentiles, the slope of the graph 
would change, but not its linearity (or lack thereof). 
 

Section 4.7 
 
111. y = 1/x ⇒ x = 1/y and 0 < x < 1 ⇒ 0 <1/y < 1 ⇒ y > 1. Apply the transformation theorem:  

fY(y) = fX(1/y)|dx/dy| = fX(1/y)|–1/y2| = 2(1/y)(1/y2) = 2/y3 for y > 1.  
(If you’re paying attention you might notice this is just the previous exercise in reverse!) 

 
 
113. y = x ⇒ x = y2 and x > 0 ⇒ y > 0. Apply the transformation theorem:  

fY(y) = fX(y2)|dx/dy| = 
2 2/2 /21

2
2y yye ey− −=  for y > 0. 

 
 
115. y = area = x2 ⇒ x = y  and 0 < x < 4 ⇒ 0 < y < 16. Apply the transformation theorem: 

fY(y) = fX( y )|dx/dy| = y /8|1/(2 y )| = 1/16 for 0 < y < 16. That is, the area Y is uniform on (0,16). 
 
 
117. y = tan(π(x–.5)) ⇒ x = [arctan(y)+.5]/π and 0 < x < 1 ⇒ –π/2 < π(x–.5) < π/2 ⇒ –∞ < y < ∞ (since tan θ → 

±∞ as θ → ± π/2). Also, X ~ Unif(0, 1) ⇒ fX(x) = 1. Apply the transformation theorem:  

2 2

arctan( ) .5( ) ( ) 1
π

1 1 1
π 1 π(1 )Y X

dx d yy f x
d y yy d

f
y

=
+

+ = = ⋅ = + 
 for –∞ < y < ∞. 
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119. Assume the target function g(x) is differentiable and increasing, so that h(y) = g–1(y) is also differentiable 
and increasing. Apply the transformation theorem: 

( ) ( ( )) ( )
( )1 ( )
8

8 ( ) ( )

Y Xy f h y h y
h y h y

h y h y

f ′= ⋅

′= ⋅

′=

  

Take the antiderivative of both sides to obtain 8y = (1/2)[h(y)]2, from which ( ) 4h y y= . Now reverse the 

roles of x and y to find the inverse of h, aka g: ( )4x g x=  ⇒ g(x) = x2/16. 
As a check, apply the transformation theorem with Y = X2/16 and fX(x) = x/8 for 0 ≤ x ≤ 4 and you indeed 
obtain Y ~ Unif[0, 1]. 
 
You might notice that x2/16 is the antiderivative of x/8; i.e., g(x) = FX(x).  This is a special case of a more 
general result: if X is a continuous rv with cdf FX(x), then FX(X) ~ Unif[0, 1]. 

 
 
121. The transformation y = |x| is not monotone on [–1, 1], so we must proceed via the cdf method.  

For y > 0, FY(y) = P(Y ≤ y) = P(|X| ≤ y) = P(–y ≤ X ≤ y) = Φ(y) – Φ(–y) = Φ(y) – [1 – Φ(y)] = 2Φ(y) – 1. 

Thus, fY(y) = d/dy[2Φ(y) – 1] = 2Φ′(y) = 
2 /22

2π
ye−  for y > 0. In the last step, we use the fact that the 

derivative of the standard normal cdf is, of course, the standard normal pdf. 
 
 
123.  

a. By assumption, the probability that you hit the disc centered at the bulls-eye with area x is proportional 
to x; in particular, this probability is x/[total area of target] = x/[π(1)2] = x/π.  
Therefore, FX(x) = P(X ≤ x) = P(you hit disc centered at the bulls-eye with area x) = x/π. From this, 
fX(x) = d/dx[x/π] = 1/π for 0 < x < π. That is, X is uniform on (0, π). 
 

b. x = πy2 and 0 < x < π ⇒ 0 < y < 1. Thus, fY(y) = fX(πy2)|dx/dy| = 1/π |2πy| = 2y for 0 < y < 1. 
 
 

Section 4.8 
 
125.  

a. F(x) = x2/4. Set u = F(x) and solve for x: u = x2/4 ⇒ 2x u= . 
 

b. The one-line “program” below have been vectorized for speed; i.e., all 10,000 Unif[0, 1] values are 
generated simultaneously. 
In R: x<-2*sqrt(runif(10000)) 
 

c. One execution of the code gave mean(x) = 1.331268 and sd(x) = 0.4710592. These are very close 
to the exact mean and sd of X, which we can obtain through simple polynomial integrals: 

2 2 2

0 0

1 4
2 2 3
xx dx x dxµ = ⋅ = =∫ ∫  = 1.333; 

22 2

0
( ) 2

2
xE X x dx= ⋅ =∫  ⇒ σ = 

2

2
3

4
3

2 − = 
 

 = 0.4714. 
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127. 21 3 1 3( )
8 8 8 6

(
1

) x F xf x x x+ ⇒ = +=  . Set u = F(x) and solve for x: u = 21 3
8 16

x x+  ⇒ 3x2 + 2x – 16u = 0 ⇒ 

4 4(3)( 16 ) 2 1 48 1 42 2
2(3) 2(3) 3

8 1u u ux
− −± − − +

=
± + −

= =  . (The other root of the quadratic would place x 

between –2 and 0 rather than 0 and 2.) The code below implements this transformation and returns 10,000 
values from the desired pdf. 
In R:  x<-(sqrt(1+48*runif(10000))-1)/3 

 
 
129.  

a. The cdf of this model is ( ) 1 1 xF x
θ

τ
 = − − 
 

 for 0 < x < τ. Set u = F(x) and solve for x: 

1/1 1 1 (1 )xu ux
θ

θτ
τ

 = − − ⇒ = 


⋅


 − −  . This transform is implemented in the function below. 

 
 
 
 
 

b. Calling x<-waittime(10000,4,80) and mean(x) in R returned 15.9188, quite close to 16. 
 

Supplementary Exercises 
 
131. Let Y = the amount paid out. Since the insurance company only pays up to 5 thousand dollars, this means   

Y = X if X ≤ 5 but Y = 5 if X > 5. So, the expected payout is 
5 5

1 5 41 45

3 3 36( ) ( ) 5 ( ) 5 1
25 25

E Y x f x f x xdx dx dx dx
x x

∞ ∞
= ⋅ + ⋅ = ⋅ + ⋅ = +∫ ∫ ∫ ∫  = 1.48, or $1480. 

 
133.  

a. Clearly f(x) ≥ 0.  Now check that the function integrates to 1: 

3
3 2 2

0
0 0

32 16 1632( 4) 0
( 4) ( 4) (0 4)

d x
x

x
x

dx
∞

∞ ∞ −= + = − = − −
+ + +∫ ∫  = 1.

 
b. For x ≤ 0, F(x) = 0. For x > 0, 

( ) ( ) ( )20
20 3 4

161
4

32
2
1

4
32)()(

+
−=







+
⋅−=

+
== ∫∫ ∞− xy

dy
y

dyyfxF
x

xx
. 

c. P(2 ≤ X ≤ 5) = F(5) – F(2) = 247.
36
161

81
161 =






 −−− . 

d. 
( ) ( )3 30

32 32( ) ( ) ( 4 4)
4 4

E X x f x dx x dx x dx
x x

∞ ∞ ∞

−∞ −∞
= ⋅ = ⋅ = + − ⋅

+ +∫ ∫ ∫  

  

( ) ( )
448

4
324

4
32

0 30 2 =−=
+

−
+

= ∫∫
∞∞

dx
x

dx
x

years. 

e. 
( ) ( )3 40 0

100 100 32 1 32003200 16.67
4 4 (3)(64)4 4

E dx dx
X x x x

∞ ∞  = ⋅ = = = + +  + +∫ ∫ . 

waittime<-function(n,theta,tau){ 
u<-runif(n) 
x<- tau*(1-(1-u)^(1/theta)) 
} 
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135.  

a. P(39 < X < 42) = 42 40 39 40
1.5 1.5
− −   Φ −Φ   

   
= Φ(1.33) – Φ(–.67) = .9082 – .2514 = .6568. 

 
b. We desire the 85th percentile:  Φ(z) = .85 ⇒ z = 1.04 from the standard normal table, so the 85th 

percentile of this distribution is 40 + (1.04)(1.5) = 41.56 V. 
 

c. For a single diode, P(X > 42) = 1 – P(X ≤ 42) = 1 – 42 40
1.5
− Φ 

 
= 1 – Φ(1.33) = .0918. 

Now let D represent the number of diodes (out of four) with voltage exceeding 42. The random 
variable D is binomial with n = 4 and p = .0918, so 

P(D ≥ 1) = 1 – P(D = 0) = ( ) ( )0 44
1 .0918 .9082

0
 

−  
 

=1 – .6803 = .3197. 

 
137.  

a. Let X = the number of defectives in the batch of 250, so X ~ Bin(250, .05). We can approximate X by a 
normal distribution, since np = 12.5 ≥ 10 and nq = 237.5 ≥ 10.  The mean and sd of X are µ = np = 12.5 
and σ = 3.446.  Using a continuity correction and realizing 10% of 250 is 25, 

P(X ≥ 25) = 1 – P(X < 25) = 1 – P(X ≤ 24.5) ≈ 1– ( )24.5 12.5 1 3.48
3.446
− Φ = −Φ 

 
 =  

1 – .9997 = .0003. (The exact binomial probability, from software, is .00086.) 
 

b. Using the same normal approximation with a continuity correction, P(X = 10) =  

P(9.5 ≤ X ≤ 10.5) ≈ 10.5 12.5 9.5 12.5
3.446 3.446
− −   Φ −Φ   

   
= Φ(–.58) – Φ(–.87) = .2810 – .1922 = .0888.    

(The exact binomial probability is 10 240250
(.05) (.95)

10
 
 
 

= .0963.) 

 
139.  

a. F(x) = 0 for x < 1 and F(x) = 1 for x > 3.  For 1 ≤ x ≤ 3, 
21

1. 55 1( ) 11.
x

F x dy
xy

 = = − 
 ∫ . 

b. P(X ≤ 2.5) = F(2.5) = 1.5(1 – .4) = .9; P(1.5 ≤ X ≤ 2.5) = F(2.5) – F(1.5) = .4. 
 

c. E(X) = ]
3 3 3

2 11 1

1.5 11.5 1.5ln( )x dx dx x
xx

⋅ = =∫ ∫ = 1.648 seconds. 

d. E(X2) = 
3 32

21 1

1.5 1.5 3x dx dx
x

= ⋅ = =∫ ∫ , so V(X) = E(X2) – [E(X)]2 = .284 and σ =.553 seconds. 

e. From the description, h(x) = 0 if 1 ≤ x ≤ 1.5; h(x) = x – 1.5 if 1.5 ≤ x ≤ 2.5 (one second later), and     
h(x) = 1 if 2.5 ≤ x ≤ 3. Using those terms,  

( )
2.5 3

1.5 2 .

3

1 2 5 2

1.5 1.5[ ( )] 1.5 1 .267 seconds( )hE h X x dx dx
x x

x dx= = − ⋅ + ⋅ =∫ ∫ ∫ . 
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141.  

a. Since X is exponential, E(X) = 1
λ

 = 1.075 and 1σ
λ

=  = 1.075. 

 
b. P(X > 3.0) = 1 – P(X ≤ 3.0) = 1 – F(3.0) = 1 – [1 – e–.93(3.0)] = .0614. 

P(1.0 ≤ X ≤  3.0) = F(3.0) – F(1.0) = [1 – e–.93(3.0)] – [1 – e–.93(1.0)] = .333. 
 

c. The 90th percentile is requested: .9 = F(η.9) = .9.931 e η−− ⇒ η.9 = ln(.1)
( .93)−

= 2.476 mm. 

 
 
143. We have a random variable T ~ N(μ, σ). Let f(t) denote its pdf. 

a. The “expected loss” is the expected value of a piecewise-defined function, so we should first write the 
function out in pieces (two integrals, as seen below). Call this expected loss Q(a), to emphasize we’re 
interested in its behavior as a function of a.  We have: 

 

( ) [ ( , )] ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) [1 ( )]

a

a
a a a

a a a

dt dt

dt dt

Q a E L a T k a t f t t a f t

ka f t k tf t tf t a f t kaF a k tf t tf t a Fd at dt dt dt

∞

∞

∞ ∞

−

−

∞

∞ − −∞ ∞

= = − + −

= − + − = − + − −

∫ ∫

∫ ∫ ∫ ∫ ∫ ∫
 

where F(a) denotes the cdf of T. To minimize this expression, take the first derivative with respect to 
a, using the product rule and the fundamental theorem of calculus where appropriate:  

( ) ( ) ( ) ( ) [1 ( )]

( ) ( ) ( ) 0 ( ) 1 ( ) ( )
( ) ( ) ( ) ( ) 1 ( ) ( )

( 1) ( ) 1

a

a

Q a kaF a k tf t tf t a F a

kF a kaF a kaf a af a F a aF a
kF a kaf a kaf a af a F a af a

dt d

k F

t

a

∞

∞−

′ = − + − −

′ ′= + − + − − + +
= + − − − + +
= + −

∫ ∫
 

Finally, set this equal to zero, and use the fact that, because T is a normal random variable, 

( ) aF a µ
σ
− Φ 

 
= : 

 1( 1) ( ) 1 0 ( 1) 1 11 0 ·
1 1

k F a k a a a
k k

µ µ µ σ
σ σ

−− −   Φ − = ⇒Φ = ⇒ = + Φ  + − = ⇒     + +
+  

   
 

This is the critical value, a*, as desired. 
 

b. With the values provided, a* = ( )1 11100,000 10,000 100,000 10,000 0.33
2 1

− −  =  Φ


+


+ Φ
+

= 100,000 + 

10,000(–0.44) from the standard normal table = 100,000 – 4,400 = $95,600. The probability of an 

over-assessment equals P(95,600 > T) = P(T < 96,500) = 95,600 100,000
10,000
− Φ 

 
= Φ(–0.44) = .3300, 

or 33%. Notice that, in general, the probability of an over-assessment using the optimal value of a is 

equal to 1
1k +

. 
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145.  
a. 

0 .2 .2

0
( ) .1 .1 .5 .5 1.x xf x dx e dx e dx

∞ ∞ −

−∞ −∞
= + = + =∫ ∫ ∫  

 
b. For x < 0, F(x) = .2 .21.1

2
x y xe dy e
−∞

=∫ . 

For x ≥ 0, F(x) = 0 .2 .2 .2 .2

0 0

1 1.1 .1( .1
2 2

) 1
x xyy y xx

e dy e dy ef y dy e dy−

−∞ −

− −

∞

−= + = + = −∫ ∫∫ ∫ . 

 
c. P(X < 0) = F(0) = .5; P(X < 2) = F(2) = 1 – .5e–.4 = .665; P(–1 ≤ X ≤ 2) = F(2) – F(–1) = .256; and 

P(|X| > 2) = 1 – (–2 ≤ X ≤ 2) = 1 – [F(2) – F(–2)] = .670. 
 
 
147.  

a. Provided α > 1, 
1

1

5
1)51 ( 5

1
k dx k k
x

α
α

α α
α

−∞ −−= = ⋅ ⇒ =
−∫ . 

 

b. For x ≥ 5, F(x) = 
1

1 1 1
1

5

( 55 .1) 55 1
x

dy x
y x

α
α α α

α

α

α −−
− − −   = − − = −     

−
∫  For x < 5, F(x) = 0. 

 

c. Provided α > 2, E(X) = 
( ) 1

15 5

1 5 15
2

kx dx dx
x x

α

α α

α α
α

−
∞ ∞

−

− −
⋅ = =

−∫ ∫ . 

d. Let Y = ln(X/5). Then FY(y) = ( )ln 5 (5
5

)
5

y y yX XP y P e P X e F e    ≤ = ≤ = ≤ =    
      

= 
151

5 ye

α−
 −  
 

= 

( )11 ye α− −− , the cdf of an exponential rv with parameter α – 1. 
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149.  
a. The accompanying Weibull pdf plot was created in R. 

 
b. P(X > 175) = 1 – F(175; 9, 180) = ( )9175/180 .4602.e− =  

P(150 ≤ X ≤ 175) = F(175; 9, 180) – F(150; 9, 180) = .5398 – .1762 = .3636. 
 

c. From b, the probability a specimen is not between 150 and 175 equals 1 – .3636 = .6364. So,  
P(at least one is between 150 and 175) = 1 – P(neither is between 150 and 175) = 1 – (.6364)2 = .5950.  

 
d. We want the 10th percentile:  .10 = F(x; 9, 180) = ( )9/1801 xe−− .  A small bit of algebra leads us to x = 

180(–ln(1–.10))1/9 = 140.178.  Thus, 10% of all tensile strengths will be less than 140.178 MPa. 
 
 
151.  

a. If we let 2α = and 2β σ= , then we can manipulate f(v) as follows: 
( ) ( )

2
2 2 2 2 / 2 //2 /2 2 1 1

2 2 2

2 2( )
2 ( 2 )

v vv vvf v e ve v e v e
ασσ βσ α

α

α
σ σ βσ

− −− − − −= = = = , which is in the Weibull family of 

distributions. 
 

b. Use the Weibull cdf: P(V ≤ 25) = ( )25 625
2 800

2

(25;2, 2 ) 1 1F e eσσ
− −= − = −  = 1 – .458 = .542.  

 
 
153.  

a. ( ) xf ex λλ −=  and ( ) 1 xF x e λ−= − , so ( )
1 [1 ]

x

xr
e

ex
λ

λ

λ λ
−

−= =
− −

, a constant. This is consistent with the 

memoryless property of the exponential distribution. 

b. Substituting Expressions (4.9) and (4.10), /

1 )
1

/

)

(

(

(( ) (
1

)
]

)
1

/
[

/
x

x

er x
e

x x
α

α

α α β
α α

β

α β α β
−

−
−

−

= =
− −

. For α > 1, r(x) is 

an increasing function of x; for α < 1, r(x) decreases with x. 
 

c. First, 
2

2
( /2 )l (1(

2
n[1 )] ) 1 x xF x x Fx d xx x e α βα α

β β
− −  

− = − −  
  

−


= − ⇒ = −∫  up to x = β. Then 

2( /2 )( ) ( )  fo 01 r x xf x F x ex xα βα β
β

− −′= =
 
− ≤ ≤ 

 
. Note that this function integrates to less than 1, 

meaning that some probability has been assigned to x = ∞ (a device that “lasts forever”). 
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155. For y > 0, 
2 2

2
2 ( / 2)2( ) ( )

2 2 X
yX yF y P Y y P y P X P X F y

ββ
β

β
    

= ≤ = ≤ = ≤ = ≤ =           
2

/ 2
1 exp

yβ
β

  
 = − −     

 (that’s the Weibull cdf)  /21 ye−= − .  Differentiate: /2( ) (1/ 2) yf y e−= . We 

recognize this as an exponential distribution, aka the gamma distribution with parameters 1 and 2. 
 
 
157. When X ≤ q, gross profits are profit + salvage = dX + e(q – X). But when X > q, gross profits are              

profit – shortage cost = dq – f · (X – q). In any case, there are fixed costs of c0 + c1q.  
If we let Y denote the net profit, then E[Y] =  

∫
∞

0
[gross profit] fX(x) dx – [c0 + c1q] = dxxfxqedx

q
X )()]([

0∫ −+  + dxxfqxfdq
q

X )()]([∫
∞

−− – [c0 + 

c1q]. Expand and simplify:  

E[Y] = (d – e) dxxxf
q

X )(
0∫  + eq FX(q) + (dq + fq)[1 – FX(q)] – f · dxxxf

q
X )(∫

∞
– [c0 + c1q]. 

 
Differentiate, using the Fundamental Theorem of Calculus, and then cancel as much as possible:  
d/dq E[Y] = (d – e)qfX(q) + eFX(q) + eqfX(q) + (d + f)[1 – FX(q)] + (dq + fq)[–fX(q)] – f · [–qfX(q)] – [0 + c1] 
= eFX(q) + (d + f)[1 – FX(q)] – c1. Whew!  
 
The optimal value q* makes the derivative equal zero, so eFX(q*) + (d + f)[1 – FX(q*)] – c1 = 0, from which 
we finally get FX(q*) = (d – c1 + f)/(d – e + f). Notice that c0 is irrelevant to the optimization. For the values 
provided, FX(q*) = (35 – 15 + 25)/(35 – 5 + 25) = 45/55 = .8182. 
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