CHAPTER 10

Section 10.1

1.

E(X- 17) = E()_() ~E(Y)=4.1-4.5=—4, irrespective of sample sizes.

2 2
(X -7)=r(X)sr(7)= 2+ U8 Oy g the sDof X - Fis
m n 100 100

X -7 =4.0724 = 2691 .

A normal curve with mean and SD as given in a and b (because m = n =100, the CLT
implies that both X and Y have approximately normal distributions, so X —Y does
also). The shape is not necessarily that of a normal curve when m = n = 10, because the
CLT cannot be invoked. So if the two lifetime population distributions are not normal,

the distribution of X —Y will typically be quite complicated.

(x-7)-0
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conclude that the true average tread lives for these two tire brands differ.

The test statistic value is z = , and Ho will be rejected at level .05 if |z] >

1.96. We compute z = =4.84>1.96, so we reject Hy and

2 2
Cl= (R )+ 2, [ +72 = 2,100 + 1.96(433.33) = (1251, 2949). As a practical
m n

matter, this is a fairly wide interval, suggesting g, — u, has not been estimated very
precisely.

H, says that the average calorie output for sufferers is more than 1 cal/cm?*min below that

2 2 2 2 _ _(—
for non-sufferers. 1/6—1+ﬁ = ,/ﬂ+ﬂ =.1414,s0 z= ('64 2.05) ( ) =-2.90
m n 10 10 1414

. Atlevel .01, Hy is rejected if z <—2.33; since —2.90 <-2.33, reject Ho.

From a, P-value = ®(-2.90) = .0019.

,B=l—®(—2.33—%)z1—@(—.92):.8212. Power=1-f=1-.8212=.1788.
2(2.33+1.28)

mznz(—JFZ=65.15,souse66.
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a. Due to the relatively small sample sizes, we must assume here that the population elapsed
time distributions are both normal. The Central Limit Theorem can’t rescue us here.

b. To test Ho: 14, — 1, = 0 vs Ha: p, — p, # 0, we reject Ho at the .01 level if |z > z,005 = 2.576.
(30.42-26.53)-0 _ 3.89

J3.52 /15485 /19 2.936

<2.576, Hy isn’t rejected at the .01 level. The data do not provide convincing statistical
evidence that the true average times differ.

The observed test statistic value is z =

=1.32. Since |1.32|

9. o,=0,=.2, a=[=.05,and the test is one-tailed, so
(27 +.27)(1.645+1.645)’ .
n= (2-0y =21.65 . Use n = 22 hospitals of each type. We cannot make

cause-and-effect conclusions here, since this is merely an observational study (nurse staffing
problems were not forcibly introduced into randomly selected hospitals!). The general
financial state of a hospital may impact both its nursing staff and its mortality rate.

11.

. . —u —A
a. As either m or n increases, SD decreases, so o e '} é‘l [2)

% increases (the numerator is

. -1, —A -1, —A
positive), so | z, AT decreases, so f=®| z, AT TS0 | ecreases.
SD SD

b. As f decreases, zp increases, and since zg is in the numerator of n, n increases also.

Section 10.2

13.
2 )2
a. v= <,%02+%0)2= 37.21 Cdsetn
() (g5) -094+144
9 g
= (%+%)2 2401 .
" V_(%y (%)2_-694+,411_21-7~21_
9 14
i_'_gz
e
10 i
—+

0 -7
9 14



15.

17.

19.
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Let 11 and u, denote the true mean years of education for all sons of foreign-born and native-
born fathers in Germany, respectively. The goal is to test Ho: 1, — 1, =0 vs Ha: pt, — 11, < 0;
the latter is equivalent to the statement u > u;. With such large sample sizes, we may use a z
approximation to the two-sample ¢ test; in particular, Ho will be rejected if # < -z =-2.33.
9.2-11.7)-0

J1.9%/251+2.6 /640

statistic). In particular, since —15.83 <-2.33, H is resoundingly rejected at the .01 level. The
data provide overwhelming evidence that the true average years of education for sons of
native-born fathers in Germany exceeds that of sons with foreign-born fathers.

The observed test statistic value is ¢ = =—15.83 (a massive test

We will assume throughout this analysis that the relevant distributions are approximately

normal.

a. Letu and uo denote true mean head acceleration (g) with a helmet and with no helmet,
respectively. The hypotheses of interest are Ho: 4, — t, = 0 vs Ha: g, — 11, < 0. Welch’s df
are roughly v = 38, and H, will be rejected if # <—# 533 =—1.686. Here,

(43.1-754)-0

CJas2 /24172224

hypothesis. The data provide overwhelming evidence that mean head acceleration is
reduced with helmets.

=—18.64 <-1.686, and we resoundingly reject the null

b. Now let u; and w, denote true resultant neck force (N) with a helmet and with no helmet,
respectively. The hypotheses of interest are Ho: 4, — 1, = 0 vs Ha: g, — 11,> 0. Now
Welch’s df are v =44, and H, will be rejected if 1> 7544 = 1.680. Here,

1331-945) - . . .
t= (331-945-0 _ 15.66 > 1.680, and we resoundingly reject the null hypothesis.

\93* /24 +77* / 24
The data provide convincing evidence that the true mean resultant neck force is greater
with helmets than without.

c. P(at least one type I error) < P(type I error in (a)) + P(type I error in (b)) = .05 + .05 =
.10. That is, the chance of committing at least one type I error is at most 10%.

a. A 95% confidence interval for the fast food mean —non fast food mean = 1, — 4, is

2 2 2 2
(%, — X )£1.96,| 2 + - = (2637 -2258)+1.96 122 +122 = (219.6,538.4) . [The
n m

very large sample sizes imply that a z critical value is suitable here.]




21.

23.

25.

We wish to test Ho: g1, — 4, =200 vs Ha: p, — 4, >200. Given the large sample sizes, we
(2637-2258)-200 179

3§ 1519° 81.338

413 663
Equivalently, the one-tailed P-value is roughly 1 — ®(2.20) = .014, which is less than .05.
So reject the null hypothesis at the .05 level, and conclude that yes, there is strong
evidence of a difference in means exceeding 200 calories per day.

will reject Hy if t > zos = 1.645. Here, ¢ = =2.20>1.645.

No, these distributions cannot be normal. In both samples, dollar values cannot be
negative, but the sd exceeds the mean. So, both distributions must be positively skewed.
(This also makes intuitive sense.) However, since we have such large samples, the
sampling distributions of the two sample means are normal anyway; normally distributed
populations are not vital to this analysis.

10482 . 686>
75 209

+ $130 = ($115,$375). With 95% confidence, the mean account balance for students
whose parents helped acquire a credit card is between $115 and $375 higher than the
mean for students whose parents had no involvement whatsoever.

We build a 95% CI for this population difference: (666 —421) + =$245

With sample 1 begin amateurs and sample 2 being professionals, we wish to test the
hypotheses Ho: (1 = po versus Hy: 11 < up. Calculating df as in the text gives v =42, and the

74.5-81.8

test statistic is ¢ = =—3.35 The one-sided P-value is P(T'<-3.35) =

J6.29% 124+ 8.64% /24

.001, using the df = 40 column of the ¢ table. So we reject Hy and conclude that, on average,
expert pianists hit the keys harder than amateur pianists.

a.

Normal Probability Plot for High Quality Fabric

Probability
g

Average: 1.50833
StDev: 0.444206
N: 24

We see that both plots illustrate sufficient linearity. Therefore, it is plausible that both
samples have been selected from normal population distributions.

Normal Probability Plot for Poor Quality Fabric
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StDev: 0.530330 A-Squared: -10.670
N: 24 P-Value:  1.000

Anderson-Darling Normality Test
A-Squared: 0.396
P-Value: 0.344



b. The comparative boxplot does not suggest a difference between average extensibility for
the two types of fabrics.

Comparative Box Plot for High Quality and Poor Quality Fabric

Poor
Quality
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Quality
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c. Wetest Hy:py—p, =0 vs. H, : yy — p, #0. With degrees of freedom

2

V= M =10.5, which we round down to 10, and using significance level .05
.00017906

(not specified in the problem), we reject Hy if |t| 21510 = 2.228 . The test statistic is

t= =08 =—.38, which is not > 2.228 in absolute value, so we cannot reject H.
(.0433265)

There is insufficient evidence to claim that the true average extensibility differs for the
two types of fabrics.

27. The null hypothesis is Ho: (41 = 1 and the alternative hypothesis is H,: w1 < go. Compute the

test statistic ¢ = 756-79.6 =-2.63 . The approximate degrees of freedom are

V5.92/40+7.62 /40
B (5.92 /40 +7.6> /40)2
2 2
(5.9 /40)2 N (7.6 /40)z
39 39
lower tailed test is then .005, so at the .01 level we conclude that the true average range of

motion for the pitchers is less than that for the position players. This claim could be false, in
which case we have made a type I error.

=73.48 , which we round down to 73. The P-value for our

29. We will test the hypotheses: Ho: p1 — 2 = 10 v. Hy: p1 — o > 10. The test statistic is

2
275° | 444®
=2.08 withdf=v= (i +*4 ) _22.08

_(x-y)-10 45
(2,17052 )2 (%)2 395
+

_\/(%Jr%) 2,17
9 4

P-value from the ¢ table is approximately .045, which is < .10 so we reject Hy and conclude
that the true average lean angle for older females is more than 10 degrees smaller than that of
younger females.

=5.59\y5, and the

5



31.

33.

3s.

a. Probability plots for the Coke and Pepsi data appear below. Both are fairly linear,
supporting the requisite normality assumption.

Probability Plot of Coke
Normal

Probability Plot of Pepsi
Normal

Percent
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Percent
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220

Mean 1424
Sthev 2955

AD 0354

P-Value 0401

b. The mean and sd for the Coke data are 307.28 and 34.61, while the mean and sd for the
Pepsi data are 142.44 and 29.55. The estimated degrees of freedom are v = 21, and the ¢

critical value is #0521 = 2.831. The resulting 99% CI for the difference in population

means is (127.63, 202.03).

¢. No. For a 99% lower confidence bound we use (difference of means) — £ 21(se) =

131.75.

d. We are 99% confident that the average foam volume from a 12 oz can of Coke is at least

131.75ml greater than the average foam volume from a 12 oz can of Pepsi.

Let 11 = the true average proportional stress limit for red oak and let u, = the true average

proportional stress limit for Douglas fir. Wetest A, : g, —p, =1 vs. H, : py — 1, >1. The
(8.48—-6.65)—1

test statistic is ¢ =

[.79% | 1.8
TRRANT)

value = P(T > 1.8) = .048. At a = .05, there is sufficient evidence to claim that true average

=1.818. With degrees of freedom v =~ 13.85 — 13, the P-

proportional stress limit for red oak exceeds that of Douglas fir by more than 1 MPa.

a. It appears that bartenders pour slightly less rum into highball glasses, on average. But the

most stark difference is variability: the amount poured into a slender, highball glass is
much more consistent across bartenders than the amount poured into short, tumbler
glasses. Both boxplots support an assumption of normally distributed populations.

Boxplot of short, highball

Data
S

=

short

highball




37.

39.

41.

b. As noted above, the two samples appear normal; probability plots confirm this. Software
reports the following: ¢ = 1.88 with estimated df = 8. The corresponding two-sided P-
value from software is 0.097; hence, we fail to reject the null hypothesis at the standard o
= 0.05 level. We conclude that the true average amount of rum poured by experienced
bartenders does not differ significantly from tumblers to highball glasses.

Let u; and u, be the average OCSD scores for the appropriate populations of males and
females, respectively. We wish to test Ho: i1 = up versus Hy: u1 # . The samples are
moderate in size, so, we use a two-sample ¢ test. Software gives the following results: £ =2.19,
estimated df = 81, P-value = .031. Hence, we reject the null hypothesis at the standard a = .05.
At this level, we conclude that the average OCSD scores are different for the populations of
males and females with comorbid alcohol addiction and PTSD. If we use the stricter o = .01
standard instead, we would fail to reject Ho, because .031 > .01.

As suggested in the hint, start with the facts (m—1)S’ /o ~ y. , and (n—1)S; /o> ~ . ,.
Since the X and Y samples are independent, so are their sample variances, which implies that
the sum of the two terms above is also a chi-squared rv (sum of independent chi-squares is
chi-squared), with df = (m — 1) + (n — 1) =m + n— 2. Put it all together:

(m+n- 2)S; _(m- 1S’ N (n-1S;

2 2 2
2 2 2 ~ mel + anl - /’{»1+n72 .
(o3 O o

a. Letzr=t¢

al2,m+n-2

. Then 1 — a = P(—t < T < f), where T is the rv from the previous exercise.

Solve the system of inequalities for g —u, :

()_(_)7)_(/“1_/”2) v v vy v
—t< <teX-V)-t-SNl/m+l/n<py—p <(X-Y)+t-S J1/m+1/n
SV m+1/n ’ b !

Therefore, a “pooled” CI for g — p, has endpoints (x=y)£74,,,,.,,s,Nl/m+1/n.

b. Wehave m =10, x =2903, 51 =277, n =28, y =3108, s, =206. The ¢ critical value is
10-1 8-1

t025.10+8 2 = 2.120, and the pooled variance is s> = m(277)2 + m(206)2 =
+8— +8—

61725.8, so s, = 248. The resulting 95% CI for g, —u, is
(2903 -3108)£2.120-2481/10+1/8 = (455, 45).

c¢. Without pooling, we need Welch’s df, which here is v = 15. The traditional two-sample ¢

Clfor p —p, is (X—=7)%t,,, [si/m+s;/n =

(2903 —3108)J_r2.131\/2772 /10+206° /8 = (—448, 38). The two CI’s are fairly close to
each other.




Section 10.3

43.

45.

47.

d =13.33, s, =18.41

1

W N

Parameter of Interest: , = true average difference
Hy:pup=0 versus H, :up>0
A normal plot (not shown) is sufficiently straight to support normality for the
population of differences.
- d “Hp _ d—0
N sp/ \/; - Sp/ \/;
rejection region: ¢ >+t s =3.365
/e 13.33-0 _
841/+6

Reject Hy, and conclude that true average movement for the TightRope treatment is
indeed less than that for the Fiber Mesh treatment.

t

Let up denote the population mean difference. From software, the mean and sd of the
differences are .000246 and .000331, respectively. The ¢ critical value is #2512 = 2.179,
and the resulting 95% CI for up is (.000046, .000446). Because 0 is not included in this
interval, it does appear that the shovels differ with respect to true average energy
expenditure, and that the difference is positive, so true energy expenditure with the
conventional shovel is higher.

.000246 -0

.000331/+/13

Because this is less than .05 we reject the null hypothesis of equal population means, and
conclude at the .05 level that true average energy expenditure using the conventional
shovel exceeds that using the perforated shovel.

Compute ¢ = =2.68 and the corresponding one-tailed P-value = .01.

The accompanying normal probability plot is quite linear, suggesting it is indeed plausible
that the population distribution of differences is normal.
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49.

d +14500,5, 1 \n =9.405+(1.729)2.196 /+/20 = 10.524. We can be 95% confident that

the true mean difference in appraisal values is at most $10,524.

To test Ho: itp = 10 vs Hy: up < 10 at the .05 level, we will reject Ho if ¢ < 05201 = —

1.729. The test statistic value is ¢ = d-#, _ 9405-10 =-1.21>-1.729, so we fail to

s, /< 2.196/420
reject Ho here. This is consistent with part b: we concluded that up < 10.524, but that does
not necessarily imply that xp < 10. Thus, we fail to reject Ho: up = 10 in favor of Hy,: up <
10 at .05 significance (aka 95% confidence).

The two samples of 23 students are not matched or paired in any way. Rather, they may be
regarded as two independent samples of students. Thus, the two-sample ¢ procedures from
Section 10.2 are appropriate here.

Let u; and u, denote the true mean payment offer in the 7 oz and 8 oz conditions,
respectively. The goal is to test Ho: 4, — 1, = 0 vs Ha: g, — p1, > 0. Welch’s df are roughly v

(2.26-1.66)—0

J84* 123+ 812/ 23

2.47 > 1.681, so we reject Hy. The data provide convincing statistical evidence that people
will pay more, on average, for 7 oz of ice cream in a 5 oz cup than for 8 0z of ice cream in
a 10 oz cup.

=43, and so Hy will be rejected if > #9543 =1.681. Here, ¢ =

Now each of 23 students makes two offers, so the data are naturally paired by student.
Hence, a paired ¢ test is appropriate for this part of the analysis.

With n = 23, me must assume the population difference distribution is at least
approximately normal. The summary statistics are d=x-3=156-185=—-29and sp=
.32. To test Ho: up =0 vs H,: up <0 at the .05 level, we will reject Hy if t <—tos523-1=—
-29-0
32/423

affirm the researchers’ theory that students will offer to pay more, on average, for 8 oz of
ice cream than for 7 oz.

1.717. Here, t = =-4.34 <-1.717, so we reject Ho. At the 5% level, the data

In the first part of the study, students’ only point of reference is the cup — most people
can’t distinguish 7 oz from 8 oz in the abstract. So, the overflowing ice cream cup looks
like more ice cream. But when the two are side by side, even with different-sized cups,
clearly one can see which ice cream volume is greater!



51.
a. The normal probability plot is very linear, except for the two lowest values. But these do
not really weaken the plausibility of a normal population of differences.

b. For these differences, n =33, d = 19.92, s4=17.61. Thus, a 95% CI for ug is

d £t 4553 (STdJ =19.92+ (2.037)[%] = (12.67,25.16). We are 95% confident that
n

the true mean difference in mumbling from first grade to third grade is between 12.67%
and 25.16%.

53.
1 Parameter of interest: up denotes the true average difference of spatial ability in
brothers exposed to DES and brothers not exposed to DES.
2 Hy:up=0
3 H,: MUD > 0
4 . d- My d-0
s,/ Jn sy / Jn

5 RR: P-value < .05,df=9

12.6-13.7)-0
6 t= % =-2.2 , with corresponding P-value .028
7 Reject Hy. The data supports the idea that exposure to DES reduces spatial ability.

55. With (xl,yl):(6,5), (xz,yz):(15,14), (x3,y3):(1,0) , and (x4,y4):(21,20), d =1 and sp

=0 (thed;’sare 1, 1, 1, and 1), so the paired ¢ statistic would be infinite. Meanwhile, 5| = s, =
8.96 and ¢ = .16 if we incorrectly apply the two-sample ¢ procedure.

Section 10.4

57.
. . . . 63 . 15
a. Hpwill be rejected if |z > 1.96. With p, =——=.2100, and p, =—— =.4167,
300 180

. 63+75 .2100-.4167 _ —.2067

=—-4.84 . Since |4.94|

p = - s -
300+180 \/(.2875)(.7125)(ﬁ+ﬁ) .0427
>1.96, Hy is rejected.

b. p=.275 and p, =.150, so power =

1_[@([(1.96)(.0421)+.2]]_@[[—(1.96)(.0421)+.2]H _

0432 0432
1-[@(6.54)-D(2.72)]=.9967 .

10



59.

61.

63.

65.

67.

Let @ = .05. A 95% confidence interval is (p, — p,) +z,,, (2L +22)

m n

= (B -Le)£1 96\/[(@)(;;;)+(;262)(%2)j =.0934+.0774=(.0160,.1708)
395 266 ) — 395 266 : - : 2 :

a. With p, =322/1785=.180and p, =511/1186=.431,299% CI for p, — p, is given by

180(1-.180) 431(1-431)
1785 1186

(.180—.431)+ 2.576\/ =(~294,-207).

b. Food images in British TV commercials are much more likely to include sugary and/or
fatty foods than images in TV programs. In particular, the proportion of all commercials
with sugary/fatty food images is between .207 and .294 higher than the proportion of all
programs with sugary/fatty food images.

Let pi = the proportion of all Chinese brands in low-uncertainty business environments that
use a “lucky” number of strokes, and let p, = the corresponding proportion for high-
uncertainty brands. The researchers’ hypotheses are Ho: p, — p, =0 v Ha: p, — p, <0. With

P, =372/654 = 569, p, =343/548 = 626, and p = (372 + 343)/(654 + 548) = .595, the test
(.569-.626)—0
J595(1—.595)(1/ 654 +1/543)

<-2.01)=®(2.01) =.022 < a = .05; equivalently, z = -2.01 < —z s =—1.645. Either way, Hj
is rejected at the .05 level, meaning the sample data support the researchers’ theory.

statistic value is z = =-2.01. The lower-tailed P-value is P(Z

a. Let p; = the proportion of all students who would agree to be surveyed by Melissa and let
p2 = the proportion of all students who would agree to be surveyed by Kristine. The
hypotheses of interest are Ho: p, — p, =0 v Ha: p, — p, #0. With p, =41/50= 82, p, =
27/50 =.54,and p = (41 +27)/(50 + 50) = .68, the test statistic value is

. (.82-.54)-0
-68(1—.68)(1/50+1/50)

=.01; equivalently, |z| =|3.00| > zos = 2.576. Thus, Hy is rejected at the .01 level, and we
conclude that the proportions of all students who would agree to be surveyed by Melissa
and Kristine are not the same.

= 3.00. The two-tailed P-value is 2P(Z>3.00) =.003 <«

b. Not necessarily. Accent is not the only feature that makes Melissa and Kristine different
(they are two different people, after all). Any other distinction between the two women
serves as a competing explanation for why students were more likely to accede to Melissa
than to Kristine. In an ideal study, one person would do all 100 interview attempts,
randomly deciding which of two accents to present to each potential subject.

, so w=_1 requires n = 769.

Using p1 = g1 =p2 = g2= .5, w=2(1.96) ('2_5+'2_5) - 2'37_19
n

n n

11



69.

The “after” success probability is pi + p3 while the “before” probability is p1 + p2, so p1 +

3> p1 + p2becomes p3 > py; thus, we wish to test H : p, = p, versus H, : p, > p,.

3

. . . ¢
The estimator of (p1 + p3) — (p1 + p2) = p; —p,is p,—p, = z,

_(pz_p3)2 _ Pyt D

. X,-X Lo
WhenHolstrue,pZZpg,soV( 3 zj:p2+p3 , which is
n n n
X3_X2
. p D X, +X C X,-X
estimated by Ptps 2+2 3. The z statistic is then L =3 *2
n n \/X2+X3 JX, + X,
2
n

200-150

v200+150

level .01, Hy can be rejected, but at level .001, Hy would not be rejected.

The computed value of z is =2.68, so P-value = 1 — ®(2.68) =.0037. At

Section 10.5

71.

From Table A.8, column 5, row 8, F, s =3.69.

From column 8, row 5, F s =4.82.

1

Fo558 =——=.207.

Fosgs
F _ ! 271

9585 = -

Fossg

F.01,|0,12 =4.30
1 1
Fogr000 =——=777=-212.
Foriie 471

Fs4 =6.16,50 P(F <6.16)=.95.

Since Flg05 = Slﬂ =177, P(177 < F <4.74)= P(F < 4.74)- P(F <.177)
—95-.01=.94.

12



73.

75.

77.

With o, = true standard deviation for not-fused specimens and o, = true standard deviation

for fused specimens, we test H:0, =0, v. H, 10, >0, . The calculated test statistic is
(277.3)° , ~
f =-——%=1.814. With numerator df =m — 1 =10 -1 =9, and denominator df =n -1 =
(205.9)
8-1=7, f=1.814<2.72=F ;. We can say that the P-value > .10, which is obviously

> .01, so we cannot reject Hy. There is not sufficient evidence that the standard deviation of
the strength distribution for fused specimens is smaller than that of not-fused specimens.

With o, = true standard deviation for high rail breaks and &, = true standard deviation for

low rail breaks, we test H,:0, =0, v. H,:0,>0,. The calculated test statistic is /= s, /5,

= (145.1)%/(69.3)*> = 4.38. With numerator df =m — 1 =12 —1 = 11 and denominator df = n —
1=10-1=9, wereject Hoif /> F, ,=5.18. Since 4.38 <5.18, we fail to reject Hy at the

.01 level and cannot conclude the true sd of repair times is greater for high rail breaks. (The
P-value is about .018, so Hy would be rejected at the .05 significance level.)

From Exercise 24, m =n =17, s1 = 4.5 kg, and s, = 3.1 kg. With equal sample sizes, the only
required critical value is F,,_, ;= 2.76. Then a 95% CI for the ratio of population standard

1 .
deviations, o, /0, ,18 | — ——,—-/2.76 |= ;-—,—-\/2.76]—(0.87, 2.41).
b [SQ V276 s, J (3.1 V2767 3.1

Section 10.6

79.

a. Software gives the following results: group L has a mean GPA of 3.367 with a sd of
0.514; group N has a mean GPA of 2.920 with a sd of 0.598; the estimated df is v = 56.
From these, a 95% CI for p; —u, is (.158,.735).

b. You can create the bootstrap distribution of differences by using the code from Chapter 8
separately on each of the two samples, then computing differences of the side-by-side
pairs. Answers will vary, but the bootstrap distribution of differences looks quite normal.

c. Answers will vary; one simulation gave spoot = 0.141. This suggests the following 95% CI
for g, — 1151 (3.367 —2.920) + t.025,56(0.141) = 0.447 £ (1.96)(0.141) = (.171, .723).

d. Answers will vary; choosing the 25" bootstrap value from each end of the distribution in
one simulation gave a percentile interval of (.156, .740).

e. All three intervals are very close to each other, suggesting the sampling distribution of
the difference of means is normal here, as noted above in (b).

f. Students on lifestyle floors appear to have a higher mean GPA, somewhere between ~.16
higher and ~.73 higher.
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81.

83.

The standard deviations of the two samples are 0.514 and 0.598. The relevant critical

value is F 252920 =2.101. Thus, a 95% CI for G s 0514 1 , 0.514 £2.101 | =

o, 0.598 /2.101 0.598
(0.593,1.246). Normal probability plots of the two samples shows some noticeable
departures from normality, more so that we are usually willing to accept for this <
procedure.

The R code below assumes two vectors, L and N, contain the original data (same as
Exercise 79).
ratio = rep(0,5000)
for (i in 1:5000) {
L.resamp = sample (L, length (L), replace=T)
N.resamp = sample (N, length(N),replace=T)
ratio[1i] sd(L.resamp) /sd (N.resamp)
}
Find the 25" value from either end of the ordered list of ratios. Answers will vary; one
bootstrap simulation gave (0.568,1.289).

The intervals are fairly similar, although that won’t be the case for every simulation run.
Due to lack of normality, we have more faith in the bootstrap CI. Notice that both
intervals contain 1, suggesting the two population standard deviations could be equal —
this is consistent with the previous exercise.

You can create the bootstrap distribution of differences by using the median code from
Chapter 8 separately on each of the two samples, then computing differences of the side-
by-side pairs. The bootstrap distribution of differences of medians is definitely not
normal: the distribution is multimodal and positively skewed.

Answers will vary; one simulation gave suoot = 2.5657. The medians of the two original
samples are 13.88 and 8.47. This suggests the following 95% CI for z, — i, : (13.88 —

8.47) % 225 (2.5657) = (5.41) £ (1.96)(2.5657) = (0.38, 10.44).

Answers will vary; choosing the 25" bootstrap value from each end of the distribution in
one simulation gave a percentile interval of (0.4706, 10.0294).

The interval in (c) is slightly narrower, but neither includes zero. It is surprising that they
are so close, since (b) relies on a normally distributed sampling distribution, which does
not exist here.

The intervals from the previous exercise are considerably narrower (more “precise’”) than

those for the difference in population medians. We can more precisely measure the
difference in population means with the bootstrap in this particular case.
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85.

87.

For the test of Ho: ) —p, =0 versus Ha: p; — p, # 0, our test statistic is ¢ =
(10.59-5.71)-0

V4417 /10+3.92° /10
roughly 2P(|T] > 2.6) = 2(.009) = .018. Hence, we reject Hy at the a. = .05 level and
conclude the two population means are different. Neither of the probability plots looks
very linear, but it’s difficult to detect moderate deviations from normality with so few
observations.

=2.62; the estimated df is v=17. The 2-sided P-value is

In the R code below, the data is read is as a data frame called df with two columns, Time
and Group. The first lists the times for each rat, while the second has B and C labels.
N = 5000
diff = rep(0,N)
for (i in 1:N){
resample sample (df$Time, length (df$Time), replace=T)
C.resamp = resample[df$SGroup=="C"]
B.resamp = resample[df$Group=="B"]
diff[i] = mean(C.resamp) - mean (B.resamp)
}
Run this code, then find the proportion of these differences in means that are greater than
our observed difference, 10.59 — 5.71 = 4.88. Double this proportion to get the 2-sided P-
value. Answers will vary; in one bootstrap simulation, the one-sided proportion was
.0108, giving 2(.0108) = .02 as our two-sided P-value.

The answers to (a) and (b) are quite similar; in particular, both reject the null hypothesis
of equal means at the o = .05 level. This is not surprising, since the sampling distribution
relevant to (a) was indeed normal (see the previous exercise).

The standard deviations of the two samples are 3.26 and 1.54, for an F-ratio of = 4.46.
Compare this to Foses =4.95 and Floses = 1/F 556 =1/4.39 = 0.228: since 0.228 <4.46
<4.95, we fail to reject the hypothesis that o1 = o, at the a = .10 level. The finaska barley
group shows some deviation from normality, but it’s difficult to detect a real departure
with such a small sample.
In the R code below, the data is read is as a data frame called df with two columns,
Barley and Gain. The first lists T’s and F’s, while the second has the weight gains. The
entire list of weight gains is randomly permuted, then the combined sample is split
according to the T and F labels. Finally, the ratio of the variances of the T and F
resamples is calculated.
ratio = rep(0,5000)
for (i in 1:5000) {

resample = sample (df$Gain, length(df$Gain), replace=T)

T.resamp = resample[df$Barley=="T"]

F.resamp resample [df$Barley=="F"]

ratio[i] = var(T.resamp) /var (F.resamp)
}
The observed ratio is 3.26%1.54% = 4.48. For one run of the above code, the proportion of
ratio values that were > 4.48 was .086. Double this to obtain a two-sided P-value 2(.086)
=.172. Thus, we (again) fail to reject the null hypothesis of equal population variances
(or standard deviations).
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89.

91.

93.

In either case, we have no statistically significant evidence to suggest the population
standard deviations are unequal.

Use the code provided in the solution to Exercise 85(b). The observed difference in
sample means is 3.47. In one run, the proportion of differences > 3.47 was .019. The
resulting two-sided P-value is 2(.019) = .038. Thus, we reject the null hypothesis of equal
population means at the a = .05 level.

The result in (a) matches closely the result in Example 10.8; even the P-values are fairly
close (.032 v .038). This comes as no surprise, since both procedures are valid: the large
sample sizes permit a large-sample z-test, and the shapes of the distributions of the two
samples are fairly similar (which is important for the validity of the permutation test).

Software gives the following results: d =9.126, s4=6.893. So, a 95% confidence

interval for up is 9.126 % £025.26(6.893)/4/27 = ($6.40, $11.85). The 27 differences are
grossly non-normal (heavily left-skewed); however, with a moderate sample size of n =
27, the effects of the CLT may begin to appear in the sampling distribution of D .

Use the code provided in Chapter 8. The bootstrap distribution of d is still quite non-
normal (left-skewed).

Answers will vary; one simulation gave syoot = 1.305. This suggests the following 95% CI
for up:  9.126 £ 1.02526(1.305) = 9.126 + 2.056(1.305) = ($6.44, $11.81).

Answers will vary; choosing the 25" bootstrap value from each end of the distribution in
one simulation gave a percentile interval of ($6.23, $11.51).

The intervals in (a) and (c) are similar; however, the interval in (d) is shifted to the left,

reflecting the left-skewedness of the sampling/bootstrap distribution of & . This suggests
a slight problem with the symmetric intervals of (a) and (c).

On average, books cost between $6.23 and $11.51 more with Amazon than at the campus
bookstore!

Both the bootstrap and the randomized permutation test simulate random sampling from a
desired distribution in order to provide a confidence interval (bootstrap only) or to test a
hypothesis (either method). The bootstrap method assumes our sample faithfully represents its
population, so that sampling with replacement from the sample is equivalent to creating iid
observations from the population. We then use these bootstrap samples to create a faithful
representation of the sampling distribution of our relevant statistic (a sample mean or sd, a
difference of two means, a median, whatever). Permutation tests are only used for comparison
of two populations, and we make a different assumption: under the null hypothesis, the two
populations of interest are identically distributed, and so our m+n observations are really from
the same distribution.
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Supplementary Exercises

95s.

97.

99.

With sample sizes 56 and 59, the degrees of freedom must be at least 55 (see Exercise 97;
notice we cannot estimate v because we do not have the standard deviations). Thus, from
Table A.5, ¢t=6.07 is statistically significant at any a level: .05, .01, .001. The mean number
of ingredients selected by the scale-down group is indeed significantly greater than for the
build-up group. This same principle might be applied to features on a new car, for example.

[(Sel)z +(se, )T > [(Sel)z +(se, )T _
(se)' /1 (m=1)+(se,)' /(n=1)  (se)*/(m—1)+(se,)* / (m—-1)
N (DR
(se))" +(se,)*
the overall fraction. Then, if we expand the numerator of the remaining fraction,
[(se)” +(se2)* 1> _ (se))* +(se)* +2(se))* (se)?
(se1)4 +(se2)4 (se1)4 +(Sez)4
=m—1. So, a conservative estimate of the df for the 2-sample ¢ procedures is min(m — 1, n —

1). This is easier to compute, but lowering df will result in a wider margin of error (for a CI)
or less power (for a hypothesis test).

Sincem <n,v=

; replacing n by m above increased the denominator, which decreased

> 1, and we conclude v > (m — 1)(1)

a. Although the median of the fertilizer plot is higher than that of the control plots, the
fertilizer plot data appears negatively skewed, while the opposite is true for the control
plot data.

Comparative Boxplot of Tree Density Between
Fertilizer Plots and Control Plots

1400 —

1300 —

1200 —

Fertiliz

1100 —

1000 —

T T
Fertiliz Control

b. Atestof Hy:p —u, =0 vs. H, :pu —pu, #0yields a ¢ value of —.20 and a two-tailed P-

value of .85 (df = 13). We would fail to reject Ho; the data does not indicate a significant
difference in the means.

c.  With 95% confidence we can say that the true average difference between the tree density
of the fertilizer plots and that of the control plots is somewhere between —144 and 120.
Since this interval contains 0, 0 is a plausible value for the difference, which further
supports the conclusion based on the P-value.
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101.

103.

105.

107.

The center of any confidence interval for z; — u, is always x; — X, , so

X=X, = w =609.3. Furthermore, half of the width of this interval is

1691.9 - (~473.3)
2

=1082.6 . Equating this value to the expression on the right of the 95%

, 2 2
confidence interval formula, 1082.6 = (1 .96) IR , we find
o

i+ﬁ: 1082.6
ny ny

90% confidence interval is then 609.3 +(1.645)552.35)= 609.3+908.6 = (—299.3,1517.9).

=552.35. For a 90% interval, the associated z value is 1.645, so the

m=n =40, X=3975.0, 5, =245.1, 3 =2795.0, 5, =293.7. The large sample 99%

245.1° 2937
40 40

The value 0 is not contained in this interval so we can state that, with very high confidence,
the value of g, —u, is not 0, which is equivalent to concluding that the population means are

confidence interval for x4 —u, is (3975.0-2795.0)+2.58 = (1020, 1340).

not equal.

Let z denote the true average tear length for Brand A and let u, denote the true average tear
length for Brand B. The relevant hypotheses are H : g, — 1, =0 vs. H @y —p, >0.

Assuming both populations have normal distributions, the two-sample ¢ test is appropriate. m
=16, x=74.0,5,=14.8, n=14, 3 =61.0, 5= 12.5, so the approximate df is

V= W =27.97 | which we round down to 27. The test statistic is
(), (%)
15 13
. 74.0-61.0

ﬁ ~2.6. From Table A.7, the P-value = P(T > 2.6) = .007. At a significance
14. + 12.5
16 14

level of .05, Hy is rejected, and we conclude that the average tear length for Brand A is larger
than that of Brand B.

a. Letu = true mean AEDI score improvement for all 2001 students. We wish to test Ho: u
= (0 versus H,: u; > 0; the former implies no improvement, on average, while the latter
implies positive average improvement. A one-sample ¢ test is appropriate:

5.48-0

t=—"——
13.83/+/37
indicate statistically significant improvement in AEDI score across the semester.

=2.41, and at 36 df, P-value = .011. At a 5% significance level, the data
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109.

b. Let x = true mean AEDI score improvement for all 2002 students. Repeating part a,

6.31-0

t=———
13.20/~21
statistically significant improvement.

= 2.19 and P-value = .020 at 20 df. Again, we have evidence of a

c. Now let’s perform a two-sample t test. An “Enron effect” would mean that AEDI
improvements were higher in 2002 than in 2001, so the hypotheses are Ho: 11 — 2 =0 vs
(5.48-63)-0  _

V13.83%/37+13.20° /21

0.23. Software estimates v =41, and the lower-tailed P-value is .411. With such a large

P-value, H) is definitely not rejected, and the data do not provide evidence of a

significantly higher improvement in 2002 compared to 2001. That is, the data do not
convince us of an “Enron effect.”

Ho: i — 12 <0 (i.e., w2 > p1). The two-sample ¢ statistic is ¢ =

Let 11 denote the true average ratio for young men and u, denote the true average ratio for
elderly men. Assuming both populations from which these samples were taken are normally
distributed, the relevant hypotheses are H, : g, — 1, =0 vs. H, : g, — u, >0. The value of the

(7.47-6.71)

- ==7.5. The df =20 and the P-value is P(T>7.5) = 0.
(22) +(.28)

test statistic is =

13 12
Since the P-value is < a = .05, we reject Hyp. We have sufficient evidence to claim that the
true average ratio for young men exceeds that for elderly men.
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111.

113.

115.

117.

119.

NO, since a 2-sample ¢ test is the wrong analysis here! Instead, we should perform a paired ¢ test. For the
data provided, & = 0.3, sp=0.276, and ¢ =2.67 at 5 df. This has a corresponding 2-sided P-value of 0.045,
and so we reject the hypothesis of zero mean difference at the o = .05 significance level.

Because of the nature of the data, we will use a paired ¢ test. We obtain the differences by subtracting
intake value from expenditure value. We are testing the hypotheses Ho: yip = 0 vs Hy: up # 0. The test

1.757
statistic # = ————==23.88 with df =n — 1 = 6 leads to a P-value of 2P(T > 3.88) = .008. Using either
1.197/7

significance level .05 or .01, we would reject the null hypothesis and conclude that there is a difference
between average intake and expenditure. However, at significance level .001, we would not reject.

a. Let u; = the true mean test validity rating under the positive feedback condition, and let x, = the true
mean test validity rating under the negative feedback condition. The hypotheses of interest are
Ho: py, —p,=0vs Ha: y, —p,> 0. With such large sample sizes, Ho will be rejected if 1 >z, = 2.33.
(6.95-5.51)-0
V1.09% /123+0.79° /123
feedback is associated with a lower average validity rating than positive feedback.

Here, ¢ =

= 11.86, so we clearly reject Hy. The data affirms that negative

(6.62-5.36)—0

J1.19% /123 41.00% /123

verifies that students receiving positive feedback rate face-reading as more important, on average, that
students receiving negative feedback.

b. Repeat part a. Now = = 8.99, and again we clearly reject Hy. The data

c. Yes. Because students were randomly assigned to the two experimental groups, it is reasonable to
conclude that the observed effects in a and b are attributable to positive vs negative feedback. All
competing explanations for these significant differences should be roughly “balanced” across the two
treatment groups.

200 14.142 n
- —G. = = = =YY _ =Q|1.645——
A, =0, 0,=0,=10,d=1, & - N ,s0 B [ YD

.0294, and .0000 for n =25, 100, 2500, and 10,000 respectively. If the u;’s referred to true average 1Qs
resulting from two different conditions, g, —u, =1 would have little practical significance, yet very large

] , giving = 9015, .8264,

sample sizes would yield statistical significance in this situation.

H,: p, = p, will be rejected at level o in favor of H, : p, > p, ifz>z, With p, =Z%=.10and
0332

Py =482 = .0668, p=.0834 and z=———=4.2 50 H, is rejected at any reasonable o level. It appears

0079

that a response is more likely for a white name than for a black name.



121.

123.

Chapter 10: Inferences Based on Two Samples

. = = 1 1 . . .
First, V(X -Y ) e e 7 (— + —j when Hj is true, where u can be estimated for the variance by the
m

m n n
. . X +nY . . L - _
pooled estimate /,,,,,,, = P2 7L With the obvious point estimates /4, = X and j, =Y, we have a large-
m+n
o (X-Y)-0 X-Y

sample test statistic of £ = =

A 11 X Y

lupoaled —+—- —t—

m n nom

With ¥=1.616 andy=2.557, z=—5.3 and P-value = P(|Z] > |-5.3|) = 2®(-5.3) = 0, so we would certainly
reject Ho: g, = p, infavor of Ha: gg, # 11, .

Define standard normal and chi-squared rvs as follows: 7z = (X _Y) - —4) s W=(m+n-2)S> /o’
o’ /m+c’/n

(df =m + n—2). Then, by definition, the rv

Z+6
has, by definition, a noncentral ¢ distribution.
W df
Substitute Z and W above along with ¢ specified in the exercise; we hope to show the result is 7,. Along the
way, note that Ais just shorthand notation for (s —u,).
(A_/_Y)_(xul_,uz)_'_ A’_Ao
Z+6 _ No?im+o’in  oNlUm+ln _(X=Y)=(u—p)+A -A,

1
WIdE Jm+n-2)82/0* [ (m+n-2) oVl/m+1/n N
_ ()?_Y)_Ao

—~ 7 0 _T
SNUm+l/n "
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