CHAPTER 2

Section 2.1

a. AbutnotB=A4ANB'
b. atleastoneof4dand B=A4UB

c. exactly one hired =4 andnot B, or Bandnot4A=(A N B)u (BN A4")

a. §={1324, 1342, 1423, 1432, 2314, 2341, 2413, 2431, 3124, 3142, 4123, 4132, 3214, 3241, 4213, 4231}

b. Event 4 contains the outcomes where 1 is first in the list:
A= {1324, 1342, 1423, 1432}.

c¢. Event B contains the outcomes where 2 is first or second:
B = {2314, 2341, 2413, 2431, 3214, 3241, 4213, 4231}.

d. The event AUB contains the outcomes in 4 or B or both:
AUB = {1324, 1342, 1423, 1432, 2314, 2341, 2413, 2431, 3214, 3241, 4213, 4231}.
ANB =, since 1 and 2 can’t both get into the championship game.
A'=8— A= {2314, 2341,2413, 2431, 3124, 3142, 4123, 4132, 3214, 3241, 4213, 4231}.

a. A= {SSF, SFS, FSS}.
b. B={SSS, SSF, SFS, FSS}.

c¢. Forevent C to occur, the system must have component 1 working (S in the first position), then at least one
of the other two components must work (at least one S in the second and third positions): C = {SSS, SSF,
SES}.

d. C' = {SFF, FSS, FSF, FFS, FFF}.
AuC = {SSS, SSF, SFS, FSS}.
ANC = {SSF, SFS}.
BUC = {SSS, SSF, SFS, FSS}. Notice that B contains C, so BUC = B.
BNC = {SSS SSF, SFS}. Since B contains C, BNC = C.
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a. The 3% =27 possible outcomes are numbered below for later reference.

Outcome Outcome

Number | Outcome Number | Outcome
1 111 15 223
2 112 16 231
3 113 17 232
4 121 18 233
5 122 19 311
6 123 20 312
7 131 21 313
8 132 22 321
9 133 23 322
10 211 24 323
11 212 25 331
12 213 26 332
13 221 27 333
14 222

b. Outcome numbers 1, 14, 27 above.
¢. Outcome numbers 6, 8, 12, 16, 20, 22 above.

d. Outcome numbers 1, 3, 7,9, 19, 21, 25, 27 above.

a. &= {BBBAAAA, BBABAAA, BBAABAA, BBAAABA, BBAAAAB, BABBAAA, BABABAA, BABAABA,
BABAAAB, BAABBAA, BAABABA, BAABAAB, BAAABBA, BAAABAB, BAAAABB, ABBBAAA, ABBABAA,
ABBAABA, ABBAAAB, ABABBAA, ABABABA, ABABAAB, ABAABBA, ABAABAB, ABAAABB, AABBBAA,
AABBABA, AABBAAB, AABABBA, AABABAB, AABAABB, AAABBBA, AAABBAB, AAABABB,
AAAABBB}.

b. AAAABBB, AAABABB, AAABBAB, AABAABB, AABABAB.

a. In the diagram on the left, the shaded area is (4\UB)’. On the right, the shaded area is A, the striped area is
B', and the intersection A'NB’ occurs where there is both shading and stripes. These two diagrams display
the same area.
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In the diagram below, the shaded area represents (4NB)’. Using the right-hand diagram from (a), the
union of 4’ and B’ is represented by the areas that have either shading or stripes (or both). Both of the
diagrams display the same area.

Section 2.2

13.

15.

.07.
15 +.10 +.05=.30.

Let 4 = the selected individual owns shares in a stock fund. Then P(4) = .18 + .25 = .43, The desired
probability, that a selected customer does not shares in a stock fund, equals P(4")=1-P(4)=1- .43 =
.57. This could also be calculated by adding the probabilities for all the funds that are not stocks.

A, A4, = “awarded either #1 or #2 (or both)”: from the addition rule,
P(A1 U A2) = P(41) + P(42) — P(A1 N 42) = .22+ .25 - .11 = .36.

A/ N A, = “awarded neither #1 or #2”: using the hint and part (a),
P4 NA)=P(4VA4))=1-P(4U4,)=1-36=.64.

A, U A4, U A, = “awarded at least one of these three projects”: using the addition rule for 3 events,
P(4vA,ud)= P(A)+P(4,)+P(4)-P(A4NA)—P(4NA)-P(4,N4)+PA4nNA4,nNn4)=
22425+ .28—-.11-.05-.07 +.01 =.53.

Al N A4; N 4;=“awarded none of the three projects™:
P(A4 N Ay " A4;) =1 — P(awarded at least one) = 1 — .53 = .47.
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e. A N4, N A,=“awarded #3 but neither #1 nor #2”: from a Venn diagram,
P(A N Ay N A,) = P(A3) — P(A1 N A3) — P(A2 N A3) + P(A1 N Ay N A3) =
28 —.05-.07 + .01 =.17. The last term addresses the “double counting” of the two subtractions.

&

f. (4 nA4))u 4,=“awarded neither of #1 and #2, or awarded #3”: from a Venn diagram,
P((4 n A4)) U A4,) = P(none awarded) + P(43) = .47 (from d) + .28 = 75.

Alternatively, answers to a-f can be obtained from probabilities on the accompanying Venn diagram:

5




17.

19.

21.

23.
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a. Let E be the event that at most one purchases an electric dryer. Then E' is the event that at least two
purchase electric dryers, and P(E') =1 - P(E) =1 - .428 = .572.

b. Let A be the event that all five purchase gas, and let B be the event that all five purchase electric. All other

possible outcomes are those in which at least one of each type of clothes dryer is purchased. Thus, the
desired probability is 1 — [P(4) — P(B)]=1-[.116 +.005] = .879.

a. The probabilities do not add to 1 because there are other software packages besides SPSS and SAS for
which requests could be made.

b. PUA)=1-P4)=1-.30=.70.
c. Since 4 and B are mutually exclusive events, P(4 U B) = P(4) + P(B) = .30 + .50 = .80.
d. By deMorgan’s law, P(4' " B")=P(A W B))=1-P(4 v B)=1-.80=.20.

In this example, deMorgan’s law says the event “neither 4 nor B” is the complement of the event “either 4
or B.” (That’s true regardless of whether they’re mutually exclusive.)

724
10,000 *

Let A be that the selected joint was found defective by inspector 4, so P(4) = Let B be analogous for

751
10,000 *

inspector B, so P(B) =

s0 P(AUB) = 15505 -

The event “at least one of the inspectors judged a joint to be defective is AUB,

a. By deMorgan’s law, P(neither 4 nor B)= P(4'nB)=1-P(AUB)=1 - % = % = .8841.

b. The desired event is BNA'. From a Venn diagram, we see that P(BNA4') = P(B) — P(ANB). From the
addition rule, P(AUB) = P(A) + P(B) — P(ANB) gives P(ANB) =.0724 + .0751 —.1159 = .0316. Finally,
P(BNA") = P(B) — P(AnB) = .0751 — .0316 = .0435.

In what follows, the first letter refers to the auto deductible and the second letter refers to the homeowner’s
deductible.
a. P(MH)=.10.

b. P(low auto deductible) = P({LN, LL, LM, LH}) = .04 + .06 + .05 + .03 = .18. Following a similar pattern,
P(low homeowner’s deductible) =.06 + .10 + .03 =.19.

¢. P(same deductible for both) = P({LL, MM, HH}) = .06 + .20 + .15 = 41.
d. P(deductibles are different) = 1 — P(same deductible for both) =1 — .41 =.59.
e. P(atleast one low deductible) = P({LN, LL, LM, LH, ML, HL}) = .04 +.06 +.05+.03 +.10 +.03 = .31.

f.  P(neither deductible is low) = 1 — P(at least one low deductible) =1 —.31 =.69.
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27.
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Assume that the computers are numbered 1-6 as described and that computers 1 and 2 are the two laptops.
There are 15 possible outcomes: (1,2) (1,3) (1,4) (1,5) (1,6) (2,3) (2,4) (2,5) (2,6) (3,4) (3,5) (3,6) (4,5) (4,6)
and (5,6).

a. P(both are laptops) = P({(1,2)}) = 15 =.067.

b. P(both are desktops) = P({(3,4) (3,5) (3,6) (4,5) (4,6) (5,6)}) = & = .40.

c. P(atleast one desktop) = 1 — P(no desktops) = 1 — P(both are laptops) =1 —.067 = .933.

d. P(at least one of each type) = 1 — P(both are the same) =
1 — [P(both are laptops) + P(both are desktops)] = 1 —[.067 +.40] = .533.

By rearranging the addition rule, P(4 N B) = P(4) + P(B) — P(AuB) = .70 + .80 — .85 = .65. By the same
method, P(4 N C)=.70+.75—-.90 = .55 and P(B M C) =.80 + .75 — .95 = .60. Finally, rearranging the
addition rule for 3 events gives
PANBNC)=P(AVBUC)—PA)—-PB)-P(C)+PANB)+PANC)+PBNC)=.98—-.70—.80 -
.85+.65+.55+.60=.53.

These probabilities are reflected in the Venn diagram below.

a. P(A4uUBuUC(C)=.98, as given.
b. P(none selected) = 1 — P(at least one selected)=1—-P(A4 U B U C)=1-.98=.02.
c. From the Venn diagram, P(only automatic transmission selected) = .03.

d. From the Venn diagram, P(exactly one of the three) = .03 + .08 + .13 = .24.
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Recall there are 27 equally likely outcomes.
a. P(all the same station) = P((1,1,1) or (2,2,2) or 3.3,3)) = 5- = 5 .

b. P(at most 2 are assigned to the same station) = 1 — P(all 3 are the same) =1— $=%.

¢ P(all different stations) = P((1,2,3) or (1,3,2) or (2,1,3) or (2,3,1) or (3,1,2) or (3,2,1)) = & = 2.

Section 2.3

31.

33.

3s.

37.

a. Since offices are distinct, order matters, and sP> = (5)(4) = 20 (5 choices for president, 4 remain for vice
president)

b. sP3=(5)4)3) =60

5 |
c. sG= (ZJ = 25'—3' =10 (No ordering is implied in the choice.)

a. Use the Fundamental Counting Principle: (9)(27) = 243.
b. By the same reasoning, there are (9)(27)(15) = 3645 such sequences, so such a policy could be carried out

for 3645 successive nights, or approximately 10 years, without repeating exactly the same program.

The first four songs must be non-Beatles song and the fifth a Beatles song. The total number of possible five-
song sequences, assuming no repeats, is 100Ps = (100)(99)(98)(97)(96). The number of such sequences meeting
our requirements (starting with 90 non-Beatles songs and 10 Beatles songs) is (90)(89)(88)(87)(10) or ¢oPs X
10. The probability is ¢oPs % 10 / 100Ps = .0679.

16
a. Since order doesn’t matter, the number of possible rosters is { 6 j = 8008.

5
b. The number of ways to select 2 women from among 5 is (J =10, and the number of ways to select 4

11
men from among 11 is [ 4] = 330. By the Fundamental Counting Principle, the total number of (2-

woman, 4-man) teams is (10)(330) = 3300.

. . . . S)(11 5)(11 5311
c. Using the same idea as in part b, the count is 3300+(3j[ 3 j+(4)( ) ]+£5J( ) J = 5236.

d. P(exactly 2 women) = 3300 _ 4121; P(at least 2 women) = 5236 _ .6538.
8008 8008

7
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41.
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5
There are (ZJ = 10 possible ways to select the positions for B’s votes: BBAAA, BABAA, BAABA, BAAAB,

ABBAA, ABABA, ABAAB, AABBA, AABAB, and AAABB. Only the last two have 4 ahead of B throughout the
vote count. Since the outcomes are equally likely, the desired probability is 2/10 = .20.

For each of the 5 specific catalysts, there are (3)(4) = 12 pairings of temperature and pressure. Imagine we
separate the 60 possible runs into those 5 sets of 12. The number of ways to select exactly one run from each

[12]5
1 5
== 12 .0456.
60 60
5 5
a. We want to choose all of the 5 cordless, and 5 of the 10 others, to be among the first 10 serviced, so the

(SJCOJ
S5
_ 22 =.0839.

15\ 3003
10

b. Isolating one group, say the cordless phones, we want the other two groups (cellular and corded)
represented in the last 5 serviced. The number of ways to choose all 5 cordless phones and 5 of the other

o (12
of these 5 sets of 12 is . =12

60
Since there are ( 5 jways to select the 5 runs overall, the desired probability is

desired probability is

5\(10 10
phones in the first 10 selections is (5}[ s J=( s ] . However, we don’t want two types to be eliminated in

the first 10 selections, so we must subtract out the ways that either (all cordless and all cellular) or (all

5Y(5 5Y(5
cordless and all corded) are selected among the first 10, which is [SJLSJ + (SJ[SJ =2. So, the number of

ways to have only cellular and corded phones represented in the last five selections is

10
( s j — 2. We have three types of phones, so the total number of ways to have exactly two types left over

10
is3- —2, and the probability is = 3(250) =.2498.
5 15 3003
5
¢. We want to choose 2 of the 5 cordless, 2 of the 5 cellular, and 2 of the corded phones:

L) oy
v/
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47.

Chapter 2: Probability

PO&P in 1&2) _2x1x4x3x2x1 1
6x5x4x3x2x1 15

Similarly, P(J&P next to each other) = P(J&P in 1&2) + ... + PJ&P in 5&6) = 5 x% =% .
Third, P(at least one H next to his W) = 1 — P(no H next to his W), and we count the number of ways of no H
sits next to his W as follows:
# of orderings with a H-W pair in seats #1 and 3 and no Hnext to his W =6* x 4 x 1* x 2# x 1 x | =48

*= pair, ¥=can’t put the mate of seat #2 here or else a H-W pair would be in #5 and 6
# of orderings without a H-W pair in seats #1 and 3, and no Hnextto his W=6 x4 x 2¥x 2 x 2 x 1 =192

#= can’t be mate of person in seat #1 or #2

So, the number of seating arrangements with no H next to W =48 + 192 = 240, and
240 1 1

P(no H next to his W) = = —————————— =— . Therefore, P(at least one H next to his W) =1 — —:2.
6x5x4x3x2x1 3 3 3

ny n! _ n! [ n
k) Kn-k) -k \(n—k

The number of subsets of size k equals the number of subsets of size n — &, because to each subset of size k
there corresponds exactly one subset of size n — k: the n — k objects not in the subset of size k. The
combinations formula counts the number of ways to split n objects into two subsets: one of size &, and one of
size n — k.

Section 2.4

49.

a. P(4)= .106 +.141 + 200 = .447, P(C) =215 + .200 +.065 +.020 = .500, and P(4 N C) = .200.

P(ANC) 200

b. P(4|C)= ————=="——=.400. If we know that the individual came from ethnic group 3, the
P(C) .500
probability that he has Type A blood is .40. P(C|4) = % =%: .447.If a person has Type A

blood, the probability that he is from ethnic group 3 is .447.

¢. Define D = “ethnic group 1 selected.” We are asked for P(D|B'). From the table, P(DNB') = .082 + .106
+.004 =.192 and P(B')=1-P(B)=1-[.008 +.018 +.065] =.909. So, the desired probability is P(D|B")
_P(DNB) _192 211,

P(B") .909




51.

53.

5S.

57.
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Refer to the Venn Diagram.

a. PBA)=LTUCB) 25

P(4) .50
b, Py =LUNE) 25 5

P(4) .50
]

c. PUB)=LUCE) _25_ s

P(B) .40
d. Py = LACB 15 4s

P(B) 40
e. P(A|AUB) = PAN (4 B) = P(A4) = -0 =.7692 . It should be clear from the Venn diagram that

P(AUB) P(AUB) .65
AN(AVUB)=A.

The box has four 40Ws, five 60W (so nine non-75W), and six 75W bulbs. Let B = {at least one selected is 75
93 6) (15

W}. Then P(B) = 1 — P(neither is 75W) =1 — (ZJ(OJ/( 5 j =1-36/105=23/35. [You can also use the

multiplication rule: P(neither is 75W) = (9/15)(8/14) = 12/35.] Let A = {both are 75W}. Since 4 is a subset of

9

0

P(ANB) _ 1/7 _5_ 2174,
P(B) 23/35 23
Next, Let D = {at least one is not 75 W}. Notice that D = 4', so P(D) = 1 — 1/7 = 6/7. Finally, let C = {both
bulbs have the same rating}. The event C M D is the event {two 40W or two 60W}, whose probability is

) (15) (5) (15
D)= 1 21+ 21 = 16105, Thus P Dy =181 _ 8 _ 1778,
2)' 2 ) 2) | 2 6/7 45

6) (15
B, P(ANB)=P(4) =[ )[Zj/[ 5 j = 15/105 = 1/7. Then, by definition,

P(A|B) =

a. Ifared ball is drawn from the first box, the composition of the second box becomes eight red and three
green. Use the multiplication rule:

P(R from 1 " R from 2™ ) = P(R from 1**) x P(R from 2"R from 1) = %x% =.436.
b. P(same numbers as originally) = P(both selected balls are the same color) = P(both R) + P(both G) =
6 8 4 4
—x—+—x—=_581.
10 11 10 11

P(ANB) _P(B)
P(4)  P(A)

) =.0833
.60

P(B|A) = (since B is contained in 4, 4 N\ B=B)

10
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59. Since the intersection is contained in the union, [A U B UCIN[ANBNC]=ANnBNC.
P[AVBUC]N[ANBNC]) PANBNC) .05 _ 102
P(AUBUC) P(AUBUC) 49 =

b. If she reads every section, then she automatically reads “at least one” section! The correct probability is 1.

P(ANBNC) .05 _1

More formally, P(AUBUC|ANBNC)=———=="—
P(ANBNC) .05

a. P(ANBNC|AuVBuU(C)=

P(ANB) P(A'NB) _P(ANB)+P(A'NB) _P(B) _,
P(B) P(B) P(B) " P(B)

61. P(4|B)+P(4'| B) =

P(AUB)NC) _ PANC)U(BNCO)] _ P(ANC)+P(BNC)-P(ANBNC) _
P(C) - P(C) - P(C)

P(A|C)+P(B| )~ PUNB|C)

63. P(AUB|C)=

65. The tree diagram below shows the probability for the four disjoint options; e.g., P(the flight is discovered and
has a locator) = P(discovered)P(locator | discovered) = (.7)(.6) = .42.

ha=nt
a.  P(not discovered | has locator) = P(not discovered M has locator) _ .03 -
P(has locator) .03+.42

P(discovered nno locator) .28 _ 509
P(no locator) 55 T

b. P(discovered | no locator) =

11
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69.
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First, use the definition of conditional probability and the associative property of intersection:
P((ANB)NC) P(AN(BNC))
PC)  PO)
Second, use the Multiplication Rule to re-write the numerator:
P(AN(BNC)) PBNC)P(A|BNC)
PC) P(C)

P(BNC)
P(C)

P(ANB|C)=

Finally, by definition, the ratio equals P(B | C).

Substitution gives P(A "B | C)=P(B | C) - P(4| B n C), QED.

First, partition the sample space into statisticians with both life and major medical insurance, just life
insurance, just major medical insurance, and neither. We know that P(both) = .20; subtracting them out, P(life
only) = P(life) — P(both) = .75 — .20 = .55; similarly, P(medical only) = P(medical) — P(both) = .45 — .20 = .25.
a. Apply the Law of Total Probability:
P(renew) = P(life only)P(renew | life only) + P(medical only)P(renew | medical only) +
P(both)P(renew | both)
= (.55)(.70) + (.25)(.80) + (.20)(.90) = .765.

P(both)P(renew | both)  (.20)(.90)
P(renew) 765

b. Apply Bayes’ Rule: P(both | renew) = =.2353.

Let’s see how we can implement the hint. If she’s flying airline #1, the chance of 2 late flights is (30%)(10%)
= 3%; the two flights being “unaffected” by each other means we can multiply their probabilities. Similarly,
the chance of 0 late flights on airline #1 is (70%)(90%) = 63%. Since percents add to 100%, the chance of
exactly 1 late flight on airline #1 is 100% — (3% + 63%) = 34%. A similar approach works for the other two
airlines: the probability of exactly 1 late flight on airline #2 is 35%, and the chance of exactly 1 late flight on
airline #3 is 45%.

The initial (“prior”) probabilities for the three airlines are P(41) = 50%, P(42) = 30%, and P(43) = 20%. Given
that she had exactly 1 late flight (call that event B), the conditional (“posterior’) probabilities of the three
airlines can be calculated using Bayes’ Rule:

P4, | B) = P(A)P(B| A) _ (.5)(.34) _ .1702.4657;
P(A4)P(B| A)+ P(4,)P(B| 4,)+P(4)P(B|4,) (.5)(.34)+(3)(.35)+(2)(45) .365
P(4, | B) = P(4,)P(B| 4,) _ (35 _ 5297 and
: P(A)P(B|4)+P(4)P(B| 4,)+P(4)P(B|4) 365
P(4,|B) P(A)P(BI4) _ () _ o6

 P(A)P(B| A4)+P(4,)P(B| 4,)+ P(4)P(B| 4) 365
Notice that, except for rounding error, these three posterior probabilities add to 1. The tree diagram below
shows these probabilities.

12
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PO = 63

PURTI = 3% pfitand 1) = (51039 = 10

PRI = .05

PIOREY = 6O

PRI = 35
L PLAE and 10 = [3)0.35) = 105

PrEQZY = .05

P0G = 45

Pl = & PLAE and 1) = (210.5] = .08

P = 10

Since dad is BB and mom is Bb, their offspring I1-2 will have genotype (BB) x (Bb) = BB, Bb, BB, or Bb,
each with probability 1/4. Combining idential genotypes gives BB or Bb, with probability 1/2 each.

The likelihoods of hamster III1 having genotype BB, Bb/bB, or bb depends on the genotype of her mother

(hamster 112). Applying the law of total probability, the fact that hamster I11 is Bb, and the rules of genetic
recombination described in the problem,

P11 = BB) = P(112 = BB)P(Il11 = BB | 112 = BB) + P(112 = Bb)P(1111 = BB | 112 = Bb)
= (1/2)(1/2) + (1/2)(1/4) = 3/8
P11 = bb) = P(112 = BB)P(III1 = bb | 112 = BB) + P(I12 = Bb)P(1111 = bb | 112 = Bb)
= (1/2)(0) + (1/2)(1/4)=1/8
And, thus, P(II11 = Bb/bB) =1 — [3/8 + 1/8] = 1/2. Finally, the conditional probability that III1is Bb, given
that she has a black coat (i.c., is not bb), equals
P(III1 is Bb | 1111 is black) = P(III1 = Bb 1111 is black) _ P(IIl =Bb)  1/2

P(III1 is black) P(III is black) 1-1/8

_4
>

Apply Bayes’ Rule:
P(2 = BB)P(IIl = BB|2=BB) _(1/2)1/2) 2
P(12= BB |1 = BB) = £\ L | ) _(1/2)(1/2) 2

P(IlI1 = BB) (3/8) 3

Section 2.5

75.

Since the events are independent, then 4" and B’ are independent, too. (See the paragraph below Equation
(2.7).) Thus, P(B'|A")=P(B")=1-.7= 3.

Using the addition rule, P(4 U B) = P(4) + P(B) — P(A N B) =4+ .7 — (.4)(.7) = .82. Since 4 and B are
independent, we are permitted to write P(4 N B) = P(A)P(B) = (.4)(.7).

PU B AU B~ PANBINUUE) _ PUNE) _ PMAPE) _(H(1-7) .12
P(AU B) P(AUB) P(AUB) 82 82

=.146.

13
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From a Venn diagram, P(B) = P(A' " B) + P(A N B) = P(B) = P(4' " B)=P(B)— P(4 N B).
If A and B are independent, then P(A" N B) = P(B) — P(A)P(B) =[1 — P(A)]P(B) = P(A")P(B).
Thus, A" and B are independent.

P(A'nB) P(B)-P(ANB) P(B)-P(A)P(B) _

Alternatively, P(4'| B) =
P(B) P(B) P(B)

1 - P(4) = P(4).

Let E; denote the event that an error was made in grading the ith question. We have P(E;) = .1 for each i, and
so P(E))=.9. Using independence, the probability that no errors are made is

P(E/n--NE/)=P(E))---P(E],) =(.9)...(.9) = (.9)!" = .3487. The probability that at least one error is made
is the complementary probability: P(at least one error) = P(E1 U ...U Eyg) =1 — P(E/n---NE[))=1-.3487
=.6513.

Replacing 10 with n and .1 with p, the probability no errors are made is (1 — p)”, and the probability that at
least one error is made is 1 — (1 — p)”.

P(at least one opens) = 1 — P(none open) = 1 — (.05)°> = .99999969.
P(at least one fails to open) = 1 — P(all open) = 1 — (.95)° = .2262.

Let 4; denote the event that component # works (i = 1, 2, 3, 4). Based on the design of the system, the event
“the system works” is (4, U 4,) U (4, N 4,). We’ll eventually need P(4, U 4,), so work that out first:

P(A4,UA)=P4)+P(4,)-PA4NA4)=(9)+(9)—-(.9)(.9) =.99 . The third term uses independence of
events. Also, P(A4, N A4,)=(.9)(.9) = .81, again using independence.

Now use the addition rule and independence for the system:
P((A4 0 4) (4N A4,) = P(4 0 A4) + P(A; 0 A4) = P(4 O 4,) N (4,0 A4,)

=P(A4VA)+P(A,NA)-P(4VA)xP(A4NA,)
=(.99)+(.81)—(.99)(.81) =.9981
(You could also use deMorgan’s law in a couple of places.)

A=1{(3.1)3,2)3.3)3.4)3.5)(3.,6)} = P(4A) = £ =1; B={(1,4)(24)(3,4)(4.4)(5.4)(6,4)} = P(B)= +;and
C = {(1,6)(2,5)(3,4)(4,3)(5.2)(6,1)} = P(C) = L.
a. ANB={(34)} = P(ANB) = - = P(A)P(B); ANC = {(3,4)} = P(ANC) = <= = P(4)P(C); and BAC =

{3,4)} = P(BN(C) = 31—6 = P(B)P(C). Therefore, these three events are pairwise independent.

b. However, ANBNC = {(3,4)} = P(ANBNC) = -, while P(4)P(B)P(C)= =1.1.1=_L 5o

36 ° 6 6 6 216

P(ANBNC) # P(A)P(B)P(C) and these three events are not mutually independent.

14
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a. Let D, = detection on 1* fixation, D> = detection on 2™ fixation.
P(detection in at most 2 fixations) = P(D) + P(D; n D,) ; since the fixations are independent,

P(Dy) + P(D{ " D,) = P(D1) + P(D)) P(D2) =p + (1 =p)p =p2 - p).

b. Define Dy, Ds, ..., D, as in a. Then P(at most # fixations) =
P(D\)+P(D/nD,)+P(D"D, D))+ ...+ P(DiND,n---nD! "nD,)=
pr-pp+A-pyp+..+A-py'p=pll+U-p+A-pP+..+(1-p)'l=

1 _ 1 _ n R
. (—p) =]1- (] — p) .
1-(1-p)
Alternatively, P(at most n fixations) = 1 — P(at least n+1 fixations are required) =
1 — P(no detection in 1% n fixations) =1 - P(D; "D} n---nD)=1—(1 —p)".

¢.  P(no detection in 3 fixations) = (1 — p)*.

d. P(passes inspection) = P({not flawed} U {flawed and passes})
= P(not flawed) + P(flawed and passes)
= .9 + P(flawed) P(passes | flawed) = .9 + (.1)(1 — p)°.

P(flawed npassed)  .1(1- p)’

e. Borrowing from d, P(flawed | passed) = .Forp=.5,
g ( P ) P(passed) 9+.11-p) P
_ 3
P(flawed | passed) = —10—2)___ 137,
9+.1(1-.5)

Use the series and parallel computations illustrated previously. The probability the 1-2 subsystem works is
9 +.9—(.9)(.9) = .99. The probability a series pair works is (.9)? = .81, so the probability that the 3-4-5-6
subsystem works is .81 + .81 — (.81)(.81) = .9639. Therefore,

P(system works) = P(1-2 works m 3—4-5-6 works M 7 works)

= P(1-2 works) - P(3—4—-5-6 works) - P(7 works)

=(.99)(.9639)(.9) = .8588
The subsystem in Figure 2.15(a) works with probability .927. If it were connected in parallel to this subsystem,
P(system works) = .8588 +.927 — (.8588)(.927) = .9897.

The question asks for P(exactly one tag lost | at most one tag lost) = P((C, " C) W (C/NC,)|(C,NC,)).
PG, NCYUCNE) _

Since the first event is contained in (a subset of) the second event, this equals -
P(C,NG))

P(CNC)+PCNC,) _ P(C)P(C)+P(C)P(C,)

by independence =

I=P(C,NG,) 1=P(C)P(C,)
p=-p)+d=p)p _2p(-p)_ 2p
1-p? 1-p*  1+p’

15
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Section 2.6

93.

a. Let A = exactly one of B or B, occurs = (B N By") U (B2 N By'). The R code below has been modified
from Example 1.40 to count how often, out of 10,000 independent runs event 4 occurs.

A<-0
for(i in 1:10000) {
ul<-runif (l); u2<-runif (1)
if ((ul<.6 && u2>=.7) ||
(ul>=.60 && u2<.7)){
A<-A+1

}
4588

10,000
The exact probability is P(4)=P(B1 N By)+ P(Bz N Bi")=P(B1)— P(Bi N By) + P(B2) — P(B1 N By) =
P(By) + P(B:) — 2P(B: A Bs) = P(B1) + P(Bs) — 2P(B)P(Bs) = .6 + .7 — 2(.6)(.7) = .46.

Executing the code returned A=4588, so ﬁ(A) = = 4588.

Note: The code (ul<.6 && u2>=.7) || (ul>=.6 && u2<.7) can be replaced by a single
“exclusive or” command: xor (ul<.6,u2<.7).

, o |P(A)[1-P(4)]  [(4588)(1—.4588)
b. The estimated standard error of p(4) is = 10.000 ~.00498.
n b

9s. In the code below, seven random numbers are generated, one for each of the seven components. The sequence
of and/or conjunctions matches the series and parallel ties in the system design.

A<-0
for(i in 1:10000) {
u<-runif (
if((ull] |
((ul3] &
(ul[51<.8 & u
ul[71<.95){
A<-A+1

7)
<.9
<.8

— c

8159

Executing the code gave A=81509, so IS(A) =—
10,000

= .8159.
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97. The program below is written as a function, meaning it can receive inputs and generate outputs. The program
take two inputs: n = the number of games to be simulated and p = the probability a contestant makes a correct

guess. The program outputs the estimated probability P of winning the game Now or Then.

nowthen<-function (n,p) {

win<-0

for(i in 1:n)
u=runif (6

{
)

x=(u<p) ;

1f(x[1]+x[2]+x[3]1==3 ||
x[2]+x[3]1+x[4]==3 ||
x[3]1+x[4]1+x[5]==3 ||
x[4]1+x[5]1+x[6]==3 ||
x[5]+x[6]+x[1]==3 ||
x[6]+x[1]1+x[2]==3) {
win=win+1;

}
return (win/n)

}

The above code is executed at the command line to create the function in R. After this, you may call this
function at the command line.

(1) Typing nowthen (10000, .5) at the command line gave .3993.
(2) Typing nowthen (10000, . 8) at the command line gave .8763.

99. Modify the program from the previous exercise, as illustrated below. Of interest is whether the difference
between the largest and smallest entries of the vector dollar is at least 5.

A<-0

for(i in 1:10000) {
u<-runif (25)
flips<-(u<.4)-(u>=.4)
dollar<-cumsum(flips)
if (max (dollar)-min (dollar)>=5) {

A<-A+1

}

}

Executing the code above gave A=9189, so P = .9189.

17
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101. Divide the 40 questions into the four types. For the first type (two choices), the probability of correctly
guessing the right answer is 1/2. Similarly, the probability of correctly guessing a three-choice question
correctly is 1/3, and so on. In the programs below, four vectors contain random numbers for the four types of
questions; the binary vectors (u<1/2), (v<1/3), and so on code right and wrong guesses with 1s and Os,
respectively. Thus, right represents the total number of correct guesses out of 40. A student gets at least half
of the questions correct if that total is at least 20.

A<-0

for(i in 1:10000) {
u<-runif (10); v<-runif (13)
w<-runif (13); x<-runif (5)
right<-sum(u<1/2)+sum(v<1/3)

+sum (w<1l/4)+sum(x<1/5)
if (right>=20) {
A<-A+1

}

}

Executing the code once gave A=227, so P =.0227.

103.

a. In the program below, test is the vector [12 3 ... 12]. A random permutation is generated and then
compared to test. If any of the 12 numbers are in the right place, match will equal 1; otherwise,
match equals 0 and we have a derangement. The scalar D counts the number of derangements in 10,000
simulations.

D<-0

test<-1:12

for(i in 1:10000) {
permutation<-sample (test,12)
match<-any (permutation==test)
if (match==0) {

D<-D+1

}

b. One execution of the code in a gave D=3670, so (D) =.3670.

c. We know there are 12! possible permutations of the numbers 1 through 12. According to b, we estimate
that 36.70% of them are derangements. This suggests that the estimated number of derangements of the
numbers 1 through 12 is .3670(12!) = .3670(479,001,600) = 175,793,587.

(In fact, it is known that the exact number of such derangements is 176,214,841.)

105. The program below keeps a simultaneous record of whether the player wins the game and whether the game
ends within 10 coin flips. These counts are stored in win and ten, respectively. The while loop insures that
game play continues until the player has $0 or $100.

18
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win<-0; ten<-0
for(i in 1:10000) {
money<-20; numflips<-0
while (money>0 && money<100) {
numflips<-numflips+1
change<-sample(c(-10,10),1)
money<-money+change
}
if (money==100) {
win<-win+1
}
1if (numflips<=10) {
ten<-ten+l
}
}

a. One execution gave win=2080, so P (player wins) = .2080. (In fact, it can be shown using more
sophisticated methods that the exact probability of winning in this scenario is .2, corresponding to the
player starting with $20 of a potential $100 stake and the coin being fair.)

b. One execution gave ten=5581, so P (game ends within 10 coin flips) = .5581.

107.

a. Code appears below. One execution gave A=5224, so P (at least one [ i in four rolls) = .5224. Using
independence, it can be shown that the exact probability is 1 — (5/6)* = .5177.

A<-0
for(i in 1:10000) {
rolls<-sample(l:6,4, TRUE)

numsixes<-sum(rolls==06)
if (numsixes>=1) {
A<-A+1

}
}

b. Code appears below. One execution gave A=4935, so P (at least one in 24 rolls) = .4935. Using
independence, it can be shown that the exact probability is 1 — (35/36)** = .4914.

A<-0
for(i in 1:10000) {
diel<-sample(1:6,24, TRUE)
die2<-sample(1:6,24, TRUE)
numdblsixes<-
sum( (diel==6) &
if (numdblsixes>=1)
A<-A+1

(die2==6))
{

}

In particular, the probability in a is greater than 1/2, while the probability in b is less than 1/2. So, you
should be willing to wager even money on seeing at least one [ i in 4 rolls of one die, but not on seeing at
least one in 24 rolls of two dice.
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Let I represent a vote for candidate A and —1 a vote for candidate B. A randomization of the 12 A’s and 8 B’s
can be achieved by sampling without replacement from a vector [1 ... 1 —1 ... —1] with 12 I’s and 8 —1’s. To
keep track of how far ahead candidate A stands as each vote is counted, employ the cumsum command. As
long as A is ahead, the cumulative total will be positive; if A and B are ever tied, the cumulative sum will be 0;
and a negative cumulative sum indicates that B has taken the lead. (Of course, the final cumulative sum will
always be 4, signaling A’s victory.)

A<-0
for(i in 1:10000) {
diel<-sample(l:6,24,TRUE)
die2<-sample(l:6,24,TRUE)
numdblsixes<-
sum ( (diel==6) &
if (numdblsixes>=1)
A<-A+1

(die2==6))
{

}
}

One execution of the code above returned A=2013, so P (candidate A leads throughout the count) =.2013.

a. In the code below, the criterion x? +? < 1 determines whether (x, y) lies in the unit quarter-disk.

A<-0
for(i in 1:10000) {
x=runif(1l); y=runif (1)
1f (x724y72<=1) {
A<-A+1
}
}

b. Since P(4) = n/4, it follows that m = 4P(A4) = 4 p(4). One run of the above program returned A=7837,
which implies that p(4)=.7837 and m~ 4(.7837) = 3.1348.

(While this may seem like a silly application, since we know how to determine 7 to arbitrarily many
decimal places, the idea behind it is critical to lots of modern applications. The technique presented here is
a special case of the method called Monte Carlo integration.)
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Supplementary Exercises

113.

115.

117.

119.

(24j ~10,626.
4

b. Order matters here (being selected as VP isn’t the same as Treasurer): 24Ps = (24)(23)(22)(21) = 255,024.

24 . .
c. There are [ 5 j = 276 ways to choose co-chairs, then 22 choices for secretary and 21 for treasurer. Apply

the Fundamental Counting Principle: (276)(22)(21) = 127,512 (exactly half of b).

500
a. P(linel)= m: .333;

.50(500)+.44(400)+.40(600) 666
P(crack) = ( ) 1200 ) ( ) = 1500 = 444,

b. This is one of the percentages provided: P(blemish | line 1) =.15.

.10(500)+.08(400)+.15(600
¢. P(surface defect) = ( )+ 1200 )+ ( )= 1157020;

) .10(500) 50
P(line 1 m surface defect) = ———=——
1500 1500
) 50/1500 50
so, P(line 1 | surface defect) = —————=—--=.291.

172/1500 172

Apply the addition rule: P(AUB) = P(4) + P(B) — P(A N B) = .626 = P(4) + P(B) — .144. Apply
independence: P(4 N B) = P(A)P(B) = .144.
So, P(4) + P(B) =.770 and P(A)P(B) = .144.
Let x = P(4) and y = P(B). Using the first equation, y = .77 — x, and substituting this into the second equation
yields x(.77 — x) = .144 or x> — .77x + .144 = 0. Use the quadratic formula to solve:
L= TTEJETT (D) 144) _ T77£.13

2(1) 2
probability, x = P(4) = .45 and y = P(B) = .32.

= .32 or .45. Since x = P(A) is assumed to be the larger

a. There are 5! = 120 possible orderings, so P(BCDEF) = ;- = .0833.

b. The number of orderings in which F is third equals 4x3x1*x2x1 = 24 (*because F must be here), so

P(F is third) = 2L = .2. Or more simply, since the five friends are ordered completely at random, there is a

1-in-5 chance F is specifically in position three.

c. Similarly, P(F last) = 4x3:220X1X1 =2,
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123.

125.

127.
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When three experiments are performed, there are 3 different ways in which detection can occur on exactly 2 of
the experiments: (i) #1 and #2 and not #3; (ii) #1 and not #2 and #3; and (iii) not #1 and #2 and #3. If the
impurity is present, the probability of exactly 2 detections in three (independent) experiments is (.8)(.8)(.2) +
(-:8)(:2)(-8) + (:2)(.8)(.8) = .384. If the impurity is absent, the analogous probability is 3(.1)(.1)(.9) = .027.
Thus, applying Bayes’ theorem, P(impurity is present | detected in exactly 2 out of 3) =

P(detected in exactly 2 npresent) (.384)(.4)

P(detected in exactly 2) (.384)(.4)+ (.027)(.6)

=.905.

a. First, P(both +) = P(carrier M both +) + P(not a carrier N both +) =

P(carrier)P(both + | carrier) + P(not a carrier)P(both + | not a carrier). Assuming independence of the
tests, this equals (.01)(.90)> + (.99)(.05)*> = .010575.

Similarly, P(both —) = (.01)(.10)? + (.99)(.95)* = .893575.
Therefore, P(tests agree) =.010575 +.893575 = .90415.
P(carrier "both +) (.01)(.90)° _

b. From the first part of a, P(carrier | both +) =
P(both +) .010575

766.

P(E; ~ L) =P(E\)P(L | Ey) = (.40)(.02) = .008.

Let B denote the event that a component needs rework. By the law of total probability,
P(B)=3 P(4)P(B | 4;) = (.50)(.05) + (.30)(.08) + (.20)(.10) = .069.
(.50)(.05) (:30)(.08)

g0~ 6% P B) = = 348, and P(43 | B) = .290.

Thus, P(4; | B) = 069

See the accompanying tree diagram.

A5

A5

525

a. P(G|RiI<R,<Ry)= =.67 while P(B | Ri < Ry < R3) = .33, so classify the specimen as granite.

A5+.075
Equivalently, P(G | Ri <R, < R3) = .67 > ' so granite is more likely.
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0625
2125

.0375
P(G|R3 <RI <Ry = ﬁ =.0667 < %, so classify the specimen as basalt.

P(GI|RI<R3<Ry)= =.2941 <14, so classify the specimen as basalt.

P(erroneous classification) = P(B classified as G) + P(G classified as B) =
P(B)P(classified as G | B) + P(G)P(classified as B | G) =

(.75)P(R1 <R <R3 | B) + (.25)P(R1 <Ri;<RyorR; <RI <Ry | G) =
(.75)(-10) + (.25)(.25 + .15) = .175.

For what values of p will P(G' | Ri <R, <R3), P(G|Ri <R3 <R»),and P(G | R3 < R| <R») all exceed "2?
Replacing .25 and .75 with p and 1 — p in the tree diagram,

.6 .6 1
P(G|Ri <Ry <R3)= P _ 2P S5 p>—;
bp+.1(1-p) 1+.5p 7
25 4
P(G|Ri<Rs<R)=—"L > 5iff p>—,
25p+.2(1-p) 9
A5p . 14 -
P(G|Rs <RI <Ry)= >.5 iff p>— (most restrictive). Therefore, one would always

ASp+.7(1-p) 17

classify a rock as granite iff p > ﬁ .

There are 4! = 24 possible ways the calculators could be randomly allocated back to the four friends. Since
only one of those 24 possibilities results in everyone getting her own calculator back, the chance this

1
randomly occurs is

24"

Our goal is to find P(4 U B U C U D). We’ll need all of the following probabilities:

P(4) = P(Allison gets her calculator back) = 1/4. This is intuitively obvious; you can also see it by writing
out the 24 orderings in which the friends could get calculators (ABCD, ABDC, ..., DCBA) and observe
that 6 of the 24 have A in the first position. So, P(4) = 6/24 = 1/4. By the same reasoning, P(B) = P(C) =
P(D)=1/4.

P(4 N B) = P(Allison and Beth get their calculators back) = 1/12. This can be computed by considering all
24 orderings and noticing that twvo — ABCD and ABDC — have A and B in the correct positions. Or, you
can use the multiplication rule: P(4 N B) = P(A)P(B | A) = (1/4)(1/3) = 1/12. All other pairwise
intersection probabilities are also 1/12.

P(4 n B n C) = P(Allison and Beth and Carol get their calculators back) = 1/24, since this can only occur
if all four friends get their own calculators back. So, all three-wise intersections have probability 1/24, as
does P(4 N B N C N D), which was part a.

Finally, put all the parts together, using a general inclusion-exclusion rule for unions:
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P(AUBUCUD)=P(A)+ P(B)+ P(C)+ P(D)
—P(ANB)-P(ANC)—---—P(CN D)
+P(ANBNC)+---+ P(BNCND)

—-P(ANBNCND)
gt g Ly 1
4 12 24 24
St L LD s
2 6 24 24
The final in b has the f 11+1111+11G lizi friends, th
t It e t , t
e final answer in b has the form YT TR T eneralizing to n friends, the
1. . . 1 1 1 1 n-1 1
probability at least one will get her own calculator back is ———+———+-+(=1)"" —.
20 31 4l n!

When # is large, we can relate this to the power series for e* evaluated at x =—1:
o k 2 3

. b X x X
e=) —=l+—4+—+—+-=
ikt 1 2! 3
. 1 1 1 [1 1 1 }
l-——+———+ =l | =——+—— |
1 2! 3! 11 2! 3!
Lot 1,1
o213

So, for large n, P(at least one friend gets her own calculator back) = 1 — ¢! = .632. Contrary to intuition,
the chance of this event does not converge to 1 (because “someone is bound to get hers back™) or to 0
(because “there are just too many possible arrangements”). Rather, in a large group, there’s about a 63.2%
chance someone will get her own item back (a match), and about a 36.8% chance that nobody will get her
own item back (no match).

Note: s = 0 means that the very first candidate interviewed is hired. Each entry below is the candidate hired for
the given policy and outcome.

Qutcome s=0 s=1 s=2 s=3| Outcome s=0 s=1 s=2 s5=3
1234 1 4 4 4 3124 3 1 4 4
1243 1 3 3 3 3142 3 1 4 2
1324 1 4 4 4 3214 3 2 1 4
1342 1 2 2 2 3241 3 2 1 1
1423 1 3 3 3 3412 3 1 1 2
1432 1 2 2 2 3421 3 2 2 1
2134 2 1 4 4 4123 4 1 3 3
2143 2 1 3 3 4132 4 1 2 2
2314 2 1 1 4 4213 4 2 1 3
2341 2 1 1 1 4231 4 2 1 1
2413 2 1 1 3 4312 4 3 1 2
2431 2 1 1 1 4321 4 3 2 1

From the table, we derive the following probability distribution based on s:
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s ‘ 0 1 2 3

P(hire#1) | 6 11 10 6
24 24 24 24

Therefore s = 1 is the best policy.

135. P(41) = P(draw slip 1 or 4) = ¥4; P(A>) = P(draw slip 2 or 4) = 3;
P(A43) = P(draw slip 3 or 4) = Y5; P(41 N A>) = P(draw slip 4) = %;
P(4> N A3) = P(draw slip 4) = Ya; P(41 N A3) = P(draw slip 4) = Va.
Hence, P(41 N A2) = Y4 = P(41)P(A2), P(A2 N A3) = Y4 = P(42)P(43), and
P(A1 N A3) = Y= P(41)P(43), thus there exists pairwise independence. However,
P(A) N A> N Az) = P(draw slip 4) = Y4 = % = P(41)P(42)P(43), so the events are not mutually independent.

137. A tree diagram for this problem is given below.
By
bo
d n
c C 1-d
b ,
B, . b
CI
by
d n
1-d
D!

B>

a. Using the probabilities provided,
P(By D) _ b)) _ by b
P(D") 1-P(D) 1-[bjcd +byed] 1—(b; +b,)cd
bic-d)+b,(1-c)1)  b;(1-cd)
P(D") 1=(by +by)cd
these sum to 1, using bo+ b1+ by = 1.

P(B, | D')=

Similarly, P(B; |D'") = for i = 1,2. It’s straightforward to show

b. With the numbers provided, P(Bo| D") =.7117, P(B:|D") =.0577, P(B>| D) = .2306.
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A attracts B= P(B | A) > P(B) = 1 — P(B | A) < 1 — P(B), because multiplying by —1 reverses the
direction of the inequality = P(B'| 4) < P(B') = by definition, 4 repels B". In other words, if the
occurrence of 4 makes B more likely, then it must make B’ less likely. Notice this is really an iff
statement; i.e., all of the implication arrows can be reversed.

This one is much trickier, since the complementation idea in a can’t be applied here (i.e., to the
conditional event 4). One approach is as follows, which uses the fact that P(B) — P(B N A) = P(B " 4'):

P(ANB
A attracts B= P(B | A) > P(B) = ﬁ > P(B) = P(A N B)> P(A)P(B) =
P(B)—P(4 " B)<P(B)—P(A)P(B)  because multiplying by —1 is order-reversing =
P(BN A
P(4")
by definition, 4’ repels B. (Whew!) Notice again this is really an iff statement.

P(B N A"y < P(B)[1 — P(4)] = P(B)P(4") = <P(B)= P(B|A") < P(B) =

Apply the simplest version of Bayes’ rule:
P(B)P(A|B)
P(4)

P(A|B)

A attracts B< P(B | A) > P(B) < >P(B) & >1 < P(4|B)>P4) <

by definition, B attracts 4.
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