My work in probability

By Olav Kallenberg, 2021

Here I am cherry-picking some results I have proved through the years that
I think are especially interesting or important. Most of the quoted results
may be found, often in more general form, in my three Springer books:

(KO05) Probabilistic symmetries and invariance principles, Springer 2005
(K17) Random measures, theory and applications, Springer 2017
(K21) Foundations of modern probabillity, 3rd ed., Springer 2021

The following account may illustrate why I consider every area of probability
theory "my field.” My aim in the Foundations book was to summarize the
most important results I know in those different areas. I am sorry for the
length of this summary, but I can see no way to explain what I did without
providing some details. Still I am omitting most technical definitions and
all references to the literature. I should also emphasize that I am only high-
lighting some of the most interesting results. For a fuller account, the reader
needs to go to the three books listed above, where more careful explanations
are provided.

Random measures.! When Peter Jagers? came back from his sabbatical
in the US in October 1971, he brought a long paper on random measures and
point processes, which became the basis for our regular seminar, where we
alternated to speak. Peter also organized a little conference on the subject,
which attracted lots of people from Sweden and neighboring Denmark. All
this activity inspired me to write a long research paper, which became my
Ph.D. thesis that I defended in May 1972.

My theses dealt with uniqueness and convergence criteria for random
measures and point processes, including matters of infinite divisibility and
convergence of null arrays. 1 also considered the theories of Cox processes
and thinnings, and criteria for invariance in distribution under measure-
preserving maps. Finally, I had a substantial section on Palm distributions,
which is today largely obsolete. Much of this material was closely related to
what Klaus Matthes® and his many collaborators and students were working
on in East-Germany, going into the first edition of their monumental point
process monograph, hence their interest in my work.

I should explain the role of random measures in this context. Point pro-
cesses may be regarded as special random measures. More importantly, every
discussion of point processes leads naturally into the class of more general
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random measures. For example, a fundamental role is played by the class
of Cox processes, which are point processes directed by more general ran-
dom measures. Another example is the case of conditional intensities and
Papangelou kernels, discussed below. As a final example, spatial branching
processes lead in the diffusion limit to so-called super-processes, which are
typically processes of diffuse random measures.

Spatial branching processes.* Matthes’ interests went far beyond this
special problem area, and when he visited Gothenburg he brought with him
an open problem on spatial branching processes, exhibiting a fundamental
dichotomy between the stable and unstable cases, where stability essentially
means convergence to a steady-state distribution while unstable means local
extinction. The basic problem is then to find necessary and sufficient con-
ditions for stability. This is where I developed some useful criteria based on
temporal and spatial Palm distributions, leading to processes that got known
as Kallenberg’s backward trees. Using the latter, it become possible to relate
the stability of a spatial branching process to the convergence or divergence
of an associated random walk.

Statistical mechanics.® Another class of problems arose from the work
of Fredos Papangelou and others in stochastic geometry, related to Rollo
Davidson’s famous conjecture for stationary line processes in the plane (see
below). By an ingenious construction, Papangelou showed that, for every
sufficiently regular point process, there is an associated conditional intensity
random measure, now known as the Papangelou kernel. This object turned
out to have important connections to statistical mechanics and attracted a
lot of interest. Using very different methods, based on dual disintegrations
of compound Campbell measures, I managed to construct a much more gen-
eral object that I called the Gibbs kernel®. Here some classical relations in
statistical mechanics, due to R.L. Dobrushin and others, could be restated
in terms of the new kernel. This led me to develop a general theory of con-
ditioning in point processes, involving the dual objects of Gibbs kernels and
multivariate Palm measures, in particular involving expressions for inner and
outer conditioning. All this work was first published in 1983.

Stochastic geometry.” Through the work of Papangelou, I got inter-
ested in processes of lines and flats in a Euclidean space. Before his death,
Rollo Davidson® had conjectured that, under a second moment condition,
every stationary line process in the plane without pairs of parallel lines is
a Cox process, defined as a mixture of Poisson processes. Papangelou used
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his kernel to reduce the problem to showing that every sufficiently regular,
stationary random measure on the space of lines in the plane is a.s. shift
inwvariant. Though already Davidson and Klaus Krickeberg, later joined by
Papangelou, had managed to prove some theorems of the latter type, David-
son’s original conjecture remained elusive. I worked hard for a few years to
prove extensions of such invariance theorems, and I also studied extensively
the associated particle systems. Then one day at Christmas time it suddenly
occurred to me that I could give a counterexample to Davidson’s conjecture,
and I spent about a week to write a short paper explaining my argument.

I wasn’t sure whether this was really publishable, but I decided anyway
to send my note to a journal, and I also mailed copies of my paper to some
colleagues working in this area. To explain my hesitation, you need to under-
stand how mathematicians work. For every step in a mathematical program
we make conjectures suggested by previous knowledge, and the technical
work is then to determine whether your guesses are true or false. If true,
then you have a theorem, and you are ready to take the next step; if false,
you have to discard or modify your conjecture. This is just the daily routine
of a mathematician. So, here was a conjecture that turned out to be false:
not a big deal, you just had to modify the guess, or else give up on this al-
together. To my surprise, this conjecture of Davidson was regarded to be of
such a momentous importance, and my counterexample caused a sensation
in some mathematical circles.

I should add that the original conjecture dealt with line processes station-
ary under arbitrary rigid motions. One of my key steps was to note that it
is equivalent to consider stationarity under the group of translations, which
made the required technical work so much easier to handle.

Exchangeable sequences and processes.” My work on random mea-
sures led naturally to a study of exzchangeable sequences and processes. Here
there are essentially four different cases, depending on whether the time pa-
rameter is discrete or continuous and the length of the time interval is finite or
infinite. The case of infinite sequences is described by de Finetti’s theorem,
the case of finite sequences is equivalent to sampling from a finite popula-
tion, and the case of exchangeable processes on R, had been described by
Biihlmann in 1960, leading to mixtures of Lévy processes. It remained to
consider the most difficult case of exchangeable processes on [0, 1]. Here the
general representation was stated already in my Ph.D. thesis, and a compre-
hensive theory of the four cases and their mutual relations was developed in
a couple of papers a few months later. At this time I also gave some general
conditions for the uniform convergence of series of independent processes in
the Skorohod space, generalizing some celebrated results of [t6 and Nisio.

By the mentioned connection with simple random sampling from a fi-
nite population, my work also clarified the asymptotic properties of the re-
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lated sampling processes, and I even wrote a short paper on the relationship
between sampling with and without replacement from a finite population,
published in a statistics journal. By a strange coincidence, the student Jan
Hagberg in Stockholm, an old friend of mine, had also studied the asymptotic
behavior of such sampling processes, and some of his results, later published
in the Russian probability journal, were closely related to mine.

Lévy processes and stochastic calculus.! My work in exchange-
ability led naturally to a special interest in Lévy processes'!. Indeed, the
exchangeable processes on [0,1] are similar to but more general than the
Lévy processes, and it became a challenge to extend the basic path and
other properties of Lévy processes to this more general class. Already for the
Lévy processes themselves there seemed to be some interesting open prob-
lems, and in particular I got interested in extending the classical Ito theory
of stochastic integration with respect to Brownian motion to the case of gen-
eral Lévy processes. This I did during my visit to Chapel Hill in 1973-74,
which was before Meyer’s path-breaking paper on stochastic integration with
respect to general semi-martingales, and I used mostly the classical approach
employed by It6'2. In particular, I gave conditions for the ezistence of the in-
tegral, derived some basic estimates, and studied especially the special case
of stable integrators. 1 also developed a theory for not only the quadratic
variation, but for variations of arbitrary order.

Though this paper later became partly obsolete through the developments
of the Strasbourg school, I considered it at the time to be one of my ma-
jor accomplishments. Thus, the first time I was invited to give a plenary
talk at a big conference, this was the paper I chose to present. Similarly,
when I returned to Gothenburg and was invited to give a colloquium talk in
the math department, I would speak about my stochastic integration paper.
This turned out to be a tough call, for two reasons: 1) even the classical It6
integration with respect to Brownian motion, by me regarded as one of the
most basic areas of probability theory, was virtually unknown even among
probabilists in the audience, and 2) my lecture led to criticism that I should
talk instead about point processes, which were supposed to be "my field.”
The latter labeling remained a curse'® all through my career.

Predictable sampling.'* As every gambler knows (or ought to know),
in a repeated game of chance such as roulette, you can’t improve your chances
by using a clever gambling strategy. This common gambling experience was
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first formalized by Doob'® as the optional skipping theorem, showing that the
distribution of an i.i.d. sequence &, s, . .. remains the same if you sample the
variables & at any predictable times 71 < 15 < ..., so that the sequences (&)
and (&;,) have the same distribution. This quite elementary result is histor-
ically interesting, since Doob’s first student was the famous mathematician
P.R. Halmos, who got as his Ph.D. problem to study the phenomenon of
optional skipping.!®

One of my most surprising discoveries was the fact that, for any finite or
infinite exchangeble sequence (&) on the index set I and any a.s. distinct
predictable times 7, 7o, ... taking values in I, the sequences (&) and (&)
have the same distribution. This leads in particular to a very short proof
of Lévy’s third (and most difficult) arcsine law for Brownian motion. Note
that my result doesn’t require the sequence (&) to be infinite, nor the 74 to
be increasing.

A related result in fluctuation theory had been proved in 1949 by E.
Sparre-Anderson, and Feller writes that S-A’s result ”was a sensation greeted
with incredulity, and the original proof was of an extraordinary intricacy and
complexity.” Feller goes on to give a simplified proof, which is still quite com-
plicated. With some effort, it is possible to prove a continuous-time version
of the cited predictable sampling theorem, which may be stated symbolically
in the form

AoVl=) = XoV'iLx

where X is an exchangeable process on [ = R, or [0, 1], A is Lebesgue mea-
sure on I, and V' is a predictable mapping from I to itself.

Strong stationarity.'” The three major dependence structures of prob-
ability theory are those of stationarity, Markov processes, and martingales
(not to mention the elementary case of mere independence). As every prob-
abilist knows, the Markov property extends, under suitable regularity condi-
tions, to the strong Markov property, which simply means that it remains true
for every optional time'®. Similarly, Doob’s optional sampling theorem shows
that even the martingale property extends to (suitably bounded) optional
times. Then what about stationarity, defined as invariance in distribution
under arbitrary shifts, does it also extend to arbitrary optional times? The
surprising answer is no, and in fact the strong stationarity of a random se-
quence & = (&), in the sense of invariance in distribution under optional
shifts, is equivalent to the de Finetti property, where the & are conditionally
i.i.d. This observation, a rather easy consequence of Ryll-Nardzewski’s char-
acterization, is to me one of the most astonishing facts of modern probability.
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Discounted compensator.!® For any random measure £ on a product
space R x S, the Doob-Meyer decomposition yields an a.s. unique predictable
random measure é on the same space, called the compensator of £, such that
Jvde = | VdéC for any predictable process V. When ¢ = 4., for a single
random point (7, x) and the filtration F is the one induced by &, it is well-
known that f can be calculated from the underlying distribution p by a
simple formula, defining the natural compensator of €. For general F, this is
no longer true, but we can still form the ordinary compensator é . Inserting
é instead of the natural compensator in the mentioned formula, we can solve
for p, which now becomes a random measure ¢ that I call the discounted
compensator of £. It is easily seen that ( can be expressed as a Doléans
exponential®. Much harder is to show that the distribution of the pair (&, ¢)
is a unique mixture of distributions in the natural case.

The point of this construction is that the discounted compensator has
the most powerful mapping properties. For the context, recall that a contin-
uous local martingale M can be be time-changed into a Brownian motion,
using the quadratic variation [M] as a new time scale. Similarly, a simple
point process £ with a continuous compensator f can be time-changed into a
homogeneous Poisson process, with é defining the new time scale. (A third
basic case is that of suitable stable stochastic integrals, but we don’t need to
discuss that for the moment.) Now it turns out that the discounted compen-
sator can be used to transform any set of random variables into independent
variables with specified distributions. Here the argument makes full use of
the stochastic calculus for general semi-martingales, where the main step is
to prove that a certain fundamental process is a martingale. The details are
too technical to review here, so let me just mention that such mappings can
be used to give a short proof of the predictable mapping theorem mentioned
earlier. It can also be used to transform simple point processes to Poisson,
even when £ is not continuous.

Stochastic differential equations.?? Consider a stochastic differential
equation of the form

dX; = o'(t,X)dB] + b'(t, X) dt, (1)

where o and b are given progressively measurable functions and B is a Brown-
ian motion of suitable dimension. Here we distinguish between weak, strong,
and functional solutions, where a strong solution is a process X satisfying (1)
for given B and Xy, a weak solution is a pair of processes (X, B) satisfying
(1) for given p = L(Xp), and a functional solution is a process X satisfy-
ing X = F(Xo, B) a.s. for a suitable measurable function F'. We also say
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that pathwise uniqueness holds for (1), if any two solutions X and Y with
Xo = Yy a.s. will agree a.s., and that uniqueness in law holds for (1) if any

two solutions X and Y with X, < Yy have the same distribution.

In a celebrated 1971 paper, Yamada and Watanabe proved that weak
existence and pathwise uniqueness imply strong existence and uniqueness in
law. Under the same conditions, they further established the existence of
a functional solution, but only in the weaker form X = F},(X,, B), where
the function F, may depend on the initial distribution p = L£(Xo). When
studying the proof, I noticed that we do have a functional solution of the
stronger form X = F(X,, B), where the function F' is independent of u. Tt
just takes a couple of pages of tight reasoning to get the stronger result.

Exchangeable and contractable arrays.?® Around 1980, David Al-
dous and Douglas Hoover independently?* established some remarkable cod-
ing representations of exchangeable arrays. In the two-dimensional case, we
then consider arrays X = (X;;) of random variables indexed by N?, and say
that X is separately exchangeable if the joint distribution £(X) is invariant
under arbitrary permutations p and ¢ in the two indices, jointly exchangeable
if the same invariance holds under mappings by the common permutations
p = q. By a clever probabilistic argument, Aldous shows that X is separately
exchangeable iff

Xij = f(a7€ivnja<ij)> Za] € N7

for a measurable function f on [0, 1]* and some i.i.d. U(0, 1) random variables
a,&,mj,Gj. (A similar representation in the more general jointly exchange-
able case is slightly harder to prove.) Hoover uses a totally different approach,
based on subtle ideas from mathematical logic and non-standard analysis,
to prove some similar but more complicated representations for jointly ex-
changeable arrays of arbitrary dimension. Hoover also gives criteria for two
functions f and g to be equivalent, in the sense of being useful to represent the
same array. Such representations have recently found important applications
to random graphs and networks.

Since I needed the higher-dimensional versions for other purposes (see be-
low), I wanted to find probabilistic proofs of Hoover’s general results, locked
down in an unpublished manuscript that nobody could read.? In view of
Ryll-Nardzewski’s discovery that, for infinite sequences, exchangeability is
equivalent to contractability, where all sub-sequences have the same distri-
bution, it also became a challenge to establish contractable versions of the
Aldous—Hoover results. After years of effort, I eventually managed to prove
that the Hoover-type representations remain valid in the jointly contractable
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case. (The contractable case is in fact much harder, since fewer symme-
tries are available.) As an immediate consequence, a sub-diagonal array is
contractable iff it admits an extension to a jointly exchangeable array. Since
the latter property doesn’t involve the Aldous—Hoover representations, it has
long been my primary open problem to give a direct proof of the stated re-
sult. Nobody seems to have taken up the challenge.

Multivariate rotational symmetries.?® The cited paper of David Al-
dous also contains a representation of two-dimensional, separataly rotatable
arrays, where rotatability means invariance in distribution under orthogonal
transformations of finite sub-arrays. Here already the jointly rotatable case
is more difficult, and for years I was looking for representations of jointly ro-
tatable arrays of arbitrary dimension. The problem is naturally discussed in
an abstract Hilbert-space setting, where we consider continuous linear ran-
dom functionals (CLRF’s) X on tensor products of a separable Hilbert space,
invariant in distribution under arbitrary unitary transformations, applied si-
multaneously in all ”coordinates.” The general representations may then be
expressed as finite sums of tensor products of multiple Wiener-Ito integrals.
(Readers familiar with Malliavin calculus know that the latter integrals also
play a fundamental role to represent the Malliavin derivative D and its dual
D*, known as the divergence operator or Skorohod integral.)

Once the rotatable arrays are well understood, their representations can
be used to derive representations of exchangeable or contractable random
sheets of arbitrary dimension. The resulting formulas are simple and easy
to understand, when phrased in terms of Wl-integrals on tensor products of
suitable Hilbert spaces, but their proofs are extremely difficult, and I con-
sider this entire work to be the most difficult thing I have ever done.?”

Decoupling and tangential processes.?® The idea of decoupling is
that, when studying a pair of random objects (£,7n), we introduce a pair
(é ,7), where ¢ and 7 are independent with the same distributions as ¢ and
7. In some special cases, the study of (é ,7) may give important information
about the distribution of the pair (£, 7). In particular, this method was used
systematically by Jurek Szulga and me when we studied multiple stochastic
integrals X" f for suitable Lévy processes X, by reducing the study to the
easier case of integrals (X --- X,,)f, where X, ..., X,, are independent with
the same distribution as X.

A famous case of decoupling is provided by the Wald identities where,
under suitable conditions, the mean and variance of a random sum or integral
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> ViX; or [VdX is the same as if the sequences or processes V and X were
independent. Years ago I discovered that the Wald identities can be extended
to moments of arbitrary order, provided that the underlying conditions on X
and V' are correspondingly extended. Such decoupling identities may seem
technical and boring, until you become aware that they are in fact powerful
enough to give simple alternative proofs of the predictable sampling and
related theorems mentioned earlier.

To explain the role of tangential processes, recall that a continuous local
martingale M or a gl-continuous simple point process N can be reduced to
a Brownian motion or a homogeneous Poisson process, through a random
time-change based on the quadratic variation [M] or compensator N, respec-
tively. This suggests that M might be a mixture of Brownian motions with
varying rates, or that N is a mixture of non-homogeneous Poisson processes,
known as Cox processes. Though this is not quite true, we are getting close.
In fact, for every continuous local martingale M, we can form a mixture of
non-homogeneous Brownian motions M, such that M and M have the same
quadratic variation [M] = [M]. Similarly, for every ql-continuous simple
point process N, there exists a Cox process N with the same compensator.2
For general semi-martingales X, the situation is similar but more compli-
cated. Here the local behavior of X is described by the local characteristics,
and there exists a semi-martingale X with same local characteristics, such
that X is a mixture of processes with non-random local characteristics.

The point of the construction is that, although the processes X and X are
not identically distributed, they have similar asymptotic properties. Further-
more, the component processes of X have deterministic local characteristics,
which means that they have independent increments and can be analyzed by
elementary classical methods. In particular, a process with invariant local
characteristics is a Lévy process, and we are back to very familiar classical
territory. Though entire books have been written about decoupling relations
for tangential processes, the previously known results are mostly for discrete
time, whereas I am considering the continuous-time case, which contains dis-
crete time as a simple special case.

Invariant Palm measures.?’ Throughout random measure theory, the
notion of Palm measures plays a crucial role, and various aspects of their the-
ory take up more than a hundred pages in my recent random-measure book,
not to mention their role in various applications. To appreciate their im-
portance, we need to recognize that they are essentially extensions of regular
conditional distributions to general random measures, whose theory goes back
to the classical work of Kolmogorov and Doob. Much of my work through
the years deals with various aspects of this theory and its applications.

Rather than trying to survey the entire area, I will focus on some very
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special, yet fundamental invariance problems. Technically, given a random
measure £ on S, the Palm measures of £ form a kernel obtained by disinte-
gration of a so-called Campbell measure p on a product space S x T', where
disintegration means that we are slicing up p into its contributions to differ-
ent "lines” S x {t}. This may be written as p = v ® u, where v is a measure
on S called the supporting measure and g is the associated disintegration
kernel from S to T.

Now suppose that G is a group acting measurably on S and 7', such that
both p and v are G-invariant. Then a basic problem is to choose a G-invariant
verston of the kernel p, in the sense that p,s = 6., for any s € S and r € G,
where the 6, are shift operators on T (or the associated measure space). The
existence of p can be proved under general regularity conditions, and early
special cases were obtained, in the context Palm measures, in pioneering
work by Matthes, Mecke, and others. For most applications, we may take
G to be a locally compact, second countable Hausdorff space (abbreviated as
lescH).

Now assume instead that the measures p and v are random and jointly
stationary under the action of G. For certain purposes, it is then important
to find a G-stationary version of the disintegration kernel p. This problem is
much more difficult, since we may no longer assume p and v to be invariant.
Using the fact that Besicovitch’s covering theorem extends to compact sub-
sets of any Riemannian manifold, I managed to prove the conjectured result
for any Lie group G. To extend the result to the general locally compact
case, | needed the subtle fact that every lcscH group G contains an open
subgroup H, which is a projective limit of Lie groups. In this case, the cosets
of H are again open, and the coset space G/H is discrete and countable.
Even when using these facts, the proof is far from trivial, and completing the
proof is one of the accomplishments I am the most proud of.

Particle systems.?! Let me first describe a version of Dobrushin’s clas-
sical theorem from 1956, which inspired much subsequent work in this area.
Here let ¢ be a stationary point process on R? with finite sample intensity
¢ (the asymptotic average of ¢ over increasing regions, in the sense of the
multi-variate ergodic theorem). Further consider some probability measures
Vi, Va, ... on R? and let each &, be a v,-transform of &, in the sense that
the points of ¢ are moved independently according to the distribution v,.
Then &, converges in distribution toward a Cox process ¢ directed by & A9,
whenever the v, are asymptotically invariant in a suitable sense. In fact,
the distributional convergence comes in two varieties, weak and strong, and
convergence holds in the weak or strong sense depending on whether the
asymptotic invariance is weak or strict.

To appreciate this result, we note that, if v, equals the n-th convolution
power p*™ of some fixed distribution y, then the weak asymptotic invariance
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holds iff p is mon-lattice, whereas the strict version holds iff at least one
power p*" is non-singular. This yields the desired Cox convergence whenever
the points of £ are moved according to independent random walks or Léuvy
pProcesses.

The mentioned result can be deduced from two fundamental theorems,
which I have obtained in increasing generality, beginning with a basic limit
theorem for random thinnings, extending some classical results in this area
by Rényi and others. For a more general version, say that the probability
kernels v, on a space S are dissipative if sup, v, (t, B) — 0 for every bounded
set B. Assuming the &, to be v,-transforms of some point processes v, we
then get for suitable ¢ and n

vd vd
TInVn — n <~ fn — 57 (2)

in which case £ is a Cox process directed by n, where 5 denotes convergence
in distribution with respect to the vague topology on S.

The other basic ingredient is a smoothing®? theorem for convolutions of
the form

& xuy LB, EX < v, weakly asymptotically invariant, (3)

where 25 denotes convergence in probability with respect to the vague topol-
ogy on S. Dobrushin’s theorem is an immediate consequence of (2) and (3),
but the mentioned results are of course much more general and allow far-
reaching applications.

Super-processes.?* Consider a spatial branching process in R?, where
the life lengths of the particles are independent and exponentially distributed
with rate 2, and each particle either dies or splits into two with equal prob-
ability % Further assume the spatial movements of the particles to be given
by independent Brownian motions. Now perform a scaling, where the parti-
cle density and branching rate are both increased by a factor n, whereas the
weight of each particle is reduced by a factor n=1. The spatial motion is not
affected by the scaling. As n — oo, we get in the limit a measure-valued dif-
fusion process X, known as a Dawson- Watanabe super-process (DW-process
for short). It turns out that for any fixed ¢t > 0, the value X; is a diffuse
random measure of Hausdorff dimension 2, and we may think of the pro-
cess as a randomly evolving diffuse cloud. I feel that the DW-process is the
most interesting single object studied in probability theory, and I enjoyed
tremendously spending years to contribute to its study.

In some path-breaking papers of Dawson & Perkins, Dynkin, and Le Gall,
all published in 1991, the evolution of X was shown to be governed by an
underlying discrete branching structure, which makes the process amenable
to a detailed probabilistic analysis, involving discrete sets of ancestors with
associated clusters. In particular, for any fixed ¢ > 0, the ancestors at an
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earlier time s = t — h form a Cox process (! directed by h~'¢,, and the ances-
tral processes with s < t form an inhomogeneous Yule branching Brownian
motion approaching & as s — t. The individual ancestors give rise to i.i.d.
clusters, and the resulting cluster structure constitutes a powerful tool for
analyzing the process.

In this brief account, it would bring us too far to describe my various
results in detail, so let me just mention that much of my work consisted in
clarifying the local structure of the process, in particular involving a funda-
mental Lebesgue approximation, and further a detailed analysis of the ge-
nealogy (ancestral structure) in terms of what I call a Palm tree. In this
work, some basic duality relations for multivariate Palm distributions play
an essential role, and I am also making use of Alison Etheridge’s probabilis-
tic description of the moment structure, as well as an extended version of
Jean-Frangois Le Gall’s ingenious Brownian snake.

Stochastic differential geometry.?* Stochastic calculus on Rieman-
nian manifolds has been considered ever since some early work of 1to, and
several excellent expositions exist. Around 1980, the famous mathematicians
Laurent Schwartz®® and Paul-André Meyer caused a sensation by showing
that much of the theory can be developed on manifolds with much weaker
properties. Thus, continuous®® semi-martingales can be defined and studied
in an arbitrary differential manifold S, and for the martingale property we
need only a connection. It is not until we come to Brownian motion that we
need to introduce a Riemannian metric. Note that this reverses the standard
procedure in Euclidean spaces, where we start with Brownian motion, then
move on to general martingales, and finally reach the semi-martingales by
adding a drift term.

I got attracted to this more general theory, because of both its simplicity
and its beauty.?” To appreciate this achievement, it is important to note that
all definitions and results must be intrinsic, in the sense of being independent
of any embedding into a Euclidean space and remaining valid under any
change of local coordinates. The definition of a semi-martingale is obvious
and elementary, and given a connection V on S, a semi-martingale X on S
is called a martingale, if for any smooth function f on S,

f(X) =3 VFX],

where Vf[X] is the quadratic variation process of X associated with the
bilinear form V f. The relation £ denotes equality in R up to a martingale
term.

34K21, Ch. 35

35the creator of distribution theory

36This qualification is henceforth omitted, since only continuous processes will be con-
sidered below.

37In fact, Meyer’s first paper on the subject is entitled Stochastic geometry without tears.
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The next challenge is to define intrinsic versions of the local character-
istics of a semi-martingale X in S. Since X is continuous, we are simply
looking for intrinsic versions of the drift and diffusion rates. An obvious
requirement is that the drift rate should vanish precisely when X is a mar-
tingale, and since the latter property makes sense only for manifolds with
a connection, the same thing will be true for the intrinsic drift rate. My
versions of local characteristics with the desired properties appear in the last
chapter of my Foundations book.?®

381 had been hoping to discuss this matter with Michel Emery in Strasbourg, who is a
leading expert in the area, but then the pandemic came along, making air travel too risky.
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