CHAPTER 7

Section 7.1

1.
. . N XX
a. We use the sample mean, X , to estimate the population mean u: =X = i/ % =113.73.
n
b. The quantity described is the median, fi , which we estimate with the sample median: X = the middle
observation when arranged in ascending order = the 17% ordered observation = 113.
. » Y- D (x -113.73)
c¢. To estimate o, we use the sample standard deviation, s = =l = =l =
n—1 33-1
=+/162.39 =12.74 . First-graders’ 1Q scores typically differ from the mean 1Q of 113.73 by about
+12.74 points.
d. All but three of the 33 first graders have 1Qs above 100. With “success” = 1Q greater than 100 and x =
# of successes =33, p = x_ 30 .9091.
n 33
e. A sensible estimate of o/uis 6/ g=s/x =12.74/113.73 = .112.
3. You can calculate for this data set that X =1.3481 and s =.3385.

a. We use the sample mean, x =1.3481.

b. The estimated standard error of ¥ is —— 3385

Jn 6

c. Because we assume normality, the mean = median, so we also use the sample mean X =1.3481. We
could also easily use the sample median.

=.0846.

d. For a normal distribution, the 90™ percentile is equal to u + 1.28¢. An estimate of that population 90*
percentile is £+ (1.28)6 = x +1.285 =1.3481+ (1.28)(.3385) =1.7814.

e. Since we can assume normality, P(X <1.5)=® 15-u ~ <D(15—_x = wj
o s 3385

= D(45) =.6736.
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Let 0 = the total audited value. Three potential estimators of § are él =NX, éz =T-ND, and é3 =T-

From the data, y =374.6, x =340.6, and d =340. Knowing N = 5,000 and 7= 1,761,300, the three

*<!| |

corresponding estimates are é, = (5,000)(340.6) = 1,703,000, éz =1,761,300—(5,000)(34.0) =1,591,300,

and é3 = 1,761,300(%j =1,601,438.281.

a. f=%-= 2.5 _1206_ 1006
n 10

b. Since 7=10,000x, 7 =10,0004= 10,000(120.6) = 1,206,000.

c. 8 of 10 houses in the sample used at least 100 therms (the “successes”), so p =& =.80.

d. The ordered sample values are 89, 99, 103, 109, 118, 122, 125, 138, 147, 156, from which the two
middle values are 118 and 122, so /7 =% = (118 + 122)/2 = 120.

a. E(X)=pu=E(X),s0 X is an unbiased estimator for the Poisson parameter u. Since n = 150,
Zx, (08 + (BN +...+ (7)) _ 317 _

=X = 2.11.
T 150 150
1 N2.11
b. a)?:i:ﬂ,sothe estimated standard error is |2- = X2 = 119
Jn n n 150

From the description X; ~ Bin(#1, p1) and X ~ Bin(na, p2).

Loy ] 1 1 1 P
a. E(Pl—Pz):n—E(Xl)—n—E(Xz):n—(nlpl)—n—(nzpz):pl — p, . Hence, by definition, £ — P,
1 2 1

2
an unbiased estimator of p; — pa.

S oo
n, n, n n,

1 _Pq + P49

2
n; n n )

O A A A Xy . . . .
c. With p,==L, G, =1-p,, py ==%, G, =1-p,, the estimated standard error is
n n, n ny

is

1 . . .
—2(n1 200 )+ —(n2 P29- ) = , and the standard error is the square root of this quantity.

Pd1 Py
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u=E(X) =J:l)c-.5(1+t9x)abc:—+T

Chapter 7: Point Estimation

D —D, =12—7—m=.635—.880=—.245.

200 200

\/ (635)(365)  (880)(.120) _ .
200 200

A A
First, the mgf of each X;is M = ﬂ . Then, using independence, My, ()= [A_J . Finally,

- i) 1
using X =+1ZX. and the properties of mgfs, M. (t) = M, (1¢) = = . This is
g PRy prop g () =My, 1) [ﬂ—LJ —t/ni)

precisely the mgf of the gamma distribution with o = n and f = 1/(nl), so by uniqueness of mgfs X has
this distribution.

Use Equation (4.5): With Y= X ~ Gamma(n, 1/n4),

E(/i) _ E(lj _ “l_ 1 yn—le—y/[l/nﬂ.]dy _ 1 Imyn—Ze—y/[l/nl]dy
Y) Yoy Tm)1/nr) C(n)(1/nA)" Yo

_ ;F(n 0/ Ay = I'(n —1)(;1/17)1 _ ni
L'(n)(1/nA) I'(n)(nA)" n—1
In particular, since n/(n — 1) > 1, A=1/Xisa biased-high estimator of /.
Similarly,
_ n 2
E(iz) _ E(sz _ 1 J‘ yn—se—y/[l/n/l]dy = I'(n 2)(”/2 _ (nd) ’
Y TC(n)(1/nA)" 20 I'(n)(nA)" (n-1)(n-2)

from which V(/{) =E(/i2)—[E(/€)]2 _ (n2)’ _[ ni } _ n’A’

n-D(n-2) |n-1] n-1’n-2)"
The standard error of A is the square root of the variance expression from part b. Since that expression

includes the unknown A, we must estimate 4 in the SE with A =1/% . The result is the estimated
standard error

5. = 1/12/7/:2 _ 1’12
PN m-1’n-2) \n-1’m-2)%>

1

2 3
1

L2 =—0 = 0=3u . Hence,
4 3

-1

0=3X = E(0)=EGRX)=3E(X)=3u =3Gj9:9.
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2 . XZ
a. E(X?)=26 implies that E[XTJ =6 . Consider 0 = Z‘é ~ . Then

e

2n 2n 2n

=6, implying that 6 is an unbiased estimator for .

~1490.1058

b. > x}=1490.1058, s0 0
2(10)

=74.505.

0

s &l (x-1 N ) PR o S AR
a. E(P)=), (x J'P"(l—p) =Z%~P (1-p) =Z(f_2)'p (1=p)""

x=1{r-1 po g

x=r

Make the suggested substitutions y=x—1lands=r—1,ie.x=y+landr=s+1:

. oafy-l eyl P
E(P)=Z(§_Jﬂ”l(l—p)} =p2(§_ljps(l—p) = P2 nb(yis,p)=p-1=p.

The last steps use the fact that the term inside the summation is the negative binomial pmf with
parameters s and p, and all pmfs sum to 1.

b. For the given sequence, x =5,s0 p= = g =.444.

Y

a. A=5p+.15=21=p+3,s0 p=24-.3 and ﬁ:zi—s:z(
n

2(§j—.3:.2.
80

b. E(p)= E(z;i—s) = 2E(i)—.3 =21-3=p,as desired.

j—.?); the estimate is

10 9 .
c¢. Here A1=.7p+(3)3), so p=—A—-——and p=—| — |-—.
p+(3)(3), so p =45 )4 7( j

As suggested, let u=FE (é) for notational ease. The left-hand side (the MSE) expands to
E[(6-0)*]=E[0* —200+6*]= E(0*)-20E(0)+ 6* = E(0*)-20u+6" .

The right-hand side expands to

V(O)+[EO)—0T =V(O)+[u-06T = E@*)—[EO)] + 1> —2u0 +6* = E(6*)-20u+ 6.
These two expressions are the same, so the two original quantities are equal.
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Section 7.2

25.

27.

29.

a. To find the mle of p, we’ll take the derivative of the log-likelihood function

/(p)=In Kn]p” (1 —p)”} = ln(nj+ xIn(p)+(n—x)In(1- p), set it equal to zero, and solve for p.
X X

(p) =%|:1n£ij+xln(p)+(n—x)ln(l—p):| =%— ;1__; =0=x(1 —p)=p(n—x) = p =x/n, so the

. S . X C .
maximum likelihood estimator of p is p = —, which is simply the sample proportion of successes. For
n

n=20andx =3, ﬁ=i=.15.
20

b. Since X is binomial, £(X) = np, from which g(p)= E(f) - lE(X) - l(np) = p;thus, p isan
n n n

unbiased estimator of p.

c. By the invariance principle, the mle of (1 — p)’ is just (1 — p )*. For n = 20 and x = 3, we have (1 —.15)
= .4437.

, ;. : = 0+
a. E(X)= le(e +1)x’dx = ﬂ, so the moment estimator & is the solution to X = ?; , yielding
0 O+2 0+2

b= 2 Since ¥=.80,0=5-2=3.
1-X

b, f(%,00%,30)=(0+1) (x,x,...x, )’ , s0 the log likelihood is £(6) =nIn(@+1)+6) In(x,). Taking

the derivative and equating to 0 yields —— = -3 In(x. , SO O=——""___1. TakingIn x;) for
quating to 0 yields —=— > In(x,) S (x) g In(x))

each given x; yields ultimately 6=3.12.

The number of helmets examined, X, until » flawed helmets are found has a negative binomial distribution:
X ~NB(r, p). To find the mle of p, we’ll take the derivative of the log-likelihood function

x—1 r x—1 .
Up)= an Jpr (1-p) } = ln( 1]+r1n(p)+(x—r)ln(l—p), set it equal to zero, and solve for p.
r— r—

'(p) :;—p|:ln(f:i]+rln(p)+(x—r)ln(1—p)}

r X—r _

. 0=r(1-p)=(x-rp=p=r/x,sothe

mle of pis p = % . This is the number of successes over the total number of trials; with » =3 and x = 20,
p=.15. Yes, this is the same as the mle of p based on the binomial model in Exercise 25.

. . . . on -1 L. .
In contrast, the unbiased estimator from Exercise 19 is p = h , which is not the same as the maximum

likelihood estimator. (With » =3 and x = 20, the calculated value of the unbiased estimator is 2/19, rather
than 3/20.)
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Since the X; are independent, the likelihood function is

1 -x7 /20 1 -x; /20 -n/2 -3x7/20
LO)= [ (x5 %,30) = [(%;0) [ (x,30) = =€ - e T =02n0)" e
! ! ~2né \2no
((6) = I[L(O)] = In[ (216) "¢ | =~ 2 In(2m) - 2 In(0) - 2%
2 2 26

g'(g)zo_ﬁ.lJr&:O:}L:zxiz jaszz

> > L It’s easy to show this is the local maximum
268 20 20 20 n

2
in

n

S

of the log-likelihood function; hence, the mle of & is 0=

By the invariance principle, the mle of z=1/01is 7 =1/ 0=

n . 2 H . 2
The likelihood function is L(0) = f(x,...,x,;0) = H%e**' e - e—ff‘e*”' 129 “so the log-likelihood
i=1
. Tx! . .
function is /(@) = In[L(8)] = In[I1x,]-nIn(6)— 29’ . To find the mle of @, differentiate and set equal
’ x A T
to zero: 0=/'(0) = 0—£+% =>0= 2xl . Hence, the mle of O is 8 = le , identical to the unbiased
n n

estimator in Exercise 17. In particular, they share the same numerical value for the given data: 0 =
74.505.

n 2
— - 1(20)
. =l-e ;

X 7)[2 7x2
The median # of the Rayleigh distribution satisfies .5 = J:Ee 1N dx = —e7 2%

solving for 7 gives 17 =+/—21In(.5)@ . (Since In(.5) < 0, the quantity under the square root is positive.)

By the invariance principle, the mle of 77 is 7 =4/—2 ln(.S)é =,/~In(.5)Zx’ / n . For the given data, the

maximum likelihood estimate of # is 10.163.

35. The likelihood is f'(y;n, p)= (njpy (1-p)"™" where p=P(X >24)= 1—I24 Ae Pdx =e . We know
y 0

2 so by the invariance principle p=e>* = 1= —lg% =.0120 for n =20, y=15.
n
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37.
a. The pdf is symmetric about 8, so £(X) = 6. Hence the mme of 8 is 0=X.

b. L@)=e ..o = % While this isn’t a differentiable function with respect to 6, we can

-3[x,—0|

exploit the hint. The function e is maximized precisely when X | x, — 8| is minimized (because of

the negative sign), and X | x, — 6| is minimized by 8 = X . Therefore, the maximum likelihood

estimator of is 6= X .

Section 7.3

39. Each X; ~ Bin(k, p) and they’re independent, so T~ Bin(nk, p). The question is whether T is sufficient for p.
P(X, =x,.,X,=x) _
P(T =3x,)

o i (e
plq ... p”q n ces p ’q i e
X1 Xn X1 Xy X1 Xn

= = . This conditional distribution

nk Ix,  nk—Xx, nk T, nk—Xx; nk
Xx; P Xx; P Xx;

does not depend on p, so T is sufficient for p. That is, statistician A really doesn’t have more information
about p than statistician B.

Let’s find out: P(X=(x,,...,x,)|T =2x;) =

] o n fzfle—x‘ /B [H)C ]0:71 e—ZV, /B )

41. Re-write the joint pdf: f(x,,...x,;a, ) = H - = - .Let g(Ilx;,Zx;;a, B) be this
o D@)p [M(e)pT

entire expression (and / = 1 vacuously). Then, by the factorization theorem, IT X; and > X; are jointly

sufficient for a and £.

. . xi _1 X —r 'xi _1 x; —nr
43. The joint pmfis p(x,,...,x,; p) = | | 1 pA-p) ' = | | { p" (- p)~ " . (Remember that
r— r—

x,—1
r—

both 7 and r are known.) Let g(2x,, p) = p" (1- p)™ " and h(x,,....x,) = H( lj , which does not

depend on p. Then, by the factorization theorem, > X; is sufficient for p.

45, Let I(A) denote the indicator of an event. Then

n 1
yeenX,36,) =
S(x50x,560) 1;[20_9

=07"1(6 <min{x,} "max{x,} < 20)

Set g equal to this entire expression and / = 1. By the factorization theorem, (min{X;}, max{X;}) are jointly
sufficient for 6, and 6-.

J(@<x <20)=0"1(0<x,,...x, <20)



Chapter 7: Point Estimation

47. Let Y be the number of items in your sample of 2 that work, so that ¥ ~ Bin(2, p), and define U= (Y = 1).
Then E[U] = P(Y = 1) = 2pq. Applying the Rao-Blackwell Theorem, condition on the sufficient statistic
X = x to give the improved estimator U* = E[U | X=x]=P(Y=1| X=x). Let’s determine U* explicitly.

X — Y is the number of working items in the last n — 2 components, so X — ¥ ~ Bin(n — 2, p) and X — Y is
independent of Y. Therefore,
PY=1nX=x) PY=INnX-Y=x-1)

P(X=x) P(X =x)
_PY=)P(X-Y=x-1)
B P(X =x)

2 11 n-2 x=1_n-2—-(x-1) 2)(n=-2
_(1)”&—1)” 1 lx-1) 2x(n-w)

B m s (nj -1y
pq
X X

49, The Rao-Blackwell Theorem implies that a sufficient statistic has minimum variance among all unbiased
estimators. Any statistic not purely a function of the sufficient statistic must necessarily have greater
variance. Since X is sufficient for u (while S? isn’t), X must have the least variance among the unbiased
estimators X , $%, and 4 = (X +S7%)/2. Notice we can determine this without knowing the variances of the

last two estimators (which cannot be easily found)!

Us=P(Y =1|X =x)=

independence

Section 7.4

51.
-l , X-1 1
a. Jsp)==p)yp=Up)=Wlf(X;p)]=(X=Dn(=p)+In(p) = (p)=—T—+—=
, X-1 1 ) EX)-1 1 1/p-1 1 1 i
U"(p)=—-——=—-—5=1(p)=E[-L"(p)]= () —t+—= P >+— =———. That’s
a-p)y »p -py p° (d=py p° pd-p)
. y . ‘ , X-1 1 1Y
using the definition (7.5); using (7.6) instead, I(p)=V({'(p)) =V 7 +—|= 1, V(X) =
-pP b -p
1 1-p . . .
= . In this case, (7.6) is more straightforward.
d=-p p° p(I-p)
b. By the additive principle of information, /,(p)=n-I1(p) = zL
p (d=p)
. . ‘ : p(l-p)
¢. The C-R lower bound for the variance of an unbiased estimator of p is () = .
2P n
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If we ignore the boundary and say f(x; 8) = 1/6, then
0(6)=-1In(0),0'(6)=-1/6, and I(8) = E[('(0))’ 1= E[1/6°1=1/6".

92
nl(0) n
6* /[n(n+2)]< 6% /n and 6* / (3n) <6 / n. This does not violate the Cramér-Rao theorem, however,
because the boundaries of the uniform variable X include @ itself! In these circumstances, Fisher
information is not well-defined, and the theorem does not apply. (Note, for example, that if we used
the V(£'(0)) version of Fisher information in a, we’d get zero because ¢'(#) is constant.)

The Cramér-Rao lower bound is

With o known, ((u)=C =Y (x,— )’ /207 ,s0 £'(1)=2) (x,—p)' /20" =0=
Z(xi W)= in —nu=0=>u= le. /n=X% (unsurprisingly).

Since the original X’s are normal, we know that X is normal, with mean y and variance o%/n.

For a single observation, our work in a shows that ¢'(u) = (X — i)/ ¢’ , so
I(W)=V((X-p)/c>)=V(X)/c*'=0c>/c"=1/0c". Hence the Cramér-Rao lower bound is
1 o’

=—, which is precisely (X ). So X is indeed efficient.
nl(p) n

The answer to b and the suggested asymptotic distribution agree.

In terms of x and o, In[A(x; 6)] = C — In(0) — (x — )?/26> = V'(c)=-1/c+(X -p) /o’ =
"(e)=1/0"-3(X-pu) /o' =I(c)=-1/c>+3E[(X - )’/ c* =-1/06"+3c> /c* =2/0".

Yes, Fisher information does depend on the parameterization: the answer in a is different from the
answer, 1/(26%), from the previous exercise.

For the geometric distribution, =1/ p and ¢® =(1-p)/ p*. Thus E(X)=u=1/p and
V(X)=0c/n=(1-p)/np*.

From Exercise 51, Fisher information from a random sample is n/ p*(1— p) . For any statistic whose

expectation is A(p) =1/ p, the Cramér-Rao lower bound on the variance is given by
(W(p)I _ [-U/pT _ 1 p’d-p)_(1-p)

RN >

I(p) nlp*(d-p) p* n np

Yes: Since V' (X) exactly matches the Cramér-Rao lower bound from part b, X is an efficient
estimator of 1/p.
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Supplementary Exercises

61. Let x; = the time until the first birth, x, = the elapsed time between the first and second births, and so on.
Then f(x,....x,;4)=2Ae ™ -(24)e " ...(nA)e™™ =nlA"e”™" . Thus the log likelihood is

. d . . A n
In(n!)+nln(A)-AZkx, . Taking — and equating to 0 yields A =
( ) ( ) & g ) quating y S

k

For the given sample, n =6, x; =25.2,x, =41.7-252=16.5,x3=9.5, x4 =4.3,xs = 4.0, x6 = 2.3; s0
6

kak =(1)(25.2)+(2)(16.5) +...+(6)(2.3) =137.7 and A= % =.0436.

k=1 .

63. The first moment of the Beta distribution is E(X) = Lﬂ’ while the second moment is more complicated:
a+

E(X*)=V(X)+[E(X)T = ap { “ } @)y first and second
(a+pB)y (a+p+D) |a+p (a+p)a+p+])

sample moments are X :%(.873+---+.618) =.565 and lef =%(.8732 +--+.618%)=.359161.
n

To determine the method of moments estimates, let ¢ =a + £ and solve a/c=.565, a(a+1)/c(c+1) =
.359161. The solutions are o = 2.912 and ¢ = 5.154, from which f = ¢ — a = 2.242. Therefore, the method of
moments estimates are & =2.912 and ﬁ =2.242.

65. Example 7.8 shows that E(6%)=c(n—-1)c”* and V(6?)=2c*(n—1)c* . From these,
MSE(6%) =V (6*)+[E(6*)-c’T =2c*(n—1)c* +[c(n—1)c” -]
=2 (n-Do* +F(n-1)’c* —=2c(n-o' +o*
=[(n* =Dc* -2(n-1c+1]c*
To minimize the MSE, differentiate the expression in brackets with respect to ¢ and solve for c:

@ = L, as claimed.
2(n”—-1) n+l

2(n° =)' -2(n-1)+0=0=>c=
67. The median of the 16 values in Example 7.2 is X = 985. The values of | x, —X| are 29, 11, 5,5, 3,2,2, 0,0,

0,2,2,10, 14, 15, 22. When these 16 values are sorted, the middle two are 3 and 5, so the median of these
absolute differences is 4, and 6 = 4/.6745 = 5.93. The sample standard deviation of the original 16 values
is substantially larger, at s = 11.66. (The unusually low value 956 may be affecting s.)

69.
n 1 _(xi—ai) 1 _i-mi) 1 7[2(”7”" Pex(vi-ai )z)
a. The likelihood is TT e ¥ e ¥ = ¢ 2° . The log likelihood
=\ 270 270 (27r0'2yl
vt P (e P . d . A Xty
is thus —nln(27za2 )— Zlo=) +§(y’ ) . Taking —— and equating to zero gives (I, = 4 .
20 dﬂ, 2

Substituting these estimates of the £, ’s into the log likelihood gives

10
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2 2
—nln(2ﬁaz)—#(2[xi —x’;y’) +Z(y,. % ;y"] J :—nln(2ﬂ62)—#(%2(xi —y,,)Q). Now

. d . . . .
taking 2o equating to zero, and solving for o gives the desired result.
o

b. E(6%)= EZ(Xi—Yl.)z):%.ZE(Xi—Yi)z,but
n

~Y)+[E(X,~Y)] =20 +0=20". Thus

. 1 1 ’ : , , .
E (0'2 ) =—3 (20‘2 ) =—2n0" =2 50 the mle is definitely not unbiased; in fact, the expected value
4n 4n 2

of the estimator is only half the value of what is being estimated! An unbiased estimator is easily
obtained: 267.

Given Y = y, the investigator must have tested y individuals among whom r are allergic and y — r aren’t. Let

x be any sequence of y 0’s and 1’s with exactly (y — ) 0’s and » 1’s. Then

P((X,,.., X,) =X)
P(Y =y)

product of exactly (y — ) ¢’s and exactly r p’s. The denominator is a negative binomial probability.

Continuing,

. By independence of the X;’s, the numerator is just the

P((X,,os X,)=X|Y = y) =

r_y-r 1
P((X,...X ) =x|Y=y)= rd = , which does not depend on p. Therefore, by definition

vl re |7 !

r—1 r—1
Y is sufficient for p. Knowing the order in which allergy and non-allergy sufferers arrive does not help
estimate p.

Be careful here: 6 is the MLE of ¢ and not the sample standard deviation! In other words, use n = 3 rather
than #n — 1 =2 in your denominator. With the information provided, ¢ = 150, 4 =X =150.40, 6 =3.06, k=

V3/2,w=-1307, and kw = —.16. Hence, the MVUE for 6 is
P(T<-16(1)/4/1- (—.16)2 )= P(T<-.1621), where T ~ ¢;. Software gives .448 for this probability.

In contrast, we may also write 8 = P(X < ¢) = ®((c — w)/o), from which, by the invariance principle, the
MLE of §is ®((c— )/ &)= O(w) = O(—.16) = .4364.

_ U e d@ e d@
E[d(X)] =) d(x) = > il > .
Taylor series, these can only be equal if d(X) = (~1)*. While unbiased, this estimator is ridiculous: if X
happens to be even, we estimate the probability € to be 1 (no matter whether X = 0 or X=200). If X
happens to be odd, we estimate 6 to be —1!!

= Z (—,u') . From the uniqueness of
x!

11
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The points do not fall perfectly on a straight line through the origin, but they come very close to fitting
the line y = 30x.

1
The joint pdf here is (27[62 )7”/2 exp{— 2—22 (y; = Px; )2} , and so the log-likelihood function is
o

v - ,Bxi)z
- g InQ2zc?) - 2% Z (y; — ,Bxl-)z =C-nln(o)- Z—z . First, differentiate with respect
o

20
3200 - Br)-Px) _

207

XXV

fo

to f and solve: 0= ,B =

. Next, differentiate with respect to o and

—Bx)’ (v —/}xi)z p
solve: —£+M = 6% = Z— . For the data provided, £ =30.040, the
c o n

estimated minutes per item, and &2 = lZ(yi - ,Bxi)2 =16.912. When x =25, we predict y = ,3(25) =
n
571.

12
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