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CHAPTER 7 
Section 7.1 
 
1.  

a. We use the sample mean, x , to estimate the population mean μ: 3753ˆ
33

ix
x

n
µ

Σ
= = = = 113.73. 

 
b. The quantity described is the median, µ , which we estimate with the sample median: x = the middle 

observation when arranged in ascending order = the 17th ordered observation = 113. 
 

c. To estimate σ, we use the sample standard deviation, 
33

1 1
2 2) 113.73)( (

1 33 1
i i

n

i i
xx x

s
n

= =
−

=
− −

−
=∑ ∑ = 

162.39 12.74= = . First-graders’ IQ scores typically differ from the mean IQ of 113.73 by about 
±12.74 points. 

 
d. All but three of the 33 first graders have IQs above 100. With “success” = IQ greater than 100 and x = 

# of successes = 33, 30ˆ
33

xp
n

= = = .9091. 

 
e. A sensible estimate of σ/µ is  ˆ ˆ/ /s xσ µ =  = 12.74/113.73 = .112. 

 
 
3. You can calculate for this data set that 1.3481x =  and s = .3385. 

a. We use the sample mean, 1.3481.x =  
 

b. The estimated standard error of x  is .3385 .0846.
16

s
n
= =  

 
c. Because we assume normality, the mean = median, so we also use the sample mean 1.3481x = .  We 

could also easily use the sample median. 
 
d. For a normal distribution, the 90th percentile is equal to µ + 1.28σ. An estimate of that population 90th 

percentile is ( )( )ˆ ˆ(1.28) 1.28 1.3481 1.28 .3385 1.7814x sµ σ+ = + = + = . 
 

e. Since we can assume normality, 1.5 1.5 1.3481( 1.5)
.33

1.5
85

xP X
s

µ
σ
− Φ Φ Φ

− −   < = ≈ =   
  


 

 

(.45) .6736Φ= = . 
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5. Let θ = the total audited value. Three potential estimators of θ are XN=1̂θ , DNT −=2θ̂ , and 
Y
XT ⋅=3θ̂ . 

From the data, y = 374.6, x = 340.6, and d = 34.0. Knowing N = 5,000 and T = 1,761,300, the three 

corresponding estimates are 000,703,1)6.340)(000,5(1̂ ==θ , 300,591,1)0.34)(000,5(300,761,1ˆ
2 =−=θ , 

and 281.438,601,1
6.374
6.340300,761,1ˆ

3 =





=θ . 

 
 
7.  

a. 1206ˆ 120.6.
10

ix
x

n
µ = = = =∑  

 
b. Since τ = 10,000µ, ˆ 10, 0 ˆ00 µτ = = 10,000(120.6) = 1,206,000. 
 
c. 8 of 10 houses in the sample used at least 100 therms (the “successes”), so 8

10ˆ .80.p = =  
 
d. The ordered sample values are 89, 99, 103, 109, 118, 122, 125, 138, 147, 156, from which the two 

middle values are 118 and 122, so ˆ xη =  = (118 + 122)/2 = 120.  
 

 
9.  

a. ( ) ( ),E X E Xµ= = so X  is an unbiased estimator for the Poisson parameter μ. Since n = 150, 
(0)(18) (1)(37) ... (7)(1) 317 2.11

150
ˆ

150
ix

n
xµ + +

=
+

=
Σ

== = . 

 

b. X n n
σ

µσ
= = , so the estimated standard error is 2.11 .119

150
ˆ
n
µ
= = . 

 
 
11. From the description X1 ~ Bin(n1, p1) and X2 ~ Bin(n2, p2). 

a. ( ) ( ) ( )1 2 1 1 2 2 1 2
1 2 1 2

1 2
1ˆ ˆ 1 1 1( ) ( )E E X E X n p n p p p

n n n
P

n
P− = − = − = − . Hence, by definition, 1 2

ˆ ˆP P−  is 

an unbiased estimator of p1 – p2. 
 

b. ( )
2 2

1 2
1 2

1

2
1 2

2 1 2

1 1( 1) ( ) ( )ˆ ˆ X XV V V V X V X
n n n

P
n

P
       

− = + − = +       
       

=

( ) ( ) ,11

2

22

1

11
2222

2
1112

1 n
qp

n
qpqpn

n
qpn

n
+=+  and the standard error is the square root of this quantity. 

 

c. With 
1

1
1ˆ

n
x

p = , 11 ˆ1ˆ pq −= , 
2

2
2ˆ

n
x

p = , 22 ˆ1ˆ pq −= ,  the estimated standard error  is 
2

22

1

11 ˆˆˆˆ
n

qp
n
qp

+ . 
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d. 1 2
127 176ˆ ˆ .635 .880 .245
200 200

p p− = − = − = − . 

 

e. 041.
200

)120)(.880(.
200

)365)(.635(.
=+ . 

 
 
13.  

a. First, the mgf of each Xi is ( )
iX t

t
M λ

λ
=

−
 . Then, using independence,  ( )

i

n

XM t
t

λ
λΣ

 =  − 
. Finally, 

using 1
inX X= Σ  and the properties of mgfs, 1

1

1(
(1 /

( ) )
)i

n

X nX n
n

tM
t

M t
t n

λ
λ λΣ =

 


−
= = 

− 
 . This is 

precisely the mgf of the gamma distribution with α = n and β = 1/(nλ), so by uniqueness of mgfs X has 
this distribution. 
 

b. Use Equation (4.5): With Y = X  ~ Gamma(n, 1/nλ), 
1 /[1/ ]

0 0

2 /[1/ ]

1
1

1 1 1ˆ)
( )(1/ ) ( )(1/ )

1 ( 1)( )( 1)(1/ )
1( )(1/ ) ( )( )

1( n y n n y n
n n

n
n

n n

y dy y dy
y n n

E
n n

n n nn n
nn n n

e
Y

n

E e λ λλ
λ λ

λ λλ
λ λ

∞ ∞− − − −

−
−

⋅
Γ Γ

 

Γ −
Γ

= = = 
 

−
−

= =
Γ Γ

=

∫ ∫
  

In particular, since n/(n – 1) > 1, ˆ 1/ Xλ = is a biased-high estimator of λ. 
Similarly, 

0

2
2 3 /[1/ ]

2 2

1 ( 2)( ) ( )ˆ )
( 1)( 2)( )(1/

1
) ( )( )

(
n

n y n
n n

n n ny dy
n nn

E E e
Y n n n

λ λ λλ
λ λ

∞ − −
−

 = = = = 
 

Γ −
=

− −Γ Γ∫  , 

from which 
22 2 2

2 2
2

( )ˆ ˆ ˆ) ( ) [ ( )]
( 1)( 2) 1 ( 2)

(
( 1)

n nE E
n n

V
n n

n
n

λ λ λλ λ λ  = − −  − −
=

−− − 
=  . 

 
c. The standard error of λ̂ is the square root of the variance expression from part b. Since that expression 

includes the unknown λ, we must estimate λ in the SE with ˆ 1/ xλ = . The result is the estimated 
standard error  

2 2 2

ˆ 2 2 2

ˆ

( 2 (( 1) ( 2)1))
n ns

n n n xnλ

λ
=

− −
=

− −
. 

 
 

15. ( )
12 31

1
1

1( ) .5 1
4 6 3
x xE X x x dxµ θθ θ

−
−

= ⋅ + = + == ∫ ⇒ θ = 3μ . Hence, 

1ˆ ˆ3 ( ) (3 ) 3 ( ) 3 3 .
3

X E E X E X µθ θ θ θ = ⇒ = = = = = 
 
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17.   

a. 2( ) 2E X θ=  implies that 
2

2
XE θ

 
= 

 
.  Consider 

2
ˆ

2
iX

n
θ = ∑ .  Then 

( ) ( )22 2 2ˆ
2 2 2 2

ii E XX nE E
n n n n

θ θθ θ
 

= = = = =  
 

∑∑ ∑ , implying that θ̂  is an unbiased estimator for θ. 

 

b. 2 1490.1058ix =∑ , so 1490.1058ˆ 74.505.
2(10)

θ = =  

 
 
19.  

a. ( ) ( ) ( ) ( )
2 !11( ) 1 1 1

11 ( )!
2ˆ
2( 2)!

x r x r x rr r r

x r x r x r

x
P

xxrE p p p p p p
rx x r r r

∞ ∞ ∞
− − −

= = =

−−   −
= ⋅ ⋅ ⋅ − = ⋅ ⋅ − = ⋅ ⋅ −   −− − −   

−
−∑ ∑ ∑  . 

Make the suggested substitutions y = x – 1 and s = r – 1, i.e. x = y + 1 and r = s + 1: 

( ) ( )11 1
( 1 1 ( ;ˆ , ) 1

1 1
) y s y ss s

y s y s y s

y y
E p p p p p p nb y s p p

s
P p

s

∞ ∞ ∞
− −+

= = =

− −   
− = − = = ⋅ =   − −   

= ∑ ∑ ∑ .  

The last steps use the fact that the term inside the summation is the negative binomial pmf with 
parameters s and p, and all pmfs sum to 1. 

 

b. For the given sequence, x = 5, so 5 1 4ˆ .444.
5 5 1 9

p −
= = =

+ −
 

 
 

21.  

a. .5 .15 2 .3p pλ λ= + ⇒ = + , so 2 .3p λ= −  and ˆˆ 2 .3 2 .3;Yp
n

λ  = − = − 
 

  the estimate is 

202 .3 .2
80

  − = 
 

. 

 
b. ( ) ( )ˆ ˆˆ( ) 2 .3 2 .3 2 .3E p E E pλ λ λ= − = − = − = , as desired. 

 

c. Here  .7 (.3)(.3),pλ = +  so 10 9
7 70

p λ= −  and 10 9ˆ
7 70

Yp
n

 = − 
 

. 

 
 
23. As suggested, let ˆ( )Eµ θ= for notational ease. The left-hand side (the MSE) expands to 

2 2 2 2 2 2 2ˆ ˆ ˆ ˆ ˆ ˆ) ] [ ] ( ( ) ()[( 2 2 ) 2EE E E Eθ θ θ θθ θ θ θ θ θ θ θµ θ− −− −= + = + += . 
The right-hand side expands to 

2 2 2 2 2 2 2 2ˆ ˆ ˆ ˆ ˆ ˆ) [ ( ) ] ) [ ] ) 2[ (( ( ( () ) 2]V EE EV Eθ θ θ θ µ θ θ θ µ µθ θ θ θµ θ+ − + − − += + − − += = . 
These two expressions are the same, so the two original quantities are equal. 
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Section 7.2 
 

25.  
a. To find the mle of p, we’ll take the derivative of the log-likelihood function 

( ) ( ) ( ) ( )ln 1 ln( ln) ln 1n xxn n
p p x p p

x
p n x

x
−    

− = + + − −    
    

=
, set it equal to zero, and solve for p. 

( ) ( ) ( )ln ln( ) ln 1
1

nd x n xx p n x p
xdp p

p
p

   −
+ + − − = −  ′

  
=

−


= 0 ⇒ x(1 – p) = p(n – x) ⇒ p = x/n, so the 

maximum likelihood estimator of p is ˆ Xp
n

= , which is simply the sample proportion of successes. For 

n = 20 and x = 3, 3ˆ
20

p = = .15. 

b. Since X is binomial, E(X) = np, from which ( ) ( )1( ˆ 1) XE E E X np p
n n n

p  = = = = 
 

; thus, p̂  is an 

unbiased estimator of p. 
 
c. By the invariance principle, the mle of (1 – p)5 is just (1 – p̂ )5. For n = 20 and x = 3, we have (1 – .15)5 

= .4437.  
 
27.  

a. ( )
1

0

1( ) 1
2

E X x x dxθ θθ
θ
+

= + =
+∫ , so the moment estimator θ̂  is the solution to 

ˆ 1
ˆ 2

X θ
θ
+

=
+

, yielding 

1ˆ 2
1 X

θ = −
−

.  Since ˆ.80, 5 2 3x θ= = − = . 

 
b. ( ) ( ) ( )1 1 2,..., ; 1 ...n

n nf x x x x x θθ θ= + , so the log likelihood is ( ) ( )1( l) ln n in xθθ θ+ += ∑ .  Taking 

the derivative and equating to 0 yields ln( )
1 i

n x
θ

= −
+ ∑ , so ˆ 1

ln( )i

n
X

θ = − −
∑

.  Taking ln(xi) for 

each given xi yields ultimately ˆ 3.12θ = . 
 
 
29. The number of helmets examined, X, until r flawed helmets are found has a negative binomial distribution: 

X ~ NB(r, p). To find the mle of p, we’ll take the derivative of the log-likelihood function 

( )
1 1

ln 1 ln ln( ) ( ) ln(1 )
1 1

( ) x rrx x
p pp r p x r p

r r
− −  −   

− = + + − −    − −   
=

 


, set it equal to zero, and solve for p.  

1
ln ln( ) ( ) ln(1 )

1 1
( )

xd r x rr p x r p
rdp p p

p
 −   −

+ + − − = −  − − 
′ =




 = 0 ⇒ r(1 – p) = (x – r)p ⇒ p = r/x, so the 

mle of p is ˆ rp
X

= .  This is the number of successes over the total number of trials; with r = 3 and x = 20,  

p̂ = .15. Yes, this is the same as the mle of p based on the binomial model in Exercise 25. 

In contrast, the unbiased estimator from Exercise 19 is 1ˆ
1

rp
X
−

=
−

, which is not the same as the maximum 

likelihood estimator. (With r = 3 and x = 20, the calculated value of the unbiased estimator is 2/19, rather 
than 3/20.) 
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31.  
a. Since the Xi are independent, the likelihood function is  

2 22
1 /2/2 /2 /2

1 1
1 1) ( ,..., ) ( ; ) ( ;( ; ) 2π )

2 π
(

π 2
inxx n

n
x

nf x x f x f x e eeL θ θθθ θ θ θ θ
θ θ

−− − −Σ= = = =   . 

 

b. 
2 /2

2
/2) ln[ ( )] ln 2π ) ln(2π) ln( ( )

2 2
(

2
i in x ne

xnL θθ θ θ θ
θ

−− Σ = = = − − − 
∑

 . 

 

c. 
2 2 2

2 2

1) 0
2 22

( 0
2

i i ix x xn n
n

θ θ
θ θθ θ

= − ⋅ + = ⇒ ⇒= =′ ∑ ∑ ∑
 . It’s easy to show this is the local maximum 

of the log-likelihood function; hence, the mle of θ is 
2

ˆ ix
n

θ = ∑ . 

d. By the invariance principle, the mle of τ = 1/θ is 2
ˆˆ 1/

i

n
X

τ θ= =
∑

 . 

 
 
33.  

a. The likelihood function is 
2 2/ (2 ) / (2 )

1
1

) ( ,. ;( .., ) i i

n
x xi i

n n
i

x x
f e eL x x θ θθ θ

θ θ
− −Σ

=

Π
= = =∏ , so the log-likelihood 

function is 
2

) ln[ ( )] ln[ ] ln( )
2

( i
i

x
L x nθ θ θ

θ
Σ

= = Π − −  . To find the mle of θ, differentiate and set equal 

to zero: 
2 2

2 2
0 ( )

2
0 i ix xn

n
θ θ

θ θ
Σ Σ

= − + ⇒ =′=  . Hence, the mle of θ is 
2

ˆ
2

ix
n

θ
Σ

= , identical to the unbiased 

estimator in Exercise 17. In particular, they share the same numerical value for the given data: θ̂  = 
74.505. 
 

b. The median η of the Rayleigh distribution satisfies 
2 2 2

0

/ (2 ) / (2 ) / (2 )

0
.5 1x xx e e edx

ηη θ θ η θ

θ
− − −= = − = −∫  ; 

solving for η gives 2 ln(.5)η θ= − . (Since ln(.5) < 0, the quantity under the square root is positive.) 

By the invariance principle, the mle of η is 2ˆˆ 2 ln(.5) ln(.5 /) i nxη θ= − = − Σ . For the given data, the 
maximum likelihood estimate of η is 10.163. 

 
 

35. The likelihood is ( ) ( ); , 1 n yyn
f y n p p p

y
− 

= − 
 

 where ( )
24 24

0
24 1 xp P X e dx eλ λλ − −= ≥ = − =∫ .  We know 

ˆ yp
n

= , so by the invariance principle ˆ24 ˆlnˆˆ .0120
24

pp e λ λ−= ⇒ = − =  for n = 20, y = 15. 
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37.  
a. The pdf is symmetric about θ, so E(X) = θ. Hence the mme of θ is ˆ Xθ = . 

 
b. 1 | | | || |)( n ix xxL e e eθ θθθ − − −Σ −− −= = . While this isn’t a differentiable function with respect to θ, we can 

exploit the hint. The function | |ixe θ−Σ −  is maximized precisely when | |ix θΣ −  is minimized (because of 
the negative sign), and | |ix θΣ −  is minimized by θ = x . Therefore, the maximum likelihood 

estimator of θ is ˆ Xθ =  . 
 

Section 7.3 
 
39. Each Xi ~ Bin(k, p) and they’re independent, so T ~ Bin(nk, p). The question is whether T is sufficient for p. 

Let’s find out: 1 1
1

( ,..., )
( ( ,..., ) | )

( )
n n

n i
i

P X x X x
P x x T x

P T x
= =

= = Σ =
= Σ

X  = 









Σ


















=









Σ


















=









Σ


















Σ−Σ

Σ−Σ

Σ−Σ

−−

i

n

xnkx

i

xnkx

n

xnkx

i

xkx

n

xkx

x
nk

x
k

x
k

qp
x

nk

qp
x
k

x
k

qp
x

nk

qp
x
k

qp
x
k

ii

ii

ii

nn


111

11

. This conditional distribution 

does not depend on p, so T is sufficient for p. That is, statistician A really doesn’t have more information 
about p than statistician B. 

 

41. Re-write the joint pdf: 
/1 / 1

1
1

[ ]
( ; , )

( ) [
.

(
, .,

) ]

i ix xn
i

n
i

i
n

x e x e
f xx

α β βα

α αα β
α β α β

− − −Σ−

=

Π
= =

Γ Γ∏ . Let ),;,( βαii xxg ΣΠ  be this 

entire expression (and h = 1 vacuously). Then, by the factorization theorem, Π Xi and ∑ Xi  are jointly 
sufficient for α and β. 

 

43. The joint pmf is 1

1 1
,..., ; ) (1 ) (1 )

1
(

1
i ii ix r x nrr nr

np
x x

x p p pp
r

x p
r

− Σ −   
   


−  − 
= − = −

−   −∏ ∏ . (Remember that 

both n and r are known.)  Let (( , )) 1 ix nrnr
ig p px p Σ −−=Σ  and 1

1
,..., )

1
( i

n

x
h

r
x x

 −
=

−


 
 

∏ , which does not 

depend on p. Then, by the factorization theorem, ∑ Xi  is sufficient for p. 
 

 
45. Let I(A) denote the indicator of an event. Then  

1 1
1

1,..., ,..., )

max{ 2 )

1( ; ) ( 2 ) ( 2
2
( min{ } }

n
n n

n

n

i

i

i

i

f

I

x x

x

x

x

x I x Iθ θ
θ

θ θ θ θ
θ

θ θ θ

−

−

=

= <

∩

< = <

<= <

<
−∏  

Set g equal to this entire expression and h = 1. By the factorization theorem, (min{Xi}, max{Xi}) are jointly 
sufficient for θ1 and θ2. 
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47. Let Y be the number of items in your sample of 2 that work, so that Y ~ Bin(2, p), and define U = I(Y = 1). 
Then E[U] = P(Y = 1) = 2pq. Applying the Rao-Blackwell Theorem, condition on the sufficient statistic     
X = x to give the improved estimator U* = E[U | X = x] = P(Y = 1 | X = x). Let’s determine U* explicitly. 
 
X – Y is the number of working items in the last n – 2 components, so X – Y ~ Bin(n – 2, p) and X – Y is 
independent of Y. Therefore,  

1 1 1 2 ( 1)

( 1 ( 1* ( 1| )
( ) ( )

( 1   independence
( )

) 1

.

)

) ( 1)

2 2 2 2
1 1 21 1 ( )

( 1)

x n x

x n x

P Y P YU X x X Y x

P X Y x

n

p
x

P Y X x

n
q p q

x x

P X x P

n

X x
P Y

P X x

p
x n x

x
nn

q
n

− − − −

−

= =
= = = = =

= =
=

=
=

      
       −      = = =

−   
   


∩ = ∩ − = −

− = −

−
−



−



−



 

 
 
49. The Rao-Blackwell Theorem implies that a sufficient statistic has minimum variance among all unbiased 

estimators. Any statistic not purely a function of the sufficient statistic must necessarily have greater 
variance. Since X is sufficient for μ (while S2 isn’t), X must have the least variance among the unbiased 
estimators X , S2, and 2ˆ ( ) / 2X Sµ = + .  Notice we can determine this without knowing the variances of the 
last two estimators (which cannot be easily found)! 

 

Section 7.4 
 
51.  

a. 1( ; ) (1 ) ln[ ( ; )] ( 1) ln(1 ) ln( 1 1( ) ( )
1

)xf x p p p f X p X pp p Xp
p p

− −′= = − ⇒⇒
−

= − = − − + ⇒ +   

2 2 2 2 2 2 2

1 1 ( ) 1 1 1/ 1 1 1( ) ( ) [ ( )]
(1 ) (1 ) (1 ) (1 )

X E X pp I p E p
p p p p p p p p
− − −′′ ′′= − − ⇒ = − = + = + =

− − − −
  . That’s 

using the definition (7.5); using (7.6) instead, 
2

1 1 1( )))
1

(
1

) ( (Xp V
p p

I p V V X
p

   −′ = − + = −  = − −   
  = 

2 2 2

1 1 1
(1 ) (1 )

p
p p p p

−
⋅ =

− −
.  In this case, (7.6) is more straightforward. 

 

b. By the additive principle of information, 2( ) ( )
(1 )n
np n I p

p p
I = ⋅ =

−
. 

 

c. The C-R lower bound for the variance of an unbiased estimator of p is 
2 (1

(
1 )

)n

p
p nI

p−
= . 
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53.  
a. If we ignore the boundary and say f(x; θ) = 1/θ, then 

2 2 2( ) ln( ), ( ) 1/ ,  and ( ) [ ] [1/ ] 1)) /( (I E Eθ θ θ θ θ θ θ θ′ ′= − = − = = =   . 

b. The Cramér-Rao lower bound is 
2

)
1
(nI n

θ
θ

= . 

c. 2 2/ [ ( 2)] /n n nθ θ+ <  and 2 2/ (3 ) /n nθ θ< . This does not violate the Cramér-Rao theorem, however, 
because the boundaries of the uniform variable X include θ itself! In these circumstances, Fisher 
information is not well-defined, and the theorem does not apply. (Note, for example, that if we used 
the ( ( ))V θ′  version of Fisher information in a, we’d get zero because ( )θ′  is constant.) 

 
 
55.  

a. With σ known, 2 2( 2) /( )iC xµ µ σ= − −∑ , so 21( ) 2 ( ) / 2 0ixµ µ σ′ = − = ⇒∑

( ) 0 /i i ix x n x n xµ µ µ− = − = ⇒ = =∑ ∑ ∑  (unsurprisingly). 
 
b. Since the original X’s are normal, we know that X  is normal, with mean μ and variance σ2/n. 

 
c. For a single observation, our work in a shows that 2( ) ( ) /Xµ µ σ′ = − , so 

2 4 2 4 2) (( ) / ) ( ) /( 1//V X VI Xµ µ σ σ σ σ σ= − = == .  Hence the Cramér-Rao lower bound is 
2

)
1
(nI n

σ
µ

= , which is precisely V( X ). So X  is indeed efficient. 

 
d. The answer to b and the suggested asymptotic distribution agree. 

 
 
57.  

a. In terms of x and σ, ln[f(x; σ)] = C – ln(σ) – (x – μ)2/2σ2  2 3/( ) 1/ ( )Xσ σ µ σ ⇒′ = − + −⇒ 

22 2 4 2 2 4 2 2 43( / ( 3 [( ] / 1/( ) 1/ ) ) 1/ 2/ /) 3X I E Xσ σ µ σ σ σ µ σ σ σ σ σ′ +′ = =− − ⇒ − = − + =− . 
 
b. Yes, Fisher information does depend on the parameterization: the answer in a is different from the 

answer, 1/(2σ4), from the previous exercise. 
 
 
59.  

a. For the geometric distribution, 1/ pµ =  and 2 2(1 ) /p pσ = − . Thus 1( ) / pE X µ= =  and 
22) / (1 /( )V X n p npσ= = − . 

 
b. From Exercise 51, Fisher information from a random sample is 2 (1 )/n p p− . For any statistic whose 

expectation is ( ) 1/h p p= , the Cramér-Rao lower bound on the variance is given by 
2 2 2

2

2

4 2

] (1 ) (1 )
( ) (

[ ( )] [ 1/ 1
/ 1 )n

h p p p
I nn pp p

p
p

p
p n

′ −
=

−
= =

−
−

⋅ . 

 
c. Yes: Since )(V X  exactly matches the Cramér-Rao lower bound from part b, X is an efficient 

estimator of 1/p. 



Chapter 7:  Point Estimation 
 

 
 

10 

Supplementary Exercises 
 
61. Let x1 = the time until the first birth, x2 = the elapsed time between the first and second births, and so on.  

Then ( ) ( ) ( )1 22
1,..., ; 2 ... !n kn x kxx x n

nf x x e e n e n eλ λλ λλ λ λ λ λ− − Σ− −= ⋅ = .  Thus the log likelihood is 

( ) ( )ln ! ln kn n kxλ λ+ − Σ .  Taking d
dλ

 and equating to 0 yields ˆ
k

n
kx

λ =
Σ

.   

For the given sample, n = 6, x1 = 25.2, x2 = 41.7 – 25.2 = 16.5, x3 = 9.5, x4 = 4.3, x5 = 4.0, x6 = 2.3; so 
6

1
(1)(25.2) (2)(16.5) ... (6)(2.3) 137.7k

k
kx

=

= + + + =∑  and 6ˆ .0436
137.7

λ = = . 

 

63. The first moment of the Beta distribution is ( )E X α
α β

=
+

, while the second moment is more complicated: 

2
2 2

2

( 1)( ) ( ) [ ( )]
( )( 1)( ) ( 1)

E X V X E X αβ α α α
α β α β α βα β α β
  +

= + = + = + + + ++ + +  
. The first and second 

sample moments are 1 (.873 .618) .565
6

X = + + = and 2 2 21 1 (.873 .618 ) .359161
6ix

n
= + + =∑  .  

To determine the method of moments estimates, let c α β= +  and solve / .565cα = , ( 1) / ( 1)c cα α + +  = 
.359161. The solutions are α = 2.912 and c = 5.154, from which β = c – α = 2.242. Therefore, the method of 
moments estimates are α̂ = 2.912 and β̂  = 2.242. 

 
 
65. Example 7.8 shows that 2 2ˆ )( ) ( 1c nE σ σ= −  and 42 2( ( 1)ˆ ) 2cV nσ σ−= . From these, 

2 2 2 2 2 2 2 2 2

2 2 2 4 4 4

2 2 4

4

4

MSE( ) ( ) [ ( ) ] ( 1) [ ( 1) ]
( 1) ( 1

ˆ ˆ ˆ 2
2

1)
) 2 ( 1)

[( 2( 1) 1]
c

V E n c n
n c n c n

n n

c

cc

σ σ σ σ σ σ σ

σ σ σ σ

σ

= + − = − + − −

= − + − − − +

= − −− +

 

To minimize the MSE, differentiate the expression in brackets with respect to c and solve for c: 
2 1

2

2( 1) 12( 2( 1) 0 0
12( 1

)
)

1 nncn c
nn

−
− − +

−
− = ⇒ = =

+
, as claimed. 

 
67. The median of the 16 values in Example 7.2 is x = 985. The values of | |ix x−   are 29, 11, 5, 5, 3, 2, 2, 0, 0, 

0, 2, 2, 10, 14, 15, 22. When these 16 values are sorted, the middle two are 3 and 5, so the median of these 
absolute differences is 4, and σ̂ = 4/.6745 = 5.93. The sample standard deviation of the original 16 values 
is substantially larger, at s = 11.66. (The unusually low value 956 may be affecting s.) 

 
 
69.  

a. The likelihood is 
( ) ( )

( )
( ) ( )

22

22

2222

2221 2

1

2

1

2

1
σ

µµ

σ

µ

σ

µ

πσπσπσ






 −Σ+−Σ−− −−−

=
=⋅Π

iiyiix
iiyiix

eee n

n

i
.  The log likelihood 

is thus ( ) ( ) ( )( )
2

22

2
22ln

σ
µµπσ iiii yxn −Σ+−Σ−− .  Taking 

id
d
µ

 and equating to zero gives 
2

ˆ ii
i

yx +
=µ .  

Substituting these estimates of the ˆiµ ’s into the log likelihood gives 
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( ) 2

2 2
2 1

2
ln 2

2 2
i i i i

i i
x y x y

n x y
σ

πσ
 + +   − − − + −         
∑ ∑ ( ) ( )( )2

22 1 1
22

ln 2 i in x y
σ

πσ= − − Σ − .  Now 

taking 2

d
dσ

, equating to zero, and solving for 2σ  gives the desired result. 

 

b. ( ) ( )( ) ( )2 22 1 1ˆ
4 4i i i iE E X Y E X Y

n n
σ = Σ − = ⋅Σ − , but 

( ) ( ) ( ) 22 2 22 0 2i i i i i iE X Y V X Y E X Y σ σ− = − + − = + =   .  Thus 

( ) ( )
2

2 2 21 1ˆ 2 2
4 4 2

E n
n n

σσ σ σ= Σ = = , so the mle is definitely not unbiased; in fact, the expected value 

of the estimator is only half the value of what is being estimated! An unbiased estimator is easily 
obtained: 22σ̂ . 

 
 
71. Given Y = y, the investigator must have tested y individuals among whom r are allergic and y – r aren’t. Let 

x be any sequence of y 0’s and 1’s with exactly (y – r) 0’s and r 1’s. Then  
1

1

,..., ) )
,..., ) | )

( )
((

(( y
y

P X
P

X
X Y y

y
X

P Y
=

= = =
=

x
x . By independence of the Xi’s, the numerator is just the 

product of exactly (y – r) q’s and exactly r p’s. The denominator is a negative binomial probability. 
Continuing, 

1
1,..., ) | )

1 1
1 1

((
r y r

y
r y r

qP
p

pX Y y
y y
r r

X
q

−

−


= = = =
− −   

  
  − − 

x , which does not depend on p. Therefore, by definition 

Y is sufficient for p. Knowing the order in which allergy and non-allergy sufferers arrive does not help 
estimate p. 

 
 
73. Be careful here: σ̂ is the MLE of σ and not the sample standard deviation! In other words, use n = 3 rather 

than n – 1 = 2 in your denominator. With the information provided, c = 150, ˆ xµ =  = 150.40, σ̂ = 3.06, k = 

2/3 , w = –.1307, and kw = –.16. Hence, the MVUE for θ is  

P(T < –.16(1)/ 2)16.(1 −− ) = P(T < –.1621), where T ~ t1. Software gives .448 for this probability. 
In contrast, we may also write θ = P(X ≤ c) = Φ((c – μ)/σ), from which, by the invariance principle, the 
MLE of θ is ˆ ˆ(( ) / )c µ σΦ − = Φ(w) = Φ(–.16) = .4364. 

 

75. 2 ( ) ( ) ( )[ ( )] ( )
! ! ! !

x x x xe d x d xE d X d x e e
x x x x

µ
µ µµ µ µ µ−

− − −
= = ⇒ = ⇒ =∑ ∑ ∑ ∑ . From the uniqueness of 

Taylor series, these can only be equal if d(X) = (–1)X. While unbiased, this estimator is ridiculous: if X 
happens to be even, we estimate the probability θ to be 1 (no matter whether X = 0 or X = 200). If X 
happens to be odd, we estimate θ to be –1!! 
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77.  
a. The points do not fall perfectly on a straight line through the origin, but they come very close to fitting 

the line y = 30x. 
 

b. The joint pdf here is 




 −− ∑− 2
2

2/2 )(
2

1exp)2( ii
n xy β

σ
πσ , and so the log-likelihood function is 

∑ −−− 2
2

2 )(
2

1)2ln(
2 ii xyn β

σ
πσ  = 

2

2

2

)(
)ln(

σ

β
σ ∑ −

−−
ii xy

nC . First, differentiate with respect 

to β and solve: 2

2( )( )
0

2
i i iy x xβ β

σ
− −

= ⇒∑
2

ˆ
i

ii

x
yx

Σ

Σ
=β . Next, differentiate with respect to σ and 

solve: 
2

3

ˆ( )i iy xn β
σ σ

−
− + ⇒∑  

n

xy ii∑ −
=

2
2

)ˆ(
ˆ

β
σ . For the data provided, β̂ = 30.040, the 

estimated minutes per item, and 22 )ˆ(1ˆ ii xy
n

βσ −= ∑ = 16.912. When x = 25, we predict y = ˆ(25)β  = 

571. 
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